Skip to main content

Innovation Underscores GE Aviation’s Commitment to Emissions-Lowering Technology in Years Ahead

January 31, 2022

In a series of announcements throughout 2021, GE Aviation outlined what is one of the company’s most extensive technology development roadmaps in its more than 100-year history. Multiple ground and flight tests planned this decade will seek new, breakthrough technologies for use in next-generation commercial aircraft engines that could enter service beginning in the mid-2030s.

Advanced engine architectures such as open fan, hybrid electric propulsion systems and new compact engine core designs—just some of the technologies that will be demonstrated on test stands over the coming years—will all be key programs to watch in 2022 and beyond.

In addition to maturing these technologies for flight readiness and new products, GE Aviation also supports efforts to increase use and availability of alternative fuels, such as Sustainable Aviation Fuel (SAF) and hydrogen.

Revolutionary technologies and alternative fuels both have critical roles to play in meeting the aviation industry’s long-term climate goal of net-zero carbon emissions by 2050 for commercial flight.

Here, we’ve laid out GE Aviation’s top innovations and industry-leading efforts to watch in the march toward net-zero.

Open fan and the CFM RISE program

If you ask GE Aviation’s chief engineer Chris Lorence, the time for open fan is now. Why? Since GE Aviation first debuted an unducted fan in the 1980s, the open fan engine design has been made simpler and lighter with new approaches such as single-stage rotating carbon fiber composite fan blades and stationary outlet guide vanes. He explains more about his views on open fan here.

The open fan design is one of the advanced engine architectures CFM International, a 50-50 joint company between GE and Safran Aircraft Engines, is exploring through the CFM RISE Program. The parent companies came together in June 2021 to launch the RISE Program targeting more than 20 percent lower fuel consumption and CO2 emissions compared to today’s most efficient engines. Technologies matured as part of the RISE Program will serve as the foundation for the next-generation CFM engine that could be available by the mid-2030s. Central to the program is state-of-the-art propulsive efficiency.

GE image

GE Aviation is currently developing its next generation suite of engine technologies, including open fan engine architecture, hybrid-electric propulsion, and advanced thermal management concepts.

Hybrid electric … it’s in GE’s DNA

Even before NASA announced last fall the selection of GE Aviation for its Electric Powertrain Flight Demonstration (EPFD) program, GE had been advancing electrification of aircraft and engine systems for more than a decade. During that time, GE engineers matured individual components of a hybrid electric system, including motors, generators and power converters.

Now, the jet engine maker and aircraft systems company will take what it’s learned in laboratories about making an integrated electric machine and ready it for ground and flight tests planned for the mid-2020s.

Through the $260 million program with NASA, GE Aviation will mature a megawatt class hybrid electric powertrain to demonstrate flight readiness for single-aisle aircraft using a modified Saab 340B testbed and GE’s CT7-9B turboshaft engines.

Electrification efforts draw on capability from across GE’s Aviation, Power and Research organizations. GE’s co-founder Thomas Edison created the first electrical grid in 1882 and today, GE’s power equipment generates one-third of the world’s electricity.

Smaller core, greater efficiency

One of the enabling technologies being studied in the CFM RISE Program is a compact engine core. In another multimillion-dollar program with NASA announced in late 2021, GE Aviation was awarded contracts to test and mature new jet engine core designs, including compressor, combustor and high-pressure turbine technologies to improve thermal efficiency. Continued development of Ceramic Matrix Composites, an advanced, heat-resistant material, is also a key part of the effort to improve fuel efficiency and thereby reduce emissions. GE expects this effort to lead to a ground test later this decade.

GE powers another first for Sustainable Aviation Fuel (SAF)

On December 1, United Airlines operated the first passenger flight using 100% SAF, powered by CFM LEAP-1B engines. But the more than 100 people on board from Chicago to Washington, D.C., weren’t the only unique thing about the flight. As Gurhan Andac, GE Aviation’s engineering leader for fuels explains, the historic flight was also important for efforts to increase SAF above the current blending limit of 50%.

Currently, SAF approved for use is a blend of petroleum-based Jet A or Jet A-1 fuel and a SAF component with a maximum blend limit of 50%. Andac chairs an international task force to develop standardized industry specifications supporting adoption of 100% SAF, which does not require blending with conventional jet fuel.

“There have been other 100% SAF flights in the past, including with GE and CFM engines, but in this flight, we were able to blend two different SAF types together to get to a drop-in fuel that is fleetwide and infrastructure compatible at 100%,” Andac said. “What we learned from this flight is that we can actually blend two different distinct SAF types together to get to a fully drop-in sustainable synthetic jet fuel as a replacement for conventional jet fuel.”

Drop-in means that no engine or infrastructure changes are needed to use the fuel, and the drop-in SAF can be used in aviation equipment today.

GE Aviation already has plans for more test flights with 100% SAF in 2022, including programs announced at the most recent Dubai Airshow with Emirates and Etihad Airways.

Today and in the future, all GE Aviation and CFM International engines can operate with approved SAF, which is produced from alternative feedstocks and processes, lowering lifecycle carbon emissions compared to petroleum-based fuels.