
PROFICY
HISTORIAN EDGE

User Guide

DIGITAL

Proprietary Notice
The information contained in this publication is believed to be accurate and reliable. However, General
Electric Company assumes no responsibilities for any errors, omissions or inaccuracies. Information
contained in the publication is subject to change without notice.

No part of this publication may be reproduced in any form, or stored in a database or retrieval system,
or transmitted or distributed in any form by any means, electronic, mechanical photocopying,
recording or otherwise, without the prior written permission of General Electric Company. Information
contained herein is subject to change without notice.

© 2023, General Electric Company. All rights reserved.

Trademark Notices
GE, the GE Monogram, and Predix are either registered trademarks or trademarks of General Electric
Company.

Microsoft® is a registered trademark of Microsoft Corporation, in the United States and/or other
countries.

All other trademarks are the property of their respective owners.

We want to hear from you. If you have any comments, questions, or suggestions about our
documentation, send them to the following email address:
doc@ge.com

Contents

Chapter 1. Release Notes - Historian for Linux 2.3.1... 6

Release Notes... 6

Chapter 2. Historian for Linux - an Overview..9

Overview of Historian for Linux...9

Licensing... 10

Historian Container Architecture...10

Chapter 3. Set Up Historian for Linux on Predix Edge.. 14

Set Up Historian for Linux on Predix Edge...14

Stop an Application on Predix Edge... 16

Upgrade an Application on Predix Edge...16

Uninstall an Application on Predix Edge.. 16

Chapter 4. Set Up Historian for Linux on a Generic Linux Distribution.. 17

Set Up Historian on a Generic Linux Distribution.. 17

Stop an Application Deployed on a Generic Linux Distribution.. 20

Upgrade an Application on a Generic Linux Distribution...21

Uninstall an Application Installed on a Generic Linux Distribution...21

Chapter 5. Historian Database..23

Overview of the Historian Database... 23

Migrating Historian Data from Windows to Linux... 23

Environment Variables Used by the Historian Database...24

About Array Tags..28

Chapter 6. Historian Public REST APIs...30

Overview of the Public REST APIs..30

Connect to an External UAA Server.. 31

Configure PostgreSQL to Accept External Connections... 32

Environment Variables Used by the Public REST APIs..33

Sample REST URI... 33

Contents | iii

Chapter 7. Historian REST Query Service...34

Overview of the REST Query... 34

Environment Variables Used by the REST Query ..34

REST Query Array Tag..36

Example of the REST Query API .. 40

Chapter 8. Historian Web Admin Service..42

Overview of Web Admin.. 42

Environment Variables Used by Web Admin..42

Accessing the Web Admin.. 43

About Using UAA with Web Admin...43

Use Predix UAA with Web Admin..43

Use Other UAA Service with Web Admin..44

Environment Variables Used by Web Admin UAA..44

Chapter 9. Historian MQTT Collector... 47

Overview of the MQTT Collector...47

Environment Variables Used by the MQTT Collector.. 48

Chapter 10. Historian Tuner... 51

Overview of Tuner...51

Environment Variables Used by Tuner..52

Use Tuner on Predix Edge... 53

Use Tuner on a Generic Linux Distribution...54

Examples of Tasks You can Perform Using Tuner.. 54

JSON File Content Example.. 66

Chapter 11. Historian Server-to-Server Collector... 73

Overview of the Server-to-Server Collector...73

Environment Variables Used by the Server-to-Server Collector.. 73

Important notes on the Server-to-Server Collector Tasks... 75

Streaming data to Predix Time Series..76

Create the Offline Configuration File... 76

Contents | iv

Sample OfflineConfiguration.xml file... 77

Predix Time Series Information Fields in the historian-s2s-collector-config.json File................... 78

Chapter 12. Historian OPCUA DA Collectors.. 80

Overview of the OPCUA DA Collector..80

Capabilities of the OPCUA DA Collector...80

Environment Variables Used by the OPCUA DA Collector...82

Sample ClientConfig.ini File Used by the OPCUA DA Collector ... 84

Secured OPCUA Collector Connectivity..85

Chapter 13. Security for Historian for Linux container Ecosystem.. 86

Security for Historian for Linux container Ecosystem...86

Chapter 14. Key differences between Historian for Linux and Historian for Windows............................91

Key differences between Historian for Windows and Historian for Linux..91

Chapter 15. Historian for Linux Client Libraries..94

Historian for Linux Libraries.. 94

Overview of the Collector Toolkit..94

Historian for Linux User API - an Overview..95

Related Documentation..95

Chapter 16. Troubleshoot Historian for Linux...97

General Troubleshooting Tips... 97

v

Copyright GE Digital
© 2023 .

GE, the GE Monogram, and Predix are either registered trademarks or trademarks of . All other trademarks

are the property of their respective owners.

This document may contain Confidential/Proprietary information of and/or its suppliers or vendors.

Distribution or reproduction is prohibited without permission.

THIS DOCUMENT AND ITS CONTENTS ARE PROVIDED "AS IS," WITH NO REPRESENTATION OR

WARRANTIES OF ANY KIND, WHETHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO

WARRANTIES OF DESIGN, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. ALL OTHER

LIABILITY ARISING FROM RELIANCE UPON ANY INFORMATION CONTAINED HEREIN IS EXPRESSLY

DISCLAIMED.

Access to and use of the software described in this document is conditioned on acceptance of the End

User License Agreement and compliance with its terms.

Chapter 1. Release Notes - Historian for Linux 2.3.1

Release Notes

Table 1. New Features and Enhancements

The following new features and enhancements have been added.

Description Tracking ID

Support for Array tags in Linux historian

Historian for Linux now provides support for array

tags.

F70135

Historian Rest Query Service

Historian Rest Query service now supports query

ing the Array tag data type.

F70135

Historian MQTT Collector

Historian MQTT Collector now supports Array tags.

F70374

Table 2. Resolved Issues

The following issues have been resolved.

Description Tracking ID

Previously, when using the MQTT collector, the

Output.msq buffer file size did not decrease af

ter reconnecting and sending data to the destina

tion Historian server. This issue has been resolved

in the following image ID of Historian for Linux:

0ccd57605973

DE136980

Historian for Linux - Getting Started Guide | 1 - Release Notes - Historian for Linux 2.3.1 | 7

Table 3. Known Issues

The following issues are unresolved.

Description Tracking ID

When using the public REST APIs, an error occurs

if you use the host name of the source Historian

server.

Workaround: Use the IP address instead of the

host name.

DE130496

When using the REST query, an error occurs if you

query the latest data point using the GET method.

Workaround: Use the POST method instead of the

GET method.

DE136935

In the Historian archiver, cyclic archiving does not

work.

DE137212

When you query data using the REST query service,

the filter condition is not honored when the order is

by desc.

DE136984

Sometimes, the server-to-server collector crashes

with status code as 139 in the Docker logs. This is

sue appears when you restart the source Historian

server multiple times.

DE102770

When using a tuner, you must run the data man

agement task prior to the data store configuration

and tag configuration tasks.

DE103207

When you attempt to back up the archive file using

web admin, an error occurs.

DE102197

On web admin, the free-space statistics for time-

based archive do not show the value 0 (zero),

DE103473

When using the server-to-server collector, some

times, the database crashes. This happens when

the server-to-server collector is running when the

DE101786

Historian for Linux - Getting Started Guide | 1 - Release Notes - Historian for Linux 2.3.1 | 8

Table 3. Known Issues

The following issues are unresolved.

(continued)

Description Tracking ID

database restarts and the collector tries to connect

to the database.

Work around: Stop the server-to-server collector,

start the database, and then start the server-to-

Server collector again.

Using web admin, if you query a tag that contains

{ or } in the name, an error occurs.

DE103439

Chapter 2. Historian for Linux - an Overview

Overview of Historian for Linux
Historian for Linux is a high-performance timeseries database designed to store and retrieve time-based

information at a high speed. It runs on the Linux platform using Docker.

Historian for Linux is a collection of several Docker images such as the Historian database, REST query,

web admin, public REST APIs, and various Historian collectors.

Advantages of Using Historian for Linux

• Time series data archiving

• REST API for data query: Data query REST APIs are exactly the same as the Predix time series

REST APIs.

• Web admin: An administrative console to work with the Historian database.

• OAUTH2 integration: The web admin, tuner, REST query, and public REST APIs leverage OAUTH2-

based authentication and authorization.

• Collector toolkit library: Used for implementing collectors that ingest data into Historian for Linux.

• User API library: A C library for programmatically adding, deleting, and configuring tags for

collectors.

• Server-to-Server collector: Stream data of one Historian to another Historian or to Predix Time

series. It helps in data filtering.

• OPCUA DA collector: Collects data from an OPCUA DA server and ingests the data into Historian.

• MQTT collector: Subscribes to an MQTT broker and ingests the data into Historian. This collector

helps to integrate Historian for Linux with the data bus of Predix Edge.

• Configuration: You can also change the configuration properties of the various applications such

as the Historian database, web admin, tuner, REST APIs, REST query, and the various collectors

using the JSON files provided with each application.

• Public REST APIs: Query data from the Historian for Linux archives. The APIs use a Docker

container on a Linux machine. They use the port number 9090 for REST client requests.

Limitations

• Input to the MQTT collector must be in the time-series format.

• The protocol adapters must use the flat_to_timeseries block to translate the data to the required

format before adding the data to the MQTT broker.

• Historian for Linux only supports message IDs, not messages.

Historian for Linux - Getting Started Guide | 2 - Historian for Linux - an Overview | 10

Supported Operating System Platforms

Any x64 based Linux machine or a Linux virtual machine with Docker installed.

Licensing
Historian for Linux is licensed separately from Predix Edge. This documentation provides the technical

aspects of using Historian in the Predix Edge context. For information on purchasing Historian for Linux

perpetual licenses, contact the GE Digital Sales team. We are working on providing additional commercial

models for providing a limited time series capability at the Edge, but these are incomplete and not yet

ready for publication.

Historian Container Architecture
Historian for Linux is developed using the microservices architecture concept. Microservice architecture

is a minimalist approach to modular software development. Modularity is defined as the degree to which

a system's components may be separated and recombined.

That is the reason each Historian container performs its unique job and the containers communicate with

each other for solving different use cases. For example, the Historian database container is responsible

for storing time series data to disk, whereas the REST query is responsible for exposing REST APIs for

data query from the Historian database. You can choose to install all or any of these applications.

Historian for Linux - Getting Started Guide | 2 - Historian for Linux - an Overview | 11

The following diagram shows the core components of Historian for Linux and how they interact with one

another.

Historian for Linux provides the following containerized components:

Docker 1: Historian Database

Historian Database is a C++ based native time series archiver based on the Historian

archiving engine. The TCP/IP server listens on port 14000 and is configurable using

Docker's port map technology.

For information, refer to Historian Database (on page 23).

Docker 2: REST Query

The REST query is a Java-based REST service. It offers REST APIs for data query from the

Historian database. It uses the OAUTH2 server for authentication and authorization. The

REST query provides REST APIs that are similar to the Predix Time Series data query APIs

for querying data. This implies that any analytics application developed using Predix Time

Series data query APIs can work seamlessly with Historian for Linux.

For information, refer to Historian REST Query Service (on page 34).

Docker 3: Web Admin

Web admin hosts a web-based admin console for the Historian database. You can view

and edit properties and list of tags, list of collectors, and the list of data stores. It is a

Historian for Linux - Getting Started Guide | 2 - Historian for Linux - an Overview | 12

Tomcat-based web service, which listens on port 9443 and uses the OAUTH2 server for

authentication and authorization.

It also provides the ability to:

• Start and stop collectors

• Configure collectors

• Browse, add, delete, and rename tags, data stores, and archive files

• View status of the connected collectors

• View the most recently collected data

You can also use a UAA service with web admin.

For information, refer to Historian Web Admin Service (on page 42).

Docker 4: Tuner

Tuner helps you to configure the Historian database properties such data archiving style

(daily, hourly, or by size), tag properties (such as collection rate, conditional collection

filtering). You must provide these configuration changes in the form of JSON payload in a

file. It offers a REST API for uploading JSON file from REST clients to Tuner container. It

uses OAUTH2 Server for authentication and authorization filtering.

For information, refer to Historian Tuner (on page 51).

Docker 5: The Server-to-Server Collector

The server-to-server collector streams data from one Historian database (source Historian)

to another Historian database (destination Historian) or to Predix time series.

You can use this collector when multiple Historian databases are deployed and you want

the data of specific tags from one Historian database to be streamed to another Historian

database with some data filtering.

For information, refer to Historian Server to Server Collector (on page 73).

Docker 6: The OPCUA DA Collector

The OPCUA DA collector connects to the OPCUA Data Access (DA) server and can collect

polled and asynchronous data. It then streams data to the Historian database. This collector

can securely connect with the OPCUA DA server with certificate exchange.

For information, refer to Historian OPCUA DA Collector (on page 80).

Docker 7: The MQTT Collector

Historian for Linux - Getting Started Guide | 2 - Historian for Linux - an Overview | 13

The MQTT collector connects to MQTT broker and subscribes for topics. The data in the

JSON payload must be in the Predix time series format. The collector automatically adds

tags and streams data to the Historian database. Because of this collector, Historian for

Linux is well integrated with Predix Edge’s data bus for consuming data. Predix Edge’s data

bus is an MQTT broker.

For information, refer to Overview of the MQTT Collector (on page 47).

Docker 8: Public REST APIs

Public REST APIs query data from the Historian for Linux archives.

For information, refer to Overview of the Public REST APIs (on page 30).

Chapter 3. Set Up Historian for Linux on Predix Edge

Set Up Historian for Linux on Predix Edge
• Create a Predix account, and get access to a Predix Edge OS 2.5 device.

• Ensure that you have a super-user access to the Linux machine on which you want to install

Historian. This is required if you want to use the OPC UA DA collector.

