
PROFICY
HISTORIAN
User Guide

PROFICY® SOFTWARE & SERVICES

Proprietary Notice
The information contained in this publication is believed to be accurate and reliable.
However, GE Vernova assumes no responsibilities for any errors, omissions or
inaccuracies. Information contained in the publication is subject to change without notice.

No part of this publication may be reproduced in any form, or stored in a database or
retrieval system, or transmitted or distributed in any form by any means, electronic,
mechanical photocopying, recording or otherwise, without the prior written permission of
GE Vernova. Information contained herein is subject to change without notice.

© 2024 GE Vernova and/or its affiliates. All rights reserved.

Trademark Notices
“GE VERNOVA” is a registered trademark of GE Vernova. The terms “GE” and the GE
Monogram are trademarks of the General Electric Company, and are used with permission.

Microsoft® is a registered trademark of Microsoft Corporation, in the United States and/or
other countries.

All other trademarks are the property of their respective owners.

We want to hear from you. If you have any comments, questions, or suggestions about our
documentation, send them to the following email address:
doc@ge.com

Contents

Chapter 1. Release Notes...47

What's New... 47

Resolved Issues..55

Known Issues and Limitations.. 60

Chapter 2. Getting Started Guide... 65

Overview.. 65

System Architecture..69

System Components.. 73

About the Historian Server...80

About Tags.. 81

Prerequisites... 82

Setting Up the Historian Environment...82

Activate the Historian License...82

Hardware Requirements...87

Software Requirements.. 92

Compatibility with Other Products.. 94

Supported Formats... 94

Optimize Performance..96

Enable Trust...97

VMWare Support...98

Installation...100

Installation Workflow..100

The Historian Server...104

Alarms and Events..140

Collectors...142

Client Tools..150

Web-based Clients.. 154

Contents | iii

Remote Management Agents.. 187

Install the OPC UA HDA Server... 191

The Excel Add-In for Historian...195

The Excel Add-In for Operations Hub... 198

ETL... 202

Stand-Alone Help.. 205

Configuring Certificate-based Security to use MTLS...206

Overview of the Certificate-based Security...206

Certificate-based Security Specifc Configurations...214

Upgrade Scenarios when Working with Historian Server Certificates.. 227

Troubleshooting Historian Server Certificates... 228

Using Proficy Authentication or LDAP Groups...229

About Proficy Authentication...229

About Proficy Authentication Groups..231

Using Server Certificates..234

Change the Log Levels of Proficy Authentication..234

Migrating Historian Data..235

Migrating the Alarms and Events Data... 235

Using the Migration Tool..239

Data Migration Scenarios...242

Migration Tool Command-Line Syntax..246

Interoperability of Historian Versions..247

Migrate User Authentication Data from Historian to Common Proficy Authentication

Service... 248

Implementing Historian Security...251

Implementing Historian Security... 251

Uninstalling Historian... 294

Uninstalling Historian... 294

Troubleshooting..295

Contents | iv

Managing Historian Log Files..295

Troubleshooting the Historian Server... 298

Troubleshooting Web-based Clients..300

Chapter 3. Configuration Hub...303

Overview.. 303

About Configuration Hub... 303

Workflow..304

Setting up Configuration Hub..305

About Setting up Configuration Hub... 305

Install the Historian Server.. 305

Install Web-based Clients...314

Install Collectors... 331

Perform Post-Installation Tasks.. 335

Upgrade..336

Access Configuration Hub... 336

Historian Plugin Management in Configuration Hub... 341

Common Tasks... 353

Setting up a Stand-Alone System... 356

About Setting up... 356

Add a Collector... 357

Add Tags..357

Setting up a Horizontally Scalable System.. 359

About Setting up a Horizontally Scalable System..359

Add a Server..361

Add a Collector... 362

Add Tags..363

Browse Tags using Distributed or Mirror Node Servers when Primary Server is Inactive............365

Setting up High Availability..367

About Data Mirroring ...367

Contents | v

Create...368

Create a Data Store.. 370

Creating a Model.. 371

About a Historian Model.. 371

About Object Templates...376

Workflow for Creating a Historian Model... 379

Create an Object Type..380

Include a Contained Type.. 385

Create an Object Instance... 388

Provide Data for a Static Variable...390

Collect Data for a Direct Variable..392

Collect Data for an Indirect Variable...395

Export an Object Type/Instance.. 400

Import an Object Type/Instance..402

Copy an Object Type.. 403

Delete a Template...407

Delete an Object Instance..409

Delete an Object Type.. 410

Managing Historian Systems.. 411

Access a System.. 411

Access the Collectors in a System... 420

Access Offline Configuration Collectors... 422

Access the Tags in a System.. 425

Add a System..427

Add a Server..428

Set Up a Mirror of Mirror... 429

Remove a Server...439

Set a Default Location..439

Modify a System...440

Contents | vi

Configure Advanced Settings.. 441

Configure Labels of Spare Fields.. 444

Set a Default System..445

Delete a System..445

Managing Mirror Locations... 446

Create...446

Rename.. 447

Add a Machine..448

Remove a Machine... 449

Delete... 450

Managing Data Stores... 451

About Data Stores ... 451

Create a Data Store.. 452

Access a Data Store...453

Rename a Data Store... 458

Set as Default..462

Access Archives..463

Apply Configuration Template... 463

Multiple Archive Paths... 464

Access Activity Logs.. 470

Access Tags..470

Specify Tags for Data Collection...471

Add a Tag Manually..473

View Performance.. 476

Delete... 478

Adding a Collector Instance.. 479

The Calculation Collector...479

CygNet Collector... 482

The File Collector..486

Contents | vii

The HAB Collector.. 489

About Adding an iFIX Collector Instance..501

The iFIX Collector... 505

The MQTT Collector... 510

The MQTT Sparkplug B Collector..519

The ODBC Collector..527

The OPC Classic Alarms and Events Collector.. 532

The OPC Classic DA Collector...534

The OPC Classic HDA Collector.. 540

The OPC UA DA Collector.. 544

The OSI PI Collector... 549

The OSI PI Distributor...553

The Python Collector..556

The Server-to-Server Collector... 559

The Server-to-Server Distributor.. 563

The Simulation Collector..567

The Windows Performance Collector... 571

The Wonderware Collector...575

Collector Configuration - Common Fields...579

Sending Data to Cloud...587

Alibaba Cloud.. 587

AWS Cloud...594

Azure Cloud (Key-Value Format)... 601

Azure Cloud (KairosDB Format).. 608

Google Cloud...614

Predix Cloud.. 621

Protocols and Port Numbers...626

Managing Collector Instances...627

Managing Collectors Using Configuration Hub.. 627

Contents | viii

Access a Collector..628

Access Tags..631

Add a Collector... 632

Enable MTLS Security for Collectors.. 632

Modify a Collector.. 634

Add a Comment..635

Access Comments..636

Start a Collector..637

Stop a Collector.. 638

Restart a Collector..639

Pause Data Collection.. 641

Resume Data Collection...642

Clear Buffer... 643

Move Buffer...644

Change Destination.. 645

Reset Performance Counters...646

Reset Overruns..647

Update Collector Credentials... 648

Apply Configuration Template to a Collector... 650

Configure Collector Redundancy... 651

Delete a Collector... 654

Managing Offline Configuration Collector Instances...655

Access Offline Configuration Collectors... 655

Manage Offline Configuration Collectors..657

Access Tags..658

Managing Tags... 659

About Tags.. 659

About Array Tags.. 660

About Collector and Archive Compression...660

Contents | ix

About Scaling.. 666

About Condition-Based Collection...666

Specify Tags for Data Collection...667

Add a Tag Manually..669

Access a Tag.. 672

Configure Multiple Tags... 687

Access Trend Chart.. 689

Access Last 10 Values...690

Access a Tag Alias...694

Export Tags as a CSV File... 695

Import Tags from a CSV File...697

Rename a Tag... 698

Copy a Tag.. 700

Stop Data Collection...702

Resume Data Collection...703

Remove a Tag... 704

Delete a Tag.. 705

Managing Enumerated Sets.. 707

About Enumerated Sets... 707

Create an Enumerated Set... 708

Assign an Enumerated Set to a Tag... 710

Export an Enumerated Set... 710

Import an Enumerated Set...711

Rename Enumerated Set..711

Delete Enumerated Set...712

Managing Data Attribute Enumerated Set..712

About Data Attribute Enumerated Set...712

Create a Data Attribute Enumerated Set.. 713

Assign a Data Attribute Enumerated Set to a Tag... 716

Contents | x

Export Data Attribute Enumerated Sets..717

Import Data Attribute Enumerated Sets... 717

Rename a Data Attribute Enumerated Set..718

Delete a Data Attribute Enumerated Set...718

Managing User-Defined Data Types... 719

About UDTs... 719

Create UDT.. 719

Assign to Tag.. 720

Export User-defined Types... 721

Import User-defined Types...721

Rename User-defined Types.. 722

Delete User-defined Types... 722

Managing Archives...723

About Archives..723

Guidelines for Archive Sizing...724

Access an Archive.. 725

Create Archives Automatically...727

Create Archives Manually.. 728

Back up an Archive...730

Back up Archives with Volume Shadow Copy Service.. 731

Restore an Archive..733

Close an Archive... 734

Remove an Archive...734

Reading/Writing Data... 734

Query Data...734

Write Data..738

About Saved Query... 741

Managing Alarms and Events... 750

About Alarms and Events.. 750

Contents | xi

Requirements.. 750

Create an Alarm..751

Access/Filter Alarms.. 752

Back up Alarms...753

Restore Alarms..754

About Purging Alarms.. 754

Managing Configuration Templates..757

About Configuration Templates...757

Create a Configuration Template for Collectors...757

Apply Configuration Template to a Collector... 765

Create a Configuration Template for Data Stores..767

Apply the Configuration Template to a Data Store.. 772

Managing Reports.. 773

About Reports... 773

Generate Reports.. 774

Export the Generated Report as a CSV File... 781

Save the Generated Report as a PDF File.. 781

Accessing Activity Logs...782

Troubleshooting Configuration Hub ...784

Chapter 4. Remote Collector Management...789

Overview of Remote Collector Management... 789

Installing Remote Management Agents... 790

Install Using the Installer... 790

Install at a Command Prompt... 793

About Managing Collector Instances Using the RemoteCollectorConfigurator Utility........................ 794

Create a Sample JSON File... 796

Add a Collector Instance..797

Modify a Collector Instance...799

Collector Instance Parameters.. 801

Contents | xii

General Parameters of a Collector..814

Delete a Collector Instance..817

Add an Offline Collector Instance... 819

Delete an Offline Collector Instance... 819

Manage a Collector Remotely... 820

Troubleshooting Remote Collector Management Issues..820

Chapter 5. Using Historian Administrator... 822

Historian Administrator..822

Overview.. 822

Access Historian Administrator...823

Historian in a Regulated Environment.. 824

High Availability.. 825

About High Availability... 825

Enable High Availability..827

Register Historian with a Cluster...827

Historian Administrator - Pages..828

The Main Page..828

The Data Store Page.. 835

Searching in Message Panel... 850

Managing Data Stores... 851

About Data Stores ... 851

Create...852

Rename.. 855

Move Tags... 857

Delete... 860

Managing Archives...863

About Archives..863

About Remote Storage... 864

Guidelines for Archive Sizing...866

Contents | xiii

Create Automatically.. 868

Create Manually.. 870

Back up Automatically..874

Back up Manually... 876

Restore...881

Configure System File Cache Memory..883

Configure DA for Remote Storage...884

Reuse a Config File...884

Managing Tags... 885

About Tags.. 885

About Array Tags.. 886

About Collector and Archive Compression...886

About Scaling.. 893

About Condition-Based Collection...893

Access/Modify.. 894

Add Tags from Source... 906

Create Manually.. 909

Copy... 912

Rename.. 915

View Trend Chart.. 918

View Last 10 Values...921

Stop Data Collection...924

Resume Data Collection...929

Get Tag Fields... 934

Remove.. 934

Delete... 938

About UDTs... 941

Manage UDTs..942

Assign/Remove Tags from UDTs.. 947

Contents | xiv

Manage Enumerated Sets..951

Assign/Remove Tags from Enumerated Sets.. 955

Managing Collectors.. 959

About Collectors... 959

Access/Modify a Collector...960

Delete a Collector... 968

Enable Spike Logic... 970

About Collector Redundancy... 975

Configure Redundant Collectors..978

Maintaining, Operating, and Monitoring Historian... 983

Maintain, Operate, and Monitor Historian ..983

Data Types...983

Plan for Data Recovery ... 988

Develop a Maintenance Plan... 989

Evaluate and Control Data Compression..991

Handle Value Step Changes with Collector Data Compression ...992

Reviewing System Alerts and Messages..995

Monitor Historian Health and Status.. 995

Monitor Historian Performance ..999

Troubleshooting..1009

Solve Minor Operating Problems.. 1009

FAQ: Run a Collector as a Service.. 1010

Changing the Base Name of Automatically Created Archives ...1011

Configuring the Inactive Timeout Value... 1012

Configuring Deep Data Tree Warnings..1012

Control Data Flow Speeds... 1013

Configure Inactive Server Reset Timeout... 1016

Historian Errors and Message Codes ..1016

Determining the Version of the Historian Server... 1019

Contents | xv

Return a List of Valid Field Options ...1020

Scheduled Software Performance Impact..1020

Intellution 7.x Drivers as OPC Servers ...1020

Troubleshooting Failed Logins ... 1021

Troubleshoot Data Collector Configuration.. 1022

Troubleshoot Tags..1023

Troubleshoot Historian Performance ...1024

Troubleshoot the Archive Service .. 1025

Chapter 6. Historian Advanced Topics..1027

Historian Advanced Topics Overview... 1027

About Historian Advanced Topics...1027

Storage.. 1027

Archive Compression... 1027

Determining Whether Held Values are Written During Archive Compression............................ 1032

Determining Expected Value..1033

How Archive Compression Timeout Works..1034

Archive De-fragmentation - An Overview.. 1035

About Storing Future Data... 1037

Retrieval...1044

Retrieval... 1044

Sampling Modes...1044

About Retrieving Data from Historian...1071

Sampling Modes...1072

Calculation Modes..1073

Query Modifiers...1075

Filtered Data Queries..1076

Filter Parameters for Data Queries... 1076

Filtered Queries in the Excel Add-in Example...1078

Filtering Data Queries in the Excel Add-in.. 1079

Contents | xvi

Hybrid Modes..1079

Calculation Modes..1085

StepValue Tag Property... 1152

Comment Retrieval Mode.. 1158

Query Modifiers ... 1159

Work with Data Stores from the Command Line...1186

Using the Command Line to Work with Data Stores... 1186

Creating a Data Store...1186

Deleting a Data Store... 1186

Examples... 1187

Measuring Historian Performance..1187

About Measuring Performance of Proficy Historian..1187

About the Proficy Historian Overview Objects... 1188

About Proficy Historian Message Queue Object..1192

About Proficy Historian Cache Object.. 1196

Chapter 7. Historian Alarms and Events... 1200

Overview..1200

Requirements..1200

Installation...1201

Upgrade... 1203

Changing the SQL Server...1203

Backing up Data... 1204

Using Configuration Hub..1204

Using the Utility...1205

Using Historian Administrator... 1206

At a Command Prompt.. 1208

Restoring Data.. 1209

Using Configuration Hub..1209

Using Historian Administrator... 1209

Contents | xvii

Migrating Data.. 1210

Using the Utility...1211

At a Command Prompt.. 1212

Querying Data... 1215

Importing Data..1216

Exporting Data.. 1217

Purging Data... 1218

Using Configuration Hub..1220

Using the Utility...1221

At a Command Prompt.. 1223

Closing Alarms... 1225

Using the OPC AE Collector with FIX32 SCADA Systems...1225

Chapter 8. Historian REST APIs... 1227

Introduction to Historian REST APIs.. 1227

Historian APIs... 1227

About Security and Authentication... 1227

Standards.. 1229

API Methods..1230

API Status Messages... 1230

Common API Parameters..1231

Overview of Commonly Used API Parameters...1231

TagNames Parameter...1231

Start and End Timestamps Parameter... 1232

TagSamples Parameter..1232

DataSample Parameter.. 1234

SamplingModeType Parameter... 1235

Direction Parameter..1237

CalculationModeType Parameter.. 1237

FilterModeType Parameter...1243

Contents | xviii

ReturnDataFields Parameter..1244

Payload Parameter... 1245

Error Code Definitions.. 1251

Historian REST APIs...1254

Overview of the Historian REST APIs... 1254

Managing Systems... 1254

Managing Historian Model.. 1287

Managing Collector Instances...1329

Collector Type and Subtype...1339

Managing Collectors...1340

Managing Data Stores..1365

Managing Tags... 1381

Managing Alarms and Events..1417

Swagger Documentation... 1427

Chapter 9. Historian System API.. 1429

Overview of the Historian System API... 1429

Overview of the Historian System API..1429

ihapi.h File Overview.. 1430

ihapi.h File Overview...1430

ihConfiguration Functions.. 1433

System API Programming... 1435

System API Programming..1435

System API Functions..1436

System API Connect Functions...1436

System API Tag Functions...1443

Read and Write Functions..1455

Archiver Configuration Functions.. 1469

Archiver Backup/Restore Functions..1479

User Defined Type Functions...1488

Contents | xix

Utility Functions.. 1495

Sample Programs...1512

Sample Programs... 1512

Chapter 10. Historian User API.. 1513

Historian User API Overview... 1513

About the Historian User API.. 1513

Prerequisites..1514

Connect Functions... 1514

Connect Functions Overview... 1514

ihuConnect...1514

ihuConnectEx.. 1516

ihuDisconnect..1517

ihuSetConnectionParameters.. 1517

ihuRestoreDefaultConnectionParameters...1519

ihuServerRegisterCallbacks..1519

ihuBrowseCollectors...1520

Archiver Functions..1521

Archiver Functions Overview... 1521

ihuSetArchiverProperty...1521

ihuGetArchiverProperty...1523

Tag Functions... 1523

Tag Functions Overview...1523

Tag Property Value Types..1525

ihuCreateTagCacheContext..1527

ihuFetchTagCache.. 1527

ihuFetchTagCacheEx.. 1528

ihuFetchTagCacheEx2.. 1528

ihuFetchTagCacheEx3.. 1529

ihuGetTagNameCacheIndex...1530

Contents | xx

ihuGetTagNameCacheIndexEx2.. 1530

ihuGetNumericTagPropertyByTagname..1531

ihuGetNumericTagPropertyByIndex.. 1531

ihuGetNumericTagPropertyByIndexEx2.. 1532

ihuGetStringTagPropertyByTagName..1533

ihuGetStringTagPropertyByTagNameEx2... 1533

ihuGetStringTagPropertyByIndex...1534

ihuGetStringTagPropertyByIndexEx2...1535

ihuTagAdd..1535

ihuTagDelete..1536

ihuTagDeleteEx..1537

ihuTagRename.. 1537

ihuTagRenameEx.. 1538

ihuTagCacheCriteriaClear...1539

ihuTagCacheCriteriaClearEx2...1539

ihuTagCacheCriteriaSetStringProperty..1540

ihuTagCacheCriteriaSetStringPropertyEx2..1540

ihuTagCacheCriteriaSetNumericProperty... 1541

ihuTagCacheCriteriaSetNumericPropertyEx2... 1541

ihuTagClearProperties.. 1542

ihuTagSetStringProperty...1542

ihuTagSetNumericProperty.. 1542

ihuCloseTagCache.. 1542

ihuCloseTagCacheEx2.. 1543

Write Functions...1543

Write Functions Overview.. 1543

ihuWriteData..1543

ihuWriteComment... 1546

Query Modifiers Functions.. 1547

Contents | xxi

Query Modifiers Functions Overview.. 1547

ihuBrowseQueryModifiers.. 1547

ihuClearQueryModifiers.. 1548

ihuRetrieveCalculatedDataEx2... 1548

ihuSetQueryModifiers... 1549

Read Functions...1549

Read Functions Overview...1549

ihuReadCurrentValue.. 1550

ihuReadInterpolatedValue.. 1551

ihuReadInterpolatedValueEx.. 1552

ihuReadRawDataByTime.. 1553

ihuReadRawDataByTimeEx.. 1554

ihuReadRawDataByCount...1555

ihuReadRawDataByCountEx...1556

ihuReadMultiTagRawDataByCount..1557

ihuReadMultiTagRawDataByCountEx..1557

ihuRetrieveSampledData.. 1558

ihuRetrieveSampledDataEx.. 1559

ihuRetrieveSampledDataEx2.. 1560

ihuRetrieveCalculatedData... 1561

ihuRetrieveCalculatedDataEx... 1562

ihuRetrieveCalculatedDataEx3... 1563

Utility Functions..1564

Utility Functions Overview..1564

IHU_timestamp_FromParts.. 1564

IHU_timestamp_ToParts...1565

ihuServerGetTime..1566

Enumerated Sets Functions.. 1566

Enumerated Sets Functions Overview.. 1566

Contents | xxii

ihuGetEnumeratedSets...1567

ihuEnumeratedSetAdd.. 1567

ihuEnumeratedSetRawValue.. 1568

ihuEnumeratedSetsFree... 1569

ihuEnumeratedSetRename...1570

ihuEnumeratedSetDelete.. 1570

ihuEnumeratedStateAdd...1571

ihuEnumeratedStateModify..1572

ihuEnumeratedStateDelete...1572

User-Defined Type Functions...1573

User-Defined Type Functions Overview.. 1573

ihuUserDefinedTypeAdd... 1574

ihuUserDefinedTypeDelete... 1574

ihuUserDefinedTypeRename.. 1575

ihuUserDefinedTypeExists..1576

ihuGetUserDefinedTypes.. 1576

ihuUserDefinedTypeSetProperties... 1577

ihuUserDefinedTypeFreeProperties... 1577

Publish Functions...1578

Publish Functions Overview...1578

Historian User API Error Codes...1586

Error Codes... 1586

Historian User API Sample Programs.. 1588

Sample Programs Overview...1588

Chapter 11. Historian SDK..1591

Object Model Overview..1591

Historian SDK Overview... 1591

Connect the SDK to the Server .. 1593

Working with Blob Data..1594

Contents | xxiii

Working with Archives..1598

SDK Reference..1598

Object Summary... 1598

Alarms Object... 1598

Archive Object...1604

Archives Object... 1604

Alarms.PurgeAlarmsById... 1604

Collector Object.. 1605

Collectors Object.. 1605

Data Objects..1605

Message Objects.. 1606

OPC Objects.. 1607

Server Objects...1607

Tag Objects... 1608

UserCalcFunction Object..1609

Property Reference A-B..1609

Method Reference A-B... 1803

Event Reference A-Z... 1889

Chapter 12. Historian Utility Suite.. 1894

Alerting System.. 1894

Version Validator.. 1895

DiagnostiX Tool.. 1895

Chapter 13. Collector Tool Kit.. 1897

Collector Toolkit Overview...1897

Overview.. 1897

Prerequisites... 1897

Prerequisites..1897

Installing the Collector Toolkit with Historian..1899

About Installation..1899

Contents | xxiv

Creating the Custom Collector Using the Wizard.. 1899

Installing and Configuring the Collector Toolkit for Linux...1900

Installing and Configuring the Collector Toolkit for Linux... 1900

Configuring Custom Collector Wizard.. 1901

Configuring a Custom Collector using the Wizard...1901

Creating a Custom Collector... 1901

Changing Historian Server Name... 1902

Changing the Historian Server Name Using Registry.. 1902

Working with collector Interfaces... 1903

About Interfaces... 1903

Custom Collector Design...1905

Design topics for Creating Custom Collectors...1905

Backward Compatibility of the Collector Toolkit... 1906

Backward Compatibility of the Collector Toolkit..1906

Custom Collector Toolkit Interface Technical Reference..1906

Custom Collector Toolkit Interface Technical Reference.. 1906

Custom Structure Technical Reference..1925

What is a Structure?...1925

Custom Collector Toolkit Structure Reference...1926

Hierarchical Custom Controller Browsing.. 1976

Browsing Custom Controller in a Hierarchy... 1976

Developing Hierarchical Browsing using Collector Toolkit ...1978

Collector Initialization Callbacks... 1980

Polled Tag Callbacks..1982

Unsolicited Tags Callbacks..1984

Chapter 14. Data Collectors - General.. 1990

Data Collectors Overview.. 1990

About Historian Data Collectors..1990

Bi-Modal Cloud Data Collectors.. 1993

Contents | xxv

Data Collector Software Components.. 1995

Supported Windows versions for Data Collectors... 1995

Data Collector Functions..1996

Supported Acquisition Interfaces..1998

Best Practices for Working with Data Collectors...1998

About Installing Historian Data Collectors...1999

Install Collectors... 1999

Installing a Collector at a Command Prompt...2003

Upgrade Collectors...2005

Sending Data to Cloud...2006

Alibaba Cloud..2006

AWS Cloud...2012

Azure Cloud...2019

Google Cloud...2026

Predix Cloud.. 2033

Protocols and Port Numbers...2038

Offline Collector Configuration.. 2039

Offline Configuration for Collectors...2039

Creating Offline Configuration XML file.. 2040

Collector Interface Properties..2041

Tag List and Tag Properties.. 2043

About Updating Tag Properties Dynamically..2048

Cloud Collector Specific Registry Configuration.. 2049

Working with Tags..2050

Understanding Tag names...2050

Adding Tags from a Collector... 2052

Manually Adding Tags..2056

Copy a Tag.. 2060

Search for Tags.. 2061

Contents | xxvi

Remove Tags...2063

Browse a Data Source for New Tags..2064

About Configuring Collector Options.. 2066

About Collector Redundancy... 2067

Collect Vendor Attributes...2067

Collector Spare Configuration..2069

Data Collector Operation and Troubleshooting... 2069

Data Collector File Locations.. 2069

Pause or Resume Data Collection for All Tags..2070

Pause Data Collection for a Subset of Tags.. 2071

Modify User Privileges for Starting a Collector..2072

About Monitoring Data Collector Performance Statistics... 2072

Disabling Rebroadcasting for Historian Data Archiver.. 2073

Troubleshooting Tag Configuration...2074

Reviewing the Active Collector Configuration.. 2074

Collector and Archive Compression..2076

Data Buffering... 2076

Editing the Registry to Change the Buffer Size.. 2077

Setting Up Services Recovery Actions in Windows... 2077

Working with Python Expression Tags... 2078

Python Expression Tags in Historian.. 2078

Constructing and Adding Python Expression Tags..2080

Python Expression Tag Examples... 2084

Uninstall Collectors.. 2094

Troubleshooting..2094

Chapter 15. The Calculation Collector.. 2098

Overview..2098

About the Tags Used by the Calculation Collector.. 2099

Workflow for Using the Calculation Collector.. 2100

Contents | xxvii

Configuration...2101

Recalculate Tag Values... 2103

Using Configuration Hub..2103

Using Historian Administrator... 2104

Using the Calculation Collector...2106

Write Data to an Arbitrary Tag...2106

Creating Triggers..2111

Types of Triggers..2111

Create a Polled Trigger.. 2112

Examples of Scheduling Polled Triggers.. 2113

Create an Unsolicited Trigger.. 2114

Examples of Scheduling Unsolicited Triggers..2117

Calculation Formulas... 2118

About Calculation Formulas.. 2118

General Guidelines for Defining a Calculation Formula...2119

Create a Calculation Formula Using a VBScript Code...2121

Create a Calculation Formula Using the Pre-built Functions...2123

Create a User-Defined Function...2125

Built-in Functions.. 2127

Types of Functions Supported ... 2135

User-defined Functions...2136

Date/Time Shortcuts.. 2138

Converting a Collected Value.. 2138

Calculations Inside Formulas.. 2138

Conditional Calculation.. 2139

Combining Tag Values and Assigning a Trigger..2139

Using CreateObject in a Formula.. 2139

Using a File... 2140

Converting a Number to a String.. 2140

Contents | xxviii

Detecting Recovery Mode Inside a Formula...2141

Looping Through Data Using the SDK.. 2141

Using an ADO Query...2143

Windows Performance Statistics Physical Memory Usage.. 2144

Windows Performance Statistics Virtual Memory Usage... 2144

Determining Collector Downtime.. 2144

Analyzing the Collected Data...2145

Simulating Demand Polling..2146

Native Alarms and Events Functions..2147

About Native Alarms and Events Functions...2147

Retrieving and Setting Alarm Properties Manually.. 2147

Insert Calculation Functions Manually..2148

Data Input..2152

Calculation and Server-to-Server Collectors... 2152

Recovery.. 2152

Manual Recalculation... 2153

Troubleshoot Calculation Collector.. 2164

Troubleshooting Calculation collector.. 2164

Unsupported Data Types for Calculation Tags.. 2164

Unsupported Calculations in Calculation collector..2164

Writing Messages to the Collector Log File for Debugging Purposes..2165

Importing Calculations with Line Breaks into Historian.. 2165

Recovery Mode... 2166

Chapter 16. The CygNet Collector.. 2167

Overview..2167

Configuration...2168

Using Configuration Hub..2168

Using Historian Administrator... 2172

Specifying Tags for Data Collection... 2174

Contents | xxix

Using Configuration Hub..2174

Using Historian Administrator... 2176

Disabling Bad Offline Values... 2179

Disabling Deleting Values..2179

Troubleshooting..2179

Chapter 17. The File Collector..2181

Overivew.. 2181

Configuration...2184

Using Configuration Hub..2184

Using Historian Administrator... 2186

Importing Files..2188

CSV File Format..2188

XML File Format... 2195

Troubleshooting..2205

Chapter 18. The HAB Collector.. 2208

Overview..2208

High Availability.. 2210

Configuration...2213

The HAB Collector.. 2213

Configure the Tags... 2219

Configure the Alarms... 2230

Start the Collector.. 2242

Approve Tag Changes.. 2243

Delete the Collector.. 2245

FAQs...2246

Chapter 19. iFIX Collector.. 2251

Overview..2251

About Adding an iFIX Collector Instance... 2251

Specify the Tags for Data Collection..2255

Contents | xxx

Editing FixTag.dat File .. 2257

Example: Restarting the iFIX Collector Using a Heartbeat... 2259

Using an STK with the iFIX collector..2261

Setting Up... 2263

Upgrading the iFIX Collectors..2263

The Configuration Section for iFIX collectors.. 2264

Collector-Specific Configuration (iFIX)..2264

Configuration of iFIX Data Collector-Specific Fields..2265

Starting an iFIX Collector Instance... 2266

Troubleshooting..2268

Chapter 20. Migrating iFix Data..2270

Migrating iFix Data to Historian..2270

About Migrating iFix to Historian.. 2270

Historian Migration Utilities... 2271

Adding the Historian Toolbar...2276

Migration Checklist...2276

Migrating Classic Historical Data... 2277

About Migrating Classic Historical Data...2277

Migrating Classic Historian Data to Your Historian Database.. 2278

Configuring Classic Migration Options... 2280

Migrating Advanced Historian Data..2284

Migrating Advance Historian Data.. 2284

Migrating iFIX Alarms and Events Collector.. 2291

Migrating iFIX Alarms and Events collector... 2291

iFIX Alarms and Events collector Migration Options Configuration..2293

Alarm Source Options ...2293

Alarm Destination Options...2295

Troubleshoot iFIX Alarms and Events collector...2297

Chapter 21. The MQTT Collector..2298

Contents | xxxi

Overview..2298

Configuration...2300

The MQTT Collector... 2300

Using Historian Administrator... 2309

Chapter 22. The MQTT Sparkplug B Collector..2312

Overview..2312

Adding an MQTT Sparkplug B Collector Instance... 2317

Add an MQTT Sparkplug B Collector Instance using Configuration Hub................................... 2317

Add an MQTT Sparkplug B Collector Instance using RemoteCollector Configurator................ 2325

Configuring an MQTT Sparkplug B Collector Instance..2331

Configure an MQTT Sparkplug B Collector Instance using Configuration Hub..........................2331

Configure an MQTT Sparkplug B Collector Instance using Historian Administrator..................2336