Important:

Before you install Historian for Linux on a Predix Edge OS for an ESXi Production image,

you must ensure that you have access to the terminal. To get this access, contact

Edge_Engineering_Support@ge.com.

This topic describes how to set up Historian on Predix Edge. You can also set up Historian on a generic

Linux distribution (on page 17).

1. Access https://artifactory.predix.io/, and download the .tar.gz and .zip files for each application

that you want to install.

2. Access Predix Edge Technician Console (PETC).

3. Upload the applications that you want to install.

4. Deploy the applications that you want to install.

The applications appear in the DEPLOYED INSTANCES section.

5. Extract the .zip file for each application that you have installed. This file contains JSON files with

the environment variables that will be used by the applications.

6. Set the environment variables for each application that you have installed:

◦ Historian database (on page 24)

◦ REST query (on page 34)

◦ Web Admin (on page 42)

◦ Tuner (on page 52)

◦ Server-to-Server collector (on page 73)

◦ MQTT collector (on page 48)

◦ Public REST APIs (on page 33)

◦ OPC UA DA collector (on page 82)

Environment variables act as command line arguments for the Docker containers, which use the

value of these environment variables to configure the application running inside each of them.

mailto:Edge_Engineering_Support@ge.com
https://artifactory.predix.io/
https://www.ge.com/digital/documentation/edge-software/INGQxMzU3NWItM2FiOS00OWNiLWIxZWMtNThlYjcyZGM4Nzc5.html
https://www.ge.com/digital/documentation/edge-software/IODdmMGQ0MzgtMjRjZi00ZmEwLWFkMDEtNmU1NWEzMTc0NzI2.html#task_lbk_yrd_v2b
https://www.ge.com/digital/documentation/edge-software/IODdmMGQ0MzgtMjRjZi00ZmEwLWFkMDEtNmU1NWEzMTc0NzI2.html#task_c4b_lht_w2b

Historian for Linux - Getting Started Guide | 3 - Set Up Historian for Linux on Predix Edge | 15

Important:

The Historian for Linux product license is deployed as a configuration of Historian

Database application. To activate the license, compress your Historian for Linux product

license, and apply configuration to Historian database application.

Important:

For OPC UA DA, Server-to-Server, and Server-to-Cloud collectors, ensure that you have set

the environment variables correctly before applying the configuration changes. This is

because after you have applied the configuration changes for a collector, you cannot set

the environment variables. If, however, you must change the values of the environment

variables after the applying the changes, you must change the InterfaceName and

DefaultTagPrefix values. When you do so, a new instance of the collector is created. As a

result, you must add the tags again.

7. Compress the contents of each .zip file that you have extracted.

8. After each application is deployed and running, apply configuration. Choose the .zip file for the

application that you want to configure.

Tip:

◦ If you are using a Predix Edge OS device for an ESXi Developer image, to verify that

the applications are running:

a. Access the Edge OS machine using PuTTY. By default, the username and

password is root.

b. Navigate to the /var/lib/edge-agent/ folder.

c. Run the following command: /opt/edge-agent/app-list

A list of applications that are running appears.

◦ To verify the logs of an application:

https://www.ge.com/digital/documentation/edge-software/IODdmMGQ0MzgtMjRjZi00ZmEwLWFkMDEtNmU1NWEzMTc0NzI2.html#task_hmk_qht_w2b

Historian for Linux - Getting Started Guide | 3 - Set Up Historian for Linux on Predix Edge | 16

a. Access the Edge OS machine using PuTTY. By default, the username and

password is root.

b. Navigate to the /var/lib/edge-agent/app/<name of the

application>/data folder, and then access the logs folder.

For example, for Historian database, the archiver/archives folder

contains the .iha and .ihc files, and for all the collectors, the Logs folder

contains the .log and .shw files.

Stop an Application on Predix Edge
You can stop an application if you want to modify the configuration for the application. For example, if

you want to modify the properties of tags used by the server-to-server collector, you must first stop the

application, modify the properties, and then run the application.

1. Access Predix Edge Technician Console (PETC).

2. In the DEPLOYED INSTANCES section, select the check box corresponding to the application that

you want to stop.

3. Select Action > Stop.

The application is stopped.

Upgrade an Application on Predix Edge
1. Stop the application that you want to upgrade.

2. Set up the application again (on page 14).

Uninstall an Application on Predix Edge
When you uninstall an application, all the files used by the application are deleted. For the Historian

database application, the archive files are deleted as well. Therefore, exercise caution before uninstalling

the Historian database.

Delete the application that you want to uninstall.

The application is uninstalled.

https://www.ge.com/digital/documentation/edge-software/INGQxMzU3NWItM2FiOS00OWNiLWIxZWMtNThlYjcyZGM4Nzc5.html
https://www.ge.com/digital/documentation/edge-software/IODdmMGQ0MzgtMjRjZi00ZmEwLWFkMDEtNmU1NWEzMTc0NzI2.html#task_c4b_lht_w2b

Chapter 4. Set Up Historian for Linux on a Generic
Linux Distribution

Set Up Historian on a Generic Linux Distribution
• Ensure that you have a super-user access to the Linux machine on which you want to install

Historian. This is required if you want to use the OPC UA DA collector.

• Historian for Linux uses Docker containers. Therefore, you must install Docker on an x64 Linux

machine on which you want to install Historian for Linux. For instructions on installing Docker, refer

to https://docs.docker.com/engine/install/, and then select the platform.

• Install Docker Compose. To verify that Docker is set up, run the following command: docker pull

hello-world. Or, refer to https://docs.docker.com/config/daemon/systemd/ to set up the proxy for

Docker daemon, which pulls Docker images from the Docker hub.

• Install vi editor. To install vi editor on Ubuntu, run the following command: apt-get install vim

• Install the zip package. To install the zip package on Ubuntu, run the following command: apt-get

install zip

• Install the curl package by running the following command: apt-get install curl

This topic describes how to set up Historian on a generic Linux distribution such as Ubuntu or CentOS.

You can use any Linux distribution that has a Linux kernel with version 3.10 or later. To verify the Linux

kernel version, run the following command: uname -v

You can also set up Historian on Predix Edge (on page 14).

1. Download the Historian installation package, and place all the contents of the package in a single

folder.

2. Access the root node of the Linux machine on which you want to install Historian.

3. Provide the executable permissions to all the scripts by running the following command: chmod +x

*.sh

4. Depending on the application that you want to install, run the command as provided in the

following table.

Application Command

Historian database and the REST query service ./install.sh historian-linux

MQTT collector ./install.sh mqtt

OPCUA DA collector ./install.sh opcua

https://docs.docker.com/engine/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/config/daemon/systemd/

Historian for Linux - Getting Started Guide | 4 - Set Up Historian for Linux on a Generic Linux Distribution |
18

Application Command

Public REST APIs ./install.sh public-restapi

Server-to-Server collector ./install.sh s2s

Tuner ./install.sh tuner

Web Admin ./install.sh webadmin

Web Admin UAA ./install.sh webadmin-uaa

Note:

If you try to install an application again, the following error messages may appear; ignore

them:

◦ cp: cannot start '<file name>': No such file or directory

◦ rm: cannot remove '<file name>': No such file or directory

◦ unzip: cannot find or open <file name>

◦ The applications are installed. A Docker component is installed for each application that you

have installed.

Tip:

To verify that the Docker images are installed, run the following command: docker

images. A list of Docker images for the applications that you have installed appears.

◦ The proficy-historian-linux-2.3.0.zip file provided with the installation package

is extracted to a folder named application-bundles. This folder contains the .zip files

required to configure each application.

Note:

A backup of the proficy-historian-linux-2.3.0.zip file is located in the /

opt/historian-linux-backup folder.

5. Run the applications that you have installed.

Application Command

Historian database and the REST query service ./run.sh historian

MQTT collector ./run.sh mqtt

Historian for Linux - Getting Started Guide | 4 - Set Up Historian for Linux on a Generic Linux Distribution |
19

Application Command

OPCUA DA collector ./run.sh opcua

Public REST APIs ./run.sh public-restapi

Server-to-Server collector ./run.sh s2s

Tuner ./run.sh tuner

Web Admin ./run.sh webadmin

Web Admin UAA ./run.sh webadmin-uaa

The Docker components for the applications are started.

Tip:

◦ To verify that the Docker components are running, run the following command:

docker ps. A list of Docker components that are running appears.

◦ To verify the logs of a Docker component, run the following command: docker logs

<ID of the Docker container>

6. Extract the .zip file for each application that you have installed by running the following command:

unzip <file name>

7. Set the environment variables for each application that you have installed:

◦ Historian database (on page 24)

◦ REST query (on page 34)

◦ Web Admin (on page 42)

◦ Tuner (on page 52)

◦ Server-to-Server collector (on page 73)

◦ MQTT collector (on page 48)

◦ Public REST APIs (on page 33)

◦ OPCUA DA collector (on page 82)

Important:

For OPCUA DA, Server-to-Server, and Server-to-Cloud collectors, ensure that you have set

the environment variables correctly before applying the configuration changes. This is

because after you have applied the configuration changes for a collector, you cannot set

the environment variables. If, however, you must change the values of the environment

variables after the applying the changes, you must change the InterfaceName and

Historian for Linux - Getting Started Guide | 4 - Set Up Historian for Linux on a Generic Linux Distribution |
20

DefaultTagPrefix values. When you do so, a new instance of the collector is created. As a

result, you must add the tags again.

8. Delete each .zip file that you have extracted by running the following command: rm <name of the

zip file>

9. Compress the contents of each .zip file that you have extracted by running the following command:

zip <name of the .zip file (same as the original one)> <contents of the .zip file separated

by a space> (for example, zip proficy-hisotiran-linux-amd64-2.3.0.zip historian-archiver-

conf.json historian-license rest-query-config.json).

10. Optional: Delete the contents of each .zip file by running the following command: rm <file name>.

Since you have compressed these files, they are not required in the extracted folder.

11. As needed, migrate Historian data from Windows to Linux (on page 23).

12. Apply the configuration changes for each application that you have installed.

Application Command

Historian database and the REST query service ./apply-config.sh historian-linux

MQTT collector ./apply-config.sh mqtt

OPCUA DA collector ./apply-config.sh opcua

Public REST APIs ./apply-config.sh public-restapi

Server-to-Server collector ./apply-config.sh s2s

Tuner ./apply-config.sh tuner

Web Admin ./apply-config.sh webadmin

Web Admin UAA ./apply-config.sh webadmin-uaa

Stop an Application Deployed on a Generic Linux Distribution
You can stop an application if you want to modify the configuration for the application. For example, if

you want to modify the properties of tags used by the server-to-server collector, you must first stop the

application, modify the properties, and then run the application.

Depending on the application that you want to stop, run the command as provided in the following table.

Application Command

Historian database and the REST query service ./stop.sh historian

MQTT collector ./stop.sh mqtt

Historian for Linux - Getting Started Guide | 4 - Set Up Historian for Linux on a Generic Linux Distribution |
21

Application Command

OPCUA DA collector ./stop.sh opcua

Public REST APIs ./stop.sh public-restapi

Server-to-Server collector ./stop.sh s2s

Tuner ./stop.sh tuner

Web Admin ./stop.sh webadmin

Web Admin UAA ./stop.sh webadmin-uaa

The application is stopped.

Upgrade an Application on a Generic Linux Distribution
1. Stop the application that you want to upgrade.

2. Set up the application again (on page 17).

Uninstall an Application Installed on a Generic Linux
Distribution
When you uninstall an application, the Docker image used by the application is deleted. However, the data

and log files of the application are not deleted.

Depending on the application that you want to uninstall, run the command as provided in the following

table.

Application Command

Historian database ./uninstall.sh historian

REST query service ./uninstall.sh query-service

MQTT collector ./uninstall.sh mqtt

OPCUA DA collector ./uninstall.sh opcua

Public REST APIs ./uninstall.sh public-restapi

Server-to-Server collector ./uninstall.sh s2s

Tuner ./uninstall.sh tuner

Web Admin ./uninstall.sh webadmin

Historian for Linux - Getting Started Guide | 4 - Set Up Historian for Linux on a Generic Linux Distribution |
22

Application Command

Web Admin UAA ./uninstall.sh webadmin-uaa

The application is uninstalled.

Chapter 5. Historian Database

Overview of the Historian Database
The Historian database is a database of native timeseries data. It is a TCP/IP server, which uses the port

number 14000 by default. It contains the following types of files:

• .iha files: Proprietary binary files, which contain the archived timeseries data.

• .ihc files: Proprietary binary files, which contain metadata. These files store information about tags

and properties of collectors, data stores, and archive files.

The folder that contains the .iha and .ihc files is volume-mounted on the host file system so that data

remains persistent.

You can set up the Historian database on Predix Edge (on page 14) or a generic Linux distribution (on

page 17) such as Ubuntu or CentOS.

You can migrate data (on page 23) from Historian for Windows to Historian for Linux.

Important:

The Historian container must have a valid license file to access all the features, including high

tag count support. If a valid license is not provided, Historian for Linux switches to demo mode

(which supports only 32 tags) while starting the Docker container. Use the HS_LICENSE_FILE_PATH

environment variable in the historian-archiver-conf.json file to provide the absolute file

path of the valid license file.

Migrating Historian Data from Windows to Linux
You can migrate data and metadata from an existing Windows-based Historian to Historian for Linux.

• Set up the Historian database on Predix Edge (on page 14) or a generic Linux distribution (on page

17) such as Ubuntu or CentOS.

• Place all the Windows-based .iha and .ihc files in the archive path.

1. Set the HS_MODE_OF_OPERATION environment variable in the historian-archiver-conf.json file

to reload.

2. Rename the .ihc file to <host name of the Docker container>_Config.

Historian for Linux - Getting Started Guide | 5 - Historian Database | 24

If the name of the .ihc file from the Windows machine is WIN-2BLPS4FOACM_Config.ihc and

the host name of the Historian database Docker container is machine-01, the .ihc file should be

renamed machine-01_Config.ihc.

Note:

There is no need to rename the .iha files.