Chapter 23. The ODBC Collector.. 2341

Overview..2341

Configuration...2343

Using Configuration Hub..2343

Using Historian Administrator... 2347

Mapping the Data Format... 2349

Data Recovery...2353

Reconnecting Automatically..2354

Troubleshooting..2355

Chapter 24. The OPC Classic DA Collector...2356

Overview..2356

Configuration...2357

Using Configuration Hub..2357

Using Historian Administrator... 2363

Configuring Drivers and Deadbands... 2366

Specifying Tags for Data Collection... 2367

Using Configuration Hub..2367

Contents | xxxii

Using Historian Administrator... 2369

Creating OPC Groups...2371

Troubleshooting..2371

Chapter 25. The OPC Classic HDA Collector.. 2374

Overview..2374

Configuration...2376

Using Configuration Hub..2376

Using Historian Administrator... 2380

Specifying Tags for Data Collection... 2382

Using Configuration Hub..2382

Using Historian Administrator... 2384

Data Recovery...2387

Reconnecting Automatically..2388

Troubleshooting..2388

Chapter 26. The OPC Classic Alarms and Events Collector.. 2390

About the OPC Classic Alarms and Events Collector... 2390

About Event Types, Categories, and Conditions..2390

About Event Attributes...2391

Workflow for Using the OPC Alarms and Events Collector...2391

Configure the OPC Alarms and Events Collector...2392

Filter Alarms and Events Data.. 2393

Chapter 27. OPC Classic HDA Server... 2396

Overview..2396

About the Historian OPC Classic HDA Server..2397

Setting Up... 2398

Set Up the Historian OPC Classic HDA Server...2398

Enable Tag-Level Security.. 2398

Turn On Debug Mode for Trace Log Files.. 2399

Browse Large Number of Collectors and Tags.. 2399

Contents | xxxiii

Reference.. 2400

Supported Attributes.. 2400

Supported Data Types..2400

Supported Quality Values...2401

Supported Filter Attributes...2402

Example Trace Log File..2403

OPC Classic HDA Aggregates... 2403

Average Aggregate .. 2405

Maximum Aggregate.. 2406

Minimum Aggregate...2407

Before Aggregate..2407

After Aggregate...2408

Nearest Aggregate..2408

Proficy Historian Interpolative Aggregate...2409

Chapter 28. OPC UA HDA Server..2410

Overview..2410

About the Historian OPC UA HDA Server... 2411

Configuration...2412

Install the OPC UA HDA Server... 2412

The OPC UA HDA Server Workflow...2416

Configure the OPC UA HDA Server Settings.. 2416

Connect the OPC UA HDA Server and the OPC UA HDA Client.. 2420

Authenticate a User to Connect to the OPC UA HDA Server...2421

Supported Attributes.. 2422

Supported Data Types..2423

Supported Quality Values...2424

Troubleshooting..2424

Chapter 29. The OPC UA DA Collector... 2426

Overview..2426

Contents | xxxiv

Configuration...2428

Using Configuration Hub..2428

Using Historian Administrator... 2432

Trusting a Client Certificate...2434

Connecting with Server..2434

Working with the Collector.. 2438

Using Configuration Hub..2438

Using Historian Administrator... 2440

About OPC UA DA Collector Groups ... 2442

Troubleshooting..2442

Chapter 30. OSI PI Collector.. 2443

Overview..2443

Before You Begin..2444

OSI PI Collector Configuration.. 2446

Configuring the OSI PI Collector..2446

OSI PI Collector-specific Field Descriptions... 2448

Tag Attributes Available in Browse... 2450

Configuring Recovery Mode ... 2450

OSI PI Collector and Distributor Supported Data Types.. 2451

OSI PI Collector - Notes... 2451

Starting and Stopping the OSI PI Collector.. 2452

Configuring Auto-synchronization of Digital States... 2453

Renaming Digital States...2453

Deleting Digital States..2454

OSI PI Collector Troubleshooting..2455

Chapter 31. OSI PI Distributor.. 2457

OSI PI Distributor..2457

Overview.. 2457

Getting Started..2458

Contents | xxxv

Configuring Multiple OSI PI Distributors to use Registry Keys..2459

OSI PI Distributor Configuration..2459

Configuring an OSI PI Distributor.. 2459

Tag Attributes Available in Browse... 2461

OSI PI Collector and Distributor Supported Data Types.. 2461

Starting and Stopping the OSI PI Distributor Service.. 2462

Chapter 32. The Python Collector.. 2463

Overview..2463

Supported Data Types..2464

Install the Python Collector... 2464

Adding a Python Collector Instance... 2465

Add a Python Collector Instance using Configuration Hub...2465

Add a Python Collector Instance using RemoteCollectorConfigurator.......................................2467

Configuring the Python Collector..2470

Configure the Python Collector using Configuration Hub..2470

Configure the Python Collector using Historian Administrator... 2471

Configure Python Library Path using Configuration Hub...2472

Using the Python Collector..2473

Write Data to an Arbitrary Tag...2473

Create Triggers... 2475

About Calculation Triggers.. 2475

Create a Polled Trigger.. 2476

Create an Unsolicited Trigger ...2477

About Calculations... 2478

About Calculations using Python Collector..2478

Create Python Script using Built-in Functions..2479

Create Python Script by Importing Third-party or Custom Python Modules or Functions.........2481

Available Functions...2483

Examples of using Calculation Functions..2491

Contents | xxxvi

Examples: Using the Built-in Functions.. 2491

Examples: Custom or Third-party Python Modules... 2491

Example: Storing Current Values of Arrays.. 2495

Example: Storing Dictionary Data as Multifield Data... 2496

Example: Storing Python Integer List in Historian... 2497

Example: Storing Python String List in Historian... 2498

Example: Use Historian Data as Input to a Python Script... 2498

Chapter 33. Server-to-Server Collector...2499

Overview..2499

Overview.. 2499

About Recovery Mode.. 2503

About Collection of Raw Samples.. 2504

Using the Collector...2504

Workflow for Using the Server-to-Server Collector.. 2504

Configure the Server-to-Server Collector Instance... 2506

Tag Properties that are Copied...2508

Tag Properties that are Copied... 2508

Examples of Data Collection...2509

Raw Samples Collection Example...2509

Advanced Collection Example... 2510

Creating Calculation Formulas..2512

About Calculation Formulas.. 2512

General Guidelines for Defining a Calculation Formula...2513

Create a Calculation Formula Using a VBScript Code...2515

Built-in Functions.. 2517

User-defined Functions...2525

Create a User-Defined Function...2527

Date/Time Shortcuts.. 2529

Create a Calculation Formula Using the Pre-built Functions...2529

Contents | xxxvii

Types of Functions Supported ... 2531

Data Input..2532

Calculation and Server-to-Server Collectors... 2532

Recovery.. 2533

Manual Recalculation... 2533

Examples of Calculation Formulas...2545

Converting a Collected Value.. 2545

Calculations Inside Formulas.. 2545

Conditional Calculation.. 2545

Combining Tag Values and Assigning a Trigger..2545

Using CreateObject in a Formula.. 2545

Using a File... 2546

Converting a Number to a String.. 2547

Detecting Recovery Mode Inside a Formula...2547

Looping Through Data Using the SDK.. 2548

Using an ADO Query...2549

Windows Performance Statistics Physical Memory Usage.. 2550

Windows Performance Statistics Virtual Memory Usage... 2551

Determining Collector Downtime.. 2551

Analyzing the Collected Data...2552

Simulating Demand Polling..2552

Chapter 34. The Server-to-Server Distributor .. 2554

Overview..2554

Workflow for Using the Server-to-Server Distributor... 2555

Configure the Server-to-Server Distributor..2555

Chapter 35. The Simulation Collector...2558

Overview..2558

Configuration...2558

Using Configuration Hub..2558

Contents | xxxviii

Using Historian Administrator... 2559

Tags with Sequential Values... 2560

Chapter 36. Windows Performance Collector... 2562

Windows Performance Collector.. 2562

Overview.. 2562

Windows Performance Collector Feature Summary..2562

Windows Performance Collector Configuration.. 2563

Understanding Windows Performance Collector Tag Hierarchy...2563

The Configuration Section for Windows Performance Collector.. 2564

Chapter 37. The Wonderware Collector.. 2566

Overview..2566

Installation Prerequisites... 2567

Wonderware Collector Features..2567

Hierarchical Tags Available in Browse .. 2568

Supported Data Types for Wonderware Collector... 2569

Configuring Wonderware Collector... 2570

Data Recovery... 2571

Initiating Manual Recovery...2573

Reconnecting to the Wonderware Server...2574

Troubleshooting the Wonderware Collector...2575

Chapter 38. OLE DB Provider..2576

Overview..2576

Setting Up... 2577

Install the OLE DB Provider... 2577

Connect to a Historian Server... 2580

Working with Clients.. 2580

Power BI Desktop... 2580

VisiconX...2585

Oracle...2587

Contents | xxxix

Crystal Reports... 2587

Microsoft Excel... 2592

Visual Basic and ADO.. 2596

Proficy Real-Time Information Portal..2600

Linked Servers...2600

Working with Queries...2606

Access the Historian Interactive SQL Application... 2607

Run a Query...2608

Connect to a Server..2609

Save a Query... 2610

Export Results...2611

Optimize the Query Performance..2611

Supported SQL Syntax...2612

SELECT Statements..2613

SET Statements.. 2629

Parameterized SQL Queries...2636

Optimize the Query Performance..2637

Troubleshooting and Frequently Asked Questions..2638

Troubleshooting.. 2638

Frequently Asked Questions.. 2642

Historian Database Tables.. 2647

The Historian Database Tables... 2647

ihTags Table.. 2651

ihArchives Table..2659

ihCollectors Table... 2661

ihMessages Table...2667

ihRawData Table... 2670

ihHabAlarms Table... 2680

ihComments Table..2682

Contents | xl

ihTrend Table...2693

ihQuerySettings Table...2709

ihCalculationDependencies Table... 2715

ihAlarms Table.. 2716

ihEnumeratedSets Table.. 2720

ihEnumeratedStates Table... 2721

ihUserDefinedTypes Table..2722

ihFields Table.. 2723

Chapter 39. The Excel Add-In for Historian.. 2725

Overview..2725

Setting Up... 2726

Install Using the Installer... 2726

Install at a Command Prompt... 2727

Activate Excel Add-In..2728

Querying Data... 2730

Query Current Values... 2730

Query Filtered Data...2732

Querying Calculated Data.. 2734

Querying Alarms and Events Data.. 2736

Modify a Query..2737

Query Modifiers...2738

Access Archive Statistics.. 2741

Access Collector Statistics..2742

Managing Tags...2743

Search for a Tag (Basic).. 2743

Search for a Tag (Advanced)...2744

Export Tags... 2746

Add/Modify Tags.. 2747

Import Tags...2748

Contents | xli

Rename Tags.. 2748

Working with Array Tags..2749

Importing and Exporting Data...2750

Import Tag Data..2750

Importing Alarms and Events Data... 2750

Export Tag Data ...2751

Exporting Alarns and Events Data...2752

Working with Messages.. 2754

Search for Messages... 2754

Import Messages..2755

Export Messages.. 2755

Managing Enumerated Sets.. 2756

Export Enumerated Sets.. 2758

Import Enumerated Sets.. 2759

Rename Enumerated Sets..2759

Managing User-Defined Types.. 2760

Export User-Defined Types ... 2761

Import User-Defined Types.. 2762

Reference.. 2762

Excel Add-In Options.. 2762

Reports.. 2764

Relative Time Entries..2777

Filter Parameters for Data Queries... 2778

Batch IDs... 2780

Sampling Types...2781

Calculation Algorithm Types..2782

Tag Criteria List.. 2784

Troubleshooting..2785

Chapter 40. The Excel Addin for Operations Hub... 2788

Contents | xlii

Overview..2788

About Operations Hub..2789

Setting Up... 2789

Software Requirements..2789

Install Excel Add-In for Operations Hub..2790

Copy or Export the Issuer Certificate on Server...2791

Install/Import the Issuer Certificate..2792

Connect to Operations Hub... 2793

Querying Data... 2793

Query Operations Hub Model.. 2794

Troubleshooting..2797

Chapter 41. Trend Client.. 2799

Overview..2799

Access Trend Client... 2799

Access Help.. 2799

Managing Tags...2799

Add Tags for Analysis..2801

Creating a Display.. 2802

Add a Trend Chart.. 2802

Add a Current Value Table...2803

Add a Value Card..2803

Add a Text Box... 2804

Access a Display.. 2804

Provide a Title to a Display..2805

Filter Data.. 2805

Change the Sampling Mode.. 2806

Change the Time Zone...2806

Export Data..2807

Set the Refresh Interval..2808

Contents | xliii

Working with a Trend Chart.. 2808

Add a Trend Chart.. 2808

Switch the Y-Axis..2810

Change the Format...2810

Change the Duration...2812

Access the Statistics..2813

Change the Sampling Mode.. 2813

Change the Scale of a Trend Chart...2814

Managing Favorites..2815

Access a Favorite... 2815

Export a Favorite...2815

Import a Favorite.. 2816

Delete a Favorite...2816

Chapter 42. Historian Web Admin Console...2817

Overview..2817

Overview.. 2817

Difference Between the Web Admin Console and Historian Administrator............................... 2817

Actions You Can Perform Using the Web Admin Console ... 2818

Access the Web Admin Console...2818

Understanding the Interface..2819

Understand the Historian Interface...2819

Client Panel ..2820

Collector Panel..2822

Data Node Panel...2826

Configuration Panel.. 2830

Configure General Collector Options.. 2848

Configure General Collector Options...2848

Maintain, Operate, and Monitor Historian.. 2854

Plan For Data Recovery..2854

Contents | xliv

Develop a Maintenance Plan ..2855

Monitor Historian Performance...2855

Evaluate Data Compression Performance..2865

Historian Data Types..2867

Managing Tags...2870

Access a Tag.. 2870

Add a Tag to a Data Source.. 2870

Add a Tag Manually..2871

Add a Source Address to a Tag.. 2872

Adding OPC Tags from a Collector...2872

Adding Simulation Tags from a Collector.. 2872

Filter and Search Tags... 2873

Access the Trend Chart of Tag Values...2875

Displaying Raw Data Samples ..2875

Dynamic Collector Updates... 2876

Reload Tag Parameters .. 2877

Rename Tags.. 2879

Stale Tag Management ...2881

Delete Tags... 2881

Managing Data Stores... 2882

About Data Stores ... 2882

Moving Tags Between Data Stores...2883

Adding a Data Store... 2884

Deleting a Data Store... 2884

Editing a Data Store... 2885

Managing Data Archives..2885

Configure Data Archives.. 2885

Chapter 43. Extract, Transform, and Load (ETL)...2901

Overview..2901

Contents | xlv

Workflow for Transferring Data from eDNA .. 2902

Workflow for an ODBC Data Source... 2903

Workflow for Proficy Historian.. 2905

Workflow for PI Historian...2906

Installation...2908

Upgrade..2910

Extracting Data from an eDNA Server..2910

Specify Tags Using the Utility..2911

Specify Tags Manually... 2912

Specify Tags Using a Template...2913

Specify Tags Using a Blank Spreadsheet... 2914

Tag Properties...2916

Configure... 2916

Extract Historical Data... 2922

Start Data Extraction.. 2923

Extracting Data from an ODBC Data Source..2924

Specify Tags and Tables Manually..2924

Specify Tags and Tables Using a Template... 2926

Specify Tags and Tables Using a Blank Spreadsheet..2928

..2931

Table Properties..2932

Configure... 2933

Start Data Extraction.. 2937

Extracting Data from Proficy Historian...2938

Specify Tags Manually... 2938

Specify Tags Using a Template...2939

Specify Tags Using a Blank Spreadsheet... 2940

Tag Properties...2942

Configure... 2942

Contents | xlvi

Extract Historical Data... 2946

Start Data Extraction.. 2947

Extracting Data from PI Historian...2948

Specify Tags Manually... 2948

Specify Tags Using a Template...2949

Specify Tags Using a Blank Spreadsheet... 2950

Tag Properties...2951

Configure... 2952

Extract Historical Data... 2956

Start Data Extraction.. 2957

Transferring Data Using BITS..2957

Configure BITS.. 2957

Verify Settings...2958

Transfer Data.. 2958

Transferring Data Using FTP...2959

Configure FTP... 2959

Transfer Data.. 2960

Loading Data...2961

Configure... 2961

Load Data.. 2965

Reference.. 2965

Example of a Regeneration File.. 2966

Example of a State File..2968

Troubleshooting..2969

Chapter 1. Release Notes

What's New in Historian 2024
Description Tracking ID

Configuration Hub Enhancements

Configuration Hub provides a better user experience using an IDE model to manage systems, bringing in

consistency across the portfolio to manage the configuration and administration of multiple products.

The following Historian specific enhancements are made in Configuration Hub:

Ability to register and manage Configuration Hub plugin for Historian: You can

manage the Configuration Hub plugin for Historian using Configuration Hub. You

can register a plugin, unregister a plugin, modify a plugin, and view Historian node

and plugin-specific details using the Node Manager. For more information, refer to

Historian plugin management.

F69440

• Ability to browse tag details when primary node is inactive: In a horizontal

ly scaled system, when a primary server's central configuration manager is

inactive, you can still browse tags by adding distributed or mirror nodes as a

backup for the primary server. When you add a node as the backup, the Da

ta Archiver of that node functions as the Configuration Manager, and sends

the relevant tag information to the client manager.

To facilitate this enhancement, a new Support for Browse Tags, if primary

server down property has been added in the Systems > GENERAL section of

the DETAILS section.

For more information, refer to browse tags using distributed or mirror node

servers when primary server is inactive.

F69877

• Create custom templates for common configurations: You can create con

figuration templates for both data stores and collectors separately.

To facilitate this enhancement, a new Configuration Templates section has

been added in the Configuration Hub plugin for Historian. Within the Config

uration Templates, you are provided with two different tabs, one tab to con

figure collector-specific template, and the other tab to configure data store-

specific template.

Historian | 1 - Release Notes | 48

Description Tracking ID

Note:

You can apply a data store configuration template to a user-created

data store, provided they are not set as the default data store.

For more information, refer to Configuration templates.

Ability to reset collector overruns: You can reset overrun count of a collector in

stance to zero without restarting the collector. To facilitate this enhancement, a

new collector action Reset Overruns has been added. For more information, refer

to Reset Overruns.

F70190

Ability to be notified when a restart of collector instance is required: When you

modify certain configurations of a collector instance, you will be prompted to

restart the collector instance. To facilitate this enhancement, a new confirmation

dialog has been added. Whenever you modify certain configuration and save, you

will be prompted with an option to restart the collector instance. If you decide not

to restart, a notification will be displayed in the DETAILS section, stating that the

selected collector instance needs a restart.

Note:

The modification(s) will take effect only after you restart the collector in

stance.

For more information, refer to Modify collector instance.

Ability to validate the destination Historian connection while adding a collector

instance: You can test a destination Historian server's connection status while

adding a collector instance. This will enable you to connect to a valid, and an ac

tive destination Historian server. To facilitate this enhancement, a new Test Con

nection button has been added in the Collector Initiation section, and also in the

Update Collector Credentials: <Collector name> window for all the collectors.

Ability to validate the source Historian connection while adding a Server-to-Serv

er Collector or Server-to-Server Distributor collector instance: You can test a

source Historian server's connection status while adding a collector instance. This

will enable you to connect from a valid, and an active source Historian server. To

Historian | 1 - Release Notes | 49

Description Tracking ID

facilitate this enhancement, a new Test Connection button has been added in the

Source Configuration section.

Ability to configure multiple tags at once: You can select multiple tags and config

ure their common configurations at once. To facilitate this enhancement, you are

now enabled to select multiple tags using their corresponding check boxes, or you

can select all the available tags using the check box available in the grid's header.

For more information, refer to Configure multiple tags.

Ability to add and view the actual unit of measure of a tag's value: You can add

the actual unit of measure of a tag's value. This will help you to view and add more

context to a tag's value that you pull. To facilitate this enhancement, a new EGU

Description property has been added in the SCALING section of tag's DETAILS

section.

The engineering unit that you provide will be displayed under the Engineering Units

column in the table view, and as a tool tip in the trend view, when you view the view

the last 10 values of the tag, or when you generate a query/write report in the Data

page.

For more information, refer to the SCALING section in Access Tags.

Ability to view Tag Creation Audit Trail: You can view the Tag Creation Audit Trail

details for a tag. To facilitate this enhancement, new Created By, and Created

Time properties have been added in the Tags > DETAILS > GENERAL section.

Ability to add a stale period check for data store level: You can view the number

of days or the frequency for checking data store validity. To facilitate this enhance

ment, a new Stale Period (Days) property has been added in the MAINTENANCE

section in the Data Stores DETAILS section.

For more information, refer to the MAINTENANCE section in Access a Data Store.

Ability to Import/Export: You can import/export tags and their details, user de

fined-defined types (UDT), and Enumerated sets in a CSV format. This will enable

you to export the data, modify the data, and then import them back using Config

uration Hub. To facilitate this enhancement, the and buttons have been

added in the corresponding sections.

For more information, refer to the following sections:

Historian | 1 - Release Notes | 50

Description Tracking ID

• Import, and Export tag details.

• Import, and Export UDT.

• Import, and Export Data Attribute Enumerated sets.

• Import, and Export Enumerated Sets.

Ability to view the grid count and navigate through grids: You can view a grid's to

tal and selected count, and when there are more than 100 rows in a grid, you can

use the page numbers to navigate through the grid details.

To facilitate this enhancement, grid count (total and selected) and page numbers

have been added below a grid.

Implement Data Store-level security: Similar to tag-level security, you can also de

fine data store-level security to protect sensitive tags.

F70957

Historian | 1 - Release Notes | 51

Description Tracking ID

Note:

However, the security settings defined at the tag level, if any, take the

precedence over those at the data store-level.

To facilitate this enhancement, the following properties have been added in the SE

CURITY section, in the data store DETAILS section. For more information, refer to

Implementing data store-level security.

Ability to configure multiple data archive paths: Multiple archive paths feature ex

tends the ability to configure a default archive path for each data store.

This feature enables you to automatically store your archives in different locations

based on the age of the archive. It can be useful when splitting the data for a data

store across multiple hard drives, primarily for performance and cost optimization.

Additionally, it could help optimize disk space constraints.

To facilitate this enhancement, a Multiple Archive Paths property has been added

in the ARCHIVE CREATION section in the data store's DETAILS section. For more

information, refer to Multiple archive paths.

F70956

Ability to configure security groups to use Proficy Authentication: You can config

ure Security Group at global (system) level to use Proficy Authentication. To facil

itate this enhancement, a new Use Proficy Authentication option has been added

to Security Group in the System's GLOBAL SECURITY section. If you select the Use

Proficy Authentication option, the system will use the groups specific to Proficy

Authentication (UAA) for authorization. Only the users or groups that belong to the

Proficy Authentication will have specific permissions and access rights. For more

information, refer to the GLOBAL SECURITY section in Access a System.

Note:

To use Proficy Authentication security group, you must perform the con

figurations listed in the Configurations to use Proficy Authentication Secu

rity Groups section.

F69870

Ability to generate configuration reports: You can generate report to get a concise

summary of tag-specific data of a specific collector. You can select a report from

the available predefined templates and generate a categorized report.

F66520

Historian | 1 - Release Notes | 52

Description Tracking ID

Note:

The reports are applicable only to the Historian destination collectors.

To facilitate this enhancement, a new Reports section has been added in the Con

figuration Hub plugin for Historian. Within the Reports section, you are provided

with a list of available predefined templates. You can select a template and gener

ate its corresponding report and export it. For more information, refer to About re

ports.

Ability to save data query and access it: You can save queries that you use to read

tags data. You can use this option to save queries that you may frequently use to

read specific tags data. This will help you in the following:

• Quickly gather insights of specific tags.

• Create and save a predefined query only once and use it as needed.

• You can use the Shared option to make the query visible to the other users

in the same network.

Note:

Once you share a query, all the other users will also be able to edit,

and delete it. Be mindful about making a query as a shared query.

To facilitate this enhancement, a new Save Query button has been added in the

New Query tab. The button will appear after generating a Read Data report. Ad

ditionally, a new Saved Queries tab has been added, which contains the list of all

saved queries. For more information, refer to Save a Query.

You can also update a saved query. For more information, refer to Update a saved

query.

Other Enhancements

Term Licensing: In parity with other products within the Proficy portfolio, Histori

an licensing also supports a term license model. This will give you the flexibility to

subscribe to Historian for a subscription fee based on your requirement.

F69872

Enhanced data type support for MQTT Collector: The support of Array tags has

been added for the MQTT Collector.

Historian | 1 - Release Notes | 53

Description Tracking ID

ETL Tools Enhancement: Performance improvements are made for the eDNA ex

tractor.

New MQTT Sparkplug B Collector: You can connect as a Primary Host application

and collect data based on the MQTT Sparkplug B specification (Sparkplug 3.0.0).

Specifically, you can subscribe to a topic that was published using the Sparkplug B

payload and collect time-series data in a structured and understandable format. To

facilitate this enhancement, a new MQTT Sparkplug B Collector has been added.

You can install this collector and configure it to collect data based on the MQTT

Sparkplug B specification (Sparkplug 3.0.0).

For more information, refer to MQTT Sparkplug B Collector.

F73170

Ability to extensively use the Python Collector: You can now extensively use

Python collector. This collector is available for use in both the Configuration Hub

and the Historian Administrator. However, for a seamless user experience, it is

recommended to use the collector in the Configuration Hub. To facilitate this en

hancement, the following enhancements have been added in the Configuration

Hub:

• Dedicated Python script editor.

• Extensive list of built-in functions that you can use in your script. For more

information, refer to Available functions.

• Extensive list of supported data types. For more information, refer to Sup

ported data types.

• Capability to import third-party, custom Python modules and use them

in the script. For more information, refer to Import third-party or custom

Python Modules.

• Capability to configure path for the newly installed Python modules using

Configuration Hub. For more information, refer to Configure Python Library

Path.

F63933

Support for Mutual TLS (MTLS) Protocol for Enhanced Security: You can use

MTLS protocol for Historian core services and also collectors. To facilitate this en

hancement, the following enhancements have been added:

F70082

Historian | 1 - Release Notes | 54

Description Tracking ID

• Generating the required root certificate for Historian and core services can

be done using the installer. You do not have to manually generate and trust

the root certificates. For more information, refer to Certificate-based securi

ty for MTLS.

• An option to Enable MTLS Security for collector specific instances has been

added in Configuration Hub. For more information, refer to Enable MTLS Se

curity for Collectors.

• An option to encrypt the MTLS messages sent to Historian has been added.

For more information, refer to Enable MTLS Security for Collectors.

Ability to create data attribute enumerated set: You can create and define a cus

tom text for the quality status and view it in the Attributes column instead of the

value when you retrieve the tag data. For example, if your tag is receiving bit posi

tions indicating the quality status (that is, 1 for Old data, 2 for Bad data, and 30 for

Good data), you can map the bit position to a custom text and assign it to a set.

So, when you view the actual values of the tag, the Attributes column will display

the mapped custom text instead of the integer (the bit positions). To facilitate this

enhancement, in Configuration Hub, a new DATA ATRRIBUTE ENUMERATED SET

option has been added in the Manage Enumerated Sets section. To enable data

attribute enumerated set, you must set the DATA ATRRIBUTE ENUMERATED SET

option to True. For more information, refer to about data attribute enumerated set.

Note:

Once you created a data attribute enumerated set in Configuration Hub,

you can use it in Historian Administrator. However, it is not recommended

to modify the created Data Attribute Enumerated set in the Historian Ad

ministrator. If you modify it using the Historian Administrator, the DATA

ATTRIBUTE ENUMERATED SET field will be changed to False in Configu

ration Hub.

F73356

Ability to visualize and interact with Historian specific REST APIs using Swagger

UI: You can now access Historian REST APIs using Swagger UI. This tool enables

you to visualize and interact with the API resources without having any of the im

plementation logic in place, establishing a fully interactive documentation experi

ence using Swagger. For more information, refer to Swagger Documentation.

F69878

Enhancements in Historian REST APIs for Tags F70197

Historian | 1 - Release Notes | 55

Description Tracking ID

Taglist API: To avoid pagination related issue, you can set the pagesize parameter

to 0. This will provide all tags at once without any pagination.

Engineering Units: Tag Data response now includes Engineering Units. For exam

ple,

{

 "ErrorCode": 0,

 "ErrorMessage": null,

 "Data": [

 {

 "TagName": "Test2020_Simulation.Simulation00001",

 "ErrorCode": 0,

 "DataType": "Float",

 "EngineeringUnits": null,

 "HiEngineeringUnits": 200000,

 "LoEngineeringUnits": 0,

 "Samples": [

 {

 "TimeStamp": "2023-12-04T13:04:51.000Z",

 "Value": "93319.5",

 "Quality": 3,

 "DataAttributes": []

 },

Resolved Issues

Description Tracking ID

Previously, when you viewed the Last 10 Values of the tags of Sev

er-to-Server collector, the trend was not visible, however, if you right-

click on the tags, it was visible. This issue has been resolved in His

torian 2024.

01092678 (DE205966)

Previously, there were Apache Tomcat vulnerabilities observed in

Historian server. This issue has been resolved in Historian 2024.

01088103, 01086760, 01115035,

01114659, 01113071,

Historian | 1 - Release Notes | 56

Description Tracking ID

01107496, 01130189, 01118147

(DE204880)

Previously, using Web Administrator, when you viewed the Last 10

Values of a tag, the trend data was not displayed. This issue has

been resolved in Historian 2024.

01086847 (DE205687)

Previously, on Configuration Hub, when you searched tags by their

collection interval, the tags were not returned. This issue has been

resolved in Historian 2024.

01083356 (DE205085)

Previously, there were OpenSSL 1.1.1k vulnerabilities observed in

Historian. This issue has been resolved in Historian 2024.

01070308, 01050129

(DE204882)

Previously, when you attempted to extract 71 and more good qual

ity codes using the Proficy Historian eDNA ETL tool, and then used

them in configuration, all the codes were not being considered. This

issue has been resolved in Historian 2024.

01093884 (DE212931)

Previously, when you attempted to start the Historian ETL PI Extract

Settings, the settings did not start as the IHELPIExtract services did

not start or respond. This issue has been resolved in Historian 2024.

01052974 (DE199961)

Previously, files with the wrong time format were not moved to the

Error folder. Instead, they kept executing forever. This issue has

been resolved in Historian 2024.

01093946 (DE212928)

Previously, there was an issue in creating a LAX file for unacknowl

edged and/or not closed alarm. This issues has been resolved in

Historian 2024.

01098478 (DE212929)

Previously, when you attempted to load the LAX file containing cus

tom attributes, it did not work. This issue has been resolved in Histo

rian 2024.

01082173 (DE212930)

Previously, using the Proficy Historian Excel Add-in, when you at

tempted to export tags from a Historian with more than 82,000 tags,

it appended an underscore at the beginning of the tag name. This is

sue has been resolved in Historian 2024.

01093704, 01095104

(DE204980)

Previously, when you attempted to browse, the Show ALL Children

was disabled when you had collector with a large hierarchy. This

01106682 (DE208000)

Historian | 1 - Release Notes | 57

Description Tracking ID

issue has been resolved in Historian 2024 by providing recursive

browsing support for the OPC UA Collector.

Previously, STA model was not supported for OPC Collector. This is

sue has been resolved in Historian 2024 by adding support of the

STA model.

01097084 (DE208654)

Previously, when you attempted to query string tags in trend mode,

there was an increase in the DataArchiver memory until it stopped

or became unresponsive. This issue has been resolved in Historian

2024 through memory optimization.

01112199 (DE210018)

Previously, after Historian alarms and events backup, purge, and re

store procedures, not all alarms were available. This issue has been

resolved in Historian 2024.

01109547 (DE213006)

Previously, when you used tag type Array of string and multifield,

memory spike was observed. This issues has been resolved in Histo

rian 2024.

DE204209

Previously, due to memory leak issue, the Historian 2022 Serv

er-Server Collector did not function. This issue has been resolved in

Historian 2024 through memory optimization.

DE203744

Previously, in operating system of specific languages, the iFIX col

lector stopped working when tags were browsed in Historian Admin

istrator. This issue has been resolved in Historian 2024 by updating

the latest APIs.

01092706, 01093358

(DE206183)

Previously, when the Historian local security was enabled, and the

LDAP user was added to 'ih_security_admins' group, the LDAP user

was not able to query data from Historian and did not load Historian

plugin on Configuration Hub. This issues has been resolved in Histo

rian 2024.

01081620 (DE208053)

Previously, in a redundant configuration, if you set fail over triggers,

the OPC UA collector stopped working on both the collector ma

chines. This issue has been resolved in Historian 2024.

01090819 (DE208653)

Historian | 1 - Release Notes | 58

Description Tracking ID

Previously, in a redundant configuration, there were bad values ob

served in OPC UA Collector. This issue has been resolved in Histori

an 2024.

01066966 (DE199964)

Previously, in a redundant configuration, there were bad values ob

served in OPC UA Collector and lot of logs were created. This issue

has been resolved in Historian 2024.

01080450 (DE201897)

Previously, the MQTT Collector had memory leak. This issue has

been resolved in Historian 2024.

01100809 (DE206909)

Previously, the OPC client ReadRaw call caused Server to fragment

memory. This issue has been resolved in Historian 2024.

01112205 (DE210166)

Previously, the collector HDA became unresponsive after adding

new tags. This issue has been resolved in Historian 2024.

01094822 (DE205288)

Previously, the OPC Classic HDA Collector restart took more time

than expected. This issue has been resolved in Historian 2024.

01090894 (DE205285)

Previously, the OPC Classic HDA Collector was failing with Geo SCA

DA, bot being on the same machine. This issue has been resolved in

Historian 2024.

01047010 (DE199907)

Previously, when you viewed the Last 10 Values of a tag using the

OPC UA Collector in Historian Administrator, the data values were re

ported to be of bad quality, although, the values came from another

good tag. This issue has been resolved in Historian 2024.

01111077 (DE210392)

Previously, you were able to enter a Scada Buffer Duration value be

yond the actual supported maximum value in the Scada Buffer Du

ration(Days) field. This issue has been resolved in Historian 2024 by

adding a conditional check on the maximum value that is being en

tered.

01100502 (DE208287)

Previously, when using the OPC UA HDA Collector, tags with bad

quality in the Archive were incorrectly shown as having good quality.

This issue has been resolved in Historian 2024.

01074939, 01082827

(DE202695)

Previously, the Filtered Data window screen in Excel Add-in was very

small. This issue has been resolved in Historian 2024 by increasing

the dimension (Height, Width, Top, and Left).

01071028, 01071216, 01084176,

01096784, 01098978 (DE173096,

DE199256)

Historian | 1 - Release Notes | 59

Description Tracking ID

Previously, when you query Alarms and Events, the Perform_Com

ment field was blank, although it existed in the database. This issue

has been resolved in Historian 2024.

01095954, 01085812 (DE205472,

DE205095)

Previously, restoring .zip archives from Historian 7.1 to a Historian

2022 server resulted in an empty archive. This issue has been re

solved in Historian 2024.

01048625 (DE199965)

Previously, the OPC UA collector stored the data quality as 'GOOD'

when the actual quality was BAD. This issue has been resolved in

Historian 2024.

01019528 (DE181224)

Previously, there were some differences in data retrieval using the in

terpolated or calculated mode between Historian versions 3.1 and

9.1. This issue has been resolved in Historian 2024.

01048854 (DE201650)

Previously, both tags, one of type 'Byte' and the other of type 'Quad

Integer', were incorrectly returning same value for the datatype when

queried through the User API for properties. This issue has been re

solved in Historian 2024.

01055391 (DE199962)

Previously, the configuration manager became unresponsive on pri

mary node unexpectedly, preventing the users from adding tags.

This issue has been resolved in Historian 2024.

01072354 (DE212949)

Previously, although the OPC UA Data Access Collector was able to

connect and browse some folders but could not see the items that

are located under sub-folders. This issue has been resolved in Histo

rian 2024.

01114602 (DE210148)

Previously, the Data Archiver stopped working frequently and there

was no information in the log. This issue has been resolved in Histo

rian 2024.

01107015 (DE212951)

Previously, when Historian server stopped working, restarting the

services caused the Configuration manager to become unrespon

sive. This issue has been resolved in Historian 2024.

01107511 (DE209451)

Previously, when using the Excel Add-in for Current Value and Raw

Data, if the tag quality was 'BAD', then BAD was displayed instead of

01058496 (DE199960)

Historian | 1 - Release Notes | 60

Description Tracking ID

the actual value in the Value column. This issue has been resolved in

Historian 2024.

Previously, when using Condition Based Collection, the Historian

OPC Collector stopped working. Also, excessive logs were created.

This issue has been resolved in Historian 2024.

1043533 (DE196097)

Previously, when you ran an Interpolated Query in Excel Add-in by

setting a specific time interval, the query returned incorrect value.

This issue has been resolved in Historian 2024.

1065803 (DE199958)

Previously, in Excel Add-in, the Calculated Data with Query Criteria as

String returned incorrect values. This issue has been resolved in His

torian 2024.

01031714 (DE198804)

Previously, when the connection to the OPC UA Server was lost,

the OPC UA Collector was displaying the tag quality as GOOD, even

though the actual quality was BAD. This issue has been resolved in

Historian 2024.

1052808 (DE200995)

Previously, on Non-web Admin, when viewing the Default Collector

Compression Timeout setting, the value was not visible or updated

correctly if the Deadband type was set to Absolute. This issue has

been resolved in Historian 2024.

01083360, 1009963 (DE203189)

Known Issues and Limitations

Table 1. Upgrade Related Known Issues

Description
Tracking

ID

Upgrading only the Client Tools to 2024 from an older version upgrades the Historian Server,

but does not include the MTLS files.

Workaround: When upgrading Client Tools to 2024, ensure that you also upgrade the Histori

an Server to 2024.

DE208482

In a Historian server 2023, AlarmArchiver 2023, and Collectors 2023 setup, if you upgrade

only the Alarm archive to 2024, and start the collectors, the collectors do not start.

DE211329

Historian | 1 - Release Notes | 61

Table 1. Upgrade Related Known Issues (continued)

Description
Tracking

ID

Note:

This is also applicable to an upgrade of Historian 2022, AlarmArchiver 2022, and

Collectors 2022 setup to 2024.

Workaround:

• Along with the AlarmArchiver, you must upgrade the Historian server to 2024.

-OR-

• If you do not use MTLS, disable it.

If you update AlarmArchiver from 9.1 Alarms & Events to 2024 Alarms & Events, without up

dating Historian server to 2024, the Data Archiver will not start.

Workaround: Along with the AlarmArchiver, you must upgrade the Historian server to 2024.

DE206514

In a 9.0 or 9.1 standard Historian, Alarm Archiver, and AEDB SIM (if any) setup, when you up

grade the Alarm Archiver to 2024, the Data Archiver will also get upgraded to 2024.

DE210847

When you upgrade Web-based clients to Historian 2024 on a non-English operating system,

you will see port conflicts that do not allow you to proceed.

Workaround: Use the silent installation method to install the Historian Web-based clients.

DE210880

Port conflict occurs when you upgrade Web-based Clients from 2023 to 2024, on a non-Eng

lish operating system.

DE212901

Table 2. Path Related Issues After Install or Upgrade

Description Tracking ID

Even if the Historian server is not installed on the C: drive, RemoteCollectorConfigu

rator.exe is installed in C:\Program Files\GE Digital\NonWebCollectorIn

stantiationTool.

DE212800

The File collector cannot be processed after upgrading from version 2022 to version

2024.

DE210946

Historian | 1 - Release Notes | 62

Table 2. Path Related Issues After Install or Upgrade (continued)

Description Tracking ID

If you installed Calculation collector or Windows Performance collector using either

iFIX Proficy installer or CIMPLCITY Proficy installer, they fail to start after you upgrade

them to 2024.

Workaround: After you upgrade the collectors, copy the collector files to the initial in

stall directory. That is, C:\Program Files (x86)\Proficy\GE Digital\.

516236

Table 3. Security Related Known Issues

Description
Tracking

ID

In a setup where you installed Historian collectors along with client tools using the Profi

cy installer, such as iFIX Proficy installer, if you uninstall the client tools alone, the created

MTLS registry gets removed, leaving the MTLS folder intact. This prevents you from using

MTLS security.

DE212965

The POSTGRES and Proficy Authentication (UAA) passwords are admissible in the Historian

Web Components log.

DE212644

Table 4. Other Known Issues

Description
Tracking

ID

If you import tags, along with their CreationTime and CreationUser, that were exported

from Configuration hub, the Excel Add-in displays the "Proficy Historian Import Tags Error".

Workaround: You must manually remove the CreationTime and CreationUser columns in

the exported file before importing it.

DE207159

After you create a Data Attribute Enumerated Set in Configuration Hub, and then edit it us

ing Historian Administrator, the DATA ATTRIBUTE ENUMERATED SET field is changed to

False in Configuration Hub.

DE209931

When you use the Python collector to convert a value to boolean type, the results are pro

vided in string format.

Workaround: When you convert a value to boolean type, you must store the results as Re

sult = bool(Historian.CurrentValue('TP.Simulation00001'))

Historian | 1 - Release Notes | 63

Table 4. Other Known Issues (continued)

Description
Tracking

ID

Configuration Hub is not able to discover and add a system with Strict client and collector

authentication enabled.

DE211901

In Configuration Hub with LDAP and UAA setup, where the security groups are stored in the

Domain Controller, the Tags and Data store Security Domain groups are not available for

selection when assigning security group to a data store.

Workaround: You can create the required security groups locally in Windows. This will en

sure that the group becomes available for selection in Configuration Hub.

DE211554

The trend decimal values in Configuration Hub are different from those in Historian Admin

istrator.

DE212903

In Historian Interactive SQL, the sampling mode "rawbyfiltertoggle" is not returning the ex

pected output.

DE212904

Collector Compression is not working as expected for the Calculation collector. DE212897

In an enterprise setup, when you remove an archive from the system using Configuration

Hub or Historian Administrator, the archive is being removed, but it is not being zipped and

placed in the Archives\Offline directory.

DE208001

When you add a Server-to-Server Distributor collector instance and try to access it using

Configuration Hub in the Source Historian Server machine, it fails to fetch the instance de

tails, and an error is being displayed.

DE213348

Adding tags to the Server-to-Server Distributor Collectors using Configuration Hub is not

functioning correctly.

Workaround: Add tags to the Server-to-Server Distributor Collector using Historian Adminis

trator connected to Source Historian Server.

DE213362/

DE213694

When using older Historian collectors to connect to Configuration Hub 2024, an error is dis

played, and the Interface Details section of the collectors is not loaded.

Workaround: Upgrade all collectors to 2024, or install the 2024 Remote Collector Manage

ment Agent from the 2024 ISO on the Collector machine.

DE213981

Historian | 1 - Release Notes | 64

Table 5. Limitations

Description Tracking ID

Collector compression is not automatically applied to tags created for an MQTT Spark

plug B collector instance that was added with collector compression enabled.

DE212048

Hierarchical browsing of tags is not supported for an OPC collector connected to an

iFIX source.

DE204135

Unable to import more than 50000 tags to Historian server for the OPC UA collector us

ing Excel Add-in.

Workaround: It is recommended to add less than 30000 tags for a collection interval of

1 second or more.

DE212906

Chapter 2. Getting Started Guide

Overview of Historian
Proficy Historian is a high-performance data archiving system designed to collect, store, and retrieve time-

based information at an extremely high speed. The following diagram shows an HMI or an OPC server

from which data is collected and stored in Historian.

You can collect data from multiple SCADA systems and various applications, and store them in a central

Proficy Historian server.

Historian | 2 - Getting Started Guide | 66

You can then use various clients to fetch and analyze this data.

Historian | 2 - Getting Started Guide | 67

Historian contains the following main components:

• Data collectors: Collect and analyze the tag data.

• The Historian server: Stores tag data.

• Clients: Retrieve tag data from the Historian server using APIs.

For information on how these components work in a Historian system, refer to System Architecture (on

page 69).

Data Collectors

Collectors are applications that collect data from a wide variety of applications such as iFIX,

CIMPLICITY, OPC servers, OSI PI, and text files (.csv or .xml). This data is then stored in the

Historian server.

In addition, Historian contains the Calculation and the Server-to-Server collectors. The

Calculation collector performs calculations and analyses on Historian data and stores

the results in tags on the server. The Server-to-Server collector has the same calculation

capabilities as the Calculation collector, but it stores the results in tags on a remote server.

Historian | 2 - Getting Started Guide | 68

Most collectors can perform first-order deadband compression, a browse-and-add

configuration, and store and forward buffering.

Note:

Standard collectors that are included as part of the product will not consume a

client-access license (CAL). Other interfaces developed by customers or system

integrators using the Collector Toolkit or APIs will consume a CAL for each instance

or connection.

Bi-Modal Collectors:

The Historian data collectors can send data to an on-premises Historian server as well as

cloud destinations such as Google Cloud, Azure IoT Hub, AWS Cloud, and Predix Cloud.

Therefore, these collectors are called bi-modal collectors. The following collectors, however,

are not bi-modal collectors; they can send data only to an on-premises Historian server:

• The Calculation collector

• The File collector

• The HAB collector

• The iFIX Alarms and Events collector

• The OPC Classic Alarms and Events collector

• The OSI PI Distributor

• The Python collector

• The Server-to-Server distributor

The Historian Server

The Historian server is the central point for managing all of the client and collector

interfaces, storing data and (optionally) compressing and retrieving data.

In the Historian server, data is stored in files called data archives. These files contain all the

tag data gathered during a specific period of time (for example, time-based archives such as

daily archives). They have the .iha extension.

You can store data of various data types such as Float, Integer, String, Byte, Boolean, Scaled,

and binary large object data type (BLOB). The source of the data defines the ability of

Historian to collect specific data types. If you have the license to store the alarms and

events data, the server also manages the storage and retrieval of OPC Alarms and Events in

a SQL Server Express.

Historian | 2 - Getting Started Guide | 69

You can further segregate your tags and archives into data stores. A data store is a logical

collection of tags used to store, organize, and manage tags according to the data source

and storage requirements. A data store can have multiple data archives, and includes logical

and physical storage definitions.

The primary use of data stores is segregating tags by data collection intervals. For example,

you can put name plate or static tags where the value rarely changes in one data store, and

put process tags in another data store. This can improve the query performance.

The Historian Data Archiver is a service that indexes all the data by tag name and

timestamp and stores the result in an .iha file. The tag name is a unique identifier for a tag

(which is a specific measurement attribute). For iFIX users, a Historian tag name normally

represents a Node.Tag.Field (NTF). Searching by the tag name and time range is a common

and convenient way to retrieve data from Historian. If you use this technique to retrieve data

from the archive files, you need not know which archive file contains the data. You can also

retrieve data using a filter tag.

Clients

Clients are applications that retrieve data from the archive files using the Historian API.

The Historian API is a client/server programming interface that maintains connectivity to

the Historian Server and provides functions for data storage and retrieval in a distributed

network environment.

System Architecture

Standard or Stand-Alone Historian Architecture:

In this type of system, there is a single Historian server. It offers the following unique capabilities and

benefits for a sustainable competitive advantage:

• Built-in data collection

• Good read/write performance speed

• Enhanced data security

The following image shows the architecture of a stand-alone Historian system (single server):

Historian | 2 - Getting Started Guide | 70

Horizontally Scalable Historian system:

In addition to the capabilities of a stand-alone Historian system, a horizontally scalable one offers data

redundancy and high availability. You can have mirroring of stored data on multiple nodes to provide high

levels of data reliability. Data mirroring also involves the simultaneous action of every insert, update, and

delete operations that occur on any node. You can spread the data collection, server, administration, and

client data retrieval functions across various nodes.

Historian | 2 - Getting Started Guide | 71

In a typical data mirroring scenario, one server acts as a primary server to which the clients connect. To

create a mirror, you must add mirror nodes and establish a data mirroring session relationship between

the server instances. All communication goes through Client Manager, and each Client Manager knows

about the others.

When a client (either a writing collector or reading client) connects to the Client Manager, it gathers

information about each Client Manager, along with all archive, tag, and collector configuration

information, from the Configuration Manager, and stores this information locally in its Windows Registry.

A relationship is then established between each remote client and a single Client Manager, which directs

read and write requests across the other mirrors. If that relationship is broken, it will establish a new

relationship with the next available Client Manager, which assumes the same responsibilities. This bond

is maintained until that Client Manager is unavailable, and then the process of establishing a relationship

with another Client Manager is repeated.

When more than one node is running, the Client Manager uses a "round robin" method between the good

nodes to balance read loads. Each read request is handled by a node as a complete request.

Writes are sent independently but nearly simultaneously to any available data archiver so that the same

tag shares a common GUID, name, timestamp, value, and quality as passed to it by the collector.

Historian | 2 - Getting Started Guide | 72

The following diagram shows the architecture of a horizontally scalable Historian system.

Historian | 2 - Getting Started Guide | 73

System Components

A typical Historian system contains components for the following functions:

• Data collection/migration

• Data storage

• Data management, analysis, and monitoring

• Data retrieval

All these components communicate with the Historian server through the Historian API. This topic

describes the functions performed by each component.

Data Collection/Migration Components

Data collection/migration components are used to collect data from various sources and ingest the data

into a Historian server (or to cloud). The following data collection/migration tools are used in Historian:

Data Collectors

Data collectors gather data from a data source based on a schedule or an event, process it,

and forward it to the Historian server or a web socket for archiving. The following collector

functions are common across all types of collectors (except the File collector):

• Automatically discovering available tags from a data source and presenting them to

Historian Administrator and Configuration Hub.

• Providing options to send data to an on-premises Historian server or to cloud through

a web socket connection

• Performing a first-level of data compression (collector compression).

• Responding to control requests, such as requests to pause or resume data collection.

• Maintaining a local cache of tag information to sustain collection while the server

connection is down.

• Buffering data during loss of connection to the server and forwarding it to the server

when the connection is restored.

• Optionally, automatically adjusting timestamps for synchronizing collector and

archiver timestamps.

• Supporting the timestamp of both the collector and the device, as applicable.

• Scheduling data polling for a polled collection.

For mission-critical data collection, you can set up redundant collectors. Historian includes a

mirroring option for high availability and load balancing, so the data is available all the time.

Historian | 2 - Getting Started Guide | 74

The File Collector

A File collector imports .csv and .xml files into the Historian server. These files can contain

data, alarms, tag names, or other configuration information, and messages that you can

import with a File collector.

The Extract, Transform, and Load Tools

Transferring data from one Historian server to another is typically performed by the data

collectors. These tools provide a connected streaming data transfer mechanism (except

the calculation and file transfer collectors). In a system where a steady network connection

is not possible or not cost-effective, a periodic file-oriented data transfer is preferred. The

Historian ETL tools consist of a comprehensive set of file-oriented data extraction, transfer,

and loading tools.

Migration Tools

Migration tools are used to migrate existing Historian configuration and data and iFIX

Alarms and Events collector data to the Historian server. Tags, collection rates, and

deadbands for tags configured in Historian can be transferred by the migration tools.

The Collector Toolkit

Collector Toolkit is used to develop a customized collector. You can use Collector Toolkit

to write programs that integrate with Historian and leverage the same configuration

tools, redundancy schemes, and health monitoring as the collectors. It collects data and

messages from a data source and writes them to a data archiver. Each deployment of a

collector developed on the Collector Toolkit consumes a client access license (CAL).

Data Storage, Analysis, and Maintenance Components

Data collected by the collection/migration components is stored in the Historian server (or cloud). You

can then analyze and maintain the data using the following components:

Historian Alarms and Events

Historian Alarms and Events provides tools to collect, archive, and retrieve alarms and

events data in Historian.

Historian Administrator (on page 822)

Historian Administrator provides a graphical user interface for performing Historian

maintenance functions in a Windows environment including:

• Tag addition, deletion, and configuration.

• Maintaining and backing up archive files.

Historian | 2 - Getting Started Guide | 75

• Data collector configuration.

• Security configuration.

• Searching and analyzing system alerts and messages.

• Configuring the Calculation collector to create a new tag based on calculations, and

storing the result as time series data.

• Setting up your OPC Classic HDA server and OPC UA HDA server.

Historian Administrator

The Web Admin console provides a dashboard, which displays the health of the system in

one convenient location. You can view the following diagnostics details:

• Data node diagnostics: Displays the Historian servers connected to the system.

• Collector diagnostics: Displays the details of the faulty collectors.

• Client diagnostics: Displays the top five busiest clients connected to the system.

The dashboard provides interactive configuration management, which helps you configure

mirror nodes, tags, collectors, data stores, and archives. However, the functionality of the

Calculation collector and the ability to configure OPC HDA servers are not included in the

Web Admin console.

The Web Admin console uses a CAL.

The Historian Server

The Historian server performs the following tasks:

• Manages all system configuration information.

• Manages system security, audit trails, and messaging.

• Services write and read requests from distributed clients.

• Performs final data compression.

• Manages archive files.

Historian Diagnostics Manager

The Historian Diagnostics Manager monitors the health of the Historian system and

executes a few rules on the nodes, collectors, and clients, and generates the appropriate

fault record. The details of these faults are displayed in the Web Admin console.

The following are the faults and their severity level:

Historian | 2 - Getting Started Guide | 76

Fault Type Fault Description Fault Level

Collector Status Fault Generated when the collector goes

to the Unknown or Stopped state.

Error

Collector Overrun Fault Generated when at least one over

run occurs on a collector in last 24

hours.

Warning

Collector OutOfOrder Fault Generated when at least one OutO

fOrder occurs on a collector in last

24 hours.

Information

Collector StoreForward Fault Generated when the collector Last

Data Sample Time Stamp is de

layed by more than an hour.

Information

Collector ConnectDisconnect Fault Generated when the collector is

Disconnected and connected at

least once in last 24 hours.

Information

Service DiskSpace Fault Generated when a node disk space

is about to reach its free space lim

it.

Warning

Client InActive Fault Generated when a client is not ac

tive for the last one hour.

Information

Client BusyRead Fault Generated when the client makes

relatively more number of reads

per minute.

Information

Client BusyWrite Fault Generated when the client makes

relatively more number of writes

per minute.

Information

Client TimedOutRead Fault Generated when the client makes a

timed out read query.

Warning

Client Manager

Client Manager acts as the client connection manager and message router for the system.

It examines messages and forwards them to the correct data archiver or to Configuration

Manager. This service is deployed only for mirrored systems.

Historian | 2 - Getting Started Guide | 77

Configuration Manager

Configuration Manager maintains and distributes the entire system configuration. There

can be multiple Historian nodes but only one Configuration Manager. This Configuration

Manager node is used to store system configuration, such as tag names, collector names,

and Historian node names. This service is deployed only for mirrored systems.

Configuration Hub

Configuration Hub allows you to manage the Historian systems and its components,

including:

• Creating a Historian system, and adding its components

• Creating mirror groups

• Creating and managing data stores

• Installing and managing collector instances

Using Configuration Hub, you can achieve high availability of servers in a Historian system.

Remote Collector Manager

Typically, collectors are distributed geographically, and so, accessing them can be

challenging and not cost-effective. To overcome this challenge, the Remote Collector

Management agent provides the ability to manage collectors remotely.

Historian Tomcat Container

An instance of Tomcat is used exclusively by Historian as an open source Java-based web

server to support the Web Admin console and Trend Client. It supports SSL and the use of

certificates for enhanced security.

Proficy Authentication Tomcat Container

An instance of Tomcat is used exclusively as an open source Java-based web server to

support external Proficy Authentication.

Proficy Historian PostgreSQL Database

An instance of PostgreSQL is used exclusively to store tag names to improve searching for

tags in the Trend tool and Web Admin console.

Proficy Authentication PostgreSQL Database

An instance of PostgreSQL is used exclusively to store Proficy Authentication details.

Reverse Proxy Service

Provides secure connection by supporting https protocol.

Historian | 2 - Getting Started Guide | 78

Indexing Service

The indexing service speeds up search results. It periodically queries the database, creates

a tag index, and stores the information in the PostgreSQL database instance.

Excel Add-in for Historian

Excel Add-in is a very useful tool for presenting and analyzing data stored in archive files.

Using this tool, you can design custom reports of selected data, automatically process the

information, and analyze the results. You can also use it for performing tag maintenance

functions in Historian, such as adding tags, importing or exporting tags, or editing tag

parameters.

Excel Add-in for Operations Hub

The Excel Add-in for Operations Hub enables you to query historical data of objects and

object types defined in Operations Hub.

Customers purchasing Historian Standard or Enterprise licenses now receive a no-cost

license for the Operations Hub server and the Historian Analysis run-time application. The

Operations Hub server enables customers to define an asset model including tag mapping.

The Historian Analysis application is a pre-built Operations Hub HTML5 application that

enables users to do advanced trend analyses, including the ability to make annotations.

The OPC Classic HDA Server

The OPC Classic HDA server reads the raw data stored in Historian and sends it to the

connected OPC clients. The Historian OPC Classic HDA server complies with OPC Server

HDA 1.20 standards.

Historian SDK

The Historian Software Development Kit (SDK) is designed for writing Visual Basic (VB) or

Visual Basic for Applications (VBA) scripts. Using the SDK, you can develop your own scripts

to perform selected repetitive or complex tasks or to make your own custom user interface.

To use the SDK, create a VB/VBA project with the SDK as a project reference.

Data Retrieval Components

Data retrieval components are used to retrieve data that is stored in the Historian server. Historian

contains the following data retrieval components:

Historian Alarms and Events

Historian Alarms and Events provides tools to collect, archive, and retrieve alarms and

events data in Historian.

Historian | 2 - Getting Started Guide | 79

Client Manager

Client Manager acts as the client connection manager and message router for the system.

The Client Manager will examine messages and forward them to the correct Data Archiver

or to the Configuration Manager. This service is deployed only for mirrored systems.

Configuration Manager

Configuration Manager maintains and distributes the entire System configuration. There

can be multiple Historian nodes but only one Configuration Manager. This Configuration

Manager node is used to store system configuration, such as tag names, collector names

and Historian Node names. This service is deployed only for mirrored systems.

Proficy Authentication Tomcat Container

An instance of Tomcat is used exclusively by Historian as an open source Java-based Web

server to support an external Proficy Authentication.

Proficy Historian PostgreSQL Database

An instance of PostgreSQL is used exclusively by Historian to store tag names to improve

searching for tags in the Trend tool and Web Admin console.

The OPC Classic HDA Server

The Historian OPC Classic HDA server reads the raw data stored in Historian and sends it

to the connected OPC Classic HDA collectors. The Historian OPC Classic HDA server is in

compliance with OPC Server HDA 1.20 standards.

The OPC UA HDA Server

The Historian OPC UA HDA server retrieves historical process data from Proficy Historian,

and sends it to OPC UA HDA clients. It dynamically updates the clients when tags are added

and/or deleted in Historian. Clients that comply with this specification can connect to the

OPC UA HDA server to retrieve data from Historian.

For information, refer to the OPC UA HDA Server section of the online documentation.

User API

The Historian User API is intended to provide high speed read/write access to Historian data

and read access to Historian tags. There is no access to alarms, events, or messages.

Since the Historian User API is the basic building block for connectivity, all Historian

functions, including data collection, administration, and data retrieval, use the Historian API.

You can use the Historian User API to connect to a local Historian server or a remote one (by

just providing the IP address or host name of the server).

Historian | 2 - Getting Started Guide | 80

Use the API to develop applications in C or C++, which read and write data to the Historian

server when the Historian SDK and Historian OLE DB do not meet your project requirements

for performance or programming language.

Historian allows you to develop both 32-bit and 64-bit User API programs.

Note:

If you want to build a 32-bit User API program on a 64-bit operating system, then you

need to rename the ihuapi32.lib to ihuapi.lib and include it in your program.

REST APIs

Historian includes a REST API to connect your Java Web-based Clients with Historian data.

Historian SDK

The Software Development Kit (SDK) is designed for writing Visual Basic (VB) or Visual

Basic for Applications (VBA) Scripts. Using the SDK, you can develop your own scripts to

perform selected repetitive or complex tasks or to make your own custom user interface. To

use the SDK, create a VB/VBA project with the SDK as a project reference. Refer to the SDK

Help system for more information.

Historian Client Access API

The Historian Client Access API is a .NET Core assembly that interacts with Historian from

any .NET Core applications. Since it works with .NET Core, it is platform-independent - you

can use it on any operating system, such as Windows, Linux, and Mac OS.

Note:

You can still use the old Client Access API, which is a .NET assembly. It is installed

when you install Client Tools.

JAVA APIs

Most open source, quick development applications rely on JAVA as their programing

language. To enable easier integration with Historian, JAVA APIs are provided. The JAVA

APIs support 64-bit Windows Operating Systems.

About the Historian Server

The Historian server is the central point for managing all of the client and collector interfaces, storing data

and (optionally) compressing and retrieving data.

Historian | 2 - Getting Started Guide | 81

In the Historian server, data is stored in files called data archives. These files contain all the tag data

gathered during a specific period of time (for example, time-based archives such as daily archives). They

have the .iha extension.

You can store data of various data types such as Float, Integer, String, Byte, Boolean, Scaled, and binary

large object data type (BLOB). The source of the data defines the ability of Historian to collect specific

data types. If you have the license to store the alarms and events data, the server also manages the

storage and retrieval of OPC Alarms and Events in a SQL Server Express.

You can further segregate your tags and archives into data stores. A data store is a logical collection of

tags used to store, organize, and manage tags according to the data source and storage requirements. A

data store can have multiple data archives, and includes logical and physical storage definitions.

The primary use of data stores is segregating tags by data collection intervals. For example, you can

put name plate or static tags where the value rarely changes in one data store, and put process tags in

another data store. This can improve the query performance.

The Historian Data Archiver is a service that indexes all the data by tag name and timestamp and stores

the result in an .iha file. The tag name is a unique identifier for a tag (which is a specific measurement

attribute). For iFIX users, a Historian tag name normally represents a Node.Tag.Field (NTF). Searching by

the tag name and time range is a common and convenient way to retrieve data from Historian. If you use

this technique to retrieve data from the archive files, you need not know which archive file contains the

data. You can also retrieve data using a filter tag.

The Historian server performs the following tasks:

• Manages all system configuration information.

• Manages system security, audit trails, and messaging.

• Services write and read requests from distributed clients.

• Performs final data compression.

• Manages archive files.

About Tags

A Historian tag is used to store data related to a property.

For example, if you want to store the pressure, temperature, and other operating conditions of a boiler, a

tag will be created for each one in Historian.

When you collect data using a collector, tags are created automatically in Historian to store these values.

These tags are mapped with the corresponding properties in the source.

Historian | 2 - Getting Started Guide | 82

For example, suppose you want to store OSI PI data in Historian. You will specify the OSI PI tags for which

you want to collect data. The OSI PI collector creates the corresponding tags in Historian, and it stores the

values in those tags.

You can also choose to create tags manually (for example, to store the result of a calculation performed

by the Calculation collector).

Prerequisites

Setting Up the Historian Environment

Identify the computers that will function as your clients, data collectors, administration workstations, and

archiver.

1. Set up each computer.

See Hardware Requirements (on page 87), and refer to the user manual that accompanies each

component for the setup information.

2. Use a login account with administrator rights so that you can install Historian later.

See Software Requirements (on page 92), and refer to the user manual that accompanies each

software product for the setup information.

3. Activate the license key on your Historian server node. Additional licenses may be required

on other nodes (such as mirroring and collector nodes) depending on your configuration

requirements. See Activate the Historian License (on page 82).

4. Disable the guest account in Windows security if you want to limit authentication to known

Windows users only.

5. Ensure that the protocols and ciphers (TLS 1.0, 1.1, and 1.2) required to install Historian are

available.

Activate the Historian License

Advantage Licensing is the software system for activating and managing product licenses. Using the

tools in licensing and our Customer Center website, you can view, activate, and manage licenses at your

site.

Using Advantage Licensing, you can:

• View current licenses for the products residing on a computer.

• Choose a licensing method (Internet, local intranet, or file-based).

• Change licenses (Activate, Return, Refresh).

Historian | 2 - Getting Started Guide | 83

Historian is available in three license types:

• Essentials

• Standard

• Enterprise

The Essentials edition is included as the on-board Historian with the purchase of some iFIX and

CIMPLICITY licenses, and cannot be licensed or sold outside of those packages. Essentials edition

customers who require options available in the Standard or Enterprise editions or require more than a

1000 tags must purchase either a Standard or Enterprise License with the appropriate tag count.

Historian HD is sold and licensed separately from Historian. Historian HD provides the Historian user

a standard method to move Historian tag configuration and historical archive data from a Windows

environment to a Hadoop Distributed File System (HDFS). HDFS is the primary distribution storage used

by Hadoop applications.

A component that is used only by the Historian HD license is installed with your Historian installation: the

Historian Archive Ingestion service. This service is reserved for use only with the Historian HD big data

analytics platform and is listed as Manual under Startup Type. Stopping this service does not impact the

Historian functionality. Unless you are licensed to use Historian HD, do not attempt to start or monitor this

service, as it may impact the ability to run the Historian Data Archiver service.

The following table provides information on the availability of each Historian component for each license

type. Optional indicates that the component is not available by default, but can be purchased separately.

Note:

For a Calculation collector and a Server-to-Server collector, you can either opt for standalone use

of bi-modal collectors or add Enterprise collectors to the Standard Historian license. Using these

options, you can quickly and easily send data from one Historian server to another or directly to

Predix Timeseries. For information on the pricing, contact the Support team.

Component Essentials Standard Enterprise Distributed

Server Functionality

Data modification Yes Yes Yes Yes

Client Access Licenses (CALs) 2 2500 2500 2500

Cluster support No Yes Yes Yes

Historian | 2 - Getting Started Guide | 84

Component Essentials Standard Enterprise Distributed

Collector redundancy Optional Yes Yes Yes

Horizontal scalability (data mirroring) No No Yes Yes

Data stores 5 10 20 20

Data stores expansion (200) No No Optional Optional

Digital / Enumerated / Array Tags Yes Yes Yes Yes

Distributed Historian No No No Yes

Electronic signatures No Optional Optional Optional

The Extract, Transform, and Load (ETL)

tools

No No Yes Yes

Fault-tolerant computer support Yes Yes Yes Yes

Maximum historical tags 1,000 50,000 20,000,000 20,000,000

Microsecond support No Yes Yes Yes

The OLE DB provider Yes Yes Yes Yes

The OPC Alarms and Events server No Optional Yes Yes

The OPC Classic HDA server Yes Yes Yes Yes

The OPC UA HDA server No Yes Yes Yes

The Historian server Yes Yes Yes Yes

Remote Collector Management No No Yes Yes

SCADA buffer (10000 tags, 200 days) Yes Yes Yes Yes

User-Defined multi-field tags No Yes Yes Yes

Client Functionality

The Historian Model No Yes Yes Yes

The Historian Excel Add-in Yes Yes Yes Yes

Historian Administrator Yes Yes Yes Yes

Operations Hub Freemium No Yes Yes Yes

The Web Admin console No Yes Yes Yes

Historian | 2 - Getting Started Guide | 85

Component Essentials Standard Enterprise Distributed

Trend Client No Yes Yes Yes

Configuration Hub Yes Yes Yes Yes

Collector Functionality

Wonderware Collector with the cloud op

tion

No Yes Yes Yes

The Calculation collector No Available

as a part of

the Enter

prise Collec

tors option

Yes Yes

Collector Toolkit SDK No Yes Yes Yes

The CygNet collector with the cloud option No Yes Yes Yes

Expressions No No Yes Yes

The File collector No Yes Yes Yes

The HAB collector No Yes Yes Yes

The iFIX collector Yes Yes Yes Yes

The MQTT collector No Yes Yes Yes

The MQTT Sparkplug B collector No Yes Yes Yes

The ODBC collector with the cloud option No Yes Yes Yes

The OPC Classic Alarms and Events collec

tor

No Optional Yes Yes

The OPC DA collector with the cloud option Yes Yes Yes Yes

The OPC Classic HDA collector with the

cloud option

No Yes Yes Yes

The OPC UA Data Access (DA) collector

with the cloud option

No Yes Yes Yes

The OSI PI collector with the cloud option No Yes Yes Yes

The OSI PI distributor No Yes Yes Yes

Historian | 2 - Getting Started Guide | 86

Component Essentials Standard Enterprise Distributed

The Python collector No Available

as a part of

the Enter

prise Collec

tors option

Yes Yes

The Server-to-Server collector with the

cloud option

No Available

as a part of

the Enter

prise Collec

tors option

Yes Yes

The Simulation collector Yes Yes Yes Yes

The Windows Performance collector No Yes Yes Yes

Note:

* Starting Historian 7.2, SCADA buffer count is increased from 2500 to 10000. Historian

Essentials license includes 2500 buffered tags and a 200-day circular buffer if permanent

storage is less than 1000 tags (that is, if CIMPLICITY points are 1500 and below). It includes

10000 buffered tags and a 200-day circular buffer if permanent storage is 1000 tags (that is, if

CIMPLICITY points are 5000 and above).