3. Start the Historian database Docker container.

Note:

There is no need to set the HS_MODE_OF_OPERATION environment variable again when you

restart the Docker container subsequently.

Environment Variables Used by the Historian Database
The environment variables used by the Historian database are available in the historian-archiver-

conf.json file. The following table describes these variables.

Note:

Before applying changes to the environment variables, ensure that the number of archive files do

not exceed 1024. Otherwise, the archiver will crash. This is because 1024 is the default number of

file descriptors a process can open on Linux. We recommend that you create archive files daily or

by size so that you can monitor the number of archive files created.

Environment Variable Description
Default

Value
Valid Values

HS_ARCHIVER_CREATE_

TYPE

The type of the archive file creation. Days • BySize: An

archive file

of a speci

fied size is

created each

time the size

of the file

reaches a

specified

limit.

Historian for Linux - Getting Started Guide | 5 - Historian Database | 25

Environment Variable Description
Default

Value
Valid Values

• Days: An

archive file is

created for

the duration

specified

in the HS_

ARCHIVE_

DURATION_

IN_DAYS

variable.

• Hours: An

archive file is

created for

the duration

specified

in the HS_

ARCHIVE_

DURATION_

IN_HOURS

variable.

HS_DEFAULT_CYCLIC_

ARCHIVING

Indicates whether data must be over

written after a specified duration. If

the value of this variable is true, data

is overwritten after the duration spec

ified in the HS_CYCLIC_ARCHIVE_DU

RATION_HOURS variable. This is used

for the SCADA buffer data store. If the

value of this variable is true, the de

fault data store is set to SCADA buffer.

false • true

• false

HS_CYCLIC_ARCHIVE_DU

RATION_HOURS

The duration, in hours, after which

cyclic archiving (data overwrite) be

gins. A value is required if the value of

the HS_DEFAULT_CYCLIC_ARCHIVING

variable is true.

8760 0 to 8760

Historian for Linux - Getting Started Guide | 5 - Historian Database | 26

Environment Variable Description
Default

Value
Valid Values

HS_ARCHIVE_SIZE_IN_MB The size limit, in MB, of an archive file.

After an archive reaches the speci

fied size, a new archive file is created.

A value is required if the value of the

HS_ARCHIVER_CREATE_TYPE variable

is BySize. This is used during start-up

or creation of a data store.

100 1 to 99999

HS_ARCHIVE_DURATION_

IN_HOURS

The number of hours an archive file is

used for archiving data. After this du

ration, a new archive file is created.

A value is required if the value of the

HS_ARCHIVER_CREATE_TYPE variable

is Hours. This is used during start-up

or creation of a data store.

1 1 to 90 * 24

HS_ARCHIVE_DURATION_

IN_DAYS

The number of days an archive file is

used for archiving data. After this du

ration, a new archive file is created.

A value is required if the value of the

HS_ARCHIVER_CREATE_TYPE variable

is Daily. This is used during start-up or

creation of a data store.

1 1 to 1440

HS_FREE_SPACE_RE

QUIRED_IN_MB

Defines the free space, in MB, required

for the archiver to work. This is used

during start-up or creation of a data

store.

Tip:

Set this value, in MB, to be at

least five times the integral

multiple of the archive size.

500 1 to 999999999

HS_USE_ARCHIVE_CACHING Indicates whether data must be

cached. When caching is enabled,

when data queries are requested, they

true • true

• false

Historian for Linux - Getting Started Guide | 5 - Historian Database | 27

Environment Variable Description
Default

Value
Valid Values

are cached according to the system

RAM size available in the main memo

ry. The cache is released if the RAM is

used within a certain limit. This helps

querying of data faster for future re

quests. This is used during start-up or

creation of a data store.

HS_CREATE_OFFLINE_

ARCHIVE

Indicates whether to allow writing of

past data in an archive file until Janu

ary 1, 1970.

true • true

• false

HS_ARCHIVE_ACTIVE_

HOURS

The number of hours an archive file

was used to write data. This is used

during start-up or creation of a data

store.

8760 1 to hours till Janu

ary 1, 1970

HS_MODE_OF_OPERATION Indicates whether .ihc and .iha files

must be loaded from a different His

torian database (can be from a Win

dows-based Historian as well). If you

set the value to reload, .ihc and .iha

files from the Historian database run

ning on one machine (Windows or Lin

ux) is loaded to the Historian database

on another machine.

normal • normal

• reload

HS_ALLOW_HELD_VALUE_

QUERY

Indicates whether the held sample

must be queried when Archive com

pression is enabled.

false • true

• false

HS_LICENSE_FILE_PATH The absolute path of the license file of

Historian for Linux.

Important:

The Historian database con

tainer must have a valid li

cense file for all the enabled

/con

fig/his

torin-li

cense

Historian for Linux - Getting Started Guide | 5 - Historian Database | 28

Environment Variable Description
Default

Value
Valid Values

features, including high tag

count support. If a valid li

cense is not provided, Histori

an for Linux switches to demo

mode (which supports only 32

tags) while starting the Docker

container.

For example, if you mount a /da

ta/edgedata directory with /data/

with the Historian database contain

er, you can keep the license file in /

data/edgedata/historian-li

cense on the host machine. But you

should set the variable to /data/his

torian-license because in a Dock

er-container context, the path is /da

ta/historian-license.

HS_NUMBER_OF_LOG_FILES The maximum number of log files to

be created. Once this value exceeds,

the oldest file will be deleted to ac

commodate the new one.

100 1 to 100

HS_SIZE_OF_EACH_LOG_

FILE

The maximum size of a single log file,

in MB. If this value exceeds, a new log

file will be created.

10 1 to 10

debug Indicates whether debug logs must be

enabled.

off • on

• off

About Array Tags

Proficy historian for edge from version 2.3.1 supports array tags. The functionality of array tags is same

as On-prem Historian.

Historian for Linux - Getting Started Guide | 5 - Historian Database | 29

You can store a set of values with a single timestamp and single quality and then read the elements

individually or as an array.The following conditions apply when using an array tag:

• You need not specify the size of an array tag. Data Archiver will store the number of elements that

were written.

• You can change a tag to an array tag later as well. However, when you do so, only the latest data is

retrieved. If you want to get the old data, you must change the tag back to its previous type.

• The maximum number of elements that an array tag can store is 10,000.

• You cannot associate an enumerated set or a user-defined data type (UDT) with an array tag.

• Fixed String and Scaled data types are not supported.

• Scaling, collector compression, and archive compression do not apply to an array tag.

• You cannot use an array element as a calculation trigger.

• You cannot plot a trend chart for an array tag.

• TagStats calculation mode is not supported.

Note:

Note that currently Proficy Historian for Edge does not support array tags for variable string data

type.

Chapter 6. Historian Public REST APIs

Overview of the Public REST APIs
Historian for Linux is a data archiving system designed to collect, store, and retrieve time-based

information efficiently at an extremely high speed. The Historian for Linux environment provides a set of

REST APIs to query data from the archives. The APIs use a Docker container on a Linux machine. They

use the port number 9090 for REST client requests.

Security and Authentication

Public REST APIs support both Historian UAA and Operations Hub UAA for authentication and

authorization.

Limitations

• UAA provisioning capabilities are not supported. Therefore, for Historian UAA and Operations Hub

UAA, the REST APIs rely on an existing client ID to generate an authentication token. This implies

that to query the REST APIs, an installation of Historian for Windows Web Clients, pointing to the

same Historian server, is required to generate a UAA client ID.

• In the case of Historian for Windows public REST APIs, the tagslist API returns a paginated list

of tags in Historian. It creates an index of the tags, and stores it in the PostgreSQL database,

which is installed when you install Web Clients. In the case of Historian for Linux public REST APIs,

the indexing service is not implemented. Therefore, to use the tagslist API, you must install the

Historian for Windows Web Clients, pointing to the same Historian, to use the indexing service.

Data Flow Diagram

The following diagram shows the data flow for authorization of a data-access request using a REST API.

As shown in the diagram, the REST API depends on the client ID created by Historian for Windows for

generating a token.

Historian for Linux - Getting Started Guide | 6 - Historian Public REST APIs | 31

Getting Started with the REST APIs

1. Set up the public REST APIs on Predix Edge (on page 14) or a generic Linux distribution (on page

17) such as Ubuntu or CentOS.

2. Use the uaacert.pem file to establish a connection between the UAA server and the REST API

client. (on page 31)

3. Configure PostgreSQL to accept external connections (on page 32). This step is required if you

want to use the tagslist API.

You are now ready to use the REST APIs (on page 33).

Connect to an External UAA Server
After you set up the public REST APIs on Predix Edge or on a generic Linux distribution, you must connect

the UAA server with the public REST APIs Docker image. You can use the UAA service that is provided

with Historian for Windows or Operations Hub.

Note:

This feature is not implemented for Predix UAA.

1. Access the /opt/historian/docker-compose-public-restapi.yml file.

2. Add the extra hosts as shown in the following code sample, and save the file:

Historian for Linux - Getting Started Guide | 6 - Historian Public REST APIs | 32

version: '3.0'

services:

 historian-rest-api:

 hostname: historian-rest-api

 image: "dtr.predix.io/predix-edge/ge-historian-linux-public-restapi-amd64:ubuntu16.04.v2.3.0"

 ports:

 - 9090:8080

 volumes:

 - /data/public-restapi/:/data/

 - /config/public-restapi/:/config/

 extra_hosts:

 - "VMHISTMONO:10.181.213.95"

networks:

 default:

Note:

Modify this file carefully. Any extra space or change in indentation can impact the Docker

functionality.

3. Run the Docker Image.

4. On the UAA machine, run the Certificate Management tool.

5. Select External Trust, and then import the uaacert.pem file.

◦ For Predix Edge, this file is located in the /var/lib/edge-agent/app/<application

name>/data/ folder.

◦ For a generic Linux distribution, this file is located in the /data/<application name>/

folder.

6. When prompted to restart GeOphubMasterStarter, select No.

7. Restart the GE Historian Tomcat service.

Configure PostgreSQL to Accept External Connections
If you want to use the tagslist API, you must set up PostgreSQL and the indexing service, which are

installed when you install the web-based clients provided with Historian for Windows. This topic describes

how to configure PostgreSQL to accept external connections, which is required for you to use the tagslist

API.

Historian for Linux - Getting Started Guide | 6 - Historian Public REST APIs | 33

1. Log in to the machine on which the web-based clients are installed.

2. Access the following folder: <web-based clients installation drive>:\ProgramData

\GE\Operations Hub\historian-postgres\data

3. Access the pg_hba.conf file in a text editor.

4. In the IPV4 local connections section, add a line to enable PostgreSQL to trust connections from

the local network.

host all all 10.0.0.0/8 trust. In this example, the local network IP address begins with 10.

Similarly, you must enter the first 8-bit value of the IP addresses in your local network.

5. Save the file.

6. Access the postgresql.conf file (located in the same folder) in a text editor.

7. In the Connection Settings section, modify the listen_addresses key to listen_addresses='*'

8. Save the file.

9. Restart the GE Historian PostgreSQL Database service.

Environment Variables Used by the Public REST APIs
The environment variables used by the public REST APIs are available in the historian-linux-

public-restapi-config.json file. The following table describes these variables.

Environment Variable Description

UAA_SERVER_MACHINE_IP The IP address of the Historian UAA or the Opera

tions Hub UAA server. A value is required.

HISTORIAN_HOSTNAME The IP address of the Historian for Linux server. A

value is required.

HRA_UAA_SCHEME_AND_SERVER The UAA server scheme. Enter a value in the fol

lowing format: https://<host name of the UAA serv

er>. A value is required.

POSTGRES_MACHINE_IP The IP address of the machine on which Postgre

SQL is installed (via the web-based clients). A value

is required if you want to use the tagslist API.

Sample REST URI
The public REST APIs use the port 9090 for client connections. The format of the URI is as follows:

http://<IP address of the Historian for Linux machine>:9090/historian-rest-api/v1/<API name>

For information on the REST APIs, refer to Historian APIs.

https://www.ge.com/digital/documentation/historian/version80/c_about_this_book.html

Chapter 7. Historian REST Query Service

Overview of the REST Query
The REST query contains APIs to fetch data from the Historian database. You can fetch data such

as the latest data point of a tag or data points for a duration. Using these APIs, you can also work

on aggregation techniques like average, minimum, and maximum values. The REST query container

exposes port number 8989 for querying the data. These REST APIs are exactly the same as Predix Time

Series REST APIs. For more information, see the Predix Time Series service documentation at https://

docs.predix.io/en-US/content/service/data_management/time_series/ and the Time Series service API

documentation at https://www.predix.io/api.

The Docker image for the Historian database container is bundled with the REST query. You can set up

the REST query on Predix Edge (on page 14) or a generic Linux distribution (on page 17) such as Ubuntu

or CentOS.

Environment Variables Used by the REST Query
The environment variables used by the REST query are available in the rest-query-config file. The

following table describes these variables.

Note:

For a secure connection, add - zones.<zone-id>.query, historian_rest_query_service.user in the

UAA scopes and authorities.

Environment Variable Description Default Value Valid Values

HISTORIAN_HOSTNAME The IP address of the Histo

rian database.

HISTORIAN_MAX_DATA_QUERY The maximum number of

data points to be retrieved

for one tag from the Histori

an database.

10000 As many tags

as you have in

the Historian

archiver.

HISTORIAN_MAX_TAG_QUERY The maximum number of

tags retrieved from the His

torian database.

5000

https://docs.predix.io/en-US/content/service/data_management/time_series/
https://docs.predix.io/en-US/content/service/data_management/time_series/
https://www.predix.io/api

Historian for Linux - Getting Started Guide | 7 - Historian REST Query Service | 35

Environment Variable Description Default Value Valid Values

DISABLE_REST_QUERY_SECURITY Indicates whether security

must be enabled.

true • false:

The ser

vice runs

in a se

cure

mode.

• true: The

service

runs in

an un

secured

mode.