To activate the Historian license:

1. If the license is already activated on your system, access License Client, select Advanced > Clear

license information on this computer.

2. If you received an email containing an activation code, you must migrate to Advantage Licensing.

Get the latest licensing software at http://digitalsupport.ge.com.

If you did not receive an activation code, follow the instructions about M4 keys at http://

digitalsupport.ge.com.

3. Download the Historian software.

4. Install the licensing software.

5. Activate the Historian license.

http://digitalsupport.ge.com
http://digitalsupport.ge.com
http://digitalsupport.ge.com

Historian | 2 - Getting Started Guide | 87

Hardware Requirements

Table 6. Historian Server

Hard

ware Com

ponent

Standard Historian
Enterprise Histori

an, Data Mirroring

RAM 8 GB 16 GB or 32 GB (recommended)

Disk size 80 GB free hard-drive space 250 GB (minimum)

Processor

type

Intel Core i3 or i5 or i7 CPU or an equivalent AMD

Phenom CPU

Intel Core-i5, i7 family, or equivalent

CPU Dual/Quad cores

CPU speed 2.4 GHz 2.8 GHz

Recom

mended

CPU clock

2.4 GHz 2.8 GHz

Storage

type

SAS SSD with RAID Level 0 config

ured

Operating

system

• Microsoft® Windows® Serv

er 2022 (64-bit).

• Microsoft® Windows® Serv

er 2019 (64-bit).

• Microsoft® Windows® Serv

er 2016 (64-bit).

• Microsoft® Windows® 11

(64-bit).

• Microsoft® Windows® 10

(64-bit), Professional ,or En

terprise Edition.

Tags Up to 50,000

Years of

data online

1 year

Historian | 2 - Getting Started Guide | 88

Table 6. Historian Server (continued)

Hard

ware Com

ponent

Standard Historian
Enterprise Histori

an, Data Mirroring

Other re

quirements

• A DVD-ROM drive.

• 100 Mbps TCP/IP-compatible network inter

face adapter for network communication and

certain I/O drivers.

The size of a Historian server is determined by:

• The number of tags from which data is collected. The number of tags is an indicator of the number

of concurrent users likely to access the system. The primary factor is server memory requirements;

CPU load is a secondary factor. If the number of concurrent users is significantly different from the

suggested guidelines, adjust server memory size accordingly.

• The rate of alarms and events collection.

• The frequency of data collection.

• The amount of data you want to keep online.

The following table provides the recommended hardware components for a Historian server with the

Standard license based on the number of tags that you want to use. These recommendations may

vary based on years of data online, update rate, data compression setting, and other tag configuration

parameters.

Hardware

Component
Less Than 10,000 Tags

10,000 to

50,000 Tags

100,000

to One Mil

lion Tags

One Million

to Two Mil

lion Tags

Two Million

to Five Mil

lion Tags

RAM (in GB) 8 GB/16 GB (recommended

for a single node setup)

16 or 32 16 or 32 16 or 32 32 or 64

Disk Size (in

GB)

100 or 250 250 250 500 500

Processor

Type

Intel Core-i5, i7 family, or

equivalent

Intel Core-i5,

i7 family, or

equivalent

Intel Xeon (56xx, E5 family or AMD Opteron

42xx/62xx family)

CPU Dual/Quad core Dual/Quad

core

Dual/Quad

core

2-socket 2-socket or

4-socket

Historian | 2 - Getting Started Guide | 89

Hardware

Component
Less Than 10,000 Tags

10,000 to

50,000 Tags

100,000

to One Mil

lion Tags

One Million

to Two Mil

lion Tags

Two Million

to Five Mil

lion Tags

CPU Speed

(in GHz)

2.8 2.8 2.8 2.6 2.6

CPU clock

speed (in

GHz)

2.8 2.8 2.8 2.6 2.6

Storage Type SAS SSD with RAID level 0

configured

SAS SSD

with RAID

level 0 con

figured

Direct-attached or shared

storage with SAS enterprise

class drives. Hardware RAID

controller with cache memo

ry. SAN recommended over

NAS

High speed

shared stor

age with SAS

or SSD drive

types. Hard

ware RAID

controller

with cache

memory.

SAN recom

mended over

NAS.

Years of data

online

1 1 1 1 1

Note:

• The Historian server runs only on 64-bit versions of Windows.

• When possible, for performance reasons, consider using computers with multiple disk

drives so that archives and buffers can be given their own drive. Or, multiple data stores

can each have their own drive.

• Sustained event rate is 60-100 million samples per minute.

• Historian supports Intel Core i3, i5, i7 Duo based processors as long as they are

compatible with the operating system.

• Historian does not support Titanium processors.

Historian | 2 - Getting Started Guide | 90

System performance may vary depending on the hardware specifications, operating system, and tuning

parameters. The following table provides sample hardware specifications for medium-sized and large-

sized servers.

Hardware

Component
For a Medium-Sized Server For a Large-Sized Server

Processor type Intel Xeon 5540 Intel Xeon E5-2670 or E5-4650

CPU Dual socket Dual socket or quad-socket

CPU speed (in GHz) 2.5 2.7

RAM (in GB) 64 256

Table 7. Collectors

Hardware Component Recommendation

RAM 8 GB

Disk size 80 GB

Historian collectors 32-bit or 64-bit

Note:

Wonderware Collector supports 64-bit only

Note:

• Historian Collectors work as 32-bit applications on a 64-bit Windows operating systems

using WoW64 mode (Windows-on-Windows 64-bit). However, you can read and write data

from a 64-bit Historian Server.

• RAM and Disk Size required may vary based on the collectors available on the system.

• Recommended number of tags per collector is 20 to 30K.

• For iFIX systems, count each Node.Tag.Field (NTF) as a separate tag when you determine

the size of the system. For example, FIX.FIC101.F_CV and FIX.FIC101.B_CUALM (current

alarm) both count as tags, even though they are derived from the same iFIX tag.

Microsoft Windows Server

Historian | 2 - Getting Started Guide | 91

Many desktop-class computers are not certified to run Windows. Check the Microsoft website and your

computer hardware vendor website for possible conflicts between your hardware and Windows server.

These specifications are sufficient to meet the needs of a small pilot application. However, production

system requirements may be significantly different depending on many application-specific factors.

Please contact your product manager to review the requirements of your application.

Table 8. Microsoft Cluster Service

Hardware

Component
Requirement

CPU speed,

processor type,

and RAM

A 2.6 GHz clock-speed Intel Core i3 or i5 or i7 or Xeon or equivalent AMD Opteron

CPU with minimum 8 GB RAM.

Disk size A 80 GB free hard-drive space and a 40 GB shared SCSI hard-drive (RAID preferred).

Other require

ments

Two 100Mbit TCP/IP-compatible network interface adapters for network communi

cation and certain I/O drivers (One for public network, another for private network).

Note:

The configuration of each server added to the cluster must be identical to the other servers in the

cluster.

Table 9. Data Mirroring and Redundancy Service

Hardware

Component
Requirement

Operating system A 64-bit Windows operation system.

RAM Minimum 8 GB RAM.

Note:

If you are using single node setup, it is recommended to use 32 GB

RAM.

Processor type A dual core processor.

Ensure that you are using the same hardware requirement for the mirror node as well.

Network Speed

Historian | 2 - Getting Started Guide | 92

For a large Configuration Hub setup, it is recommended that the network speed is 1 GBPS.

Note:

• If you are using a single node setup, then it is recommended to use 32 GB RAM.

• Ensure that you are using the same hardware requirement for the mirror node as well.

• You must have a minimum of 10 GB free space available for the data archiver to start.

• Many desktop-class computers are not certified to run Windows server. Check the

Microsoft website and your computer hardware vendor website for possible conflicts

between your hardware and Windows server. These specifications are sufficient to meet

the needs of a small pilot application. However, production system requirements may be

significantly different depending on many application-specific factors. Please contact your

product manager to review the requirements of your application.

Software Requirements

This topic describes the minimum software requirements for Historian.

• Operating System: Historian requires one of the following operating systems, with latest service

packs or revisions:

◦ Microsoft® Windows® Server 2022 (64-bit)

◦ Microsoft® Windows® Server 2019 (64-bit)

◦ Microsoft® Windows® Server 2016 (64-bit)

◦ Microsoft® Windows® 11 (64-bit)

◦ Microsoft® Windows® 10 (64-bit), Professional ,or Enterprise Edition.

Note:

The Historian server runs on a 64-bit Windows operating system only.

Historian 7.2 32-bit components such as Collectors, Excel Add-in 32-bit, Interactive SQL

32-bit, APIs, and Non-Web Administrator work as 32-bit application on 64-bit Windows

operating systems using WoW64 mode (Windows-on-Windows 64-bit). However, you can

read and write data from a 64-bit Historian Server.

If you use Historian 6.0 or later on Windows Server 2008 R2, you must go for a Full

Installation and not Core Installation of Windows.

Historian | 2 - Getting Started Guide | 93

• Network Interface Software: The TCP/IP network protocol is required.

• Microsoft®.NET Core or .NET Framework: Historian requires the following .NET frameworks:To

install the framework, you must configure your proxy server for internet access.

◦ Microsoft®.NET Core Framework 3.1: This is required if you want to use the new Client

Access API.

◦ Microsoft®.NET Framework 4.8: This is required on the machine on which you will install

the Excel Add-in for Operations Hub. In addition, this is required for Historian collectors.

◦ Microsoft®.NET Framework 4.6.1: This is required for all the other Historian components.

You can install it manually, or you will be prompted to download and install it while installing

Historian.

Note:

If your machine is Firewall/proxy-enabled, Microsoft .NET Framework may not be installed

automatically. In that case, before installing Historian, you must install Microsoft .NET

Framework manually (if it is not available).

• Microsoft® SQL Server®: Historian requires one of the following 32-bit or 64-bit Microsoft® SQL

Server® SQL server systems to configure archiving for alarms and events or to use Historian as a

linked server:

◦ Microsoft® SQL Server® 2022

◦ Microsoft® SQL Server® 2019

◦ Microsoft® SQL Server® 2017

Note:

The collation for your alarms and events database must match the collation of your SQL

Server. This happens automatically by default unless the alarms and events database is

moved to another SQL server.

• Browser: You can access the Web Admin console and Trend Client using the following browsers:

◦ Firefox version 46 or later

◦ Google Chrome version 92 or later

To access Configuration Hub, use Google Chrome only.

• Screen Resolution: You can access Configuration Hub, the Web Admin console, and Trend Client

using the following screen resolutions:

◦ 1280 x 1024

◦ 1366 x 768

Historian | 2 - Getting Started Guide | 94

• Microsoft Excel: The Excel Add-in for Historian or the Excel Add-in for Operations Hub requires any

of the following versions of Excel:

◦ Microsoft® Excel® 2021 (32 & 64 bit)

◦ Microsoft® Excel® 2019 (32 & 64 bit)

◦ Microsoft® Excel® 2016 (32 & 64 bit)

◦ Microsoft® Excel® 2013 (32 & 64 bit)

• Web Server: The web server requires the following applications:

◦ Microsoft®.NET Framework 4.6.1

◦ Historian Client Tools 7.0 or later

◦ OLE DB, User API, and Historian Client Access Assembly

Compatibility with Other Products

Several other products work with Historian. The following is a general set of versions tested to work with

the Historian 2024 product.

Product Supported Version

CIMPLICITY 2022, 2023

iFIX 2022, 2023, 2024 beta

Proficy Plant Applications 2023, 2024 beta

Workflow 2.6 SP2

Proficy Operations Hub 2023.1, 2024 beta

Configuration Hub 2024

Proficy Authentication 2024

Dream Reports 2023 Patch 1

Habitat 5.12

Historian REST APIs are required to integrate between Historian and Operations Hub. Historian REST APIs

are installed automatically when you install Historian Web-based Clients (on page 155).

Supported Regional Settings, Data Types, and Date/Time Formats

Supported Regional Settings
Historian supports the following regional settings available in Control Panel:

Historian | 2 - Getting Started Guide | 95

• Decimal symbol - one character

• Digit grouping symbol

• List separator - one character

• Time style

• Time separator

• Short date style

• Date separator

Supported Data Types

Data Type Size

Single Float 4 bytes

Double

Float

8 bytes

Single Inte

ger

2 bytes

Double Inte

ger

4 bytes

Quad Inte

ger

8 bytes

Unsigned

Quad Inte

ger

8 bytes

Unsigned

Single Inte

ger

2 bytes

Unsigned

Double Inte

ger

4 bytes

Byte 1 byte

Boolean 1 byte

Fixed String Configured by user.

Historian | 2 - Getting Started Guide | 96

Data Type Size

Variable

String

No fixed size.

Binary Ob

ject

No fixed size.

Historian does not support the use of the Binary Object data type with the Data Collectors.

Refer to the SDK online Help for more information on working with BLOB data types.

Scaled 2 bytes

Supported Date Formats

Historian supports the following short date formats, some of which may not be available in certain

language versions of Windows:

• dd/mm/yy

• dd/yy/mm

• mm/dd/yy

• mm/yy/dd

• yy/dd/mm

• yy/mm/dd

Avoid changing the time style or short date style in regional settings to values that are outside of the

standard styles provided.

Optimize Performance

You can optimize performance in the following ways:

• Optimize virtual memory: Through the use of paging files, Windows allocates space on your hard

drive for use as if it were actually memory. This space is known as virtual memory. This topic

describes how to optimize the virtual memory on the Historian archiver computer.

Note:

If the paging file is set to grow dynamically, your system may experience severe

performance problems during runtime. To ensure optimal performance, the Initial Size and

Maximum Size values for the paging file must be the same so that the paging file does not

grow dynamically. For more information on creation and sizing of Windows paging files,

refer to Microsoft Windows Help.

Historian | 2 - Getting Started Guide | 97

• Optimize the server performance: If the file sharing and printer sharing options on the computer

on which you want to install Historian is set to maximize data throughput, it can lead to excessive

paging when dealing with large files, which can interfere with applications like Historian. You can

change these settings to optimize the performance.

1. To optimize virtual memory:

a. Access Control Panel, and then select System > Advanced system settings > Advanced.

b. Under Performance, select Settings > Advanced.

c. Under Virtual Memory, select Change.

d. In the Initial size and Maximum size fields, enter a value equal to three times your physical

memory.

e. Select Set, and then select OK.

2. To optimize server performance:

a. Access Control Panel.

b. Select Network and Sharing Center.

c. Select the network that you use.

The <network name> Status window appears.

d. Select File and Printer Sharing for Microsoft Networks, and select Properties.

e. Select Properties.

f. Ensure that the Maximize Data Throughput for Network Applications option is selected.

g. Select OK.

Enable Trust for Proficy Historian for a Self-signed Certificate

During Historian installation, a self-signed certificate is generated that you use with Historian web

applications. A self-signed certificate is a certificate that is signed by itself rather than signed by a trusted

authority. Therefore, a warning appears in the browser when connecting to a server that uses a self-signed

certificate until it is permanently stored in your certificate store. This topic describes how to ensure that

Google Chrome trusts the self-signed certificate.

1. Using Google Chrome, access the site to which you want to connect.

A message appears to inform you that the certificate is not trusted by the computer or browser.

2. Select Not Secure in the URL, and then select Certificate.

The Certificate window appears.

Historian | 2 - Getting Started Guide | 98

3. Select Certification Path, select the root certificate, and then select View Certificate.

The Certificate window appears, displaying the General, Details, and Certification Path sections.

4. Select Details, and then select Copy to File.

5. Follow the on-screen instructions to save the certificate to a local file. Use the default format: DER

encoded binary X.509 (.CER).

6. Right-click the .CER file that you have exported, and select Install Certificate.

The Certificate Import Wizard window appears.

7. Select Trusted Root Certificate Authorities, and then select OK.

Note:

Do not let the wizard select the store for you.

A Security Warning window may appear. If it does, ignore the message by selecting Yes. The

certificate is installed.

8. Restart the browser, and connect to the server.

9. Open the URL authenticated by the certificate.

If error messages do not appear, the certificate is successfully imported.

VMWare Support

Historian provides support for VMware ESXi server version 5.0 and later. The virtualization capability

provided by VMware lets you run multiple virtual machines on a single physical machine, with each virtual

machine sharing the resources of that one physical computer. Please be aware that while we have tested

VMware ESXi 5.0 and above, issues with the VMware software or the virtualized environment are outside

the scope of GE Vernova's responsibility. You must use VMWare Compatibility Hardware and Software

before installing Historian 7.0 or greater Data Archiver on a Virtual Machine. For the current release, the

only supported type of Proficy licensing for use with VMware is keyless (software) licensing.

Note:

VMware Player is not supported.

Important:

Advanced features of the ESXi server (such as VMotion, High Availability, and Clustering support)

have not been tested with Historian.

For information regarding VMware compatibility and its supported software and hardware environments,

refer to http://www.vmware.com/resources/guides.html.

http://www.vmware.com/resources/guides.html

Historian | 2 - Getting Started Guide | 99

VMWare Best Practices and Limitations

Disk Growth

To prevent disk growth during run time, make sure you pre-allocate the hard disk in your

VMware image.

Important:

If the VMware disk needs to grow at runtime because of IHA growth or creation, the

Data Archiver will be slowed. If there is not enough disk space on the host machine

to grow the VMware disk, the archiver may lose data.

Suspended Images/Power Metered Images

ESXi servers have power meter functions and options as well as the ability to suspend

images to conserve power. We do not recommend or support these functions due to the

potential effects on the Guest operating system, specifically in regards to polling I/O and

timely updates.

I/O Devices and Connections and VMware

There are a multitude of devices and methods of communications on the market. These

devices may be used if you can successfully connect them from the virtual machine through

the physical HOST, but we do not support the setup of that connection. Be aware that device

drivers used to write to proprietary cards for the ESXi HOSTS as part of virtual device setup

can cause issues.

USB Controller Limitations

The USB controller has these limitations when using Historian and VMware:

• Minimum virtual hardware version 7 is required.

• Only one USB controller of each type can be added to a virtual machine.

• The USB arbitrator can monitor a maximum of 15 USB controllers. If your system

includes an additional number of controllers and you connect USB devices to these

controllers, the devices are not available to be passed through to a virtual machine.

• You must add a USB controller to a virtual machine before you can add a USB device.

• You must remove all USB devices from a virtual machine before you can remove the

controller

USB Device Limitations

USB devices have these limitations when using Historian and VMware:

Historian | 2 - Getting Started Guide | 100

• A virtual machine may have up to 20 USB devices attached to it; however, each

unique USB device can only be attached to one virtual machine at a time.

• Unsupported USB devices may not interact as expected with other ESXi features.

Additional VMware Notes

GE Vernova cannot guarantee the performance of the Historian software in a virtualized

environment due to the wide range of parameters associated with the hardware,

configuration, memory settings, third-party software installations, and the number of

virtual machines running; all of which can affect performance. Therefore, GE Vernova

cannot provide support related to the performance of the Historian software running on

a virtual machine if it is determined that the issue is related to the virtual environment.

Also, GE Vernova does not provide support or troubleshoot a customer's virtual machine

infrastructure.

It is the responsibility of you, the customer, to ensure that the performance of the Historian

software and any third-party applications (especially those not recommended by GE

Vernova) are adequate to meet the needs of your run mode environment. GE Vernova does

not support issues related to functionality that is not available as a result of running in

a virtual machine infrastructure. Examples include the functionality of card level drivers

such as those for the Genius® family of drivers, the Allen-Bradley® DH/DH+ drivers, the

Cyberlogic's MBX® Driver for the SA85 card, as well as functions requiring direct video

access. Check with the vendor of your third-party application for support statements

regarding that third-party product's ability to run in a virtualized environment.

For more detailed information regarding VMware specifications and requirements, visit the

VMware web site: http://www.vmware.com/resources/compatibility/search.php.

Installation

Historian Installation Workflow

1. Design your system architecture.

Decide what collectors to instantiate on which nodes, which computers to designate as the

Historian server and Historian Administrator, whether or not they will be web-based, and how much

memory and disk space you can assign to buffers and archives. Record the computer names of

each node.

2. Ensure that data sources are installed.

3. Set up your Historian environment (on page 82).

http://www.vmware.com/resources/compatibility/search.php

Historian | 2 - Getting Started Guide | 101

4. On the server node, launch the installer, select Install Historian, and follow the on-page instructions

to install Historian (on page 105) on a single server on in a distributed environment.

5. Activate your product license (on page 82).

6. Install the collectors (on page 142).

7. Restart your computer if prompted to do so.

8. As needed, install Web-based Clients (on page 154).

9. Perform post install setup for MTLS features, by installing certificates. For more information, refer

to Overview of certificate-based security.

10. For the Windows-based Historian Administrator clients, start the Administrator from Historian

Startup Group.

When the home page for Historian Administrator appears, you are ready to set up archives,

collectors, and tags in the Data Store Maintenance, Collector Maintenance, and Tag Maintenance

pages.

The following table provides a list of installation options available in Historian, along with purpose of

installing each one.

Installation Option When to Install

Historian Server (on page 104) Installing the Historian server is mandatory to

work with Historian. If you want to use Web-based

Clients, you must provide the Proficy Authentica

tion server details while installing the Historian

server.

When you install the Historian server, the following

components are installed as well:

• The RemoteCollectorConfigurator utility:

A command-line tool, which allows you to

manage collectors remotely.

• The Proficy Authentication Configuration

tool: A utility that allows you to specify the

Proficy Authentication server details to

match with the Proficy Authentication serv

er used by Web-based Clients.

Alarms and Events (on page 140) Install Alarms and Events if you want to retrieve

and store alarms and events data from any OPC-

Historian | 2 - Getting Started Guide | 102

Installation Option When to Install

compliant alarms and events server using the OPC

Classic Alarms and Events collector.

Collectors (on page 142) Installing collectors is mandatory to collect and

store data in Historian.

When you install collectors, all the collectors and

the Remote Management Agents are installed. You

must then create instances of each collector and

manage them using Configuration Hub.

When you install collectors, if iFIX/CIMPLICITY are

installed on the same machine, instances of the

following collectors are created automatically:

• The iFIX collector

• The iFIX Alarms & Events collector

• The OPC Classic Data Access collector for

CIMPLICITY

• The OPC Classic Alarms and Events collec

tor for CIMPLICITY

Client Tools (on page 150) Install Client Tools if you want the following com

ponents:

• Client Tools

• Historian Administrator

• OLE DB driver and samples

• The OPC Classic HDA server

• User API and SDK

• Historian Client Access API

• Collector Toolkit

Web-based Clients (on page 154) Install Web-based Clients if you want to manage

Historian administrative tasks and analyze the da

ta using components such as Configuration Hub,

the Web Admin console, Trend Client, and REST

APIs.

Historian | 2 - Getting Started Guide | 103

Installation Option When to Install

To use Web-based Clients, you need Proficy Au

thentication (UAA server) to handle user authenti

cation. It provides identity-based security for appli

cations and APIs. It supports open standards for

authentication and authorization, including Oauth2.

During the Web-based Clients installation, you can

choose to install a Proficy Authentication instance

and Configuration Hub, or you can use existing

ones.

Historian Remote Management Agents (on page

187)

Remote Management Agents (RMA) include Re

mote Collector Manager, which is used to manage

collectors remotely.

RMA is installed automatically when you install col

lectors. If, however, you are using RMA version 8.1,

and you want to upgrade only RMA (and not the

collectors), use this option.

Excel Add-in for Historian (on page 195) Install Excel Add-in for Historian make bulk

changes to tag parameters using Excel, and then

import it to Historian. You can also perform math

ematical, retrieve selected data, generate reports

and charts, and so on.

Excel Add-in for Operations Hub (on page 198) Install Excel Add-in for Operations Hub if you want

to query historical data of objects and object types

defined in Operations Hub.

ETL Tools (on page 202) Install the Historian Extract, Transform, and Load

(ETL) tools if you want to transfer data where there

is limited internet connectivity.

The OPC UA HDA Server (on page 191) Install the OPC UA HDA server if you want to use

Historian as an OPC UA HDA server. You can then

connect any OPC UA HDA clients with the server.

Standalone Help (on page 205) Install Standalone Help to access the Historian

product documentation offline.

Historian | 2 - Getting Started Guide | 104

About Installing the Historian Server for the First Time

You can choose one of the following types of installation:

• Single server: This is for a stand-alone Historian system, which contains only one Historian server.

This type of system is suitable for a small-scale Historian setup.

• Mirror primary server and distributed/mirror node: This is for a horizontally scalable Historian

system, which contains multiple Historian servers, all of which are connected to one another. This

type of system is used to scale out the system horizontally. For example, if you have 5,00,000

tags in your Historian system, you can distribute them among the various servers to improve

performance.

In this setup, one of the nodes acts the primary server, whereas the others are the distributed/

mirror servers. Configuration Manager and the embedded web services are installed only on the

primary server, which are used by the distributed/mirror servers as well.

When the Archive Duration property is changed in a distributed environment, the changes will take

effect after 15 minutes.

The distributed environment works only for tag data; it does not work for alarms and events data.

Therefore, do not install alarm archiver in a distributed environment.

In this setup, one of the nodes acts the primary server, whereas the others are the distributed/

mirror nodes.

For all these types of installation, you can use the GUI-based installer (on page 105) or the Command

Prompt window (on page 114). You can also install the Historian server in a cluster environment (on

page 119).

This section provides the high-level steps in installing the Historian server for the first time. You can

perform the same steps to upgrade the server. If you are upgrading from either Historian 6.0 Enterprise

or previous releases of Historian 7.2 (including any of the service packs), both Client Manager and

Configuration Manager services will be removed. However, this will have no impact on your data or use of

Historian unless you intend to use a distributed system.

Note:

The number of alarms in the Historian Alarms and Eventss database, and the frequency of

new events being added during the installation, impact the time it takes to install Historian.

For example, an installation for a system with 1.5 million alarms can take up to three hours to

complete.

Historian | 2 - Getting Started Guide | 105

Important:

You cannot use size-based archives with a Historian Mirror Primary Server and Historian

Mirror Node installation. This is because having archives of different sizes introduces archive

synchronization risks in a mirrored environment. The restriction is enforced on all Historians, even

those not using mirroring.

Important:

Be aware that you cannot close your current archive with a Historian Mirror Primary Server and

Historian Mirror Node installation. This is because closing the current archive introduces archive

synchronization risks in a mirrored environment. The restriction is enforced on all Historians, even

those not using mirroring.

Install the Historian Server Using the Installer

• set up the Historian environment.

• If you want to install web-based clients and view Historian license information on Configuration

Hub, you must provide the Configuration Hub and Proficy Authentication server details during

installation. Therefore, ensure that you have already set up Proficy Authentication in Configuration

Hub. For more information on setting up Proficy Authentication in Configuration Hub, refer to

https://www.ge.com/digital/documentation/confighub/version2023/t_authentication_setup.html.

• If you are changing the role of a Historian server that was previously a distributed/mirror server to

any other configuration (single-server or mirror primary server), you must first uninstall Historian.

• If you are installing a distributed/mirror server, use the same configuration, license key, installation

drive, Proficy Authentication instance, and domain as the primary server.

This topic describes how to install the Historian server using the installer.

You can also install it at a command prompt.

1. Log in as an administrator to the machine on which you want to install the Historian server.

2. Run the InstallLauncher.exe file.

3. Select Install Historian Server.

The welcome page appears.

4. Select Next.

The license agreement appears.

5. Select the Accept check box, and then select Next.

The Where do you want to install Historian? page appears.

https://www.ge.com/digital/documentation/confighub/version2023/t_authentication_setup.html

Historian | 2 - Getting Started Guide | 106

6. If needed, change the default installation drive of the Historian server, and then select Next.

The Override the default Historian data Path? page appears.

Historian | 2 - Getting Started Guide | 107

7. If needed, change the default folder of the log files, and then select Next. If you want to include the

Historian server in a cluster, enter the path to the shared folder of the cluster.

The Register with Configuration Hub page appears.

Historian | 2 - Getting Started Guide | 108

8. Select the Use existing Proficy Authentication and Configuration Hub Instance check box, and

provide values as described in the following table.

This step is needed only in the following cases:

◦ The Historian Server and the Web-based clients will be on two different machines.

◦ You already installed Proficy Authentication and Configuration Hub, and you want to use the

Historian Web-based clients and view the Historian license information on Configuration

Hub.

If you do not select the Use existing Proficy Authentication and Configuration Hub Instance

during the installation, to use the Historian Web-based clients and view the Historian license

information on Configuration Hub, you must use the Proficy Authentication Tool from the

Start menu to register with Proficy Authentication and Configuration Hub servers.

If you do not have Proficy Authentication and Configuration Hub installed, and you intend

to use the Historian Web-based clients and view the Historian license information on

Configuration Hub, you can install them while installing the Web-based clients.

Historian | 2 - Getting Started Guide | 109

Note:

Proficy Authentication is required for user authentication. It provides identity-based

security for applications and APIs. It supports open standards for authentication and

authorization, including Oauth2.

Field Description

Proficy Authentication server name Enter the name of the machine on which the

Proficy Authentication server is installed. If the

machine uses a fully qualified domain name

(FQDN), provide the FQDN. By default, the local

hostname is considered.

Proficy Authentication Public https port Enter the port number used by the Proficy Au

thentication service. The default value is 443.

Ensure that this port number matches the one

Historian | 2 - Getting Started Guide | 110

Field Description

on the TCP Port Assignments page during

Web-based Clients installation.

Proficy Authentication Admin Client Id The client ID to connect to the Proficy Authenti

cation service.

Proficy Authentication Admin Client Secret The password to connect to the Proficy Authen

tication service.

Configuration Hub server name The server name or the FQDN of the existing

Configuration Hub server, as displayed in the

address bar of the browser when you access

Configuration Hub from the machine where

Configuration Hub is installed.

Configuration Hub Public https port The web server (https) port that you want to

use for Configuration Hub. By default, it is

5000.

Test Connection Option to test the status of the connection with

external Proficy Authentication server.

Note:

If you change the Proficy Authentication server for Web-based Clients later, you must also

change the Proficy Authentication server for the Historian server. This can be done using

the Proficy Authentication Configuration Tool located at <Install Drive>:\Program

Files\Proficy\Proficy Historian\x64\Server without the need to install the

Historian server again. Alternatively, you can search for the Proficy Authentication Tool in

the Windows search bar and open it.

9. Select Next.

The Historian Security Groups page appears.

Using Historian security groups provides an added layer of control over access to your Historian

system.

By default, the option to create Historian security groups is not selected.

Historian | 2 - Getting Started Guide | 111

10. If you want the installer to create Historian security groups (on page 256), select the

corresponding check box, and then select Next.

The Choose the type of install you want to perform page appears.

Historian | 2 - Getting Started Guide | 112

11. Select the type of the Historian server that you want to install, and then select Next.

◦ Historian Single Server: This is for a stand-alone Historian system, which contains only one

Historian server. This type of system is suitable for a small-scale Historian setup.

◦ Historian Mirror Primary Server: This is for a horizontally scalable Historian system, which

contains multiple Historian servers, all of which are connected to one another. Installing this

server will allow you to add machines and distributed/mirror servers to this system.

◦ Historian Distributed/Mirror Node: This is for a horizontally scalable Historian system.

Installing this server will allow you to add this node to a primary server.

The Historian Server Certificate-based Security page appears.

Historian | 2 - Getting Started Guide | 113

12. If you want to enable certificate-based security (MTLS-based security), leave the Enable

Certificate-based Security check box selected, and then enter Root Certificate Password.

Note:

Ensure to use the same password to create MTLS (client) certificates. For more

information on creating MTLS (client) certificates, refer to Generate MTLS certificate.

For more information on certificate-based security, refer to overview of the Certificate-based

Security in Historian (on page 206).

Warning:

If you do not select the Enable Certificate-based Security check box during the

installation, you must generate the root certificates manually, as described in the Manually

Install Certificates for Historian section. However, this is not recommended.

13. Select Next.

The You are ready to install page appears.

Historian | 2 - Getting Started Guide | 114

14. Select Install.

The installation begins.

15. After the installation, when you are asked to reboot your system, select Yes.

The Historian server is installed on your machine in the following folder: <installation

drive>:\Program Files\Proficy\Proficy Historian\x64\Server, and the

following registry path is created: HKEY_LOCAL_MACHINE\SOFTWARE\Intellution, Inc.

\iHistorian\Services.

In addition, the following components are installed:

◦ The RemoteCollectorConfigurator utility: A command-line tool, which allows you to manage

collectors remotely. By default, it is located in the C:\Program Files\GE Digital

\NonWebCollectorInstantiationTool folder. For instructions on using this utility,

refer to About Installing and Managing Collectors Remotely.

◦ The Proficy Authentication Configuration tool: A utility that allows you to specify the Proficy

Authentication server details to match with the Proficy Authentication server used by Web-

based Clients. By default, it is located in the C:\Program Files\Proficy\Proficy

Historian\x64\Server folder. For instructions on using this tool, refer to Register with

Configuration Hub (on page 137).

Install the Historian Server at a Command Prompt

• Set up the Historian environment (on page 82).

• If you want to install web-based clients and manage the Historian node in Configuration Hub, you

must provide the Configuration Hub and Proficy Authentication server details during installation.

Therefore, ensure that you have already set up Proficy Authentication in Configuration Hub. For

more information on setting up Proficy Authentication in Configuration Hub, refer to https://

www.ge.com/digital/documentation/confighub/version2023/t_authentication_setup.html.

• If you are changing the role of a Historian server that was previously a distributed/mirror server to

any other configuration (single-server or mirror primary server), you must first uninstall Historian

(on page 294).

• If you are installing a distributed/mirror server, use the same configuration, license key, installation

drive, Proficy Authentication instance, and domain as the primary server.

This topic describes how to install single-server Historian at a command prompt. You can also install the

Historian server using the installer (on page 105).

After you install Historian at a command prompt, you can choose to generate a template XML file, which

contains the installation parameters and the values that you have provided. You can use this XML file for

https://www.ge.com/digital/documentation/confighub/version2023/t_authentication_setup.html
https://www.ge.com/digital/documentation/confighub/version2023/t_authentication_setup.html

Historian | 2 - Getting Started Guide | 115

subsequent installations. Similarly, you can use a template XML file instead of providing command-line

arguments.

1. Open Command Prompt, and navigate to the <DVD drive>:\Historian folder (for example, E:

\Historian).

2. Run the following command:

install.exe <argument>=<value> <flag> HistorianCmd=<installation type>

For example,

To install Historian Server without configuring web-based clients, run the following command:

install.exe RootDrive=E:\ EnableCertificateSecurity=1 ServerCertPassPhrase="Password"

 CreateHistorianSecurityGroups=false -silent HistorianCmd=HistorianCore

To install Historian Server and configure web-based clients, run the following command:

install.exe RootDrive=E:\ ActiveUaaBaseUrl=https://histmachine123.test.com:443/uaa AdminClientId="admin"

 AdminClientSecret="secret" ConfighubServerName="histmachine123.test.com" ConfighubhttpsPort="5000"

 EnableCertificateSecurity=1 ServerCertPassPhrase="Password" CreateHistorianSecurityGroups=false -silent

 HistorianCmd=HistorianCore

The following table provides a list of installation types that you can enter.

Installation Type Description

StandAlone Enter this value if you want to install a stand-

alone Historian system.

HistorianCore Enter this value if you want to install a primary

server in a horizontally scalable system.

mirror Enter this value if you want to install a distrib

uted/mirror server in a horizontally scalable

system.

The following table provides a list of arguments that you must enter.

Argument Description

RootDrive The drive letter where the Historian server binary files will be installed.

DataPath The disk path where the Historian data files will be stored.

Historian | 2 - Getting Started Guide | 116

Argument Description

HistAdministrator

Password

The password for the built-in administrator account.

ActiveUaaBaseUrl The URL to connect to Proficy Authentication to allow Web-based

Clients to access Historian. Only if you want to use Web-based Clients,

this parameter is required for user authentication. Proficy Authentication

provides identity-based security for applications and APIs. It supports

open standards for authentication and authorization, including Oauth2.

Proficy Authentication details are required if you want to use Web-based

Clients.

By default, the local hostname and the port number of 443 are consid

ered. If the Proficy Authentication service is on the same machine on

which you are installing the Historian server, you can accept the default

value. If, however, the Proficy Authentication service is on a different

machine or uses a different port number, replace those values in the

URL as follows:

https://<local host name>:<port number>/uaa

where:

◦ <Proficy Authentication server> is the name of the machine on

which Proficy Authentication is installed. If the machine uses a

fully qualified domain name (FQDN), provide the FQDN.

◦ <port number> is the one that you have specified for the public

https port in the TCP Port Assignments page during Web-based

Clients installation.

Note:

You can install a Proficy Authentication service using Opera

tions Hub or Historian Web-based Clients. You can provide the

URL of an existing Proficy Authentication instance. Or, if a Profi

cy Authentication service is not available, you can install it dur

ing Web-based Clients installation. In that case, provide the

server name where Proficy Authentication is installed.

AdminClientId The client ID to connect to the Proficy Authentication service.

Historian | 2 - Getting Started Guide | 117

Argument Description

AdminClientSecret The password to connect to the Proficy Authentication service.

ConfighubServerName The server name or the FQDN of the existing Configuration Hub server,

as displayed in the address bar of the browser when you access Config

uration Hub from the machine where Configuration Hub is installed.

ConfighubhttpsPort The web server (https) port that you want to use for Configuration Hub.

By default, it is 5000.

CreateHistorianSecu

rityGroups

Indicates whether you want the installer to create Historian security

groups.

Using Historian security groups provides an added layer of control over

access to your Historian system.

Enter true or false. If you enter true:

◦ You must add a Windows user to the appropriate group (on page

278) (for example, add an administrative user to the iH Security

Admins group). Only then you can configure this server.

◦ If the Historian server and collectors are installed on the same

machine, you can skip this step; by default, the machine name of

the local Historian server is considered. If, however, they are in

stalled on different machines, you must provide the credentials of

the Windows user who can access the Historian server machine.

In addition, if security groups are available, add the user to the ap

propriate group (on page 278) (for example, add an administra

tive user to the iH Security Admins group). Only then you can ac

cess Web-based Clients without LDAP.

For more information, refer to Implementing Historian Security (on page

251).

EnableCertificateSe

curity

Indicates whether you want the installer to enable certificate-based se

curity (MTLS-based security).

◦ To enable certificate-based security, set this value to 1.

◦ To disable certificate-based security, set this value to 0.

For more information on the certificate-based security, refer to overview

of the Certificate-based Security in Historian (on page 206).

Historian | 2 - Getting Started Guide | 118

Argument Description

ServerCertPassPhrase If you enabled certificate-based security, enter the passphrase for the

server certificate.

Note:

Ensure to use this passphrase as the password to create MTLS

(client) certificates. For more information on creating MTLS

(client) certificates, refer to Generate MTLS certificate.

The following table provides a list of flags that you can use.

Flag Description

[-q], [-quiet], [-s], [-silent] Use any of these flags for a silent installation.

The installation will then happen in the back

ground (without a UI).

[-passive] Use this flag for a passive installation. The

progress of the installation then appears on

your screen.

/t Use this flag to generate the template file,

which will contain all the installation arguments

and the values that you have provided for each

of them. You can then use this file for subse

quent installations.

By default, this file is named Template_His

torian.xml, and it is placed in the temp fold

er, defined by the%temp% environment variable.

If, however, you want to save the file in another

folder as well, enter: /t TemplateOutputDirecto

ry=<path>

/c TemplateInputFile=<path> Use this flag to use a template file (instead of

providing command-line arguments). Howev

er, if you do provide command-line arguments

as well, they take precedence over the values in

the template.

Historian | 2 - Getting Started Guide | 119

The Historian server is installed on your machine in the following folder: <installation

drive>:\Program Files\Proficy\Proficy Historian\x64\Server, and the

following registry path is created: HKEY_LOCAL_MACHINE\SOFTWARE\Intellution, Inc.

\iHistorian\Services.

In addition, the following components are installed:

◦ The RemoteCollectorConfigurator utility: A command-line tool, which allows you to manage

collectors remotely. By default, it is located in the C:\Program Files\GE Digital

\NonWebCollectorInstantiationTool folder. For instructions on using this utility,

refer to Remote Collector Management.

◦ The Proficy Authentication Configuration tool: A utility that allows you to specify the

Proficy Authentication server and Configuration Hub server details to match with the Proficy

Authentication server used by Web-based Clients, and also register the Historian node with

Proficy Authentication server and Configuration Hub server. By default, it is located in the C:

\Program Files\Proficy\Proficy Historian\x64\Server folder. Alternatively,

you can search for the Proficy Authentication Tool in the Windows search bar and open it.

For instructions on using this tool, refer to Register with Configuration Hub (on page 137).

While installing the Historian server, if you have allowed the installer to create Historian security groups,

create a local Windows user with the format <Web-based Clients server name>.admin, and add the user to

the ihSecurityAdmins group (on page 278).

This user will log in to Web-based Clients.

Alternatively, you can create Proficy Authentication users in an external Proficy Authentication and map

their security groups. For information, refer to About Proficy Authentication Groups (on page 231).

Depending on whether the Historian server will use local or domain security groups, select the appropriate

option in Historian Administrator.

Set Up High Availability of the Historian Server

Historian works with Microsoft Failover Cluster Manager to ensure high availability of the server.

In a cluster environment, multiple servers are installed, which share the same data. Each of these servers

is called a node. One of them acts as the primary server, while the others are standby servers. If the

primary server is down, one of the standby servers is used. See the following figure for an example.

Historian | 2 - Getting Started Guide | 120

Note:

Cluster supports only domain security.

1. Ensure that your network is enabled for multicast traffic.

2. Create a shared drive on your network that all the servers in the cluster can access, and create a

database folder in that drive.

3. On each node that you want to add to the cluster:

Historian | 2 - Getting Started Guide | 121

a. Install the Failover Clustering feature.

b. Install the Historian server (on page 105). During the installation, in the Historian Data

Path field, enter the path to the folder on the shared drive that you have created.

4. If you are upgrading the Historian server on a passive node, an error message may appear behind

the installer screen, stating that the Archives directory is not created. You can ignore this message,

or you can make the node active before upgrading the Historian server.

1. If you have upgraded the Historian server, on all the cluster nodes:

a. Right-click the cluster, and then select Properties > Resource Types.

b. If the user-defined resource types are not available, select Add.

c. Select <Installation folder of the Historian server>/x64/Server/

Historian.dll as the resource DLL path with Historian and AlarmArchiver as both the

resource type names and display names.

The Historian servers are now part of the cluster, thus achieving high availability. The remaining

steps are required only for first-time installation of the Historian server (not upgrade).

2. Access the primary node of the cluster.

3. Create a failover cluster.

4. Add a storage to the failover cluster.

https://docs.microsoft.com/en-us/windows-server/failover-clustering/create-failover-cluster#install-the-failover-clustering-feature
https://docs.microsoft.com/en-us/windows-server/failover-clustering/create-failover-cluster#create-the-failover-cluster
https://docs.microsoft.com/en-us/windows-server/failover-clustering/failover-cluster-csvs

Historian | 2 - Getting Started Guide | 122

5. Add user-defined resource types, Historian and AlarmArchiver, to the cluster. These resources are

created when you install the Historian server.

a. Right-click the cluster, and then select Properties > Resource Types.

b. If the user-defined resource types are not available, select Add.

c. Select <Installation folder of the Historian server>/x64/Server/

Historian.dll as the resource DLL path with Historian and AlarmArchiver as both the

resource type names and display names.

6. Select Roles > Create Empty Role.

A role is created.

7. Add the Historian application to the cluster:

a. Select the role.

b. In the Actions section, select Add Resource > Historian.

c. Follow the on-screen instructions to add the new Historian resource to the role.

8. Add a client access point to the role:

a. Select the role.

b. In the Actions section, select Add Resource > Client Access Point.

c. Follow the on-screen instructions to add a client access point to the role.

9. Add a storage to the role:

a. Select the role.

b. In the Actions section, select Add Storage.

c. Follow the on-screen instructions to add the storage that you have created in step 3. You

can use a storage only once.

10. Add the following dependencies to the Historian resource:

a. Double-click the Historian resource.

The Historian Properties window appears.

b. Select Dependencies.

c. Select Insert, and add the following dependencies using the AND operation.

▪ Client access point

▪ IP address

▪ Storage

11. Add the Alarm Archiver resource to the cluster:

a. Select the role.

b. In the Actions section, select Add Resource > Alarm Archiver.

Historian | 2 - Getting Started Guide | 123

c. Follow the on-screen instructions to add the alarm archiver resource to the role.

d. Double-click the Alarm Archiver resource.

The Alarm Archiver Properties window appears.

e. Select Dependencies.

f. Select Insert, and then add the Historian service as a dependency. You do not need to add

the cluster disk and IP address as dependencies.

12. Add generic services.

a. In the Summary section of the Historian role, right-click the Client Manager resource, and

then select Properties > Dependencies.

b. Add the IP address as a dependency, and then select Apply.

c. Select General, select the Use Network Name for Computer Name check box, and then

select OK.

13. Repeat the previous step for the following services:

◦ Configuration Manager

◦ Diagnostics Manager

◦ Historian Embedded PostgreSQL Database

◦ Historian Embedded Tomcat Container

◦ Historian Indexing Service

The services appear under the Historian role.

Historian | 2 - Getting Started Guide | 124

14. Select the Historian role, and then in the Actions section, select Start Role.

The Historian servers are now part of the cluster, thus achieving high availability.

Set Up a Mirror of Mirror

1. Install Historian server (on page 105) on each machine that you want to use in the mirror of

mirror setup.

2. Set up Configuration Hub (on page 305) on each machine that you want to use in the mirror of

mirror setup.

3. Add a system (on page 427). The server that you specify while adding the system serves as the

primary server for the system.

4. Create data stores (on page 370) in the primary server in the public/IT network with the same

name as the data stores in the primary server in your organization network.

You can set up a mirror of the Historian server in a network different from that of your organization. When

you do so, any tag/data update requests to the Historian server can be routed to the public and IT network

instead of your organization's network.

Note:

For the Historian Enterprise Mirror Architecture, only "Time based" archives are supported.

Single-Node Setup: The following image shows two networks - OT and IT - with a Historian server

installed in each network. These networks communicate using port 14000.

In this setup:

1. Server 1 is the primary server in the OT network; it stores data from collectors.

2. Server 2 is the primary server in the IT network; it is connected to clients.

Historian | 2 - Getting Started Guide | 125

3. When a tag/data is created, updated, or deleted, Client Manager 1 communicates the same with

Client Manager 2 (installed with Server 2 in the IT network).

4. The change in the tag/data is replicated in Server 2 (that is, data is created, updated, or deleted

accordingly).

5. The latest data is retrieved from Server 2 using the clients.

Mirror Setup: The following image shows two mirrors:

• Mirror 1 includes Mirror Server 1 and Mirror Node 1, which is a backup/standby node for Mirror

Server 1; both these machines are in the OT network.

• Mirror 2 includes Mirror Server 2 and Mirror Node 2, which is a backup/standby node for Mirror

Server 2; both these machines are in the IT network.

Client Manager 1 in Mirror Server 1 communicates with Client Manager 2 in Mirror Server 2.

If Mirror Server 1 goes down, Client Manager M1 in Mirror Node 1 communicates with Client Manager 2 in

Mirror Server 2.

Historian | 2 - Getting Started Guide | 126

Similarly, if Mirror Server 2 goes down, Client Manager 1 in Mirror Server 1 communicates with Client

Manager M2 in Mirror Node 2.

If both Mirror Server 1 and Mirror Server 2 are down, Client Managers M1 and M2 communicate with each

other.

Historian | 2 - Getting Started Guide | 127

If Mirror Server 1 and/or Mirror Server 2 are available, the connection is re-established using these primary

servers.

Thus, you can choose to always retrieve data from either Mirror Server 2 or Mirror Node 2. In addition, the

store-and-forward functionality is available (in case Client Managers are not yet connected).

This topic describes how to set up a mirror of mirror for the configuration described in the preceding

example. It includes the following high-level steps:

Historian | 2 - Getting Started Guide | 128

1. Installing the Historian server on all the machines

2. Setting up mirror 1

3. Setting up mirror 2

4. Setting up a mirror of mirror

Installing the Historian server

1. On the machines designated as the mirror primary servers (Mirror Server 1 and Mirror Server 2 in

the example), install the Historian server (on page 105). During the installation, select Historian

Mirror Primary Server on the Choose the type of install you want to perform page.

2. On the machines designated as mirror nodes (Mirror Node 1 and Mirror Node 2 in the example),

install the Historian server (on page 105). During the installation, select Historian Distributed/

Mirror Node on the Choose the type of install you want to perform page.

Set up Mirror 1:

Historian | 2 - Getting Started Guide | 129

3. On the mirror primary server in your organization's network (Mirror Server 1 in the example), access

Configuration Hub (on page 336).

4. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Systems.

A list of systems appears in the main section.

5. Expand Mirror Server 1.

A list of servers in the system appears.

6. Select .

The Add Server Machine: <system name> window appears.

7. Enter the host name or IP address of the mirror node in your organization's network (Mirror Node 1

in the example), and then select Add.

The distributed server is added to the system. A distributed location is added in the server.

8. Right-click Mirror Node 1, and then select Browse Locations.

A list of distributed locations in the system appears.

9. Select Mirror Locations.

A list of mirror locations in the system appears.

10. In the upper-right corner of the main section, select .

Historian | 2 - Getting Started Guide | 130

The Add Mirror Location window appears.

11. Provide values as described in the following table.

Field Description

MIRROR LOCATION NAME Enter a name for the mirror location. A value is required and

must be unique for the system.

SERVER MACHINES Select the servers that you want to add to the mirror group (Mir

ror Server 1 and Mirror Node 1 in this example). This box con

tains a list of all the servers in the system. You must add mini

mum two servers to a mirror location.

12. Select Add.

Mirror Node 1 is created.

13. Right-click the system name, and then select Add Data Store.

The Add Data Store: Mirror Node 1 window appears.

14. Enter values as described in the following table.

Field Description

DATA STORE NAME Enter a unique name for the data store. A value is required. You can

use all alphanumeric characters and special characters except / \ * ?

< > |

You must provide the same name for the mirror setup in the IT net

work (mirror 2 in the example).

DESCRIPTION Enter a description for the data store.

Set as default data store

for the system

Select this check box if you want to set this data store as the default

one. A default data store is the one that is considered if you do not

specify a data store while adding a tag. You can set only one data

store as default.

15. Select Add.

Mirror 1 is configured.

Set up Mirror 2:

Historian | 2 - Getting Started Guide | 131

16. On the mirror primary server in the IT network (Mirror Server 2 in the example), access

Configuration Hub (on page 336).

17. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Systems.

A list of systems appears in the main section.

18. Expand Mirror Server 2.

A list of servers in the system appears.

19. Select .

The Add Server Machine: <system name> window appears.

20. Enter the host name or IP address of the mirror node in your organization's network (Mirror Node 2

in the example), and then select Add.

The distributed server is added to the system. A distributed location is added in the server.

21. Right-click the system name, and then select Browse Locations.

A list of distributed locations in the system appears.

22. Select Mirror Locations.

A list of mirror locations in the system appears.

23. In the upper-right corner of the main section, select .

Historian | 2 - Getting Started Guide | 132

The Add Mirror Location window appears.

24. Provide values as described in the following table.

Field Description

MIRROR LOCATION NAME Enter a name for the mirror location. A value is required and

must be unique for the system.

SERVER MACHINES Select the servers that you want to add to the mirror group (Mir

ror Server 2 and Mirror Node 2 in this example). This box con

tains a list of all the servers in the system. You must add mini

mum two servers to a mirror location.

25. Select Add.

Mirror Node 2 is created.

26. Right-click Mirror Node 2, and then select Add Data Store.

The Add Data Store: Mirror Node 2 window appears.

27. Enter values as described in the following table.

Field Description

DATA STORE NAME Provide the same name that you provided while setting up mirror 1.

DESCRIPTION Enter a description for the data store.

Set as default data store

for the system

Select this check box if you want to set this data store as the default

one. A default data store is the one that is considered if you do not

specify a data store while adding a tag. You can set only one data

store as default.

28. Select Add.

Mirror 2 is configured.

Set up Mirror of Mirror:

29. Access Configuration Hub in the primary server in the OT network (Mirror Server 2).

30. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Systems.

A list of systems appears in the main section.

31. Expand Mirror Server 1.

A list of servers in the system appears.

32. Select .

Historian | 2 - Getting Started Guide | 133

The Add Server Machine: <system name> window appears.

33. Enter the host name or IP address of the mirror server in the IT network (Mirror Server 2 in the

example), select the Set as Mirror of Mirror check box, and then select Add.

The distributed server is added to the system. A distributed location is added in the server.

34. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Systems.

A list of systems appears in the main section.

35. Expand Mirror Server 1.

A list of servers in the system appears. In the example, Mirror Server 1, Mirror Node 1, and Mirror

Server 2 appear.

A mirror of mirror is configured with one primary node and one mirror node each in the OT and IT

networks. As needed, you can add more mirror nodes in each network.

Upgrade the Historian Server

If any Historian applications or components are open, close them before upgrading the Historian server.

If you are upgrading from either Historian 6.0 Enterprise or previous releases of Historian 7.2 (including

any of the service packs), both Client Manager and Configuration Manager services will be removed.

However, this will have no impact on your data or use of Historian unless you intend to use a distributed

system.

Install the Historian server (on page 104).

The Historian server is upgraded to the latest version.

About Historian Log Files

Historian creates the following types of log files:

• The .IHA files: These files contain data about archives. They are created by the Historian server

after data collection begins. By default, these files are located in the C:\Historian Data

\Archives folder.

• The .IHC files: These files contain data about Historian configuration. They are created by the

Historian server. By default, these files are located in the C:\Historian Data\Archives folder.

There are two types of .IHC files:

◦ *CentralConfig.ihc: This is the master configuration file used by Configuration

Manager.

◦ *config.ihc: This is used by the data archiver and is generated from

*CentralConfig.ihc. This is to maintain consistency between Historian versions.

Historian | 2 - Getting Started Guide | 134

• The .LOG files: These files contain logging data (such as events, warnings, and errors). They are

created by the archiver and the collectors. By default, they are located in the C:\Historian

Data\LogFiles folder.

• The .SHW files: These files contain configuration data. They are created by the archiver and the

collectors. By default, they are located in the C:\Historian Data\LogFiles folder.

FAQs on Installing Historian in a Distributed Environment

• What happens when a node that was down is up and running? Is the data written to one node

synchronized with another?

There is no automatic synchronization. If a node is down, the information to be written is buffered

by Client Manager, or if Client Manager is down, it is buffered by the collector. When the node is up

and running, data is written to the data archiver.

• There is only one Configuration Manager on the primary node. Can I still configure if the primary

node is down?

No. If the Configuration Manager is not available, you can read the configuration (because this

information is stored in the collectors), but you cannot edit or modify the configuration.

• Is Configuration Manager a single point of failure?

Yes. If the primary node is down, you cannot edit the configuration. However, since information

about the configuration is stored in the registry of each client, the information is still available as

read-and-write-only when the primary node is down.

If the Configuration Manager service is down, you cannot query tags and data in a horizontally

scalable system. However, you can query tags and data in the following scenarios:

◦ The Historian system contains only one node, which is installed as the primary mirror

Historian server.

◦ The Historian system contains only one mirror location, and there are no data stores in the

distributed locations.

• What happens if a node crashes in the middle of a read/write request?

The operation continues to function in the same way as in prior releases. Client Manager holds

a copy of the message request; therefore, once the node is up and running, the write operation is

resumed. However, read requests will fail.

• The server where my primary node is installed is down. What is the expected behavior?

Historian | 2 - Getting Started Guide | 135

The Web Admin console and Trend Client will not be available; you can access tag configuration

using Historian Administrator, but you will not be able to edit tag configuration. All other existing

clients continue to work as expected, with the ability to collect and store data, search for tags,

trend and report on tag information. A new user connection with default Historian server set to

primary must connect to the primary node to get information about all the nodes before it gains the

ability to automatically failover when the primary node is down.

• Client Manager on the primary node is down, but the server is running. What is the expected

behavior?

The Web Admin console and Trend Client, along with all other existing clients, will work as

expected with the ability to do configuration changes, collect and store data, search for tags, trend

and report on tag information. A new user connection with default Historian server set to primary

must connect to the primary node to get information about all the mirrors before it gains the ability

to automatically failover when the primary node is down.

• One of the data archivers is down, but at least one is active. What is the expected behavior?

The system should continue to function as designed. The Web Admin console, Trend Client,

Historian Administrator, as well as other clients continue to work as expected, with the ability to

collect and store data, search for tags, trend and report on tag information.

• If there are calculated tags in a distributed environment, are the calculations done on all nodes?

Yes.

• Are Historian tag statistics created independently? Can they be different between different nodes?

Yes. These are queries, not tags, to a specific data archiver. As writes are independent, one data

archiver may be ahead of another, so the statistics may vary slightly.

• How do we ensure that the data is consistent across data archivers?

Tag information is consistent; there is only one tag. The time stamp and value are sent to all the

nodes.

• Are there specific log files that I should be looking for to help diagnose issues with failure modes?

No changes were made to the logs for data archiver; however, there are new log files for Client

Manager and Configuration Manager.

• There are now two *.ihc files: *config.ihc and *CentralConfig.ihc. What is the difference

between the two?

Historian | 2 - Getting Started Guide | 136

*CentralConfig.ihc is the master configuration file used by Configuration Manager. The

*config.ihc file is used by the data archiver and is generated from *CentralConfig.ihc.

This is to maintain consistency between Historian versions.

• With mirroring, is Microsoft Cluster Server still supported? What is the recommended approach?

Mirroring is offered as a substitute to Microsoft Cluster Server. Mirroring provides high availability

for locations. Microsoft Cluster Server has not been tested or validated to date with Historian

systems.

• Should I install SQL server in a distributed environment?

No. SQL server is only required for the Historian Alarms and Events database.

• How does mirroring work with Historian Alarms and Events SQL logging?

There is still an alarm archiver; it does not go through Client Manager, so it connects with SQL as

earlier.

• How does Historian Alarms and Events fit with their synching?

There is one database, so everyone talks to the same SQL database. You can cluster the database,

but that is separate from mirroring.

• How does mirroring work in a workgroup environment or non-domain?

Mirroring is not supported in Workgroups.

• Are there any issues when making changes in Historian Administrator and a mirrored system?

You must establish a mirror using the Historian Configuration Hub, but compatibility with all APIs

has been maintained. Therefore, you can make tag changes in either the Web Admin or the VB

Windows Admin, and those changes will show up in both Admins.

• Are there any plans to add more than three mirrors?

No performance benefits have been seen beyond three mirrors.

• Do redundant collectors behave differently in a distributed environment?

No.

• Are there any conflicts when using port 14000 for Historian to Historian communications (for

example, Site to Corporate)?

No. Client Manager is now on port 14000, data archiver is on port 14001, and Configuration

Manager is on port 14002.

Historian | 2 - Getting Started Guide | 137

• If load balancing uses round robin reads, does the cache need to be loaded separately on both

machines, and will it decrease performance?

It does require more memory. Client Manager decides where to send the messages, and it knows

about the configuration. There is some overhead, but it is overcome by having multiple data

archivers to service multiple requests. That is why there is a 1.5X improvement with two mirrors,

instead of 2X.

• Are there any additional considerations if a distributed system is used with other GE applications

such as Workflow or Plant Applications?

No. It still looks like one Historian to other applications.

• Is the store-and-forward feature also used in a distributed environment?

Yes. This is a feature of the collector. Once the message is sent to Client Manager, it is done. If the

Client Manager cannot reach one of the data archivers, it buffers the request until the archiver is

available.

• In a distributed environment, do existing queries and reports work the same?

Yes. Everything works the same as it did before. It sees it as a single Historian and communicates

over the same ports through the same API.

• Does the Historian OPC Classic HDA server still work in a distributed environment?

Yes.

• If data is being written to two data archivers, does this double the traffic from the collector?

No. It does not double traffic from the collector; it sends a single message to Client Manager. The

traffic is doubled between the Client Manager and the two data archivers.

Register with Configuration Hub

Ensure the following:

• Installed Web-based Clients (on page 154), specifying the details of the new Proficy

Authentication and Configuration Hub servers.

The Historian server and Web-based Clients must always point to the same Proficy Authentication server

and Configuration Hub server. Only then you can access Web-based Clients (such as Configuration Hub,

Trend Client, the Web Admin console, and REST APIs), and also view Historian license information on

Configuration Hub. Therefore, you can use the Proficy Authentication Tool in the following cases:

Historian | 2 - Getting Started Guide | 138

• If you changed the Proficy Authentication server used by Web-based Clients, the Historian server

must point to the same Proficy Authentication and Configuration Hub servers.

• If you did not select the Use existing Proficy Authentication and Configuration Hub Instance

during the Historian Server, and now you want to register with the Proficy Authentication and

Configuration Hub servers to use the Historian Web-based clients and view Historian license

information on Configuration Hub.

This topic describes how to register the Historian Server with the Proficy Authentication server and

Configuration Hub server without the need to reinstall it.

1. Access the UAAConfiguration.exe file. By default, it is located at <Install Drive>:

\Program Files\Proficy\Proficy Historian\x64\Server.

Alternatively, you can search for the Proficy Authentication Tool in the Windows search bar and

open it.

The Proficy Authentication Configuration tool window appears, displaying the Proficy

Authentication server details that you specified while installing the Historian server. Also, it allows

you to specify the Configuration Hub server details.

2. In Proficy Authentication Server Details, provide the following details as described in the table

below.

Field Description

Proficy Au

thentication

server name

Enter the name of the machine on which the Proficy Authentication server is in

stalled. If the machine uses a fully qualified domain name (FQDN), provide the

FQDN. By default, the local hostname is considered.

Public https

port

Enter the port number used by the Proficy Authentication service. The default

value is 443. Ensure that this port number matches the one on the TCP Port As

signments page during Web-based Clients installation.

Admin Client

Id

The client ID to connect to the Proficy Authentication service.

Admin Client

Secret

The password to connect to the Proficy Authentication service.

Proficy Au

thentication

Test Connec

tion

Option to test the status of the connection with external Proficy Authentication

server.

Historian | 2 - Getting Started Guide | 139

3. In Configuration Hub Server Details, provide the following details as described in the table below.

Table 10.

Field Description

Configu

ration Hub

server name

The server name or the FQDN of the existing Configuration Hub server, as dis

played in the address bar of the browser when you access Configuration Hub from

the machine where Configuration Hub is installed.

Configu

ration Hub

Public https

port

The web server (https) port that you want to use for Configuration Hub. By default,

it is 5000.

Configu

ration Hub

Test Con

nection

Option to test the status of the connection with an existing Configuration Hub

server.

4. Select Configure.

The Proficy Authentication server and Configuration Hub details are updated for the Historian

server. The changes are reflected as soon as you refresh the browser in which you have opened

any of the Web-based Clients components (such as Configuration Hub, the Web Admin console,

Trend Client).

If testing the connection fails, try these steps:

• Verify that you can ping the Proficy Authentication server. If you cannot ping the Proficy

Authentication server, add the IP address and the server name in the hosts file located in C:

\Windows\System32\drivers\etc.

• Ensure that the following services are running on the Proficy Authentication server machine:

◦ Proficy Operations Hub Httpd Reverse Proxy

◦ Proficy Authentication Tomcat Web Server

◦ All the GE Proficy Configuration Hub services

• Verify that the Proficy Authentication server details provided during Web-based Clients installation

match the ones you have specified in the Proficy Authentication Configuration tool.

Historian Installation Limitations

Historian | 2 - Getting Started Guide | 140

• You cannot close your current archive with a Historian Mirror Primary Server and Historian Mirror

Node installation. This is because closing the current archive introduces archive synchronization

risks in a mirrored environment. The restriction is enforced on all Historians, even those not using

mirroring.

• You cannot use size-based archives with a Historian Mirror Primary Server and Historian

Mirror Node installation. This is because having archives of different sizes introduces archive

synchronization risks in a mirrored environment. The restriction is enforced on all Historians, even

those not using mirroring.

Alarms and Events

Install Alarms and Events

• You must install Historian Alarms and Events on the same machine as the data archiver.

• If you have chosen to connect Historian to a remote SQL server, the following conditions must be

satisfied:

◦ The Historian Alarm Archiver service must be run on a user account that has privileges to

log in to the SQL server using Windows authentication.

◦ The default backup path, which you can set on the Archive page, must be a shared directory

that is accessible to both the Historian Data Archiver and the remote SQL server. It is

recommended that this shared directory be placed on the same computer as the Historian

Data Archiver service.

1. Run the InstallLauncher.exe file.

2. Select Install Alarms and Events.

The Alarms and Events Archiver page appears.

Historian | 2 - Getting Started Guide | 141

3. If needed, change the values in the Server Name and Database Name fields to provide the name of

the SQL server and the name of the database where the alarms and events data is archived.

4. If you want to use the SQL server credentials, clear the Use Windows Authentication check box,

and then enter the SQL server login credentials in the Admin User and Password fields. If you want

to use Windows authentication, select the Use Windows Authentication check box. When you do

so, the Admin User and Password fields are disabled.

5. Select Next.

6. When prompted to restart your system, select Yes.

Historian Alarms and Events is installed in the following folder: <installation drive>:

\Program Files\Proficy\Proficy Historian\x86\Server, and the following registry

path is created: HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\ Intellution, Inc.

\iHistorian\Services\AlarmArchiver

Historian | 2 - Getting Started Guide | 142

7. To verify that the Alarms service has started, access the Services window, and check the status of

the Historian Alarm Archiver service.

If the Startup Type field is set to Automatic, the service is started automatically when the system is

started or restarted.

Upgrade Alarms and Events

• If Alarms and Events were installed prior to Historian 7.0, you must install them separately.

• If you want to upgrade from Historian 4.5, since the database schema are different, if you select

the same database name that is pre-populated by default, you will get an error message: Later

or Higher version of Alarms and Events database is already installed. Hence, you cannot

proceed further. You need to enter a different database name and then proceed with the upgrade.

Install Alarms and Events (on page 140).

Alarms and Events are upgraded to the latest version.

About Installing Historian Data Collectors

When you install collectors, the required binaries are downloaded. In addition, if iFIX/CIMPLICITY are

installed on the same machine as the collectors, instances of the following collectors are created:

• The iFIX collector

• The iFIX Alarms & Events collector

• The OPC Classic Data Access collector for CIMPLICITY

• The OPC Classic Alarms and Events collector for CIMPLICITY

If an iFIX collector instance created in version 9.0 exists, after you upgrade collectors, another instance of

the iFIX collector is created. Because of this, the Remote Collector Manager (RCM) will not work correctly.

Therefore, if you want to use RCM, you must delete one of the instances. If needed, you can manually

create another instance of the iFIX collector using Configuration Hub or the RemoteCollectorConfigurator

utility. This is applicable to the iFIX Alarms and Events collector as well.

Note:

If you want to upgrade collectors earlier than version 7.1, additional registries that you create

manually are deleted. Therefore, we recommend that you back them up, uninstall the collectors,

and then install the latest version.

Historian | 2 - Getting Started Guide | 143

Install Collectors Using the Installer

After you install collectors, the following artefacts will be available:

• Executable files: These files are required to add a collector instance.