ZAC_UAA_CLIENTID Client ID of OAUTH2 serv

er. A value is required if the

DISABLE_REST_QUERY_

SECURITY variable is set to

false.

ZAC_UAA_CLIENT_SECRET Client secret of the OAUTH2

server. A value is required if

the DISABLE_REST_QUERY_

SECURITY variable is set to

false.

ZAC_UAA_ENDPOINT URL of OAUTH2 server.

A value is required if the

DISABLE_REST_QUERY_

SECURITY variable is set to

false.

USE_PROXY Indicates whether a fire

wall is present between

the OAUTH2 server and the

REST query.

true • false

• true

PROXYURL The URL of the proxy serv

er (along with the port num

ber).

Historian for Linux - Getting Started Guide | 7 - Historian REST Query Service | 36

REST Query Array Tag
REST Query Array Tag now supports array type to get the data samples. It also supports Raw By Number,

Raw By Time Sampling modes.

Task URL Method Request Body

Re

quest

Head

ers

Get

val

ues

for an

array

tag

http://<IP address

of the Linux ma

chine>:8989/v1/dat

apoints

POST {

 "start": "4h-ago",

 "end": "1h-ago",

 "tags": [{

 "name": "G790J9Y2E.SimulationArray00001",

 "limit": 1000,

 "order": "desc",

 "filters": {

 "qualities": {

 "values": [

 "3"

]

 }

 }

 }]

}

Predix-

Zone-Id

Can be

any val

ue. Not

validat

ed.

Below are the examples for Raw By Number, Raw By Time with Request Body.

Raw By Time Payload

{

 "start": "4h-ago",

 "end": "1h-ago",

 "tags": [{

 "name": "G790J9Y2E.SimulationArray00001",

 "limit": 1000,

 "order": "desc",

 "filters": {

 "qualities": {

Historian for Linux - Getting Started Guide | 7 - Historian REST Query Service | 37

 "values": [

 "3"

]

 }

 }

 }]

}

Raw By Number

{

 "start": "4h-ago",

 "tags": [{

 "name": "G790J9Y2E.SimulationArray00001",

 "filters": {

 "qualities": {

 "values": [

 "3"

]

 }

 }

 }]

}

Raw By Number with limit value

{

 "start": "4h-ago",

 "tags": [{

 "name": "G790J9Y2E.SimulationArray00001",

 "limit": 10,

 "filters": {

 "qualities": {

 "values": [

 "3"

]

 }

 }

 }]

}

Historian for Linux - Getting Started Guide | 7 - Historian REST Query Service | 38

Raw By Number with direction backword

{

 "start": "4h-ago",

 "direction": "backward",

 "tags": [{

 "name": "G790J9Y2E.SimulationArray00001",

 "limit": 3

 }]

}

Sample Response for Array Tag:

{

 "tags": [

 {

 "name": "G790J9Y2E.SimulationArray00001",

 "results": [

 {

 "groups": [

 {

 "name": "type",

 "type": "array"

 }

],

 "filters": {

Historian for Linux - Getting Started Guide | 7 - Historian REST Query Service | 39

 "qualities": {

 "values": [

 "3"

]

 }

 },

 "values": [

 [

 1686637046000,

 "[\"3902\"]",

 3

], [

 1686637227000,

 "[\"1769\",\"1769\",\"1769\",\"1769\",\"1769\",\"1769\",\"1769\",\"1769\"]",

 3

],

 [

 1686637228000,

 "[\"28289\",\"28289\",\"28289\",\"28289\",\"28289\",\"28289\"]",

Historian for Linux - Getting Started Guide | 7 - Historian REST Query Service | 40

 3

],

 [

 1686637235000,

 "[\"2943\",\"2943\"]",

 3

],

 "attributes": {}

 }

],

 "stats": {

 "rawCount": 4

 }

 }

]

}

Example of the REST Query API
The REST query container exposes port 8989 for querying the data that was read from the Historian

database. For information on the list of APIs and their usage, refer to the Predix Time Series service API

documentation.

https://www.predix.io/api
https://www.predix.io/api

Historian for Linux - Getting Started Guide | 7 - Historian REST Query Service | 41

Note:

The API /v1/datapoints/latest/v2 is not supported by the REST query.

1. Create a query.

The header of the query must be in the following format:

Headers:

 Authorization: Bearer <token from a trusted issuer>

 Predix-Zone-Id: <tenant>

 Content-Type: application/json

The following table provides the URL and other required values for each task that you can perform

using the REST query.

Task URL Method Request Body
Request

Headers

Get values for

a tag

http://<IP address of the Linux

machine>:8989/v1/datapoints

POST { “start”: “1h-

ago”, “tags”:

[{ “name”: “”,

“order”: “de

sc” }] }

Predix-Zone-Id

Can be any val

ue. Not validat

ed.

Get values for

a tag

http://<IP address of the Lin

ux machine>:8989/v1/data

points?query= { “start”: “1h-ago”,

“tags”: [{ “name”: “”, “order”: “de

sc” }] }

GET Predix-Zone-Id

Can be any val

ue. Not validat

ed.

Get all tags http://<IP address of the Linux

machine>:8989/v1/tags

GET None Predix-Zone-Id

Can be any val

ue. Not validat

ed.

2. Retrieve a token from the OAUTH2 server by using the following REST API:

curl -u <Client-Id>:<Client-secret> https://<IP address of the Predix Edge OS device>:8080/uaa/oauth/token -d

 'grant_type=client_credentials'

curl -u edgeclient:edgesecret https://10.10.10.10:8080/uaa/oauth/token -d 'grant_type=client_credentials'

Chapter 8. Historian Web Admin Service

Overview of Web Admin
The web admin is a user interface that allows you to monitor and control the Historian archiver.

You can set up web admin on Predix Edge (on page 14) or a generic Linux distribution (on page 17) such

as Ubuntu or CentOS.

You can use a User Authentication and Authorization (UAA) service with web admin (on page 43).

For more information, you can refer https://www.ge.com/digital/documentation/historian/version2023/

c_wac_WebAdminConsole.html to understand the overall operations.

Environment Variables Used by Web Admin
The environment variables used by the web admin are available in the historian-webadmin-

config.json file in the proficy-historian-linux-webadmin-amd64-2.3.0 folder. The following

table describes these variables. If, however, you want to use web admin with UAA, set the environment

variables used by the UAA service (on page 44).

Environment Variable Description
Default

Value
Valid Values

HISTORIAN_HOSTNAME The IP address

of the Historian

database.

HISTORIAN_MAX_TAG_QUERY The maximum

number of data

points to be re

trieved for one

tag from the His

torian database.

10000 As many tags as you

have in the Historian

archiver.

HWA_ADMIN_USERNAME The username

set by the Dock

er administrator

while running the

web admin Dock

https://www.ge.com/digital/documentation/historian/version2023/c_wac_WebAdminConsole.html
https://www.ge.com/digital/documentation/historian/version2023/c_wac_WebAdminConsole.html

Historian for Linux - Getting Started Guide | 8 - Historian Web Admin Service | 43

Environment Variable Description
Default

Value
Valid Values

er image. A value

is required.

HWA_ADMIN_PASSWORD The password

set by the Dock

er administrator

while running the

web admin Dock

er image. A value

is required.

Accessing the Web Admin
In a web browser, enter the URL for the web admin.

https://<ip_address>:9443/historian-visualization/hwa

The wed admin console appears.

About Using UAA with Web Admin
You can use web admin with or without UAA. Using UAA with web admin provides more security. You can

use Predix UAA (on page 43) or any other UAA application (on page 44) with web admin.

Use Predix UAA with Web Admin

This topic describes how to use Predix UAA with web admin. You can, however, choose to use any other

UAA service (on page 44) with web admin.

1. Create a client with the following details:

◦ Under Authorization Grant Types, select the authorization_code and refresh_token check

boxes.

◦ In the Scopes and Authorities boxes, enter

uaa.none,historian_visualization,openid,uaa.resource,historian_tuner.admin. If you

want to use the REST Query application securely, add: - zones.<zone-id>.query,

historian_rest_query_service.user

◦ In the Redirect URI box, enter https://<machine ip>:9443/historian-visualization/login.

2. Create a user in the Predix UAA instance.

3. Set the environment variables of the UAA service (on page 44).

https://www.ge.com/digital/documentation/edge-software/t_creating_an_oauth_client.html#task_79a81b74-552e-4f74-abfc-bd37e6adac87

Historian for Linux - Getting Started Guide | 8 - Historian Web Admin Service | 44

4. Restart the Webadmin-uaa Docker image.

5. Log in to the following URL with the user credentials that you have created: https://<IP address of

the machine on which the web admin Docker image is running>:9443/historian-visualization/

hwa

The web admin home page appears.

Use Other UAA Service with Web Admin

This topic describes how to use an external UAA with web admin application. You can, however, choose to

use Predix UAA (on page 43) with web admin.

1. Create a client with the following scopes and authorities:

◦ uaa.none

◦ historian_visualization

◦ openid

◦ uaa.resource

◦ historian_tuner.admin (required if you want to use tuner securely)

◦ - zones.<zone-id>.query, historian_rest_query_service.user (required if you want to use the

REST query securely)

2. Create a user in the UAA instance.

3. Set the environment variables of the UAA service (on page 44).

4. Restart the Webadmin-uaa Docker image.

Environment Variables Used by Web Admin UAA

The environment variables used by the web admin UAA are available in the historian-webadmin-

config.json file in the proficy-historian-linux-webadmin-uaa-amd64-2.3.0 folder. The

following table describes these variables. If, however, you do not want to use UAA with web admin, set the

environment variables used by web admin (on page 42).

Environment Variable Description
Default

Value
Valid Values

HISTORIAN_HOSTNAME The IP address

of the Historian

database.

HISTORIAN_MAX_TAG_QUERY The maximum

number of data

points to be re

10000 As many tags as you

have in the Historian

archiver.

Historian for Linux - Getting Started Guide | 8 - Historian Web Admin Service | 45

Environment Variable Description
Default

Value
Valid Values

trieved for one

tag from the His

torian database.

HV_UAA_CLIENT_ID The client ID of

the UAA service.

HV_UAA_CLIENT_SECRET The client secret

of the UAA ser

vice.

HV_UAA_SCHEME_AND_SERVER The UAA server

scheme. Enter a

value in the fol

lowing format:

https://<host

name of the UAA

server>. A value

is required.

HV_USE_PROXY Indicates

whether the UAA

service uses a

proxy server.

true • true

• false

HV_PROXY_USERNAME The username of

the proxy serv

er. A value is re

quired if proxy

authentication is

used.

HV_PROXY_PASSWORD The password of

the proxy serv

er. A value is re

quired if proxy

authentication is

used.

Historian for Linux - Getting Started Guide | 8 - Historian Web Admin Service | 46

Environment Variable Description
Default

Value
Valid Values

HV_PROXY_URL The URL to ac

cess the proxy

server. A value

is required if the

UAA service uses

a proxy server.

HV_SKIP_SSL_VALIDATION Indicates

whether SSL val

idation must be

skipped.

true • true

• false

Chapter 9. Historian MQTT Collector

Overview of the MQTT Collector
The Historian MQTT collector collects Predix time series data, and sends it to the Historian database. It

works as follows:

1. Connects to an MQTT broker, and subscribes to a topic. In this case, the data bus of Predix Edge

serves as the MQTT broker.

2. Collects the data, which is in the Predix time series (JSON) format.

3. Adds relevant tags to the Historian database based on the data received.

4. Sends data to the Historian database.

The following diagram illustrates how the MQTT collector collects and sends data. The red lines indicate

the initial, one-time steps. The green lines indicate the steps performed every time data is sent.

With latest enhancements, now we are supporting array datatype tags along with primitive data types.

The following is the sample for sending the array data:

Historian for Linux - Getting Started Guide | 9 - Historian MQTT Collector | 48

{"body":[{"attributes":{"machine_type":"machine1"},"datapoints":[[1686040732424,[1645,4177,5674,3504],3]],

 "name":"NewArrayTag1"}],"messageId":"Simulate"}

The bolded text shows how to pass array type and the format followed is datapoints:[[timestamp, value

or [array of values], quality]].

Limitations

• Linux MQTT collector does not have the facility to provide the port number. If the broker is not

running on the port 1883, the collector will not be able to connect with the source.

• Linux MQTT collector does not have the facility to provide the user name and password based

authentication.

• Linux MQTT collector does not have the facility to provide the certificate based authentication.

• Spark plug-B format is not supported.

• Only MQTT V311 is supported.

• Message Retention option is not supported.

• Custom QoS is not supported.

Environment Variables Used by the MQTT Collector
The environment variables used by the MQTT collector are available in the historian-mqtt-

collector-config.json file. The following table describes these variables.

Parameter Description Default Value Valid Values

DebugMode The debug mode for the

MQTT collector.

00 • 00: Indicates that

debugging is dis

abled.

• ff: Indicates that

debugging is en

abled.

HistorianNodeName The host name of the

Historian server to

which you want to send

data using the MQTT

collector. A value is re

quired.

Historian for Linux - Getting Started Guide | 9 - Historian MQTT Collector | 49

Parameter Description Default Value Valid Values

InterfaceName The name of the MQTT

collector. You must not

change this value.

EdgeMQTT

DefaultTagPrefix The default prefix for

the tags created by the

MQTT collector. For ex

ample, if you enter mqtt,

for a tag named pres

sure, a tag with the fol

lowing name is created:

mqtt.pressure

EdgeMQTT

Hostname The host name of the

machine on which you

the MQTT broker is run

ning. A value is required.

Topic The topic to which you

want the MQTT collector

to subscribe. A value is

required.

You can subscribe to

multiple topics. For ex

ample, if you subscribe

to Home/#, you will re

ceive messages pub

lished to the child topics

as well (such as Home/

FirstFloor, Home/Se

condFloor).

historian_data

HS_NUMBER_OF_LOG_

FILES

The maximum number

of log files to be creat

ed. Once this value ex

ceeds, the oldest file will

100 1 to 100

Historian for Linux - Getting Started Guide | 9 - Historian MQTT Collector | 50

Parameter Description Default Value Valid Values

be deleted to accommo

date the new one.

HS_SIZE_OF_EACH_

LOG_FILE

The maximum size of

a single log file, in MB.

If this value exceeds, a

new log file will be creat

ed.

10 1 to 10

Note:

You cannot define tags in the JSON file. Tags are automatically created based on the data

collected by the MQTT collector.

Chapter 10. Historian Tuner

Overview of Tuner
Tuner is an application for designing and automating the administrative tasks of the Historian database.

You can perform tasks such as:

• Changing the tag properties

• Changing the data store properties

• Creating a back-up of archive files

• Restoring the backed-up archive files

• Purging data

You can perform these tasks using the web admin as well. However, using tuner, you can provide inputs

using a JSON file, which allows you to automate these tasks. You can also perform these tasks repeatedly

at regular intervals.

You can set up tuner on Predix Edge (on page 14) or a generic Linux distribution (on page 17) such as

Ubuntu or CentOS.

Tuner exposes REST APIs to upload the JSON file. For example, if you want to back up data of the last

seven days, you can create a JSON file with the following content:

 { "Historian Node": "10.181.213.175",

 "Data Management": {

 "Back Up": [

 {

 "Datastore Name": "User",

 "Back Up Path":"/data/backup",

 "Properties":

 {

 "Number Of Files":7

 }

 }

]

 }

}

Historian for Linux - Getting Started Guide | 10 - Historian Tuner | 52

Environment Variables Used by Tuner
The environment variables used by Tuner are available in the historian-tuner-config.json file.

The following table describes these variables.

Note:

For a secure connection, add historian_tuner.admin in the UAA scopes and authorities.

Environment Variables Description Default value Valid Values

HS_LOG_TO_FILE Indicates whether logs

must be redirected to a

file. If set to false, the logs

appear in the Docker con

sole.

false • true

• false

HS_NUMBER_OF_LOG_

FILES

The maximum number

of log files to be creat

ed. Once this value ex

ceeds, the oldest file will

be deleted to accommo

date the new one.

100 1 to 100

HS_SIZE_OF_EACH_

LOG_FILE_IN_MB

The maximum size of a

single log file, in MB. If

this value exceeds, a new

log file will be created.

10 1 to 10

TUNER_SECURE Indicates whether security

must be enabled.

true • true

• false

OAUTH2_CLIENT_ID The client ID of an

OAUTH2 server. A value

is required if the TUNER_

SECURE variable is set to

true.

OAUTH2_CLIENT_SE

CRET

The client secret of an

OAUTH2 server. A value

is required if the TUNER_

Historian for Linux - Getting Started Guide | 10 - Historian Tuner | 53

Environment Variables Description Default value Valid Values

SECURE variable is set to

true.

OAUTH2_URL The URL of an OAUTH2

server. A value is required

if the TUNER_SECURE

variable is set to true.

https_proxy The URL of a proxy server

(along with the port num

ber).

Use Tuner on Predix Edge
1. Create a JSON file with the required details. For a sample file, refer to JSON File Content Example

(on page 66).

Important:

The file name must begin with historian.

2. If you want to use tuner securely:

a. Generate a bearer token.

Tip:

To generate a token, you can use POSTMAN or run the following

command in an Ubuntu machine: curl -u <username>:<password> -d

'grant_type=client_credentials' https://<predix uaa instance>/bearer/token

b. Run the following command: curl -H 'Authorization:Bearer <token>' -F

'uploadFile=@<absolute path of the JSON file>' http://<IP address of the Predix Edge

device:9000/upload

– curl -H 'Authorization:Bearer h390ufwehqef39vwnf4wehwef09rf' -F 'uploadFile=@ C:

\workstation\historian-config.json' http://10.181.212.287:9000/upload

Historian for Linux - Getting Started Guide | 10 - Historian Tuner | 54

3. If you do not want to use tuner securely, run the following command: curl -F

'uploadFile=@<absolute path of the JSON file>' http://<IP address of the Predix Edge

device:9000/upload

– curl -F 'uploadFile=@ C:\workstation\historian-config.json' http://10.181.212.287:9000/

upload

Use Tuner on a Generic Linux Distribution
1. Create a JSON file with the required details. For a sample file, refer to JSON File Content Example

(on page 66).

Important:

The file name must begin with historian.

2. Place the JSON file in the /data/tuner/incoming folder.

Examples of Tasks You can Perform Using Tuner
The following section provides a list of tasks that you can perform using tuner, along with a sample JSON

code for each task.

To Create a Data Store

Sample JSON code

{

 "Historian Node": "10.181.213.175",

 "Data Management": {

 "Create Datastore": [

 {

 "Datastore Name": "Turbine-4",

 "Properties": {

 "Default Datastore": true,

 "Description": "Custom datastore for storing data of Turbine-1"

 }

 }

]

 }

}

Historian for Linux - Getting Started Guide | 10 - Historian Tuner | 55

JSON Key description

• Datastore Name: Can be a sequence of characters surrounded with ".

• Default Datastore: Enter true to set a data store as the default one.

What can you do with the operation?

Create the default data store. You can also create multiple data stores by providing proper details in the

JSON file.

Purging a Data Store

Sample JSON code

{

 "Historian Node": "10.181.213.175",

 "Data Management": {

 "Purge": [{ "Datastore Name": "Turbine-4" }]

 }

 }

JSON Key description

• Datastore Name: Can be a sequence of characters surrounded with ".

What can you do with the operation?

Delete Turbine-4 from your system.

Purging Archives based on Archive Name

Sample JSON code

 {

 "Historian Node": "10.181.213.175",

 "Data Management": {

 "Purge": [

 {

 "Datastore Name": "Turbine-10",

 "Properties": {

 "Archive File Names": [

 "Turbine-10_historian-archiver_Archive046.iha",

Historian for Linux - Getting Started Guide | 10 - Historian Tuner | 56

 "Turbine-10_historian-archiver_Archive1543363199.iha"

]

 }

 }

]

 }

 }

JSON Key description

• Data store name: Can be a sequence of characters surrounded with ".

• Archive File Name: Can be a sequence of characters surrounded with ".

What can you do with the operation?

Delete Turbine-10_historian-archiver_Archive046.iha and Turbine-10_historian-

archiver_Archive1543363199.iha

Purging Archives based on Time stamps

Sample JSON code

{

 "Historian Node": "10.181.213.175",

 "Data Management": {

 "Purge": [

 {

 "Datastore Name": "User",

 "Properties": {

 "Start Time": 1543417800,

 "End Time": 1543418220

 }

 }

]

 }

}

JSON Key description

Historian for Linux - Getting Started Guide | 10 - Historian Tuner | 57

• Data store name: Can be a sequence of characters surrounded with ".

• Start Time/End Time: Must be in epoch time format, in seconds.

What can you do with the operation?

Delete the data between the given timestamps. This will delete entire archives with/between these

timestamps.

Backup of Archive files using File Names

Sample JSON code

{

 "Historian Node": "10.181.213.175",

 "Data Management": {

 "Back Up": [

 {

 "Datastore Name": "User",

 "Back Up Path": "/data/",

 "Properties": {

 "Archive File Names": [

 "User_historian-archiver_Archive1543449599"

]

 }

 }

]

 }

}

JSON Key description

• Data store name: Can be a sequence of characters surrounded with ".

• Back-Up Path: Must be a valid path in context of the Historian docker container.

Note:

The Back Up Path parameter must always be set to /data/. However, the backup is

created in the /data/database folder.

• Archive file name: Must be valid archive names. You can provide multiple archives separating with

comma.

Historian for Linux - Getting Started Guide | 10 - Historian Tuner | 58

What can you do with the operation?

This will back up the provided archive file to the data/backup folder.

Backup of Archive Files using Number of Files

Sample JSON code

{

 "Historian Node": "10.181.213.175",

 "Data Management": {

 "Back Up": [

 {

 "Datastore Name": "User",

 "Back Up Path":"/data/",

 "Properties":

 {

 "Number Of Files":2

 }

 }

]

 }

}

JSON Key description

• Data store name: Can be a sequence of characters surrounded with ".

• Back-Up path: Must be a valid path in the context of the archiver docker container.

Note:

The Back Up Path parameter must always be set to /data/. However, the backup is

created in the /data/database folder.

• Number of files: Number of files to be backed up. Should be a numerical value.

What can you do with the operation?

Back up the lat two archive files to the backup folder.

Historian for Linux - Getting Started Guide | 10 - Historian Tuner | 59

Backup of Archive Files using Start time and End Time

Sample JSON code

{

 "Historian Node": "10.181.213.175",

 "Data Management": {

 "Back Up": [

 {

 "Datastore Name": "User",

 "Back Up Path":"/data/",

 "Properties":

 {

 "Start Time" :1540511999,

 "End Time" :1540598399

 }

 }

]

 }

}

JSON Key description

• Data store name: Can be a sequence of characters surrounded with ".

• Backup path: Must be a valid path in the context of archiver docker container.

Note:

The Back Up Path parameter must always be set to /data/. However, the backup is

created in the /data/database folder.

• Start/End Time: Must be an epoch timestamp.

What can you do with the operation?

Back up the data between the given timestamps. This will backup entire archives with/between the

timestamps.

Restore

Sample JSON code

Historian for Linux - Getting Started Guide | 10 - Historian Tuner | 60

{

 "Historian Node": "10.181.213.175",

 "Data Management": {

 "Restore": [

 {

 "File Path": "/data/User_historian-archiver_Archive1543507756_Backup.zip",

 "Archive Name": "User_historian-archiver_Archive1543507756",

 "Datastore Name": "User"

 }

]

 }

}

JSON Key description

• File Path: Path of the backed-up file.

Note:

The File Path parameter must always be set to /data/<name of the archive

file>. However, the archive file is located in the /data/database/ folder.

• Archive Name: Name to which data to be restored.

• Data store Name: Name of the data store for which the archive file must be restored.

What can you do with the operation?

Restore the backed-up files into specific data store.

Data Store options for Archive Type Hours/Days

"Datastore Name": "ScadaBuffer",

 "Properties": {

 "Archive Type": "Hours",

 "Archive Duration": 10,

 "Archive Active Hours": 10,

 "Archive Default Backup Path": "/data/archiver/backupfiles/",

 "Datastore Duration": 4

 }

JSON Key description

Historian for Linux - Getting Started Guide | 10 - Historian Tuner | 61

• Archive type: Valid values are Hours, Days, and BySize.

• Archive duration: Must be a numerical Value.

• Archive active hours: Must be a numerical Value.

• Archive default backup path: Must be a valid path.

• Data store duration: Must be a numerical value.

What can you do with the operation?

Set the data store properties as mentioned in the configuration file.

Data Store options for Archive Type BySize

Sample JSON code

"Datastore Name": "DHSSystem",

 "Properties": {

 "Archive Type": "BySize",

 "Archive Default Size(MB)": 200,

 "Archive Active Hours": 744,

 "Archive Default Backup Path": "/data/archiver/backupfiles/"

 }

JSON Key description

• Archive Default Size(MB): Must be a numerical value. Rest keys can be referred from the preceding

examples.

What can you do with the operation?

Set the data store properties as mentioned in the configuration file for the archive type BySize.

Tag Options-Collection Properties

Sample JSON file

{

 "Historian Node": "10.181.213.175",

 "Config": {

 "Tag Options": [

 {

 "Tag Pattern": "US-TestTagsChange1.Objects.Demo.Dynamic.Scalar.Byte",

 "Tag Properties": {

Historian for Linux - Getting Started Guide | 10 - Historian Tuner | 62

 "Collection": {

 "Collection": true,

 "Collection Interval Unit": "sec",

 "Collection Interval": 5,

 "Collection Offset Unit": "sec",

 "Collection Offset": 1,

 "Time Resolution": "sec"

 }

 }

 }

]

 }

}

JSON Key description

• Collection: Must be true/false.

• Collection Interval Unit: Must be sec, min, hour, or millisec

• Collection Offset Unit: Must be sec or millisec.

• Collection Interval and Collection Offset: Must be a numerical value.

Note:

You can filter tags based on the tag names, collector name, and data store name. To do so,

replace Tag Pattern with Collector Name or Datastore Name.

What can you do with the operation?

Set the tag properties as mentioned in the configuration file.

Tag Options-Compression Properties

{

 "Historian Node": "10.181.213.175",

 "Config": {

 "Tag Options": [

 {

 "Tag Pattern": "US-TestTagsChange1.Objects.Demo.Dynamic.Scalar.Byte",

 "Tag Properties": {

 "Collector Compression": {

Historian for Linux - Getting Started Guide | 10 - Historian Tuner | 63

 "Collector Compression": true,

 "Collector Deadband": "Percent Range",

 "Collector Deadband Value": 80,

 "Collector Compression Timeout Resolution": "min",

 "Collector Compression Timeout Value": 10

 }

 }

 }

]

 }

}

JSON Key description

• Collector Compression: Must be true or false.

• Collector Deadband Value/Collector Compression Timeout Value: Must be a numerical value.

• Collector Deadband: Must be Percent Range or Absolute.

• Collector Compression Timeout Resolution: Must be sec, min, hour, or millisec.

Note:

You can filter tags based on the tag names, collector name, and data store name. To do so,

replace Tag Pattern with Collector Name or Datastore Name.

What can you do with the operation?

Set the compression properties as mentioned in the configuration file.

Tag Options-Scaling

Sample JSON code

{

 "Historian Node": "10.181.213.175",

 "Config": {

 "Tag Options": [

 {

 "Tag Pattern": "US-TestTagsChange1.Objects.Demo.Dynamic.Scalar.Byte",

 "Tag Properties": {

 "Scaling": {

Historian for Linux - Getting Started Guide | 10 - Historian Tuner | 64

 "Hi Engineering Units": 100,

 "Low Engineering Units": 0,

 "Input Scaling": false,

 "Hi Scale Value": 0,

 "Low Scale Value": 0

 }

 }

 }

]

 }

}

Note:

You can filter tags based on the tag names, collector name, and data store name. To do so,

replace Tag Pattern with Collector Name or Datastore Name.