• Instances of the following collectors:

◦ The iFIX collector

◦ The iFIX Alarms & Events collector

◦ The OPC Classic Data Access collector for CIMPLICITY

◦ The OPC Classic Alarms and Events collector for CIMPLICITY

These instances will be created only if iFIX and/or CIMPLICITY are installed on the same machine

as the collectors.

• The Remote Collector Management agent: Provides the ability to manage collectors remotely.

1. Run the InstallLauncher.exe file.

2. Select Install Collectors.

The welcome page appears.

3. Select Next.

The license agreement appears.

4. Select the Accept check box, and then select Next.

The default installation drive appears.

Historian | 2 - Getting Started Guide | 144

5. If needed, modify the installation drive, and then select Next.

The data directory page appears.

Historian | 2 - Getting Started Guide | 145

6. If needed, change the folder for storing the collector log files, and then select Next.

The destination Historian server page appears.

Historian | 2 - Getting Started Guide | 146

7. Provide the credentials of the Windows user account of the destination Historian server to which

you want Remote Management Agent to connect.

These details are required for Remote Collector Manager to connect to Historian to manage the

collectors remotely. If you are installing collectors on same machine as the Historian server, and

if strict collector authentication is disabled, you need not provide these details; by default, the

machine name of the local Historian server is considered. If, however, they are installed on different

machines, or if strict collector authentication is enabled, you must provide the credentials of the

Historian server user.

8. Select Next.

The You are ready to install page appears.

9. Select Install.

The installation begins.

10. When you are prompted to reboot your system, select Yes.

Historian | 2 - Getting Started Guide | 147

The collector executable files are installed in the following folder: <installation drive>:\Program

Files (x86)\GE Digital\<collector name>. The iFIX collectors are installed in the following

folder: C:\Program Files\GE\iFIX. The following registry paths are created:

• HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\ GE Digital\iHistorian\Services

\<collector type>

• HKEY_LOCAL_MACHINE\SOFTWARE\GE Digital\iHistorian\Services\<collector

type>

In addition, if iFIX and/or CIMPLICITY are installed on the same machine as the collectors, instances of

the following collectors are created:

• The iFIX collector

• The iFIX Alarms & Events collector

• The OPC Classic Data Access collector for CIMPLICITY

• The OPC Classic Alarms and Events collector for CIMPLICITY

Installing a Collector at a Command Prompt

After you install collectors and Remote Management Agent, the following artefacts will be available:

• Executable files: These files are required to add a collector instance.

• Instances of the following collectors:

◦ The iFIX collector

◦ The iFIX Alarms & Events collector

◦ The OPC Classic Data Access collector for CIMPLICITY

◦ The OPC Classic Alarms and Events collector for CIMPLICITY

These instances will be created only if iFIX and/or CIMPLICITY are installed on the same machine

as the collectors.

• The Remote Collector Management agent: Provides the ability to manage collectors remotely.

Using Configuration Hub, you will then add a collector instance and begin using the collector.

This topic describes how to install collectors at a command prompt. You can also install them using the

installer (on page 143).

1. Navigate to the Collectors folder in the installation folder.

2. At a command prompt, enter:

Collectors_Install.exe -s RootDrive=<value> DestinationServerName=<value>

DataPath="<value>" UserName1=<value> Password=<value>

Historian | 2 - Getting Started Guide | 148

Parameter Description Default Value

RootDrive The installation drive for the

collectors.

C:\

DataPath The folder for storing the col

lector log files.

C:\Proficy Historian

Data

DestinationServerName The host name of the destina

tion Historian server to which

you want collectors to send da

ta.

This is required for Remote

Collector Manager to connect

to Historian to manage the col

lectors remotely. If you are in

stalling collectors on the same

machine as the Historian serv

er, and if strict collector au

thentication is disabled, you

need not provide the server

name; by default, the machine

name of the local Historian

server is considered. If, howev

er, they are installed on differ

ent machines, or if strict collec

tor authentication is enabled,

you must provide the creden

tials of the Historian server

user.

local host name

UserName1 The username of the Windows

user of the destination Histori

an server. A value is required

only if the destination Histori

an server and collectors are on

different machines.

Historian | 2 - Getting Started Guide | 149

Parameter Description Default Value

Password The password of the Windows

user of the destination Histori

an server. A value is required

only if the destination Histori

an server and collectors are on

different machines.

For example: Collectors_Install.exe -s RootDrive=C:\ DestinationServerName=myservername

DataPath="C:\Proficy Historian Data" UserName1=user123 Password=xyz123

3. Restart the machine. If you uninstall a collector or install another one before restarting the

machine, an error may occur.

The collector executable files are installed. In addition, if iFIX and/or CIMPLICITY are installed on the

same machine as the collectors, instances of the following collectors are created:

• The iFIX collector

• The iFIX Alarms & Events collector

• The OPC Classic Data Access collector for CIMPLICITY

• The OPC Classic Alarms and Events collector for CIMPLICITY

1. Ensure that the Windows user that you have specified while installing collectors is added to the iH

Security Admins and iH Collector Admins groups.

2. Enable trust for a client certificate for Configuration Hub.

3. Enable trust for a self-signed certificate on Chrome (on page 97).

4. Import an issuer certificate.

You are now ready to use Configuration Hub. To add and manage collector instances, you can use

Configuration Hub or Remote Collector Management. For instructions specific to setting up the iFIX

collector and the iFIX Alarms and Events collector, refer to Working with iFIX Collectors.

Upgrade Collectors

• Ensure that you are attempting to upgrade the collectors that were installed using the Historian

Installation Package. If you previously installed the collectors using the Proficy Installer, such as

the iFIX Proficy Installer, you must upgrade the collectors using the Proficy Installer only.

• If an iFIX collector instance created in version 9.0 exists, after you upgrade collectors, another

instance of the iFIX collector is created. Because of this, the Remote Collector Manager (RCM)

https://www.ge.com/digital/documentation/confighub/version2024/g_confighub_client_certificates.html
https://www.ge.com/digital/documentation/opshub/windows/windows/t_import_certificate.html

Historian | 2 - Getting Started Guide | 150

will not work correctly. Therefore, if you want to use RCM, you must delete one of the instances. If

needed, you can manually create another instance of the iFIX collector using Configuration Hub or

the RemoteCollectorConfigurator utility. This is applicable to the iFIX Alarms and Events collector

as well.

• For collectors earlier than version 7.1, additional registries that you create manually are deleted.

Therefore, we recommend that you back up them, uninstall the collectors, and then install the latest

version.

Install the collectors (on page 142).

The collectors are upgraded to the latest version.

Client Tools

Install Client Tools

When you install Client Tools, the following components are installed by default:

• Client Tools

• Historian Administrator

• OLE DB provider (driver and samples)

• The OPC Classic HDA server

• User API and SDK

• Historian Client Access API

• Collector Toolkit

This topic describes how to install Client Tools using the installer. You can also install it at a command

prompt (on page 153).

1. Run the InstallLauncher.exe file.

2. Select Install Client Tools.

The Select Features page appears, displaying a list of components that you can install with Client

Tools.

Historian | 2 - Getting Started Guide | 151

By default, the check boxes for components such as Historian Administrator, HDA Server, OLE DB,

and User API and SDK are selected. If you do not want to install them at this time, clear the check

boxes. You cannot, however, clear the Proficy Historian Client Tools check box.

Important:

If you are reinstalling, you must select all of the previously installed components. If you do

not do so, the component will be uninstalled.

By default, the Historian Excel Add-in 64-bit check box is cleared. If you want to install Excel Add-

In along with Client Tools installation, select the check box.

Note:

If using certain versions of Windows (like Windows 10 or Windows 2019), you may receive

an error message while installing Excel Add-In, stating that some of the DLL files are not

registered. You can ignore these messages.

The Historian Server Security page appears.

Historian | 2 - Getting Started Guide | 152

3. Select the user account that should be granted the access to administer Historian.

You are provided with the following options:

Option Description

All Users If you select this option, all local, including do

main user accounts will have the administra

tor access of the Historian server. If needed,

to control access, you can configure security

groups after installation.

Specific User If you select this option, the user that you select

will have the administrator access of the Histo

rian server. If needed, you can grant a restricted

or administrator access to other users after in

stallation.

Historian | 2 - Getting Started Guide | 153

4. Select Next.

5. When you are asked to reboot your system, select Yes.

Client Tools, along with the selected components, are installed in the following folder: <installation

drive>:\Program Files\Proficy\Proficy Historian\x86\<tool name>. If you have

selected HDA Server, Microsoft .NET Framework 4.5 and the OPC Core Components 3.00 redistributable

are installed as well.

Install Client Tools at a Command Prompt

1. If you want to install Excel Add-In for Historian, install one of the following 32-bit or 64-bit

Microsoft® Excel® applications:

◦ Microsoft® Excel® 2019

◦ Microsoft® Excel® 2016

◦ Microsoft® Excel® 2013

◦ Microsoft® Excel® 2010

2. Install Client Tools using the installer (on page 150) on a machine. When you do so, a template

file named setup.iss is created at C:\Windows. This file stores the installation options that

you have provided. You can then use this template to install Client Tools at a command prompt on

other machines.

When you install Client Tools, the following components are installed by default:

• Client Tools

• Historian Administrator

• OLE DB driver and samples

• The OPC Classic HDA server

• User API and SDK

• Historian Client Access API

• Collector Toolkit

1. Copy the setup.iss file to the machine on which you want to install Client Tools at a command

prompt.

2. In the folder in which you have copied the file, run the following command: setup.exe /s /sms

The installer runs through the installation steps.

Historian | 2 - Getting Started Guide | 154

Note:

If using certain versions of Windows (like Windows 10 or Windows 2019), you may receive

an error message, stating that some of the DLL files are not registered. You can ignore

these messages.

3. When prompted to reboot your system, select Yes.

Client Tools are installed.

If you have installed Excel Add-in, activate it (on page 197).

About Installing Web-based Clients

Using Web-based Clients, you can configure and manage Historian systems and their components using a

browser.

When you install Web-based Clients, you can install the following components:

• Configuration Hub: Allows you to manage Historian systems and its components. You can set up

stand-alone as well as horizontally scalable systems. You can also add collector instances and

manage them.

• Trend Client: Provides access to process and equipment data, allowing you to quickly troubleshoot

and make improvements, leading to time and cost savings through the use of trend charts and

current value tables.

• The Web Admin console: Allows you to monitor, supervise, archive, retrieve, and control data

gathered from Historian systems.

• The Proficy Authentication service (optional): Provides identity-based security for applications

and APIs. It supports open standards for authentication and authorization, including Oauth2.

You can install Proficy Authentication and Configuration Hub, or you can point to existing Proficy

Authentication and Configuration Hub instances.

• Rest APIs: Allow you to query data from a Historian server.

You can install Web-based Clients using a GUI-based installer (on page 155) or at a command prompt

(on page 171).

Important:

When you install Web-based Clients:

Historian | 2 - Getting Started Guide | 155

• If you want to reinstall the same version of Web-based Clients, you must uninstall and then

install Web-based Clients.

• If, even after installing Web-based Clients, you cannot access a web component, start the

Proficy Operations Hub Httpd Reverse Proxy and the Data Archiver services.

Install Web-based Clients Using the Installer

1. Install the Historian server (on page 105). During the installation, in the Register with

Configuration Hub page, select the Use existing Proficy Authentication and Configuration Hub

Instance check box, and the provide the Proficy Authentication server and Configuration Hub server

details.

Note:

This step is needed only in the following cases:

◦ The Historian Server and the Web-based clients will be on two different machines.

◦ You already installed Proficy Authentication and Configuration Hub, and you want

use the Historian Web-based clients and view the Historian license information on

Configuration Hub.

If you do not select the Use existing Proficy Authentication and Configuration Hub

Instance during the installation, to use the Historian Web-based clients and view

the Historian license information on Configuration Hub, you must use the Proficy

Authentication Tool (on page 137) to register with Proficy Authentication and

Configuration Hub servers.

If you do not have Proficy Authentication and Configuration Hub installed, and

you intend to use the Historian Web-based clients and view the Historian license

information on Configuration Hub, you can install them while installing the Web-

based clients.

Historian | 2 - Getting Started Guide | 156

2. If you want to use Web-based Clients in a cluster environment, ensure that your network is enabled

for multicast traffic, and set up high availability on each node in the cluster.

This topic describes how to install Web-based Clients using a GUI-based installer.

You can also install Web-based Clients using the command line.

During the installation, you can choose to use Web-based Clients in a cluster environment, thus ensuring

high availability of connection to the Historian server using the client applications.

1. Run the InstallLauncher.exe file.

2. Select Install Web-based Clients.

The welcome page appears.

3. Select Next.

The license agreement appears.

4. Select the Accept check box, and then select Next.

The TCP port assignments page appears.

https://www.ge.com/digital/documentation/historian/version2024/t_set_up_high_availability_of_wc.html
https://www.ge.com/digital/documentation/historian/version2024/c_installing_web-based_clients_using_the_command_line.html
https://www.ge.com/digital/documentation/historian/version2024/c_installing_web-based_clients_using_the_command_line.html
https://www.ge.com/digital/documentation/historian/version2024/c_installing_web-based_clients_using_the_command_line.html

Historian | 2 - Getting Started Guide | 157

5. As needed, change the values for TCP port assignments as described in the following table, and

then select Next.

Field Description

Public https

port

Port for https protocol communication used by Web-based Clients (through a fire

wall). The default value is 443. Ensure that this port number matches the one you

specify while installing the Historian server. In addition:

◦ If you will install Operations Hub later on the same machine, the value that

you provide in this field is populated while installing Operations Hub.

◦ If you have already installed Operations Hub on the same machine, this

field is disabled and populated with the value you have provided while in

stalling Operations Hub.

Proficy Au

thentication

http port

Port for http protocol communication used by the Proficy Authentication service.

The default value is 9480.

Historian | 2 - Getting Started Guide | 158

Field Description

Proficy Au

thentication

database

port

Port for the Proficy Authentication database. The default value is 9432.

Historian

http port

Port for the http protocol communication used by Web-based Clients. The default

value is 8070.

Historian

database

port

Port for the PostgreSQL Historian database. The default value is 8432.

The Fully Qualified Domain Name(s) page appears.

◦ If you will install Operations Hub later on the same machine, the value that you provide in the

FQDNs field is populated while installing Operations Hub.

◦ If you have already installed Operations Hub on the same machine, the FQDNs field is

disabled and populated with the value you have provided while installing Operations Hub.

Historian | 2 - Getting Started Guide | 159

6. In the FDQNs field, enter the fully qualified domain names, and then select Next.

This enables you to access Historian web applications remotely. You can use it to access the Web

Admin console using alias names. Enter the values separated by commas.

To access the Web Admin console using any of the following URLs, enter

Test.abc.ge.com,localhost,127.0.0.1,aliasName

◦ https:// Test.abc.ge.com /historian-visualization/hwa

◦ https:// 127.0.0.1 /historian-visualization/hwa

◦ https:// aliasName /historian-visualization/hwa

◦ https:// localhost /historian-visualization/hwa

Important:

◦ Do not enter a space between the values.

◦ You must add the IP address and alias name in the hosts file located at C:

\Windows\System32\drivers\etc. The IP address that you add must be a

static or fixed IP address.

Format: <IP address> <alias name>

Example: 1.2.3.4 myservername

◦ FQDN is not supported for Configuration Hub.

The Cluster Configuration page appears.

https://win7profsp1.htclab.ge.com/historian-visualization/hwa
https://win7profsp1.htclab.ge.com/historian-visualization/hwa
https://win7profsp1.htclab.ge.com/historian-visualization/hwa
https://win7profsp1.htclab.ge.com/historian-visualization/hwa

Historian | 2 - Getting Started Guide | 160

If, however, you are upgrading Web-based Clients, this page does not appear. In that case, skip the

next step.

7. If you want high availability of Web-based Clients, select the Cluster Node check box, and enter

values as described in the following table.

Field Description

Historian Database Folder Provide the database folder in the shared dri

ve that you have created. The default value is

C:\ProgramData\GE\OperationsHub. You

must change this value.

Cluster FQDN Enter the client access point of the role for

which you have added the resources while set

ting up high availability (on page 182).

Multicast Address If needed, modify the common IP address that

all the nodes in the cluster can use. Enter a val

ue between 224.0.0.0 and 239.255.255.255

Historian | 2 - Getting Started Guide | 161

Field Description

(or a hostname whose IP address falls in this

range).The default value is 228.0.0.4.

Historian Cluster Membership Port If needed, modify the common port number

that all the nodes in the cluster can use. The de

fault value is 45564. This port number, in con

junction with the multicast address, is used to

create the cluster.

Historian Cluster Receiver Port If needed, modify the multicast port number

that you want to use for incoming Historian da

ta. The default value is 4000.

8. Select Next.

The Proficy Authentication page appears, allowing you to choose whether you want to install

Proficy Authentication along with Web-based Clients installation or use an existing Proficy

Authentication.

Historian | 2 - Getting Started Guide | 162

◦ If you want to install Proficy Authentication, clear the Use Existing Proficy Authentication

check box. If you want to include Proficy Authentication in the cluster, you must install

Proficy Authentication locally on each cluster node.

◦ If you want to use an existing Proficy Authentication server, select the Use Existing Proficy

Authentication check box. Proficy Authentication is detected if you installed it using a

unified installer or Operations Hub, or if Historian uses Proficy Authentication installed

remotely from an earlier version.

9. If you want to install Proficy Authentication, enter the Admin client secret, re-enter the secret, and

then select Next.

The admin client secret must satisfy the following conditions:

◦ Must not contain only numbers.

◦ Must not begin or end with a special character.

◦ Must not contain curly braces.

Note:

The format of username for Historian Web-based Clients is <host name>.admin, where

<host name> is the machine on which Web-based Clients are installed. And, the default

client ID is admin. Both the host name and client ID are case-sensitive.

If, however, the Proficy Authentication server hostname is long, resulting in a username

longer than 20 characters, Windows does not allow you to create the user. In that case, you

can create a Proficy Authentication user, and then create the corresponding Windows user,

using the uaa_config_tool utility.

10. Alternatively, if you want to use an existing Proficy Authentication service (that is, a Proficy

Authentication instance already installed by an external application such as Operations Hub):

a. Select the Use Existing Proficy Authentication check box.

The fields for the existing Proficy Authentication service appear.

https://www.ge.com/digital/documentation/historian/version2024/t_hgs_using_the_uaa_config_tool.html

Historian | 2 - Getting Started Guide | 163

b. Enter values as described in the following table.

Field Description

Profi

cy Au

thenti

cation

Base

URL

Enter the URL of the external Proficy Authentication server in the following for

mat: https://<Proficy Authentication server name>:<port number>, where <Proficy

Authentication server name> is the FQDN or hostname of the machine on which

Proficy Authentication is installed. By default, the port number is 443.

Note:

Do not enter a trailing slash character.

Admin

Client

ID

Enter the client name that you provided while installing the external Proficy Au

thentication. The default value is admin.

Admin

Client

Secret

Enter the client secret that you provided while installing the external Proficy Au

thentication.

Historian | 2 - Getting Started Guide | 164

c. Select Test Connection.

The results of the connection test appear. You cannot proceed until the connection is

successful.

11. Select Next.

The Configuration Hub Installation page appears, allowing you to choose whether you want to

install Configuration Hub along with Web-based Clients or use an existing Configuration Hub.

Configuration Hub allows you to add and manage a collector instance remotely. For more

information, refer to About Configuration Hub.

If, however, an earlier version of Configuration Hub is available on the same machine, you will be

prompted to enter the details of the existing Configuration Hub, and it will be upgraded to the latest

version. If that happens, skip the next step.

https://www.ge.com/digital/documentation/historian/version2024/c_about_enterprise_historian.html

Historian | 2 - Getting Started Guide | 165

Important:

By default, Configuration Hub points to the same Proficy Authentication server as the

one you provided during the Historian server installation. If you want to install Web-based

Clients in a cluster environment, ensure that:

◦ Configuration Hub does not use the same Proficy Authentication server as that used

by the cluster.

◦ The Proficy Authentication and Configuration Hub details must be the same for all

cluster nodes.

12. If you want to install Configuration Hub, ensure that the Use Existing Configuration Hub check box

is cleared, and then provide values as described in the following table.

Field Description

Install Location If needed, modify the installation folder for Con

figuration Hub.

Plugin Name If needed, modify the name of the Configuration

Hub plugin for Historian. The default value is in

the following format: Historian_<host name>. If,

however, you are installing Web-based Clients

in a cluster environment, the default value is

Historian_<cluster name>. You can modify this

value, but provide the same value for all the

nodes in the cluster.

Server Port If needed, modify the port number that you

want to use for the web server. The default val

ue is 5000. If you want to install Web-based

Clients in a cluster environment, provide the

same value for all the nodes in the cluster.

Container Port If needed, modify the port number for the Con

figuration Hub container. The default value is

4890.

ConfigHub Admin Port This is the port number of the Configuration

Hub admin. The default value is 4890. If need

ed, you can change the port number.

Historian | 2 - Getting Started Guide | 166

Field Description

Client ID Enter the username to connect to Configuration

Hub. The default value is admin. The value that

you enter can contain:

◦ All English alphanumeric charac

ters (ABCDEFGHIJKLMNOPQRSTU

VXYZ abcdefghijklmnopqrstuvwxyz_

0123456789)

◦ The following special characters: ><:~!

@#$%^&*?|

Client Secret Enter the password to connect to Configuration

Hub. The value that you enter can contain:

◦ Must contain at least eight characters.

◦ All English alphanumeric charac

ters (ABCDEFGHIJKLMNOPQRSTU

VXYZ abcdefghijklmnopqrstuvwxyz_

0123456789)

◦ The following special characters: ><:~!

@#$%^&*?|

Re-enter Secret Re-enter the password to connect to Configura

tion Hub.

13. Alternatively, if you want to use an existing Configuration Hub:

a. Select the Use Existing Configuration Hub check box. This check box is disabled if an

existing Configuration Hub is detected.

The fields for the existing Configuration Hub appear.

Historian | 2 - Getting Started Guide | 167

b. Provide values as described in the following table.

Field Description

Plugin Name If needed, modify the name of the Configu

ration Hub plugin for Historian. The default

value is in the following format: Historian_

<host name>

Server Name Enter the server name or the FQDN of the

existing Configuration Hub server, as dis

played in the address bar of the browser

when you access Configuration Hub from

the machine where Configuration Hub is in

stalled.

Server Port If needed, modify the port number that you

want to use for the web server. The default

value is 5000.

Historian | 2 - Getting Started Guide | 168

Field Description

Client ID If needed, modify the username to connect

to Configuration Hub. The default value is

admin.

Client Secret Enter the password to connect to Configura

tion Hub.

c. Select Test Connection.

The results of the connection test appear. You cannot proceed until the connection is

successful.

14. Select Next.

The default installation drive appears.

15. If needed, change the installation drive for Web-based Clients, and then select Next.

The log files location page appears.

Historian | 2 - Getting Started Guide | 169

16. If needed, change the location for log files, and then select Next.

The destination Historian server page appears.

Historian | 2 - Getting Started Guide | 170

17. Provide the name of the destination Historian server to which Web-based Clients are connected by

default. When you login to Configuration Hub, the default system will point to this server.

Note:

◦ Provide the name of either Historian single-server or mirror primary server

because the systems in Configuration Hub will be either a stand-alone system or a

horizontally scalable system.

◦ If you want to connect to a remote Historian server, you must disable the Enforce

Strict Client Authentication and Enforce Strict Collector Authentication options

using Historian Administrator in the remote server.

18. Select Next.

The You are ready to install page appears.

19. Select Install.

The Web-based Clients installation begins.

20. When you are prompted to reboot your machine, select Yes.

Historian | 2 - Getting Started Guide | 171

Historian Web-based Clients are installed in the following folder: <installation drive>:\Program

Files\GE, and the following registry paths are created:

• HKEY_LOCAL_MACHINE\SOFTWARE\GE Digital

• HKEY_LOCAL_MACHINE\SOFTWARE\GE

If you want to use Configuration Hub installed using other products such as iFIX, Plant Applications, and

so on, set up authentication to point to the Proficy Authentication instance.

Install Web-based Clients at a Command Prompt

1. Install the Historian server (on page 105). During the installation, in the Configure Web-based

Clients page, select the Do you wish to continue configuring web-based clients check box, and

provide the Proficy Authentication server and Configuration Hub server details.

2. If you want to use Web-based Clients in a cluster environment, ensure that your network is enabled

for multicast traffic, and set up high availability on each node in the cluster.

https://www.ge.com/digital/documentation/confighub/version2024/t_authentication_setup.html
https://www.ge.com/digital/documentation/historian/version2024/t_set_up_high_availability_of_wc.html

Historian | 2 - Getting Started Guide | 172

This topic describes how to install Web-based Clients at a command prompt. You can also install Web-

based Clients using an installer (on page 154).

During the installation, you can choose to use Web-based Clients in a cluster environment, thus ensuring

high availability of connection to the Historian server using the client applications.

1. If you want to install Web-based Clients with the default values, run the following command:

install.exe /quiet AdminClientSecret=<password> ConfigHubClientSecret=<password>

2. If you want to modify the default values, run the following command:

install.exe /quiet AdminClientSecret=<password> ConfigHubClientSecret=<password> <parameter>=<value>

The following table describes the installation parameters.

Parameter Description Default Value

PublicPort Port for https protocol commu

nication used by Web-based

Clients. Ensure that the value

for this parameter matches the

one you specify while installing

the Historian server. In addi

tion:

◦ If you will install Oper

ations Hub later on the

same machine, the val

ue that you provide for

this parameter is popu

lated while installing Op

erations Hub.

◦ If you have already in

stalled Operations Hub

on the same machine,

provide the same value

that you provided while

installing Operations

Hub.

443

Historian | 2 - Getting Started Guide | 173

Parameter Description Default Value

UAAHttpPort Port for http protocol commu

nication used by the Proficy

Authentication service.

9480

UAADatabasePort Port for the Proficy Authentica

tion database.

9432

HistorianHttpPort Port for the http protocol com

munication used by Web-based

Clients.

8070

HistorianDatabasePort Port for the PostgreSQL Histo

rian database.

8432

EmbeddedWebServerAlterna

tiveNames

The fully qualified domain

names to access Historian

web applications remotely.

You can use it to access the

Web Admin console using alias

names. Enter the values sepa

rated by commas.

For example, to access the

Web Admin console using

any of the following URLs, en

ter Test.abc.ge.com,local

host,127.0.0.1,aliasName

◦ https:// Test.abc.ge

.com /historian-visual

ization/hwa

◦ https:// 127.0.0.1 /histo

rian-visualization/hwa

◦ https:// aliasName /his

torian-visualization/hwa

◦ https:// localhost /histo

rian-visualization/hwa

https://win7profsp1.htclab.ge.com/historian-visualization/hwa
https://win7profsp1.htclab.ge.com/historian-visualization/hwa
https://win7profsp1.htclab.ge.com/historian-visualization/hwa
https://win7profsp1.htclab.ge.com/historian-visualization/hwa
https://win7profsp1.htclab.ge.com/historian-visualization/hwa
https://win7profsp1.htclab.ge.com/historian-visualization/hwa
https://win7profsp1.htclab.ge.com/historian-visualization/hwa
https://win7profsp1.htclab.ge.com/historian-visualization/hwa
https://win7profsp1.htclab.ge.com/historian-visualization/hwa

Historian | 2 - Getting Started Guide | 174

Parameter Description Default Value

Important:

◦ Do not enter a

space between

the values.

◦ If you have al

ready installed

Operations Hub

on the same

machine, enter

the same value

that you have

provided while

installing Opera

tions Hub.

◦ If you will in

stall Operations

Hub later on the

same machine,

the value that

you provide for

this parameter

is used while in

stalling Opera

tions Hub.

◦ You must add

the IP address

and alias name

in the hosts

file located

at C:\Win

dows\Sys

tem32\dri

vers\etc.

The IP address

that you add

Historian | 2 - Getting Started Guide | 175

Parameter Description Default Value

must be a stat

ic or fixed IP ad

dress.

Format: <IP ad

dress> <alias

name>

Example:

1.2.3.4 my

servername

◦ FQDN is not

supported for

Configuration

Hub.

AdminClientId The client ID to connect to the

Proficy Authentication service.

AdminClientSecret The password to connect to

the Proficy Authentication ser

vice. The password must satis

fy the following conditions:

◦ Must not contain only

numbers.

◦ Must not begin or end

with a special character.

◦ Must not contain curly

braces.

If the password does not sat

isfy these conditions, the in

stallation may be successful,

but Web-based Clients will not

work.

Not applicable

Historian | 2 - Getting Started Guide | 176

Parameter Description Default Value

Note:

The format of user

name for Historian

Web-based Clients is

<host name>.admin,

where <host name> is

the machine on which

Web-based Clients are

installed. And, the de

fault client ID is admin.

Both the host name

and client ID are case-

sensitive.

If, however, the Proficy

Authentication server

hostname is long, re

sulting in a username

longer than 20 char

acters, Windows does

not allow you to create

the user. In that case,

you can create a Profi

cy Authentication user,

and then create the

corresponding Win

dows user, using the

uaa_config_tool utility.

UseExternalUaa Identifies whether you want to

use an external Proficy Authen

tication service (that is, a Profi

cy Authentication instance al

ready installed by an external

application such as Operations

0

Historian | 2 - Getting Started Guide | 177

Parameter Description Default Value

Hub). If you want to use exter

nal Proficy Authentication, en

ter 1.

ActiveUaaBaseUrl The base URL to connect to ex

ternal Proficy Authentication.

A value is required only if you

want to connect to an exter

nal Proficy Authentication ser

vice. Enter a value in the fol

lowing format: https://<Proficy

Authentication server machine

name>:<public https port num

ber>. By default, the port num

ber is 443.

DoConfigHubNeedToInstall Identifies whether you want to

install Configuration Hub as

part of the web-based clients.

You can enter 1 to install, or 0

to not install Configuration Hub

as you may already have it in

stalled.

0

ConfigHubContainerPort The web server (https) port

that you want to use for Con

figuration Hub.

5000

ContainerPort The port for the Configuration

Hub container.

4890

ConfigHubAdminPort The port for the administration

service for Configuration Hub.

4920

ConfigHubInstallFolder The installation folder for Con

figuration Hub.

C:\Program Files

(x86)\GE\Configuration

Hub

UseExternalConfigHub Identifies whether you want

to use Configuration Hub in

0

Historian | 2 - Getting Started Guide | 178

Parameter Description Default Value

stalled with iFIX or on a remote

machine. If you want to use an

external Configuration Hub, en

ter 1.

RootDrive Enter the path pointing to a re

mote Configuration Hub. For

example E:\

ExternalConfigHubMachineName Enter the server name or the

FQDN of the existing Config

uration Hub server, as dis

played in the address bar of

the browser when you access

Configuration Hub from the

machine where Configuration

Hub is installed.

ConfigHubClientID The username to connect to

Configuration Hub. The value

that you enter can contain:

◦ All English alphanumer

ic characters (ABCDE

FGHIJKLMNOPQRS

TUVXYZ abcde

fghijklmnopqrstu

vwxyz_0123456789)

◦ The following special

characters: ><:~!@#$

%^&*?|

admin

ConfigHubClientSecret The password to connect to

Configuration Hub. The value

that you enter can contain:

◦ Must contain at least

eight characters.

◦ All English alphanumer

ic characters (ABCDE

Historian | 2 - Getting Started Guide | 179

Parameter Description Default Value

FGHIJKLMNOPQRS

TUVXYZ abcde

fghijklmnopqrstu

vwxyz_0123456789)

◦ The following special

characters: ><:~!@#$

%^&*?|

IsClusterNode Indicates whether you want

to install Web-based Clients

in a cluster environment. If

you want to install Web-based

Clients in a cluster environ

ment, enter 1. This is not ap

plicable if you are upgrading

Web-based Clients.

0

PostgresBaseDir The folder in the shared drive

that you want to use for His

torian database if you want

to add the Web-based Clients

server to a cluster.

C:\ProgramData\GE\Opera

tions Hub

ClusterFQDN Enter the client access point

of the role for which you have

added the resources while set

ting up high availability (on

page 182).

MulticastAddress The common IP address that

all the nodes in the cluster can

use. Enter a value between

224.0.0.0 and 239.255.255.255

(or a hostname whose IP ad

dress falls in this range).

228.0.0.4

HistorianClusterMembership

Port

The common port number that

all the nodes in the cluster can

use. This port number, in con

45564

Historian | 2 - Getting Started Guide | 180

Parameter Description Default Value

junction with the multicast ad

dress, is used to create the

cluster.

HistorianClusterReceiverPort The multicast port number that

you want to use for incoming

Historian data.

4000

DataPath The path to the log files. C:\ProgramData\Histori

anWebBasedClientsLogs

DestinationHistorian The name of the destination

Historian server.

Note:

If you want to connect

to a remote Historian

server, you must dis

able the Enforce Strict

Client Authentication

and Enforce Strict Col

lector Authentication

options using Histori

an Administrator in the

remote server.