What can you do with the operation?

Set the scaling properties as mentioned in the configuration file.

Tag Options-Condition Based Collection

Sample JSON code

{

 "Historian Node": "10.181.213.175",

 "Config": {

 "Tag Options": [

 {

 "Tag Pattern": "US-TestTagsChange1.Objects.Demo.Dynamic.Scalar.Byte",

 "Tag Properties": {

 "Condition Based Collection": {

 "Condition Based": true,

 "Trigger Tag": "US-TestTagsChange1.Objects.Demo.Dynamic.Scalar.Boolean",

 "Comparison": ">=",

 "Compare Value": "50000",

 "End Of Collection Marker": true

 }

 }

Historian for Linux - Getting Started Guide | 10 - Historian Tuner | 65

 }

]

 }

}

JSON Key description

• Trigger Tag: Must be a valid tag name.

• Comparison: =,<,<=,>,>=,!=

• End of Collection Marker: true or false

Note:

You can filter tags based on the tag names, collector name, and data store name. To do so,

replace Tag Pattern with Collector Name or Datastore Name.

What can you do with the operation?

Set the condition-based collection properties as mentioned in the configuration file.

Tag Options- Using Tag Group

Sample JSON code

{

 "Historian Node": "10.181.213.175",

 "Config": {

 "Tag Options": [

 {

 "Tag Group": [

 "US-TestTagsChange1.Objects.Demo.Dynamic.Scalar.Boolean",

 "US-TestTagsChange1.Objects.Demo.Dynamic.Scalar.Byte"

],

 "Tag Properties": {

 "Tag Datastore": "ScadaBuffer",

 "Data Type": "Int16"

 }

 }

]

 }

Historian for Linux - Getting Started Guide | 10 - Historian Tuner | 66

}

JSON Key description

• Tag Group: Must be a valid tag name. You can provide any number of tags.

What can you do with the operation?

Set the tag properties to the group of tags mentioned in the Tag Group section.

JSON File Content Example
{

 "Historian Node": "10.181.212.175",

 "Data Management": {

 "Create Datastore": [

 {

 "Datastore Name": "Turbine-1",

 "Properties": {

 "Default Datastore": false,

 "Description": "Custom datastore for storing data of Turbine-1"

 }

 },

 {

 "Datastore Name": "Turbine-2",

 "Properties": {

 "Default Datastore": true,

 "Description": "Custom datastore for storing data of Turbine-2"

 }

 }

],

 "Back Up": [

 {

 "Datastore Name": "User",

 "Back Up Path": "/data/",

 "Properties": {

 "Archive File Names": [

 "User_historian-archiver_Archive1540511999",

 "User_historian-archiver_Archive1540598399"

Historian for Linux - Getting Started Guide | 10 - Historian Tuner | 67

]

 }

 },

 {

 "Datastore Name": "User",

 "Back Up Path": "/data/",

 "Properties": {

 "Number Of Files": 2

 }

 },

 {

 "Datastore Name": "User",

 "Back Up Path": "/data/",

 "Properties": {

 "Start Time": 1540511999,

 "End Time": 1540598399

 }

 }

],

 "Purge": [

 {

 "Datastore Name": "User",

 "Properties": {

 "Archive File Names": [

 "User_historian-archiver_Archive1540511999",

 "User_historian-archiver_Archive1540598399"

]

 }

 },

 {

 "Datastore Name": "Turbine-1"

 },

 {

 "Datastore Name": "User",

 "Properties": {

 "Start Time": 1540511999,

 "End Time": 1540598399

Historian for Linux - Getting Started Guide | 10 - Historian Tuner | 68

 }

 }

],

 "Restore": [

 {

 "File Path": "/data/User_historian-archiver_Archive1540511999_Backup.zip",

 "Archive Name": "User_historian-archiver_Archive1540511999",

 "Datastore Name": "User"

 },

 {

 "File Path": "/data/User_historian-archiver_Archive1540598399_Backup.zip",

 "Archive Name": "User_historian-archiver_Archive1540598399",

 "Datastore Name": "User"

 }

]

 },

 "Config": {

 "Datastore Options": [

 {

 "Datastore Name": "ScadaBuffer",

 "Properties": {

 "Archive Type": "Days",

 "Archive Duration": 1,

 "Archive Active Hours": 99999,

 "Archive Default Archive Name": "ScadaBuffer_historian-archiver_Archive",

 "Archive Default Backup Path": "/data/archiver/archives/",

 "Default Datastore": true,

 "Datastore Duration": 48

 }

 },

 {

 "Datastore Name": "User",

 "Properties": {

 "Archive Type": "Hours",

 "Archive Duration": 1,

 "Archive Active Hours": 744,

 "Automatically Create Archives": false,

Historian for Linux - Getting Started Guide | 10 - Historian Tuner | 69

 "Overwrite Old Archives": true,

 "Archive Default Backup Path": "/data/archiver/archives/"

 }

 },

 {

 "Datastore Name": "DS1",

 "Properties": {

 "Archive Type": "BySize",

 "Archive Default Size(MB)": 100,

 "Archive Active Hours": 744,

 "Archive Default Backup Path": "<path>"

 }

 }

],

 "Tag Options": [

 {

 "Tag Group": ["Test-Boolean", "Test-Int16"],

 "Tag Properties": {

 "Tag Datastore": "ScadaBuffer",

 "Data Type": "Int16"

 }

 },

 {

 "Tag Pattern": "Demo.Dynamic.Scalar.*",

 "Tag Properties": {

 "Collection": {

 "Collection": true,

 "Collection Interval Unit": "min",

 "Collection Interval": 10,

 "Collection Offset Unit": "sec",

 "Collection Offset": 0,

 "Time Resolution": "sec"

 },

 "Condition Based Collection": {

 "Condition Based": true,

 "Trigger Tag": "SampleTrigger",

 "Comparison": ">=",

Historian for Linux - Getting Started Guide | 10 - Historian Tuner | 70

 "Compare Value": "50000",

 "End Of Collection Marker": true

 },

 "Collector Compression": {

 "Collector Compression": true,

 "Collector Deadband": "Percent Range",

 "Collector Deadband Value": 80,

 "Collector Compression Timeout Resolution": "min",

 "Collector Compression Timeout Value": 10

 },

 "Archive Compression": {

 "Archive Compression": true,

 "Archive Deadband": "Percent Range",

 "Archive Deadband Value": 80,

 "Archive Compression Timeout Resolution": "min",

 "Archive Compression Timeout Value": 10

 },

 "Scaling": {

 "Hi Engineering Units": 1000,

 "Low Engineering Units": 0,

 "Input Scaling": false,

 "Hi Scale Value": 0,

 "Low Scale Value": 0

 },

 "Tag Datastore": "DS1"

 }

 },

 {

 "Collector Name": "EdgeMQTT",

 "Tag Properties": {

 "Collection": {

 "Collection": true,

 "Collection Interval Unit": "sec",

 "Collection Interval": 10,

 "Collection Offset Unit": "sec",

 "Collection Offset": 0,

 "Time Resolution": "sec"

Historian for Linux - Getting Started Guide | 10 - Historian Tuner | 71

 },

 "Archive Compression": {

 "Archive Compression": true,

 "Archive Deadband": "Absolute",

 "Archive Deadband Value": 5,

 "Archive Compression Timeout Resolution": "min",

 "Archive Compression Timeout Value": 15

 },

 "Tag Datastore": "TestDS"

 }

 },

 {

 "Datastore Name": "DS1",

 "Tag Properties": {

 "Collection": {

 "Collection": true,

 "Collection Interval Unit": "min",

 "Collection Interval": 10,

 "Collection Offset Unit": "sec",

 "Collection Offset": "0",

 "Time Resolution": "sec"

 },

 "Condition Based Collection": {

 "Condition Based": true,

 "Trigger Tag": "SampleTrigger",

 "Comparison": ">=",

 "Compare Value": "50000",

 "End of Collection Marker": true

 },

 "Collector Compression": {

 "Collector Compression": true,

 "Collector Deadband": "Percent Range",

 "Collector Deadband Value": 80,

 "Collector Compression Timeout Resolution": "min",

 "Collector Compression Timeout Value": 10

 },

 "Archive Compression": {

Historian for Linux - Getting Started Guide | 10 - Historian Tuner | 72

 "Archive Compression": true,

 "Archive Deadband": "Percent Range",

 "Archive Deadband Value": 80,

 "Archive Compression Timeout Resolution": "min",

 "Archive Compression Timeout Value": 10

 },

 "Tag Datastore": "DS1"

 }

 }

]

 }

}

Chapter 11. Historian Server-to-Server Collector

Overview of the Server-to-Server Collector
The Historian server-to-server collector allows you to collect data and messages from a source Historian

server to a destination on-premises Historian server or Predix Cloud.

GE recommends installing the server-to-server collector in the source Historian machine. Doing so

enables the store and forward capabilities of data collectors to preserve collected data even if the

collector and destination archiver are disconnected. The server-to-server collector can also run as a

stand-alone component where both the source and destination Historian databases are on remote

machines.

You can set up the server-to-server collector on Predix Edge (on page 14) or a generic Linux distribution

(on page 17) such as Ubuntu or CentOS.

Environment Variables Used by the Server-to-Server Collector
The environment variables used by the server-to-server collector are available in the historian-s2s-

collector-config.json file. The following table describes these variables.

Important:

For OPCUA DA, Server-to-Server, and Server-to-Cloud collectors, ensure that you have set the

environment variables correctly before applying the configuration changes. This is because

after you have applied the configuration changes for a collector, you cannot set the environment

variables. If, however, you must change the values of the environment variables after the applying

the changes, you must change the InterfaceName and DefaultTagPrefix values. When you do so,

a new instance of the collector is created. As a result, you must add the tags again.

Environment Variable Description Default Value Valid Values

HistorianNodeName The host name of the

Historian server to

which you want to

send data using the

server-to-server collec

tor. A value is required.

You can choose to

send data to an server

Historian for Linux - Getting Started Guide | 11 - Historian Server-to-Server Collector | 74

Environment Variable Description Default Value Valid Values

that is on-premises or

on Predix cloud.

InterfaceName The name of the serv

er-to-server collector.

historian-s2c

DefaultTagPrefix The default prefix for

the tags created by the

server-to-server col

lector. For example,

if you enter s2s, for a

tag named pressure,

a tag with the follow

ing name is created:

s2s.pressure

historian-s2c.

General3 The IP address of the

Historian archiver.

OfflineTagConfigurationFile The absolute path to

the offline tag configu

ration file.

/config/tag-

list.xml

HS_NUMBER_OF_LOG_FILES Maximum number of

Log Files. Once this

value exceeds, the old

est file will be deleted

to accommodate new

one. Its default value is

100, and range is from

1 to 100.

100 1 to 100

HS_SIZE_OF_EACH_LOG_FILE Maximum size of one

Log file in Mega Bytes.

If this value exceeds,

new Log File will be

created.

10 1 to 10

Historian for Linux - Getting Started Guide | 11 - Historian Server-to-Server Collector | 75

Important notes on the Server-to-Server Collector Tasks
When you add a tag by choosing from the list of tags in the server-to-server collector, only certain tag

properties are copied from the source tag to the destination tag. If you intend to copy raw samples from

the source to the destination, after you add the tag, ensure that you set these properties to the required

values. Refer to the following table.

Important tag properties that are not automatically copied when you add the tag include:

• Input scaling settings: If you are using input scaling, since the output of the source tag is the input

to the destination tag, you may want to match the EGU limits on the source to input limits on the

destination, if you are using Input Scaling.

• Timestamp resolution: Make sure that the timestamp resolution properties match. For example,

do not use the second timestamp resolution on the destination tag, if your source tag uses

millisecond timestamp resolution. If your source tag uses millisecond timestamp resolution, then

you also want to set your destination tag to also use millisecond timestamp resolution.

The following table describes the tag properties in the Historian Administrator Tags screen that are

copied when the destination tag is created via select from the browse. If a property is not listed in this

table, it is not copied.

Tab Name Properties Copied

General Description

EGUDescription

Collection Data Type

DataLength

Scaling HiEGU

LoEGU

InputScaling

HiScale

LoScale

Compres

sion

ArchiveCompres

sion

Historian for Linux - Getting Started Guide | 11 - Historian Server-to-Server Collector | 76

Tab Name Properties Copied

ArchiveDead

band(%)

Streaming data to Predix Time Series
The server-to-server collector needs a list of tags in the form of an .xml file. Data of these tags will be

streamed to Predix Time Series by the collector. This is called offline configuration of tags.

Offline configuration also helps you define the configuration properties of a collector (such as the list of

tags, tag properties, and collector interface properties). This feature is useful when collectors connect to

Predix TimeSeries.

Ensure that the path to the offline tag configuration file is correct in the historian-s2s-collector-

config.json file.

Create the Offline Configuration File

This topic describes how to create the offline configuration file. We recommend that you add the Collector

property section above the Tag property section in the offline configuration file.

1. Add the following collector interface properties at the beginning of the offline configuration file.

<Import>

<Collectors>

<Collector Name="<Collector Name>">

<InterfaceType>ServerToServer</InterfaceType>

<InterfaceGeneral1>10</InterfaceGeneral1>

......

</Collector>

</Collectors>

2. Add the list of tags and their properties.

<Collectors>

...

</Collectors>

<TagList Version="1.0.71">

<Tag>

Historian for Linux - Getting Started Guide | 11 - Historian Server-to-Server Collector | 77

<Tagname>simCollector1</Tagname>

<SourceAddress>Result = CurrentValue("SJC1GEIP05.Simulation00002")</SourceAddress>

...