To install Web-based Clients with local Proficy Authentication and local Configuration Hub, run the

following command:

Install.exe /quiet PublicPort=443 UAAHttpPort=9480 UAADatabasePort=9432 HistorianHttpPort=8070

HistorianDatabasePort=8432 AdminClientId=admin AdminClientSecret=abc

ConfigHubContainerPort=5000 ContainerPort=4890 ConfigHubInstallFolder="C:\Program Files

 (x86)\GE\ConfigurationHub"

ConfigHubClientID=admin ConfigHubClientSecret=xyz

DataPath="C:\ProgramData\HistorianWebBasedClientsLogs"

To install Web-based Clients with local UAA and an external Configuration Hub, run the following

command:

Historian | 2 - Getting Started Guide | 181

Install.exe /quiet PublicPort=443 UAAHttpPort=9480 UAADatabasePort=9432 HistorianHttpPort=8070

HistorianDatabasePort=8432 AdminClientId=admin AdminClientSecret=secret123 UseExternalUaa=1

 ActiveUaaBaseUrl=https://TESTHIST4.test.com:443

UseExternalConfigHub=1 ExternalConfigHubMachineName=test2019-2 ConfigHubClientID=admin

ConfigHubClientSecret=secret321itc DataPath="E:\ProgramData\HistorianWebBasedClientsLogs"

 DoConfigHubNeedToInstall=0 RootDrive="E:\"

To install Web-based Clients with external Proficy Authentication and a local Configuration Hub, run

the following command:

Install.exe /quiet PublicPort=443 UAAHttpPort=9480 UAADatabasePort=9432 HistorianHttpPort=8070

HistorianDatabasePort=8432 AdminClientId=admin AdminClientSecret=abc UseExternalUaa=1

 ActiveUaaBaseUrl=https://<extrenal UAA machine hostname>:443

ConfigHubContainerPort=5000 ContainerPort=4890 ConfigHubInstallFolder="C:\Program Files

 (x86)\GE\ConfigurationHub"

ConfigHubClientID=admin ConfigHubClientSecret=xyz

DataPath="C:\ProgramData\HistorianWebBasedClientsLogs"

To install Web-based Clients in a cluster environment with local Proficy Authentication and local

Configuration Hub, run the following command:

Install.exe /quiet PublicPort=443 UAAHttpPort=9480 UAADatabasePort=9432

HistorianHttpPort=8070 HistorianDatabasePort=8432 AdminClientId=admin AdminClientSecret=abc

 ConfigHubContainerPort=5000

ContainerPort=4890 ConfigHubInstallFolder="C:\Program Files (x86)\GE\ConfigurationHub"

ConfigHubClientId=admin ConfigHubClientSecret=xyz DataPath="C:\ProgramData\HistorianWebBasedClientsLogs"

DestinationHistorian=<Historian server host name> IsClusterNode=1

PostgresBaseDir="E:\pgsql" ClusterFQDN="cluster.domain.com"

HistorianClusterMembershipPort=45564 HistorianClusterReceiverPort=4000

UAAClusterMembershipPort=45565 UAAClusterReceiverPort=4005 MulticastAddress=228.0.0.4

Web-based Clients are installed in the following folder: <installation drive>:\Program Files

\GE, and the following registry paths are created:

• HKEY_LOCAL_MACHINE\SOFTWARE\GE Digital

• HKEY_LOCAL_MACHINE\SOFTWARE\GE

If you want to use Configuration Hub installed using other products such as iFIX, Plant Applications, and

so on, set up authentication to point to the Proficy Authentication instance.

https://www.ge.com/digital/documentation/confighub/version2024/t_authentication_setup.html

Historian | 2 - Getting Started Guide | 182

Connect to a Remote Proficy Authentication Service

Provide the details of the external Proficy Authentication instance while installing Web-based Clients (on

page 154).

To host a Proficy Authentication service, you can use the same machine on which Web-based Clients are

installed or a different one. This topic describes how to connect to a Proficy Authentication service that is

set up on a machine different from the one on which you have installed Web-based Clients.

1. Access the Web Admin console.

2. Select Not Secure, and then select Certificate.

3. Select the root CA certificate in the Certificate Path section.

The Certificate Export Wizard window appears.

4. Select the Base-64 encoded X.509 (.CER) format.

5. Install the certificate in Trusted Root Certification Authorities store.

6. Rename the certificate file from .cer to .pem.

7. Access Certificate Management Tool.

8. Access the External Trust section and import the renamed certificate.

9. Select No when prompted to restart GeOphubMasterStarter.

10. Restart the Proficy Historian Tomcat service.

11. Reopen the browser.

Map the user groups of the remote Proficy Authentication service with the Historian Proficy

Authentication group

Set Up High Availability of Web-based Clients

1. Create a shared drive on your network that all the nodes in the cluster can access, and create a

folder in that drive.

2. On each node that you want to add to the cluster:

a. Install the Failover Clustering feature.

b. If you want to use an existing Proficy Authentication instance, ensure that all the cluster

nodes point to the same Proficy Authentication instance. Note that for all the cluster

nodes, the Proficy Authentication credentials of the node on which you installed Proficy

Authentication last will be considered.

In a cluster environment, multiple servers are installed, which share the same data. Each of these servers

is called a node. One of them acts as the primary node, while the others are standby nodes. If the primary

node is down, one of the standby nodes is used.

https://www.ge.com/digital/documentation/confighub/version2024/t_proficyauth_mapping_groups.html
https://www.ge.com/digital/documentation/confighub/version2024/t_proficyauth_mapping_groups.html
https://docs.microsoft.com/en-us/windows-server/failover-clustering/create-failover-cluster#install-the-failover-clustering-feature

Historian | 2 - Getting Started Guide | 183

When you install Web-based Clients in a cluster environment, the web servers are added to the cluster.

You can then achieve high availability of connection between the Historian server and the client

applications.

For example, if Configuration Hub on the primary node is unable to connect to the Historian server, the

user session on the standby node is activated. Therefore, you will still be able to connect to the Historian

server using Configuration Hub installed on the standby node.

The following services are shared between the primary and standby nodes in a cluster:

• Historian Indexing Service

• Proficy Historian PostgreSQL Database

Historian works with Microsoft Failover Cluster Manager to ensure high availability of Web-based Clients.

Using Failover Cluster Manager, you must add these services to the cluster.

1. Access the primary node of the cluster.

2. Create a failover cluster.

3. Add a storage to the failover cluster.

4. Select Roles > Create Empty Role.

A role is created.

5. Add a client access point to the role:

a. Select the role.

b. In the Actions section, select Add Resource > Client Access Point.

c. Follow the on-screen instructions to add a client access point to the role.

6. Add a storage to the role:

https://docs.microsoft.com/en-us/windows-server/failover-clustering/create-failover-cluster#create-the-failover-cluster
https://docs.microsoft.com/en-us/windows-server/failover-clustering/failover-cluster-csvs

Historian | 2 - Getting Started Guide | 184

a. Select the role.

b. In the Actions section, select Add Storage.

c. Follow the on-screen instructions to add the storage that you have created in step 3. You

can use a storage only once.

7. Ensure that your network is enabled for multicast traffic. To do so, run the following command:

netsh <interface name> <IP address> show joins

A list of IP multicast groups that have been joined through an interface appears. If you do not

specify an interface name, a list of multicast groups for all interfaces appears.

8. Install Web-based Clients (on page 155). During the installation, select the Cluster Node check

box, and provide the details.

9. Import the Proficy Authentication certificate (on page 182) into all the cluster nodes. Copy the

certificate in the following path from any node in the cluster and paste it in the same folder in all

the other nodes: C:\Program Files\GE\Operations Hub\httpd\conf\cert.

10. Add resources to the role:

a. Select the role.

b. In the Actions section, select Add Resource > Generic Service.

The New Resource Wizard window appears.

c. In the list of resources, select Historian Indexing Service, and then follow the on-screen

instructions to add the service.

11. Perform the previous step to add the Proficy Historian PostgreSQL Database resource as well.

12. Add the following dependencies for each of these resources:

a. Double-click a resource.

The <resource name> Properties window appears.

b. Select Dependencies.

c. Select Insert, and add dependencies for each resource as described in the following table,

using the AND operation.

Resource Name Dependencies

Proficy Historian ProstgreSQL Database ▪ IP Address

▪ Storage

▪ The network name

Historian | 2 - Getting Started Guide | 185

Resource Name Dependencies

Historian Indexing Service ▪ IP Address

▪ Storage

▪ The network name

▪ Proficy Historian ProstgreSQL Data

base

13. Select the role, and then in the Actions section, select Start Role.

When you later install Web-based Clients and provide the cluster details, Web-based Clients will be

part of the cluster, thus achieving high availability.

1. Restart the following services on all the cluster nodes:

◦ Historian Indexing Service

◦ Proficy Historian PostgreSQL Database

2. On the machine on which you have installed the Historian server, update the URI of the following

registry key to point to the cluster FQDN: HKEY_LOCAL_MACHINE\SOFTWARE\Intellution, Inc

\iHistorian\SecurityProvider\OAuth2.

Upgrade Web-based Clients

• When you upgrade, Web-based Clients and associated data will be lost. Therefore, back up

Web-based Clients and associated data using the uaa_config_tool utility provided in the

Utilities folder of the ISO package. For information, refer to Migrate User Authentication Data

from Historian to Common Proficy Authentication Service (on page 248).

Tip:

After installation, uaa_config_tool is available in the following folder as well:

<installation drive>\Program Files\GE Digital\Historian Config

• You cannot upgrade Web-based Clients from a version earlier than 8.0. This is because, starting

8.0, Web-based Clients are installed separately (not as part of the Historian server installation).

Therefore, you must do either of the following:

◦ Install Web-based Clients on a new machine.

◦ Uninstall the Historian server (remember to back up the Proficy Authentication using the

UAA_config_tool utility), and then install Web-based Clients.

• If the machine name has changed, you must uninstall and reinstall Web-based Clients.

Historian | 2 - Getting Started Guide | 186

• If you want to use a different Proficy Authentication server from the previous one, you must

manually migrate the Proficy Authentication data to new Proficy Authentication server using the

uaa_config_tool utility.

• If you want to switch from using a local Proficy Authentication to using an external Proficy

Authentication (or vice versa), you must manually change the Proficy Authentication details.

1. Install Web-based Clients (on page 154).

Web-based Clients will be upgraded to the latest version.

2. Clear the browser cache.

You can now access Web-based Clients.

Configure Web-based Clients

You can configure the following settings for Web-based Clients:

• Reconfigure Proficy Authentication to point to a different Proficy Authentication server.

• Reconfigure the same Proficy Authentication instance to resolve any issues with login.

• Re-register Configuration Hub to resolve any issues.

• Unregister Configuration Hub, and register another one.

To perform these tasks, Historian provides a utility called Web Based Clients Configuration. It is installed

during Web-based Clients installation.

Historian | 2 - Getting Started Guide | 187

To run this utility, run the Web_Clients_Configuration_Tool.exe file. By default, it is located in the

following folder: C:\Program Files\GE Digital\Historian Config

Remote Management Agents

Install Remote Management Agent Using the Installer

Ensure that all the collectors that you want to manage remotely are in the running state.

If the collectors that you have installed are earlier than version 9.0, you must install Remote Management

Agent on each machine on which the collectors that you want to manage are installed. For collectors

version 9.0 or later, Remote Management Agent are automatically installed when you install collectors.

This topic describes how to install Remote Management Agent using the installer. You can also install

them at a command prompt (on page 190).

Historian | 2 - Getting Started Guide | 188

1. Run the InstallLauncher.exe file.

2. Select Install Remote Management Agents.

The welcome page appears.

3. Select Next.

The license agreement appears.

4. Select the Accept check box, and then select Next.

The default installation drive appears.

5. If needed, modify the installation drive, and then select Next.

The destination Historian server page appears.

Historian | 2 - Getting Started Guide | 189

6. Enter the details of the Historian server to which Remote Management Agent will connect, and then

select Next.

The Data Directory page appears.

Historian | 2 - Getting Started Guide | 190

7. As needed, modify the location of the data directory, or leave the default value, and then select

Next.

The You are ready to install page appears.

8. Select Install.

• Remote Collector Management is installed on your machine.

• A folder named Historian Remote Management Agents is created in the GE Digital

folder in the installation location that you specified.

• Remote Collector Management is running, and a .shw file is created in the log folder. This file

contains the details of the collectors that are running on the machine.

• For each collector that you manage using Remote Collector Management, a new entry named

ServiceName is created in the collector registry. If the ServiceName key is not created or updated

incorrectly, refer to Troubleshooting Remote Collector Management Issues (on page 820).

Install Remote Management Agent at a Command Prompt

Ensure that all the collectors that you want to manage remotely are in the running state.

Historian | 2 - Getting Started Guide | 191

If the collectors that you have installed are earlier than version 9.0, you must install Remote Management

Agent on each machine on which the collectors that you want to manage are installed. For collectors

version 9.0 or later, Remote Management Agent are automatically installed when you install collectors.

This topic describes how to install Remote Management Agent at a command prompt. You can also

install them using the installer (on page 187).

1. Access the command prompt, and navigate to the RMA folder in the install media.

2. Run the following command, replacing the values in angular brackets with the appropriate values:

HistorianRMA_Install.exe -s RootDrive=<installation drive> DestinationServerName=<Destination Historian server

 name> UserName1=<Windows username> Password=<Windows password> DataPath="C:\Proficy Historian Data\LogFiles"

HistorianRMA_Install.exe -s RootDrive=C:\ UserName1=Administrator Password=AdminPassword

 DestinationServerName=VMHISTWEBAUTO DataPath="C:\Proficy Historian Data\LogFiles"

• Remote Collector Management is installed on your machine.

• A folder named Historian Remote Management Agents is created in the GE Digital

folder in the installation location that you specified.

• Remote Collector Management is running, and a .shw file is created in the log folder. This file

contains the details of the collectors that are running on the machine.

• For each collector that you manage using Remote Collector Management, a new entry named

ServiceName is created in the collector registry. If the ServiceName key is not created or updated

incorrectly, refer to Troubleshooting Remote Collector Management Issues (on page 820).

Install the OPC UA HDA Server

Install Historian (on page 104).

Note:

You can install Historian and the OPC UA HDA server on the same machine or on different

machines.

1. Run the Historian installer.

2. Select Install Historian OPC UA HDA Server.

The welcome page appears.

3. Select Next.

The license agreement appears.

Historian | 2 - Getting Started Guide | 192

4. Select the Accept check box, and then select Next.

The Where to install the Historian OPC UA HDA Server page appears, asking you to select the

installation drive.

5. Select the installation drive, and then select Next. You can retain the default one, or choose a

different one.

The OPC UA HDA Server Attributes page appears.

Historian | 2 - Getting Started Guide | 193

6. Provide values as described in the following table, and then select Next.

Field Description

Historian OPCUA HDA Server Enter the host name or the IP address of the

machine on which you want to install the OPC

UA HDA server. By default, the local host name

appears.

Port Number Enter the port number that you want the OPC

UA HDA server to use.

URI The URI to access the OPC UA HDA server.

This field is disabled and populated with a

value in the following format: opc.tcp://<host

name>:<port number>, where <host name> and

<port number> are the values that you have en

tered in the preceding fields.

Historian | 2 - Getting Started Guide | 194

The Historian Server Details page appears.

7. Provide values as described in the following table, and then select Next.

Field Description

Historian Server Name Enter the name of the Historian server that you

want to connect to the OPC UA HDA server.

Historian Server User Name Enter the username of the Historian server.

Historian Server Password Enter the password of the Historian server.

The You are ready to install page appears.

8. Select Install.

The Historian OPC UA HDA server is installed. Reboot the machine when prompted to do so.

• If you have installed the OPC UA HDA server on a remote machine, enable the firewall.

• Install an OPC UA client.

• Configure the OPC UA HDA server.

Historian | 2 - Getting Started Guide | 195

The Excel Add-In for Historian

Install the Historian Excel Add-in Using the Installer

Install one of the following 32-bit or 64-bit Microsoft® Excel® applications:

• Microsoft® Excel® 2019

• Microsoft® Excel® 2016

• Microsoft® Excel® 2013

• Microsoft® Excel® 2010

You can install Excel Add-In separately or during Client Tools installation. This topic describes how to

install Excel Add-In separately using the installer. You can also install it at a command prompt (on page

195). However, if installing via a command prompt, do not install the Excel Add-In on the machine that

you have installed the Historian Administrator or data archiver.

1. Run the InstallLauncher.exe file.

2. Select Install Excel Add-in for Historian.

The installer runs through the installation steps.

Note:

If using certain versions of Windows (like Windows 10 or Windows 2019), you may receive

an error message, stating that some of the DLL files are not registered. You can ignore

these messages.

3. When prompted to reboot your system, select Yes.

Excel Add-In is installed.

Activate Excel Add-In (on page 197).

Install the Historian Excel Add-in at a Command Prompt

1. Install one of the following 32-bit or 64-bit Microsoft® Excel® applications:

◦ Microsoft® Excel® 2019

◦ Microsoft® Excel® 2016

◦ Microsoft® Excel® 2013

◦ Microsoft® Excel® 2010

2. Install Excel Add-in using the installer (on page 195) on your machine:

Historian | 2 - Getting Started Guide | 196

a. Open the Command Prompt as an Administrator. (From the Start menu, right-click the

Command Prompt app, and select Run as Administrator.)

b. On the Historian install media, navigate to the Excel folder.

c. Run the following command line: setup.exe -r.

d. When the install runs, select the Excel option and leave the other options greyed out as they

cannot be removed.

When you run this install, a template file named setup.iss is created at C:\Windows. This

file stores the installation options that you have provided during the installation.

After completing the installation, you can then use this .iss file to install Excel Add-in at a

command prompt on other machines.

On the other Client machine where you want to install the Excel Add-in, place a copy of the

setup.iss on the local directory and open a Command Prompt (Run as Administrator). Run

the silent install with following command:

setup.exe /s

If your iss file is not called setup.iss or is in different directory than setup.exe you need to

add the flag: /f1. For example:

setup.exe /s /sms /f1"C:\Temp\setup.iss

Wait for few minutes (probably 3-5 minutes) for the install to complete.

You can install Excel Add-In separately or during Client Tools installation. However, do not install Excel

Add-In on the machine on which you have installed Historian Administrator or data archiver.

1. Copy the setup.iss file to each machine on which you want to install Excel Add-in at a command

prompt.

2. In the folder that contains the setup.iss file, run the following command: setup.exe /s /sms

The installer runs through the installation steps.

Note:

If using certain versions of Windows (like Windows 10 or Windows 2019), you may receive

an error message, stating that some of the DLL files are not registered. You can ignore

these messages.

3. When prompted to reboot your system, select Yes.

Excel Add-In is installed.

Historian | 2 - Getting Started Guide | 197

Activate Excel Add-In (on page 197).

Activate Excel Add-In

Install Excel Add-In (on page 195).

1. Open a new Microsoft Excel worksheet.

2. Select File > Options.

The Excel Options window appears.

3. Select Add-Ins.

4. In the Manage box, select Excel Add-ins, and then select Go.

The Add-Ins window appears.

5. Select the Proficy Historian Add-In and Proficy_Historian_Helper check boxes, and then select OK.

If the Proficy Historian Add-In and Proficy_Historian_Helper check boxes do not appear, select

Browse to locate the Historian.xla file for the check boxes to appear. This file is created if

you have installed Microsoft Excel after installing Excel Add-In. By default, the Historian.xla

Historian | 2 - Getting Started Guide | 198

file is located in the C:\Program Files\Proficy\Historian or C:\Program Files

(x86)\Proficy\Historian folder.

Excel Add-In is now ready to use and the Proficy Historian menu is now available in the Microsoft

Excel toolbar.

Software Requirements

The following components are required to use Excel Add-in for Operations Hub:

Component Version Description

Operations Hub 2.0 and above. If you have purchased the stan

dard or enterprise license of His

torian, you receive a no-cost li

cense for Operations Hub, which

enables you to:

• Access to the Historian

Analysis run-time applica

tion, which is an in-built

HTML5 application in Op

erations Hub.

• Perform advanced trend

analysis, including insert

ing annotations.

• Define an asset model in

cluding tag mapping.

Microsoft Excel 2016 and 2019 (32 bit or 64 bit)

Historian REST APIs Historian REST APIs are required

to integrate between Historian

and Operations Hub. Historian

REST APIs are installed automat

Historian | 2 - Getting Started Guide | 199

Component Version Description

ically when you install Histori

an Web-based Clients (on page

155).

Install Excel Add-In for Operations Hub

Install the Historian server (on page 104) and other software requirements (on page 198).

1. Run the InstallLauncher.exe file.

2. Select Install Excel Add-in for Operations Hub.

The welcome page appears.

3. Select Next.

4. Read and accept the license agreement, and then select Next.

5. Select the available disk to install the Excel Add-in for Operations Hub, and then select Next.

Note:

We recommend that you select the drive where Microsoft Excel is installed.

6. Provide the details of Operations Hub, and then select Next.

Historian | 2 - Getting Started Guide | 200

The You are ready to install page appears.

7. Select Install.

Excel Add-In for Operations Hub is installed.

Copy/export the issuer certificate (on page 200), and then install/import it (on page 201).

Copy or Export the Issuer Certificate on Server

Install Excel Add-In for Operations Hub (on page 199).

This topic describes how to copy or export the issuer certificate on Server. If this is not done, you will get

an error while querying data as shown in the image below.

Historian | 2 - Getting Started Guide | 201

1. Navigate to the machine where Operations Hub is installed.

2. Select Site Information (Not secure).

3. Select Certificate (invalid).

The Certificate window appears.

4. Select Certificate Path.

5. Select the Root CA certificate.

6. Select Details.

7. Select Copy to file.

The Certificate Export Wizard window appears.

8. Select DER encoded binary X.509(.CER) format and select Next.

9. Select Browse to save the certificate file at desired location.

10. Complete the certificate export.

Install or import the certificate (on page 201).

Install/Import the Issuer Certificate

Copy or export the issuer certificate (on page 200) on the machine on which Excel Add-In for Operations

Hub is installed.

1. Right-click the certificate, and then select Install Certificate.

The Certificate Import Wizard page appears

2. Select Local Machine, and then, select Next.

3. Select Place all certificates in the following store.

4. Select Trusted Root certification Authorities, and then select OK.

5. Select Next, and then select Finish.

The certificate is imported.

Configure the Operations Hub server (on page 202).

Historian | 2 - Getting Started Guide | 202

Connect to Operations Hub

To query a model defined in Operations Hub, you must first connect to the Operations Hub server. You will

then receive a token from the server, which will be used for authentication.

1. Select Configuration menu in Admin.

The Operations Hub Configuration window appears.

2. Provide values as described in the following table.

Field Details

Operations Hub Server The Operations Hub server name to which you

want to connect and get the data.

Operations Hub Proficy Authentication Server

(url)

The URL of the Proficy Authentication service

of Operations Hub.

Example: https://<ophubservername>/uaa

Note:

The Token Status field indicates the status of the connection with Operations Hub server.

3. Select Connect.

The login page appears.

4. Provide the User Identifier and Password to connect to Operations Hub.

5. Select Open UaaAuthSchemeHandler.

Operations Hub Server to which you are connected and the status of the token appears.

6. Select Save to save the Operations Hub server details. The configuration will be retained and used

when you open excel add-in again.

Install the Historian ETL Tools

• If you want to use the Historian Extract, Transform, and Load (ETL) tools to transfer data from a PI

Historian server, install the PI SDK package.

• If you want to use the ETL tools to transfer data from an eDNA server, copy the following eDNA

binaries to the <installation drive>\Program Files\GE Digital\Historian ETL

eDNA Extract folder:

Historian | 2 - Getting Started Guide | 203

◦ EzDnaApi.dll

◦ EzDNAApiNet.dll

By default, these files are available in the following folder on the machine on which the eDNA

server is installed: C:\Program Files(x86)\eDNA

Installing ETL installs the following tools:

• The Extract tool

• The Transform tool

• The Load tool

This topic describes how to install ETL to extract, transform, and load data from an onsite Historian

machine to the destination Historian server. You must install Historian ETL on both the onsite Historian

machine and the destination Historian server (that is, the source and destination machines for data

transfer).

1. Run the InstallLauncher.exe file.

2. Select Install Historian ETL Tools.

The welcome page appears.

3. Select Next.

The license agreement appears.

4. Select the Accept check box, and then select Next.

The default installation drive appears.

Historian | 2 - Getting Started Guide | 204

5. If required, modify the installation drive for Historian ETL, and then select Next.

A message appears, stating that you are ready to install ETL.

6. Select Install.

The Historian ETL tools are installed on your machine.

• The following folders are created in the <installation drive>/Program Files/GE

Digital folder:

◦ Historian ETL eDNA Extract

◦ Historian ETL Extract

◦ Historian ETL Load

◦ Historian ETL ODBC Extract

◦ Historian ETL PI Extract

◦ Historian ETL Transform

• The following services are installed:

◦ Historian ETL eDNA Extract

◦ Historian ETL Extract

◦ Historian ETL ODBC Extract_x64

Historian | 2 - Getting Started Guide | 205

◦ Historian ETL ODBC Extract_x86

◦ Historian ETL Load

◦ Historian ETL PI Extract

• The following registry paths are created:

◦ HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\GE Digital\Historian ETL

eDNA Extract

◦ HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\GE Digital\Historian ETL

ODBC Extract

◦ HKEY_LOCAL_MACHINE\SOFTWARE\GE Digital\Historian ETL Extract

◦ HKEY_LOCAL_MACHINE\SOFTWARE\GE Digital\Historian ETL ODBC Extract

◦ HKEY_LOCAL_MACHINE\SOFTWARE\GE Digital\Historian ETL PI Extract

◦ HKEY_LOCAL_MACHINE\SOFTWARE\GE Digital\Historian ETL Load

1. If you want to extract data from an eDNA server, copy the Customdna.ini file in the eDNA server

into the C:\Windows folder on the machine on which you have installed ETL.

2. Extract data from an eDNA server (on page 2910), ODBC data source (on page 2924), Proficy

Historian (on page 2938), or PI Historian (on page 2948).

About Installing Help

Historian documentation is available both online and offline. This topic describes how to install the offline

Help documentation. Online Help is available here: https://www.ge.com/digital/documentation/historian/

You can install Help using a GUI-based installer or at the command prompt.

Install Standalone Help Using the Installer

This topic describes how to install Help using the installer. You can also install Help at a command

prompt (on page 206).

1. Run the InstallLauncher.exe file.

2. Select Install Standalone Help.

The welcome page appears.

3. Select Next.

The license agreement appears.

4. Select the Accept check box to accept the license agreement, and select Next.

5. If needed, change the installation drive, and then select Next.

6. If needed, change the port number for the NodeJS server to run. This step is required if the default

port number is not available.

https://www.ge.com/digital/documentation/historian/

Historian | 2 - Getting Started Guide | 206

7. Select Next.

8. Select Install.

The Help is installed.

9. Select Next.

The standalone Help is installed in the following folder: <installation drive>:\Program Files

\Proficy\Proficy Historian\ProficyDoc. You can access the Help from any of the Historian

applications or by accessing the index.html file.

Install Help at a Command Prompt

This topic describes how to install Help at a command prompt. You can also install Help using the

installer (on page 205).

1. Navigate to the Help folder.

2. If you want to use the default installation drive (C:/) and port number (7070), run the following

command:

Help_Install.exe -s

Otherwise, run the following command:

Help_Install.exe -s RootDrive=<installation drive> PortNumber=<port number>

The Help is installed. You can access the Help from any of the Historian applications or by accessing

the index.html file. By default, this file is available in the C:\Program Files (x86)\GE Digital

\Historian Help folder.

Configuring Certificate-based Security to use MTLS

Overview of the Certificate-based Security

Historian uses the Mutual Transport Layer Security (MTLS) protocol along with certificate-based security

to strengthen the authentication mechanism and build trusted connections among the core Historian

services, and also collectors.

Note:

MTLS Security and MTLS Data Encryption are not applicable to the File collector.

The core Historian services include:

Historian | 2 - Getting Started Guide | 207

• Data Archiver

• Client Manager

• Configuration Manager

• Diagnostic Manager

When you install Historian, you are provided with the Enable Certificate-based Security check box

to enable Certificate-based Security and generate root certificate with a password for Server and the

core services. By selecting this option, the installer will generate the root certificates, machine specific

certificates, and the core services certificates in the <Install directory>\Program Files

\Proficy\Proficy Historian\MTLS folder, and add it to Trusted Root Certification Authorities in the

machine.

Warning:

If you do not select the Enable Certificate-based Security check box during installation, you

must generate the root certificates manually, as described in the Manually Install Certificates for

Historian section. However, this is not recommended.

Historian | 2 - Getting Started Guide | 208

Certificate Applicability

ica_key.cer and ica_key.pfx Root certificates.

ClientManager.cer, and ClientManager.pfx

ConfigManager.cer, and ConfigManager.pfx

DataArchiver.cer, and DataArchiver.pfx

DiagnosticManager.cer, and DiagnosticManag

er.pfx

Historian Core Services specific certifi

cates.

<Machine name>.cer, and <Machine name>.pfx Machine specific certificates.

If you want to connect a distributed/mirror node to a Historian primary mirror server, or you want to

connect your collectors to a remote Historian server, you need the server specific root certificates

(ica_key.cer and ica_key.pfx) on the client machine to establish a successful handshake. To establish a

successful handshake, you must copy the root certificates from the server machine and place them in the

machines where the mirror nodes or collectors are installed. For more information, see the table below.

After installation, based on the install type, you must perform the following configuration:

Installation Type Description Configurations

Historian Single Serv

er

This is for a stand-alone Historian

system, which contains only one

Historian server. This type of sys

tem is suitable for a small-scale

Historian setup.

Collectors and server are installed on the

same machine

You do not have to perform any additional

configurations.

To use MTLS for collectors, you must en

able the MTLS security for the collector in

stance as needed. For more information, re

fer to Enable MTLS Security for Collectors.

Collectors and server are installed on dif

ferent machines (Collectors trying to con

nect to a remote Historian)

1. On the server machine, from the

<Install directory>\Pro

gram Files\Proficy\Profi

cy Historian\MTLS folder, copy

Historian | 2 - Getting Started Guide | 209

Installation Type Description Configurations

the following root certificate files:

ica_key.cer and ica_key.pfx, and

then place them in the <Install

directory>\Program Files

\Proficy\Proficy Histori

an\MTLS folder on the collector ma

chine. For more information, refer

to Copy server root certificate to the

client machine.

2. On the collector machine, add the

copied certificates to the Trusted

Root Certification Authorities folder.

For more information on how to add

a certificate to the Trusted Root Cer

tification Authorities folder, refer to

Adding a Certificate to the Trusted

Root Certification Authorities Folder.

3. Generate MTLS certificate (client

certificate) on the collector machine.

For more information on how to gen

erate MTLS certificate (client certifi

cate), refer to Generate MTLS certifi

cate.

4. To use MTLS for collectors, you

must enable the MTLS security for

the collector instance as needed.

For more information, refer to Enable

MTLS Security for Collectors.

Historian Mirror Pri

mary Server

This is for a horizontally scalable

Historian system, which contains

multiple Historian servers, all of

which are connected to one an

other. This will be the primary

server for the distributed/mirror

node(s).

Collectors and Historian primary mirror

server are installed on the same machine

You do not have to perform any additional

configurations.

To use MTLS for collectors, you must en

able the MTLS security for the collector in

Historian | 2 - Getting Started Guide | 210

Installation Type Description Configurations

stance as needed, for more information, re

fer to Enable MTLS Security for Collectors.

Collectors and Historian primary mirror

server are installed on different machines

(Collectors trying to connect to a remote

Historian primary mirror server)

1. On the mirror server machine, from

the <Install directory>\Pro

gram Files\Proficy\Profi

cy Historian\MTLS folder, copy

the following root certificate files:

ica_key.cer and ica_key.pfx, and

then place them in the <Install

directory>\Program Files

\Proficy\Proficy Histori

an\MTLS folder on the collector ma

chine. For more information,refer to

Copy server root certificate to the

client machine.

2. On the collector machine, add the

copied certificates to the Trusted

Root Certification Authorities folder.

For more information on how to add

a certificate to the Trusted Root Cer

tification Authorities folder, refer to

Adding a Certificate to the Trusted

Root Certification Authorities Folder.

3. Generate MTLS certificate (client

certificate) on the collector machine.

For more information on how to gen

erate MTLS certificate (client certifi

cate), refer to Generate MTLS certifi

cate.

4. To use MTLS for collectors, you

must enable the MTLS security for

Historian | 2 - Getting Started Guide | 211

Installation Type Description Configurations

the collector instance as needed, for

more information, refer to Enable

MTLS Security for Collectors.

Historian Distrib

uted/Mirror Node

This is for a horizontally scalable

Historian system. Installing this

server will allow you to add this

node to a primary server.

Configuration on the distributed/ mirror

node machine(s)

1. On the Historian mirror primary serv

er machine, from the <Install

directory>\Program Files

\Proficy\Proficy Histori

an\MTLS folder, copy the following

root certificate files: ica_key.cer and

ica_key.pfx, and then place them in

the <Install directory>\Pro

gram Files\Proficy\Proficy

Historian\MTLS folder on the dis

tributed/mirror node machine(s). For

more information, refer to Copy serv

er root certificate to the client ma

chine.

2. On the distributed/mirror node ma

chine(s), add the copied certificates

to the Trusted Root Certification Au

thorities folder. For more information

on how to add a certificate to the

Trusted Root Certification Authori

ties folder, refer to Adding a Certifi

cate to the Trusted Root Certification

Authorities Folder.

3. Generate MTLS certificate (client

certificate) on the distributed/mirror

node machine(s). For more informa

tion on how to generate MTLS certifi

cate (client certificate), refer to Gen

erate MTLS certificate.

Historian | 2 - Getting Started Guide | 212

Installation Type Description Configurations

Collectors and distributed/mirror node are

installed on the same machine

You do not have to perform any additional

configurations.

To use MTLS for collectors, you must en

able the MTLS security for the collector in

stance as needed, for more information, re

fer to Enable MTLS Security for Collectors.

Collectors and distributed/mirror node are

installed on different machines (Collec

tors trying to connect to a remote distrib

uted/mirror node)

1. On the Historian mirror primary serv

er machine, from the <Install

directory>\Program Files

\Proficy\Proficy Histori

an\MTLS folder, copy the follow

ing root certificate files: ica_key.cer,

ica_key.pfx, and then place them in

the <Install directory>\Pro

gram Files\Proficy\Proficy

Historian\MTLS folder on the dis

tributed/mirror node machine(s). For

more information, refer to Copy serv

er root certificate to the client ma

chine.