</Tag>

<Tag>

<Tagname>simCollector2</Tagname>

<SourceAddress>Result = CurrentValue("SJC1GEIP05.Simulation00002")</SourceAddress>

...

</Tag>

...

</TagList>

</Import>

3. Add the closing </Import> tag to the end of offline configuration file.

Sample OfflineConfiguration.xml file
<Import>

 <TagList Version="1.0.71">

 <Tag>

 <Tagname>HistS2SInt16</Tagname>

 <SourceAddress>Result = CurrentValue("US-TestTagsChange1.Objects.Demo.Dynamic.Scalar.Int16")</SourceAddress>

 <DataType>SingleInteger</DataType>

 <CollectionType>Unsolicited</CollectionType>

 <TimeResolution>Milliseconds</TimeResolution>

 <CollectionInterval>1000</CollectionInterval>

 <Description>US-TestTagsChange1.Objects.Demo.Dynamic.Scalar.Int16</Description>

 <HiEngineeringUnits>200000.00</HiEngineeringUnits>

 <InputScaling>false</InputScaling>

 <InterfaceCompression>1</InterfaceCompression>

 <InterfaceDeadbandPercentRange>80.00</InterfaceDeadbandPercentRange>

 <InterfaceCompressionTimeout>30000</InterfaceCompressionTimeout>t>

 <TimeStampType>Source</TimeStampType>

 <CalculationDependencies>

 <CalculationDependency>US-TestTagsChange1.Objects.Demo.Dynamic.Scalar.Int16</CalculationDependency>

 </CalculationDependencies>

 <SpikeLogic>1</SpikeLogic>

 <LoScale>0</LoScale>

Historian for Linux - Getting Started Guide | 11 - Historian Server-to-Server Collector | 78

 <HiScale>32767.00</HiScale>

 <NumberOfElements>0</NumberOfElements>

 </Tag>

 </TagList>

</Import>

Predix Time Series Information Fields in the historian-s2s-
collector-config.json File

The environment variables to set the Predix Time Series ingestion URL and Predix UAA credentials are

available in the historian-s2s-collector-config.json file. The following table describes these

variables. For information on the values to provide, contact your Predix Time Series administrator.

Field Description

Cloud Destination Ad

dress

The URL of a data-streaming endpoint exposed by

the Predix Time Series instance to which the data

should go. Typically, it starts with wss://.

Identity Issuer The URL of an authentication endpoint for the col

lector to authenticate itself and acquire necessary

credentials to stream to the Predix Time Series. Typ

ically, it starts with https:// and ends with /oauth/to

ken.

Client ID This variable identifies the collector when interact

ing with the Predix Time Series. This is equivalent to

the username in many authentication schemes. The

client must exist in the UAA identified by the iden

tity issuer, and the system requires that the time

series.zones. {ZoneId}.ingest and timeseries.zones

.{ZoneId}.query authorities are granted to the client

for the Predix Zone ID specified.

Client Secret The secret to authenticate the collector. This is

equivalent to Password in many authentication

schemes.

Zone ID The unique instance to which the collector will

stream data among the many instances of the Time

Series service that the Predix system hosts.

Historian for Linux - Getting Started Guide | 11 - Historian Server-to-Server Collector | 79

Field Description

Proxy The URL of the proxy server to be used for both the

authentication process and for streaming data. A

value is required if the collector is running on a net

work where proxy servers are used to access web

resources outside of the network. However, it does

not affect the proxy server used by Windows when

establishing secure connections. As a result, you

must still properly configure the proxy settings for

the Windows user account under which the collector

service runs.

Chapter 12. Historian OPCUA DA Collectors

Overview of the OPCUA DA Collector
The OPCUA DA collector collects data from any OPCUA-compliant OPCUA DA server, and sends it to the

Historian database. The collector automatically determines the capability of the OPCUA server to which it

is connected. For more information on the capabilities of the collector, refer to Capabilities of the OPCUA

DA Collector (on page 80).

You can set up the OPCUA DA collector on Predix Edge (on page 14) or a generic Linux distribution (on

page 17) such as Ubuntu or CentOS.

Capabilities of the OPCUA DA Collector
The following table outlines the capabilities of the Historian OPCUA DA Collector.

Feature Capability

Browse Source For Tags Yes (on OPCUA servers that support browsing)

Browse Source For Tag Attributes Yes

Polled Collection Yes

Minimum Poll Interval 100 ms

Unsolicited Collection Yes. If you are using an OPCUA DA collector with unso

licited data collection and the collector compression is

disabled, new values must produce an exception. When

the OPCUA DA collector performs unsolicited collection,

the deadband percentage is determined by the collector

deadband percent. You can only configure the collector

deadband percent by enabling compression.

Timestamp Resolution 100ms

Accept Device Timestamps Yes

Floating Point Data Yes

Integer Data Yes

String Data Yes

Binary Data Yes

Historian for Linux - Getting Started Guide | 12 - Historian OPCUA DA Collectors | 81

Feature Capability

Python Expression Tags No

Note:

You must set Time Assigned by field to Source if you have unsolicited tags getting data from an

Historian OPCUA DA Collector.

Tag Attributes Available on Browse

The following table outlines the tag attributes available when browsing.

Attribute Capability

Tag name Yes

Source Address Yes

Engineering Unit Description Yes, varies by OPCUA Server Vendor.

Data Type Yes. See Selecting Data Types.

Hi Engineering Units Yes, varies by OPCUA Server Vendor.

Lo Engineering Units Yes, varies by OPCUA Server Vendor.

Hi Scale Yes

Lo Scale Yes

Is Array Tag No

Note:

While some of these attributes are queried on a browse, they are not shown in the browse

interface. These attributes are used when adding a tag, but you will not be able to see whether or

not all attributes come from the server.

Selecting Data Types

The following table lists the data types recommended for use with Historian.

OPCUA Data Type Recommended Data Type in Historian

I1 - 16 bit signed integer Single Integer

Historian for Linux - Getting Started Guide | 12 - Historian OPCUA DA Collectors | 82

OPCUA Data Type Recommended Data Type in Historian

I4 - 32 bit signed integer Double Integer

R4 - 32 bit float Single Float

R8 - 64 bit double float Double Float

UI2 - 16 bit unsigned single integer Unsigned Single Integer

UI4 - 32 bit unsigned double integer Unsigned Double Integer

UI8 - 64 bit unsigned quad integer Unsigned Quad Integer

I8 - 64 bit quad integer Quad Integer

BSTR Variable String

BOOL Boolean

I1 - 8 bit single integer Byte

Note:

The Historian OPCUA Collector requests data from the OPCUA DA server in the native data type.

Then the Historian OPCUA DA collector converts the received value to a Historian Data Type

before sending it to the Historian database.

OPCUA Group Creation

To increase performance, it is recommended that you limit the number of OPCUA groups created by the

Historian system. To do this, consider grouping Historian tags (collected by the Historian OPCUA DA

Collector) using the least amount of collection intervals possible.

Environment Variables Used by the OPCUA DA Collector
The environment variables used by the OPCUA DA collector are available in the opcua-collector-

config.json file. The following table describes these values.

Important:

For OPCUA DA, Server-to-Server, and Server-to-Cloud collectors, ensure that you have set the

environment variables correctly before applying the configuration changes. This is because

after you have applied the configuration changes for a collector, you cannot set the environment

variables. If, however, you must change the values of the environment variables after the applying

Historian for Linux - Getting Started Guide | 12 - Historian OPCUA DA Collectors | 83

the changes, you must change the InterfaceName and DefaultTagPrefix values. When you do so,

a new instance of the collector is created. As a result, you must add the tags again.

Environment Variable Description
Default

Value

Valid

Values

DebugMode The debug mode for the OPCUA DA collec

tor.

00 • 00:

Indi

cates

that

de

bug

ging

is

dis

abled.

• ff:

Indi

cates

that

de

bug

ging

is en

abled.

HistorianNodeName The host name or IP address of the desti

nation Historian machine.

InterfaceName The name of the OPCUA DA collector. A

value is required and must be unique.

Histori

an-opcua-

collec

tor-200

DefaultTagPrefix The default prefix for the tags created by

the OPCUA DA collector. For example, if

you enter opcua, for a tag named pres

sure, a tag with the following name is cre

ated: opcua.pressure.

histori

an-opcua.

Historian for Linux - Getting Started Guide | 12 - Historian OPCUA DA Collectors | 84

Environment Variable Description
Default

Value

Valid

Values

General1 The URL of the OPCUA server.

General2 Identifies whether to enable secure con

nection.

true • true

• false

HS_NUMBER_OF_LOG_FILES The maximum number of log files to be

created. Once this value exceeds, the old

est file will be deleted to accommodate

the new one.

100 1 to 100

HS_SIZE_OF_EACH_LOG_FILE The maximum size of a single log file, in

MB. If this value exceeds, a new log file

will be created.

10 1 to 10

Sample ClientConfig.ini File Used by the OPCUA DA
Collector
[UaClientConfig]

ApplicationName =OPCUACollector

; TrustCertificate value (only used in secured connection):

; 0 (No trust),

; 1 (Trust temporarily)

; 2 (Default, trust permanently and copy the server certificate into the client trust list)

TrustCertificate =2

CertificateTrustListLocation =/data/pkiclient/trusted/certs/

CertificateRevocationListLocation =/data/pkiclient/trusted/crl/

IssuersCertificatesLocation =/data/pkiclient/issuers/certs/

IssuersRevocationListLocation =/data/pkiclient/issuers/crl/

ClientCertificate =/data/pkiclient/own/certs/domain.der

ClientPrivateKey =/data/pkiclient/own/private/domain.key

RetryInitialConnect =true

AutomaticReconnect =true

Historian for Linux - Getting Started Guide | 12 - Historian OPCUA DA Collectors | 85

Note:

• If you do not provide the certificate and key pair, the collector generates one.

• If the General2 variable in the opcua-collector-config.json file is set to false, the

collector connects to the OPCUA DA server in the unsecured mode (without any certificate

exchange).

• The RetryInitialConnect parameter is used to retry connecting to the OPCUA DA

server when the collector fails to connect to the server initially. The AutomaticReconnect

parameter is used to retry connecting to the OPCUA DA server when the collector fails to

connect to the server subsequently.

Secured OPCUA Collector Connectivity
When secured connectivity is enabled between the OPCUA DA server and collector, you must add the

client certificate to the trusted list of certificates of the OPCUA DA server.

1. Start the OPCUA DA collector in secured mode. The collector will not start.

2. Locate the OPCUA DA local or remote server installation location on the machine where the OPCUA

server is running. Typically, this can be found under C:\ProgramFiles\OPCUA Server Name\

in Windows Host.

3. Locate the folder named rejected in the OPCUA DA server installation folder. If you are unable to

locate it, check the OPCUA DA server manual for assistance.

4. The client certificate is in the rejected folder. Copy and paste this certificate into the trusted list

of certificates of the OPCUA server. The OPCUA DA server manual provides the folder where the

trusted certificates are located.

5. Restart the OPCUA DA collector.

Chapter 13. Security for Historian for Linux container
Ecosystem

Security for Historian for Linux container Ecosystem
This section describes the security mechanism for the Historian for Linux container ecosystem. The

main objective here is to protect the Historian database, which is the custodian of data. The security is

implemented in two tiers:

• Tier 1- Docker private network

Docker private network is a technology that enables a group of Docker containers to perform

network communication with one another. The ports on which applications of this groups are

listening is available for view-only to member applications of this Docker private network. If any

Docker container wants to expose its port outside of the Docker private network, that port must be

exposed.

The following diagram shows the network ports on which various Historian containers are

listening.

Historian for Linux - Getting Started Guide | 13 - Security for Historian for Linux container Ecosystem | 87

As shown in the diagram, the ports 9443, 9090, 9000 and 8989 are exposed to outside of docker

private network. So, the clients of web admin, tuner, REST query, and public REST APIs can interact

with these applications either from outside of the machine or from Docker private network.

The port 14000 is not exposed if you are using Predix Edge. If, however, you are using a generic

Linux distribution, the port 14000 is exposed. This port (TCP/IP port) is secured via Docker private

network. The members of this network like tuner, web admin, REST query service, public REST

APIs, and collectors (MQTT and OPCUA) can only connect to port 14000 of the Historian database.

• Tier 2 (OAUTH2 mechanism)

In tier 1, the ports 9443, 9090, 9000, and 8989 are not protected. If, however, you want to protect

these ports, the REST query, tuner, web admin, and the public REST APIs can use the OAUTH2

authentication and authorization mechanism.

The following diagram shows the network ports that use the OAUTH2 authentication and

authorization mechanism.

Historian for Linux - Getting Started Guide | 13 - Security for Historian for Linux container Ecosystem | 88

As shown in the diagram, the Historian database does not use any OAUTH2 authentication and

authorization mechanism directly. You interact with the Historian database using the web admin,

tuner, public REST APIs, and the REST query applications.

The Historian database is the ultimate resource we want to protect (the analogy here can be to that

of a vault in a bank), while web admin, tuner, public REST APIs, and the REST query act as resource

owners and are guards of the Historian database (analogy with the guard of the vault in a bank).

To provision the tier 2 security mechanism, you must set up an OAUTH2 server or you can use

Predix UAA (OAUTH2 server on Predix Cloud).

Note:

The public REST APIs perform authentication and authorization with Historian UAA or

Operations Hub UAA.

Web admin, tuner, public REST APIs, and REST query offer Docker environment variables by which

the users can provide OAUTH2 credentials to these Docker containers, so that these applications

can validate the token from the specified OAUTH2 server.

Historian for Linux - Getting Started Guide | 13 - Security for Historian for Linux container Ecosystem | 89

The following code sample provides the environment variables to set for each application to

leverage OAUTH2 authentication and authorization:

For Tuner

TUNER_SECURE=true

OAUTH2_CLIENT_ID=my-uaa-client

OAUTH2_CLIENT_SECRET= my-uaa-secret

OAUTH2_URL= https://28649aab-0fd3-456c-baea-335d1b907668.predix-uaa.run.aws-usw02-pr.ice.predix.io

https_proxy=http://my-proxy.ge.com:80

For REST Query Service

- DISABLE_REST_QUERY_SECURITY=false

- ZAC_UAA_CLIENTID=my-uaa-client

- ZAC_UAA_CLIENT_SECRET=my-uaa-secret

- ZAC_UAA_ENDPOINT=https://28649aab-0fd3-456c-baea-335d1b907668.predix-uaa.run.aws-usw02-pr.ice.predix.io

- USE_PROXY=true

- PROXYURL=http://my-proxy.com:80

For Web-admin

HV_UAA_CLIENT_ID=my-uaa-client

HV_UAA_CLIENT_SECRET=my-uaa-secret

HV_UAA_SCHEME_AND_SERVER=https://28649aab-0fd3-456c-baea-335d1b907668.predix-uaa.run.aws-usw02-pr.ice.predix.io

HV_USE_PROXY=true

HV_PROXY_URL= http://my-proxy.com:80

For Historian Public REST API

"HRA_UAA_SCHEME_AND_SERVER":https://Excel-2010

"UAA_SERVER_MACHINE_IP":"10.181.214.218",

For information on how to set these environment variables, refer to:

• Environment Variables Used by Tuner (on page 52)

• Environment Variables Used by the Public REST APIs (on page 33)

Historian for Linux - Getting Started Guide | 13 - Security for Historian for Linux container Ecosystem | 90

• Environment Variables Used by Web Admin (on page 42)

• Environment Variables Used by the REST Query (on page 34)

You can also refer to the docker-compose.yml file provided with the Historian Docker application

bundles for the aforementioned environment variables.

Chapter 14. Key differences between Historian for
Linux and Historian for Windows

Key differences between Historian for Windows and Historian
for Linux
The following table provides a list of the key differences between Historian for Windows and Historian for

Linux:

Feature Historian for Linux Historian for Windows

Predix Time series style REST

APIs

Yes No

Tuner (for the configuring Histo

rian database)

Yes No

Array datatypes Yes Yes

User-defined datatypes (custom

structure)

No Yes

Enumeration datatype No Yes

Collector redundancy No Yes

Alarm and Event Archiver No Yes

Diagnostic Manager for detect

ing faulty collectors and clients

No Yes

Proficy common licensing No Yes

Expose data as per OPCHDA

server standards

No Yes

Mirroring No Yes

Alerts and messages are not

verbal

No Yes

Collector portfolio of Historian for Windows and Historian for Linux

Historian for Linux - Getting Started Guide | 14 - Key differences between Historian for Linux and Historian
for Windows | 92

Important:

All collectors in Historian for Windows can connect to the Historian for Linux database and

vice versa. The following table provides a list of collectors that run on Windows and/or Linux

operating systems.

Collectors Linux Host Microsoft Windows Host

OPCUA collector Yes Yes

Server-to-Server collector Yes Yes

Server-to-Cloud collector Yes Yes

MQTT collector Yes Yes

Windows Performance collector Not applicable Yes

OPC collector No Yes

OPC Historical Data Access col

lector

No Yes

Calculation collector No Yes

OSI PI collector No Yes

iFIX collector No Yes

CygNet collector No Yes

Wonderware (Schneider Elec

tric) collector

No Yes

File collector No Yes

Clients that cannot run on Linux Host

Important:

Clients listed below can connect to Linux Historian database and operate but they cannot run on

Linux Host.

• Historian Administrator (VB admin console)

• ihSQL client

Historian for Linux - Getting Started Guide | 14 - Key differences between Historian for Linux and Historian
for Windows | 93

• Excel add-in

• Trend client

Chapter 15. Historian for Linux Client Libraries

Historian for Linux Libraries
The following libraries are available in Artifactory. Use the following information to ensure that you can

access the files.

For Predix Users

To access Artifactory links, you must first create an account on predix.io. Your predix.io account sign-in

credentials will be used to access Artifactory.

Collector Toolkit

The Collector toolkit is a C++-based library you can use to write custom Historian collectors. You must

write the source code to handle interactions with respective sources (for example, OPCUA, Modbus, and

so on). Collector interaction with Historian and features like store and forward and auto-reconnect to

Historian is automatically handled by this library.

The library is compiled in Ubuntu 16.04 x64.

User API

The user API is a C library used for adding, deleting, and updating tags for a collector. Usually, you can

manage tags using web admin, but alternatively, you can use this library to do this programatically.

The library is compiled in Ubuntu 16.04 x64.

Overview of the Collector Toolkit
Using the collector toolkit, you can write programs that integrate with Historian for Linux and leverage the

same configuration tools, redundancy schemes, and health monitoring as collectors that are provided

with Historian for Linux. A custom collector is a collector developed using the collector toolkit. It collects

data and messages from a data source and writes them to a data archiver. Using the collector toolkit, you

can create custom collectors that:

• Collect data and messages from any data source

• Perform collector compression and buffer collected data

• Report data and messages to a local or remote data archiver

Historian for Linux - Getting Started Guide | 15 - Historian for Linux Client Libraries | 95

Custom collectors can be developed to function much like the standard OPC and iFIX collectors that

come with Historian for Linux. The collected data can be used in any application that connects to

Historian for Linux.

The toolkit enables development of programs that collect data at the current time. It is not suitable for

developing migration programs, file import programs, SQL import programs or other programs that

produce data which has timestamps in the past. Use other Historian for Linux toolkits to accomplish

these tasks.

The toolkit supports pre-processing raw data with Python Expression Tags during collection, provided that

you enable this.

Historian for Linux User API - an Overview
The Historian for Linux User API is a C library intended to provide high speed read/write access to

Historian data and tags. It does not provide access to archives, alarms, events, or messages.

Use the API to develop applications, which read and write data to the Historian server when the REST

query and web admin do not meet the requirement for performance or programming language.

Sample programs are provided with the API, demonstrating how to perform common tasks. You can find

additional information in the comments in the sample code and API header.

Note:

To use this API, you must be familiar with the Historian for Linux features and functionalities.

Supported platforms

The Historian for Linux API is compiled on Ubuntu 16.04 LTS and Alpine 3.6.

Related Documentation
Historian

• Historian Collector Toolkit (on page 94)

• Historian User API (on page 95)

Predix Time Series Service

• Predix Time Series Service

• Predix Time Series Service API Documentation

https://docs.predix.io/en-US/content/service/data_management/time_series/
https://www.predix.io/api/

Historian for Linux - Getting Started Guide | 15 - Historian for Linux Client Libraries | 96

Predix UAA Service

• Predix User Account and Authentication Security Service

https://docs.predix.io/en-US/content/service/security/user_account_and_authentication/

Chapter 16. Troubleshoot Historian for Linux

General Troubleshooting Tips
The following are general issues you may experience when using Historian for Linux.

Historian for Linux Starts in Demo Mode

Cause

The Historian for Linux database container must have a valid license file for all enabled features, including

high tag count support. If a valid license is not provided Historian for Linux switches to demo mode

(which supports only 32 tags) while starting the Docker container.

Solution

Use the HS_LICENSE_FILE_PATH environment variable in the historian-archiver-conf.json file to

provide the absolute file path of the valid license file.

For example, if you mount a /data/edgedata directory with /data/ with Historian archiver Docker, you

can keep the license file in the /data/edgedata/historian-license folder on the host machine.

But you must set the environment variable to /data/historian-license because in a Docker-container

context, the path is /data/historian-license.

Web Admin Fails to Start

Cause

The web admin is a web application hosted in a Tomcat server inside a Docker container. Sometimes the

host machine has its own Tomcat server running and bound to a standard Tomcat port like 8080 or 8443,

so when the web admin Docker container is started, a port conflict occurs between the Tomcat server

running inside the Docker container and the Tomcat server running directly on the host machine.

Solution

Stop the Tomcat service of the host machine.

As a protective measure, in the docker-compose.yml file of web admin, port 9443 of the host machine

is mapped with port 8443 of the web admin Docker container, so that the web admin Docker does not

conflict with port 8443 of any other service on the host machine.

Historian for Linux - Getting Started Guide | 16 - Troubleshoot Historian for Linux | 98

Server-to-Server Collector fails to connect to the Destination and Source Historian

Cause

The Historian archiver Docker is a TCP/IP server, listening on port 14000. The server-to-server collector is

a Historian for Linux client, which connects to port 14000 of the machine on which the Historian archiver

Docker is running. Usually, we do not publish port 14000 of the Historian archiver. Because of this, the

Historian for Linux client Dockers (such as the server-to-server collector) which do not join the Docker

network of Historian archiver, will not be able to use the port 14000.

Solution

Publish port 14000 of the Historian archiver, if you want Historian for Linux clients to be connected to

Archiver from outside of Historian Archiver’s docker network.

Detailed Logs of the MQTT Collector, Server-to-Server Collector, and Historian Archiver

Cause

The Historian archiver, the MQTT collector, and the server-to-server collector logs do not go to Docker

logs. Therefore, it is difficult to analyze the operations logs of these applications.

Solution

Historian archiver logs are available in the <mounted host’s data directory with docker

container>/archiver/Logs folder. The MQTT collector and server-to-server collector logs are

available in the mounted host’s data directory with the Docker container folder.

Connection to the OPCUA DA Server Fails

Cause

The session may have timed out when the OPCUA DA collector tried to connect to the OPCUA DA server.

Solution

Ensure that the RetryInitialConnect and AutomaticReconnect parameters are set to true in the

ClientConfig.ini file.

	Cover Page
	Contents
	Chapter 1. Release Notes - Historian for Linux 2.3.1
	Release Notes

	Chapter 2. Historian for Linux - an Overview
	Overview of Historian for Linux
	Advantages of Using Historian for Linux
	Limitations
	Supported Operating System Platforms

	Licensing
	Historian Container Architecture

	Chapter 3. Set Up Historian for Linux on Predix Edge
	Set Up Historian for Linux on Predix Edge
	Stop an Application on Predix Edge
	Upgrade an Application on Predix Edge
	Uninstall an Application on Predix Edge

	Chapter 4. Set Up Historian for Linux on a Generic Linux Distribution
	Set Up Historian on a Generic Linux Distribution
	Stop an Application Deployed on a Generic Linux Distribution
	Upgrade an Application on a Generic Linux Distribution
	Uninstall an Application Installed on a Generic Linux Distribution

	Chapter 5. Historian Database
	Overview of the Historian Database
	Migrating Historian Data from Windows to Linux
	Environment Variables Used by the Historian Database
	About Array Tags

	Chapter 6. Historian Public REST APIs
	Overview of the Public REST APIs
	Security and Authentication
	Limitations
	Data Flow Diagram
	Getting Started with the REST APIs

	Connect to an External UAA Server
	Configure PostgreSQL to Accept External Connections
	Environment Variables Used by the Public REST APIs
	Sample REST URI

	Chapter 7. Historian REST Query Service
	Overview of the REST Query
	Environment Variables Used by the REST Query
	REST Query Array Tag
	Example of the REST Query API

	Chapter 8. Historian Web Admin Service
	Overview of Web Admin
	Environment Variables Used by Web Admin
	Accessing the Web Admin
	About Using UAA with Web Admin
	Use Predix UAA with Web Admin
	Use Other UAA Service with Web Admin
	Environment Variables Used by Web Admin UAA

	Chapter 9. Historian MQTT Collector
	Overview of the MQTT Collector
	Limitations

	Environment Variables Used by the MQTT Collector

	Chapter 10. Historian Tuner
	Overview of Tuner
	Environment Variables Used by Tuner
	Use Tuner on Predix Edge
	Use Tuner on a Generic Linux Distribution
	Examples of Tasks You can Perform Using Tuner
	To Create a Data Store
	Purging a Data Store
	Purging Archives based on Archive Name
	Purging Archives based on Time stamps
	Backup of Archive files using File Names
	Backup of Archive Files using Number of Files
	Backup of Archive Files using Start time and End Time
	Restore
	Data Store options for Archive Type Hours/Days
	Data Store options for Archive Type BySize
	Tag Options-Collection Properties
	Tag Options-Compression Properties
	Tag Options-Scaling
	Tag Options-Condition Based Collection
	Tag Options- Using Tag Group

	JSON File Content Example

	Chapter 11. Historian Server-to-Server Collector
	Overview of the Server-to-Server Collector
	Environment Variables Used by the Server-to-Server Collector
	Important notes on the Server-to-Server Collector Tasks
	Streaming data to Predix Time Series
	Create the Offline Configuration File
	Sample OfflineConfiguration.xml file
	Predix Time Series Information Fields in the historian-s2s-collector-config.json File

	Chapter 12. Historian OPCUA DA Collectors
	Overview of the OPCUA DA Collector
	Capabilities of the OPCUA DA Collector
	Tag Attributes Available on Browse
	Selecting Data Types
	OPCUA Group Creation

	Environment Variables Used by the OPCUA DA Collector
	Sample ClientConfig.ini File Used by the OPCUA DA Collector
	Secured OPCUA Collector Connectivity

	Chapter 13. Security for Historian for Linux container Ecosystem
	Security for Historian for Linux container Ecosystem

	Chapter 14. Key differences between Historian for Linux and Historian for Windows
	Key differences between Historian for Windows and Historian for Linux

	Chapter 15. Historian for Linux Client Libraries
	Historian for Linux Libraries
	For Predix Users
	Collector Toolkit
	User API

	Overview of the Collector Toolkit
	Historian for Linux User API - an Overview
	Supported platforms

	Related Documentation
	Historian
	Predix Time Series Service
	Predix UAA Service

	Chapter 16. Troubleshoot Historian for Linux
	General Troubleshooting Tips
	Historian for Linux Starts in Demo Mode
	Web Admin Fails to Start
	Server-to-Server Collector fails to connect to the Destination and Source Historian
	Detailed Logs of the MQTT Collector, Server-to-Server Collector, and Historian Archiver
	Connection to the OPCUA DA Server Fails