2. On the distributed/mirror node ma

chine(s), add the copied certificates

to the Trusted Root Certification Au

thorities folder. For more information

on how to add a certificate to the

Trusted Root Certification Authori

ties folder, refer to Adding a Certifi

Historian | 2 - Getting Started Guide | 213

Installation Type Description Configurations

cate to the Trusted Root Certification

Authorities Folder.

3. On the Historian distributed/mirror

node machine, from the <Install

directory>\Program Files

\Proficy\Proficy Histori

an\MTLS folder, copy the follow

ing root certificate files: ica_key.cer,

ica_key.pfx, and then place them in

the <Install directory>\Pro

gram Files\Proficy\Proficy

Historian\MTLS folder on the col

lector machine. For more informa

tion, refer to Copy server root certifi

cate to the client machine.

4. On the collector machine, add the

copied certificates to the Trusted

Root Certification Authorities folder.

For more information on how to add

a certificate to the Trusted Root Cer

tification Authorities folder, refer to

Adding a Certificate to the Trusted

Root Certification Authorities Folder.

5. Generate MTLS certificate (client

certificate) on the collector. For

more information on how to gener

ate MTLS certificate (client certifi

cate), refer to Generate MTLS certifi

cate.

6. To use MTLS for collectors, you

must enable the MTLS security for

the collector instance as needed, for

more information, refer to Enable

MTLS Security for Collectors.

Historian | 2 - Getting Started Guide | 214

Note:

If you are using a cluster node setup, you can follow the configurations similar to the Historian

Single Server installation type on all the nodes.

Certificate-based Security Specifc Configurations

Copy Server root certificate to the Client Machine
If you want to connect a distributed/mirror node to a Historian primary mirror server, or you want to

connect your collectors to a remote Historian server, you need the server specific root certificates

(ica_key.cer and ica_key.pfx) on the client machine to establish a successful handshake. To establish a

successful handshake, you must copy the root certificates from the server machine and place them on

the machines where the mirror nodes or collectors are installed.

1. On the server machine, from the <Install directory>\Program Files\Proficy\Proficy

Historian\MTLS folder, copy the following root certificate files: ica_key.cer and ica_key.pfx.

2. On the client machine (remote mirror nodes or collectors) place them in the <Install

directory>\Program Files\Proficy\Proficy Historian\MTLS folder.

3. Add the certificate to the Trusted Root Certification Authorities folder.

Adding a Certificate to the Trusted Root Certification Authorities Folder
If you want to connect a distributed/mirror node to a Historian primary mirror server, or you want to

connect your collectors to a remote Historian server, the root certificate needs to be added to the Trusted

Root Certification Authorities folder on the local machine (that is distributed/mirror node or collector

machine).

On the primary server machine, from the <Install directory>\Program Files\Proficy

\Proficy Historian\MTLS folder, copy the following root certificate files: ica_key.cer and ica_key.pfx,

and then place them in the <Install directory>\Program Files\Proficy\Proficy

Historian\MTLS folder on the local machine (that is distributed/mirror node or collector machine).

Historian | 2 - Getting Started Guide | 215

1. Double-click the ica_key.cer file. The certificate dialog appears as shown in the following image.

2. Select Install Certificate to launch the Certificate Import Wizard.

3. Click Next to continue. The Certificate Import Wizard window appears as shown in the following

image.

Historian | 2 - Getting Started Guide | 216

4. Select Local Machine and click Next to continue. The following screen appears.

Historian | 2 - Getting Started Guide | 217

5. Select Place all certificates in the following store, and click Browse to display the list of stores

from where Trusted Root Certification Authorities can be selected.

6. Select the Trusted Root Certification Authorities, and click OK. The following dialog box appears.

Historian | 2 - Getting Started Guide | 218

7. Click Next to continue. The Completing the Certificate Import Wizard window appears.

Historian | 2 - Getting Started Guide | 219

8. Click Finish to add the certificate to the Trusted Root Certification Authorities.

Generate MTLS Certificate
If you want to connect a distributed/mirror node to a Historian primary mirror server, or if you want to

connect your collectors to a remote historian server, you must generate the client certificates (MTLS

Certificate) specific to the distributed/mirror node or collector machine. This will create the needed

machine specific certificates and registries. You can also generate core services certificates if needed.

You must install the distributed/mirror node, or in the case of collectors, you must install collectors.

To generate client certificates (MTLS certificates), run the MTLSCertificatesInstall.exe utility from the

command prompt with Administrator privileges.

Historian | 2 - Getting Started Guide | 220

1. Launch from the command prompt with Administrator privileges in the following format: C:

\Program Files\Proficy\Proficy Historian\MTLS\MTLSCertificatesInstall.exe [Password]

[Certificate Validity] [Create only client Certificate] [Remote Historian Machine Name]

For example,

C:\Program Files\Proficy\Proficy Historian\MTLS\MTLSCertificatesInstall.exe P@55W0RD 3650 1 DemoServerName

The MTLSCertificatesInstall.exe utility takes the following arguments:

Argument Description

Password Specifies the word or phrase that you use to

protect your certificate. The Password ar

gument is mandatory, whereas Number of

Days is optional. An example Passphrase is:

P@55w0rd.

Note:

The same Password used for creating

the root certificate needs to be used

here. This is so that the Password will

be same while passing the argument

between executables. The MTLSCer

tificateInstall.exe utility uses this pass

Historian | 2 - Getting Started Guide | 221

Argument Description

word to open the root certificate private

key (ica_key.pfx) and sign the core ser

vices certificates.

NumberOfDays Optional. Specifies the Number of Days for the

root certificate to be valid. After the specified

days, the certificate validity expires.

If you do not pass any value for Number of

Days, the setting defaults to 365 days. For ex

ample, if the Number of Days is 3650, the cer

tificate is valid for 10 years from the generated

date.

CreateOnlyClientCert Specifies that only client certificates with a

root certificate password must be created. You

must enter 1 to install only the client certifi

cates.

RemoteHistorianMachineName Specifies the remote Historian server to which

you want to connect to.

The client certificates are created and added to the Trusted Root Certification Authorities Folder.

For example, if the machine name is Node1, the certificates are created as Node1.cer and

Node1.pfx.

2. After the required certificates are generated, restart the machine. Without valid certificates, core

services cannot establish connections to each other.

Generate Root Certificates for Proficy Historian Server Manually (Not
recommended)

This topic describes how to install root certificates and the certificates for core services, for use with the

MTLS feature for Proficy Historian.

Note:

This topic is applicable if you did not enable certificate-based security during the installation

of Historian server. If you enabled certificate-based security during the installation, the root

Historian | 2 - Getting Started Guide | 222

certificate and core services certificates are generated by default and stored at <Install

directory>\Program Files\Proficy\Proficy Historian\MTLS folder.

MTLS Binaries

To support MTLS, the Historian install media includes the following files. These files are located in the

MTLS folder in the Proficy Historian install folder:

• CreateRootCertificate.exe

• MTLSCertificatesInstall.exe

• openssl.exe

• legacy.dll

• libcrypto-3-x64.dll

• libssl-3-x64.dll

• openssl.cnf

CreateRootCertificate.exe and MTLSCertificatesInstall.exe are the two command-line utilities for

generating the certificates. The other binaries are the dependent components.

Location of MTLS Binaries

The following figure shows an example of the binaries folder for MTLS feature, when Proficy Historian

2024 is installed in “C” drive:

To generate root certificate, use the CreateRootCertificate.exe utility (in the MTLS folder in the Historian

install folder) from a command prompt with Administrator privileges, as described in the following steps.

1. Right-click the Command Prompt, and select Run as Administrator.

2. Navigate to the MTLS folder in the Historian installed path. For example:

cd C:\Program Files\Proficy\Proficy Historian\MTLS

Historian | 2 - Getting Started Guide | 223

3. Run the CreateRootCertificate.exe command using the following arguments:

Argument Description

EnableMTLS Specifies whether MTLS is enabled. If you do

not specify a value, MTLS feature is enabled by

default (and set to 1 by default):

◦ 0 – MTLS feature is disabled

◦ 1 – MTLS feature is enabled

For example, if you want to disable the certifi

cate-based security, simply pass “0” to the tool.

Password Specifies the word or phrase that you use to

protect your certificate. The Password ar

gument is mandatory, whereas Number of

Days is optional. An example Passphrase is:

P@55w0rd.

The Number of Days Optional. Specifies the Number of Days for the

root certificate to be valid. After the specified

days, the certificate validity expires.

If you do not pass any value for Number of

Days, the setting defaults to 365 days. For ex

ample, if the Number of Days is 3650, the cer

tificate is valid for 10 years from the generated

date.

Note:

If you fail to pass any values to this command-line, the command will fail to create the root

certificate.

The following is an example of the command-line. In this example, MTLS is enabled, the

passphrase is P@55w0rd, and the certificate will be valid for 3650 days (10 years):

C:\Program Files\Proficy\Proficy Historian\MTLS CreateRootCertificate.exe 1 P@55w0rd 3650

Historian | 2 - Getting Started Guide | 224

4. After executing CreateRootCertificate.exe, locate the root keys generated in the same MTLS

folder:

◦ ica_key.pfx – Password protected certificate that contains the private key to sign the core

services certificates.

◦ ica_key.cer – Root certificate contains the public and different attributes of the certificate.

The following figure shows examples of the root certificates.

After generating the root certificate, this certificate needs to be added to the “Trusted Root

Certification Authorities” certificate store on the Local Machine.

Installing Certificates for Core Services

For generating certificates for core service, run the MTLSCertificatesInstall.exe utility from the

command prompt with Administrator privileges.

1. Launch from the command prompt with Administrator privileges. For example:

C:\Program Files\Proficy\Proficy Historian\MTLS\MTLSCertificatesInstall.exe P@55w0rd 3650

The MTLSCertificatesInstall.exe utility takes the following arguments:

Argument Description

Password Specifies the word or phrase that you use to

protect your certificate. The Password ar

gument is mandatory, whereas Number of

Days is optional. An example Passphrase is:

P@55w0rd.

Historian | 2 - Getting Started Guide | 225

Argument Description

Note:

The same Password used for creating

the root certificate needs to be used

here. This is so that the Password will

be same while passing the argument

between executables. The MTLSCer

tificateInstall.exe utility uses this pass

word to open the root certificate private

key (ica_key.pfx) and sign the core ser

vices certificates.

The Number of Days Optional. Specifies the Number of Days for the

root certificate to be valid. After the specified

days, the certificate validity expires.

If you do not pass any value for Number of

Days, the setting defaults to 365 days. For ex

ample, if the Number of Days is 3650, the cer

tificate is valid for 10 years from the generated

date.

For each service, two certificates will be generated as shown in the following figure:

Historian | 2 - Getting Started Guide | 226

2. Double-click each service .cer file as shown in the following figure, and check whether each

generated certificate has a valid root certificate chain.

Historian | 2 - Getting Started Guide | 227

3. After all required certificates are generated, restart the core Historian services. Without valid

certificates, core services cannot establish connections to each other.

Upgrade Scenarios when Working with Historian Server Certificates

Be aware of the following when upgrading your Historian:

• By default, certificate-based security is enabled. Your configuration for certificates is automatic,

unless you are installing or upgrading a distributed/mirror node. If you do not configure your

certificates in this scenario, your Historian services may not start when you run it for the first time.

• You will need to regenerate the certificates if you uninstall the existing version and reinstall any

version that supports certificate-based security.

• You will need to regenerate the certificates for Historian in-place upgrades that support certificate-

based security.

• You will NOT need to regenerate the certificates for SIM over SIM upgrades that support the MTLS

feature.

Historian | 2 - Getting Started Guide | 228

Troubleshooting Historian Server Certificates

Be aware of the following when working with certificates in Historian:

• When you install Historian, you are presented with three install types: Historian Single Server,

Historian Mirror Primary Server, and Historian Distributed/Mirror Node. The MTLS protocol and

certificate-based security is enabled by default for all install types. If you are installing a Historian

Single Server or the Historian Mirror Primary Server, the security settings will be automatically

configured by the installer. However, if you are installing a Historian Distributed/Mirror Node, you

must configure the security settings manually after installation, for more information, refer to

Overview of certificate-based security.

• You will need to follow the same procedure for installing certificates when certificates expire in the

future.

• Prior to adding any new root certificate to the Trusted Root Certification Authorities folder, it is a

better practice to remove an existing root certificate from the store first.

• After the root certificates are added to the Trusted Root Certification Authorities folder, all core

services need to be restarted.

• If the MTLS authentication fails due to a mismatch in certificates, improperly generated

certificates, expired certificates, or any issue related certificates, it will not cause the core Historian

Services to stop. These services will be in running state, but the trusted connections among these

services will fail. In this scenario, sometimes client tools will not be able to connect to the services.

Sometimes client tools connect to Client Manager but cannot do any operations on Historian

server. They simply show the “Not Connected” error.

• After trusted connections among core Historian services succeed, they will be in the same trusted

state until these services are stopped or restarted.

• It is strongly recommended to provide same expiration date (in the Number of days field) for the

root and all other core services certificates.

• If you forget to install the certificates, some of your core Historian services may not start after you

complete your Historian install or upgrade.

• If you do not provide the same root certificate password while creating other services certificates,

the MTLSCertificatesInstaller.exe tool returns a "Wrong Password" error.

Historian | 2 - Getting Started Guide | 229

• To see any specific errors that may be caused by certificate-based security, you need to enable

full debugging by adding the “FF” hexadecimal value to the DEBUGMODE registry as shown in the

following figure.

Using Proficy Authentication or LDAP Groups

About Proficy Authentication

In Historian, user authentication is handled using Proficy Authentication, which provides user account and

authentication (UAA) service. Proficy Authentication provides identity-based security for applications and

APIs. It supports open standards for authentication and authorization, including Oauth2.

When a user is created, modified, or deleted in Historian, the associated user account is being created,

modified, or deleted in the Proficy Authentication instance, respectively.

Note:

This is done in the back-end automatically. Therefore, most users will not require knowledge on

UAA to perform basic user management, except when additional configuration is required.

Historian | 2 - Getting Started Guide | 230

To use Proficy Authentication, you can choose between the following options while installing Web-based

Clients:

• Use a local Proficy Authentication service: Use this option if you want to create a local Proficy

Authentication instance. This is the default option. You can create this while installing Web-based

Clients.

• Using an existing Proficy Authentication service: Use this option if you are currently using a

Proficy Authentication service on a remote machine. You can install this service using Historian

Web-based Clients, or you can use any other UAA service (such as Proficy Authentication installed

using Operations Hub). You can then manage these users in Web-based Clients. The users in the

remote Proficy Authentication service can then use Web-based Clients.

You can use Proficy Authentication plugin in Configuration Hub to manage groups, manage users, and

map LDAP groups, and SAML groups with the Proficy Authentication groups.

For more information, refer to Proficy Authentication in Configuration Hub at https://www.ge.com/digital/

documentation/confighub/.

• Manage Identity Providers

◦ Add LDAP identity provider

◦ Modify LDAP identity provider

◦ Enable SAML

◦ Add SAML identity provider

◦ Modify SAML identity provider

◦ Delete Identity Provider

• Manage Groups

◦ Overview of Historian groups in Proficy Authentication.

◦ Create groups

◦ Map groups

◦ Modify groups

◦ Add or remove users in a group

◦ Add or remove sub-groups in a group

◦ Delete group

• Manage Users

◦ Create users

◦ Add LDAP or LDAPS users

◦ Add or remove groups for a user

https://www.ge.com/digital/documentation/confighub/
https://www.ge.com/digital/documentation/confighub/
https://www.ge.com/digital/documentation/confighub/version2024/t_uaa_add_ldap.html
https://www.ge.com/digital/documentation/confighub/version2024/t_proficyauth_modify_identity_provider.html
https://www.ge.com/digital/documentation/confighub/version2024/c_proficyauth_saml_setup.html
https://www.ge.com/digital/documentation/confighub/version2024/t_uaa_add_saml.html
https://www.ge.com/digital/documentation/confighub/version2024/t_proficyauth_modify_saml.html
https://www.ge.com/digital/documentation/confighub/version2024/t_proficyauth_delete_identity_provider.html
https://www.ge.com/digital/documentation/confighub/version2024/r_proficyauth_historian_groups_in_uaa.html
https://www.ge.com/digital/documentation/confighub/version2024/t_uaa_create_uaa_groups.html
https://www.ge.com/digital/documentation/confighub/version2024/t_proficyauth_mapping_groups.html
https://www.ge.com/digital/documentation/confighub/version2024/t_proficyauth_modify_groups.html
https://www.ge.com/digital/documentation/confighub/version2024/t_proficyauth_add_remove_users_to_group.html
https://www.ge.com/digital/documentation/confighub/version2024/t_proficyauth_add_remove_subgroups_to_group.html
https://www.ge.com/digital/documentation/confighub/version2024/t_proficyauth_delete_group.html
https://www.ge.com/digital/documentation/confighub/version2024/t_uaa_create_uaa_users.html
https://www.ge.com/digital/documentation/confighub/version2024/t_uaa_users_add_ldap_saml.html
https://www.ge.com/digital/documentation/confighub/version2024/t_proficyauth_modify_users.html

Historian | 2 - Getting Started Guide | 231

◦ Reset user password

◦ Delete user

About Proficy Authentication Groups

A Proficy Authentication group is created for a specific type of users who will likely perform the same type

of activities.

If you have groups in a remote Proficy Authentication service, you can use them with Historian using the

Proficy Authentication LDAP Integration tool. This section describes how to map the groups in the remote

Proficy Authentication service with Historian counterparts. By default, Historian contains the following

Proficy Authentication groups:

• historian_visualization.admin: Provides access to Trend Client and the Web Admin console.

• historian_visualization.user: Allows access to Trend Client.

• historian_rest_api.read: Provides read access to public REST API.

• historian_rest_api.write: Provides write access to public REST API.

• historian_rest_api.admin: Provides read/write access to public REST API.

• historian_enterprise.admin: Provides read/write access to Configuration Hub APIs.

• historian_enterprise.user: Provides access to view Configuration Hub APIs.

• ih_archive_admins: Provides the ability to create, modify, and remove archives.

• ih_audited_writers: Allows data writes and to produce a message each time a data value is added

or changed.

• ih_collector_admins: Allows the ability to add collector instances and change their destination.

• ih_readers: Provides access to the ability to read data and system statistics. Also allowed access

to Historian Administrator.

• ih_security_admins: Provides access to Historian power security users. Security administrators

have rights to all Historian functions.

• ih_tag_admins: Provides access to allow the ability to create, modify, and remove tags. Tag-level

security can override rights given to other Historian security groups. Tag admins can also browse

collectors.

• ih_unaudited_logins: Allow connenctions to the Data Archiver without creating login successful

audit messages.

• ih_unaudited_writers: Provides the ability to write data without creating any messages. Tag,

archive, and collector changes log messages regardless of whether the user is a member of the

ih_audited_writers group.

https://www.ge.com/digital/documentation/confighub/version2024/t_proficyauth_reset_password.html
https://www.ge.com/digital/documentation/confighub/version2024/t_proficyauth_delete_user.html

Historian | 2 - Getting Started Guide | 232

Note:

Instead of mapping the groups, you can choose to map individual users with Historian users. For

instructions, refer to Managing Proficy Authentication Users Using the Configuration Tool (on

page 284).

Workflow

1. Provide the details of the remote Proficy Authentication service while installing Web-based Clients

(on page 154).

2. Connect to the remote Proficy Authentication service (on page 182).

3. Map the Proficy Authentication groups with that of the Historian Proficy Authentication instance.

You can map the groups in LDAP and LDAPS (LDAP via SSL).

Configurations Checklist to use Proficy Authentication Security Groups
In Configuration Hub, the Global Security section in the system DETAILS section enables you to specify

the authorization for Historian security groups. To use Proficy Authentication security groups, you must

perform the configurations listed in this topic.

This topic intends to be a checklist for you to perform the configurations that are needed to use Proficy

Authentication security groups for authorization.

1. Access Configuration Hub using ch_admin as the username.

2. In the NAVIGATION pane, expand Proficy Authentication, and then select Security.

3. Add the same Windows Login user (For example, if you logged in as Administrator, use

Administrator), and then map the user with all admin groups. For more information on adding users

and mapping the users to groups, refer to Create groups, Add or remove users in a group and Map

groups. For more information on Historian security groups, refer to Overview of Historian groups in

Proficy Authentication.

4. In the Users tab, from the list of users, select the predefined user, that is <hostname>.admin, and

then map it to ih_security_admins. For more information, refer to Map groups.

https://www.ge.com/digital/documentation/confighub/version2024/t_proficyauth_mapping_groups.html
https://www.ge.com/digital/documentation/confighub/version2024/t_uaa_add_ldap.html
https://www.ge.com/digital/documentation/confighub/version2024/t_uaa_create_uaa_groups.html
https://www.ge.com/digital/documentation/confighub/version2024/t_proficyauth_add_remove_users_to_group.html
https://www.ge.com/digital/documentation/confighub/version2024/t_proficyauth_mapping_groups.html
https://www.ge.com/digital/documentation/confighub/version2024/t_proficyauth_mapping_groups.html
https://www.ge.com/digital/documentation/confighub/version2024/r_proficyauth_historian_groups_in_uaa.html
https://www.ge.com/digital/documentation/confighub/version2024/r_proficyauth_historian_groups_in_uaa.html
https://www.ge.com/digital/documentation/confighub/version2024/t_proficyauth_mapping_groups.html

Historian | 2 - Getting Started Guide | 233

5. Add the users defined in Proficy Authentication using the same password to Local users & Group.

This will enable you to access thick clients (VB admin, iHSQL). For more information on how to add

a user to Local users & Group, refer to Adding Users to Windows Security Group.

Alternatively, you can add the users by adding registry entries.

a. In the HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Intellution, Inc.

\iHistorian\Servers and HKEY_LOCAL_MACHINE\SOFTWARE\Intellution, Inc.

\iHistorian\Servers registry paths, add the following registries.

Name Type Data

UAA REG_SZ https://hostname.do

main:433/uaa/oauth/token

For example,

https://testmachine.ge

.com:443/uaa/oauth/token.

UseUaaAuthentication REG_DWORD 0x00000001.

b. Save the registries.

6. Now, you can Access Configuration Hub (on page 336) using the predefined username, that is,

<hostname>.admin and password.

7. In the NAVIGATION pane, in the Configuration Hub plugin for Historian, access Systems, and then

select the system as needed.

The system appears in the main section. The system details appear in the DETAILS section.

8. In the GLOBAL SECURITY section, select Use Proficy Authentication.

9. On the top-right corner, select Save.

10. Restart all the services, including the Remote Collector Management (RCM) service.

Now you can use the Proficy Authentication security groups for authorization.

To know if your configurations were saved, check the following:

Historian | 2 - Getting Started Guide | 234

• The CollectorManager.shw status must be Connected.

• The DataArchiver.shw security settings must be as shown below.

Using Server Certificates

To use server certificates with Historian, use the Certificate Management tool. This tool supports the

following combination of files to import the certificate chain and the private key:

• A PEM file that contains the certificate chain and the private key.

• A PEM file that contains the certificate chain, and another PEM file for the private key.

• A PFX file that has the certificate chain and the private key.

For instructions on using the Certificate Management tool, refer to https://www.ge.com/digital/

documentation/opshub/windows/windows/c_about_certificate_management.html.

Change the Log Levels of Proficy Authentication

1. Access the log4j.properties file in the following folder: C:\Program Files\GE

\Operations Hub\uaa-tomcat\webapps\uaa\WEB-INF\classes

2. For each module, select one of the following log levels depending on your requirement:

◦ TRACE

◦ DEBUG

◦ INFO

◦ WARN

◦ ERROR

◦ FATAL

◦ OFF

3. If you want to disable Tomcat logging:

https://www.ge.com/digital/documentation/opshub/windows/windows/c_about_certificate_management.html
https://www.ge.com/digital/documentation/opshub/windows/windows/c_about_certificate_management.html

Historian | 2 - Getting Started Guide | 235

a. Stop the Proficy Authentication Tomcat Web Server service.

b. In the C:\Program Files\GE\Operations Hub\uaa-tomcat\bin folder, rename the

tomcat8w.exe file UaaTomcat.exe, and run this application as an administrator.

c. Select Logging.

d. Remove the auto keyword from the Redirect Stdout and Redirect Stderr labels.

e. Start the Proficy Authentication Tomcat Web Server service.

4. If you want to change the Tomcat log level:

a. Stop the Proficy Authentication Tomcat Web Server service.

b. Access the context.xml file located in the C:\Program Files\GE\Operations Hub

\uaa-tomcat\conf.

c. In the Context tag, add: swallowOutput="true"

d. Access the logging.properties file in the same folder, and set the

2localhost.org.apache.juli.AsyncFileHandler.level to one of the following values, which are

in the order of less verbose to more verbose:

▪ SEVERE

▪ WARNING

▪ INFO

▪ CONFIG

▪ FINE

▪ FINER

▪ FINEST

▪ ALL

e. Start the Proficy Authentication Tomcat Web Server service.

Migrating Historian Data

Migrating the Alarms and Events Data

If you have upgraded Historian, you must migrate the alarms and events data as well. Only then you can

retrieve the data.

The steps to migrate depend on the Microsoft SQL version in which the alarms and events data is stored:

Historian | 2 - Getting Started Guide | 236

• If using Microsoft SQL 2008 or later, you can install Historian and its components, install a

supported version of Microsoft SQL, and then migrate the data.

• If using a version earlier than Microsoft SQL 2008, you must first migrate the data to Microsoft SQL

2008, and then migrate it to a supported version of Microsoft SQL.

To migrate data, you can choose one of the following options:

• Before upgrading to the latest version of Historian: In this case, you can use Historian

Administrator of the older version of Historian to migrate the data.

• After upgrading to the latest version of Historian: In this case, you can use the Proficy Alarm

Database Migration tool, which is provided with Historian.

This section describes how to migrate data using the migration tool.

Workflow for Migrating Alarms and Events Data

If the alarms and events data is currently in Microsoft SQL 2008 or later:

1. Install the following components on the target machine in the given sequence:

a. Historian (on page 104)

b. Alarms and Events (on page 140)

c. Collectors (on page 142)

d. Client Tools (on page 150)

e. Standalone Help (on page 205)

2. Back up the alarms and events data (on page 237).

3. Install Microsoft SQL on the target machine. Refer to Software Requirements (on page 92) for a

list of supported versions.

4. Restore the data that you have backed up to Microsoft SQL.

5. As needed, perform calculations on the migrated data. Ideally, you must create an archive already

to store the calculated data. For unsolicited calculation tags, migration of data will cause the

calculation to be triggered automatically for the time associated with the migrated data points.

Archives will potentially grow beyond the configured default size. To avoid this issue, adjust the

value for the DataIsReadOnlyAfter field on the Security section of the Data Store Maintenance page

of Historian Administrator (or the ActiveHours property) so that the value is large enough to contain

the calculated data. By default, this value is 1 month.

If the alarms and events data is currently in a version earlier than Microsoft SQL 2008:

Historian | 2 - Getting Started Guide | 237

1. Using Microsoft SQL Server Management Studio, back up the alarms and events data. If the

database is large, consider taking a partial backup instead of a full backup.

2. Install Microsoft SQL Server 2008 on the target machine.

3. Restore the data that you have backed up in step 1.

4. In Microsoft SQL Server Management Studio, under Databases, right-click the database that you

have restored, and then select Properties > Options.

5. In the Compatibility level field, select SQL Server 2008.

6. Install the following components on the target machine in the given sequence:

a. Historian (on page 104)

b. Alarms and Events (on page 140)

c. Collectors (on page 142)

d. Client Tools (on page 150)

e. Standalone Help (on page 205)

7. Back up the alarms and events data (on page 237) that you have restored in step 3.

8. Install a supported version of Microsoft SQL on the target machine. Refer to Software

Requirements (on page 92) for a list of supported versions.

9. Restore the data that you have backed up in step 7 to Microsoft SQL.

10. As needed, perform calculations on the migrated data. Ideally, you must create an archive already

to store the calculated data. For unsolicited calculation tags, migration of data will cause the

calculation to be triggered automatically for the time associated with the migrated data points.

Archives will potentially grow beyond the configured default size. To avoid this issue, adjust the

value for the DataIsReadOnlyAfter field on the Security section of the Data Store Maintenance page

of Historian Administrator (or the ActiveHours property) so that the value is large enough to contain

the calculated data. By default, this value is 1 month.

Back Up the Alarms and Events Data

Install the following components in the given sequence:

1. Historian (on page 104)

2. Alarms and Events (on page 140)

3. Collectors (on page 142)

4. Client Tools (on page 150)

5. Standalone Help (on page 205)

If, however, the alarms and events data is currently in a version earlier than Microsoft SQL 2008, you must

first migrate the data to Microsoft SQL 2008, and change the compatibility level to SQL Server 2008.

Historian | 2 - Getting Started Guide | 238

1. Go to the <Historian installation folder>\Proficy DataBase folder, and open the

Proficy.Historian.AandE.Migration.exe file.

The Backup Existing Alarms and Events window appears.

2. In the Time Range section, in the From and To fields, select the start time and end time of the

backup duration.

We recommend that you select small duration if you have many alarms. If you want to migrate the

alarms in blocks of time, choose the oldest alarms first.

3. In the Database Name field, enter the name of the database that you want to back up. Typically, this

will be the same as the Microsoft SQL server you are using.

4. Depending on whether you want to use Windows credentials or Microsoft SQL credentials, select

either Use Windows Authentication or Use SQL Authentication, respectively.

5. In the User Id and Password fields, enter the login credentials. Provide the username of a user who

has the permission to connect and back up alarms.

6. In Backup Folder Path field, provide the absolute path, including the file name, to store the backed

up alarms (for example, c:\temp\March2010.bak). You can enter the path of a local file or a

remote one, depending on whether the Microsoft SQL server is installed on the local machine or a

remote machine.

7. Select Test Connection to check if the source database is active and the information is accurate.

The Begin Backup button is activated.

8. Select Begin Backup.

The alarms and evens data is backed up. The count of the rows that are backed up appears.

Install a supported version of Microsoft SQL, and restore the data (on page 238) that you have backed

up. Refer to Software Requirements (on page 92) for a list of supported versions.

Restore the Alarms and Events Data
Install Microsoft SQL. Refer to Software Requirements (on page 92) for a list of supported versions.

1. Go to the <Historian installation folder>\Proficy DataBase folder, and open the

Proficy.Historian.AandE.Migration.exe file.

The Backup Existing Alarms and Events window appears.

2. Select Migrate Alarms and Events Backup.

3. In the Backup Folder Path field, provide the absolute path of the file (including the file name) in

which you want to restore the data (for example, c:\temp\March2010.bak). You can enter the path

of a local file or a remote one, depending on whether the Microsoft SQL server is installed on the

local machine or a remote machine.

4. In the Database Name field, enter the name of the database that you want to back up. Typically, this

value is the same as the Microsoft SQL server you are using.

Historian | 2 - Getting Started Guide | 239

5. Depending on whether you want to use Windows credentials or Microsoft SQL credentials, select

either Use Windows Authentication or Use SQL Authentication, respectively.

6. In the User Id and Password fields, enter the login credentials. Provide the username of a user who

has the permission to connect and back up alarms.

7. Select Test Connection to check if the source database is active and the information is accurate.

The Begin Migrator button is activated.

8. Select Begin Migrator.

The alarms and evens data is restored. The count of the rows that are restored appears.

Using the Migration Tool

The IHA Migration Tool (MigrateIHA.exe for 32 bit or MigrateIHA_x64.exe for 64 bit) allows you to

migrate data up to 30 years old if the data is already stored in IHA files from any version of Historian. Use

the Migration Tool to move data from one archiver to another when you cannot simply restore the IHA in

Historian Administrator.

The Migration Tool opens an IHA file as a binary data file and reads the raw samples from it. Those

raw samples are then written to a destination archiver, in a similar way to how an OPC collector or File

collector would write data. Any errors returned from the data archiver are reported in the main window

and repeated in the log file.

Note:

• You can migrate UserDefined types, MultiField tags, and Array tags.

• When you are migrating the data stores, the source data store is created in the destination.

• Using this Migration Tool, you can upgrade from two previous versions of Historian to the

latest version.

• The performance of this tool is impacted with the addition of Client Manager and

Configuration Manager. For best performance, use this on a Single Server install only.

Migrating Historical Data

You need to run this tool as an administrator to migrate and create the log files in the C:\ directory.

To migrate historical data stored in IHA files from any version of Historian:

Historian | 2 - Getting Started Guide | 240

1. In the Historian folder, double-click the Migration Tool executable (MigrateIHA.exe for 32-bit

or MigrateIHA_x64.exe for 64-bit) to open the IHA Migration Utility.

The icon for the executable looks as follows: .

2. Select Configure Options from the Options menu.

3. Enter or modify any specific configuration information.

When choosing an IHC file, do not specify one currently in use by the Data Archiver. (For more

information, see Configuring Migration Options (on page 240).)

4. Select File > Migrate Historical Data .

The Select Historical Data File(s) window appears.

5. Select a historical file and select Open.

Refer to the IHA Migration Utility main page for information on the progress of the migration and

any encountered errors.

Note:

The IHA Migration Utility page only displays the most recent lines of the log file. For the full

set of logged messages, refer to the log file, typically located in C:\IHAMigration.Log.

6. Optionally, perform these steps:

a. You can upgrade the older version's archive files to the latest version by selecting the bulk

upgrade option.

Stop the Data Archiver service and select File > Bulk Upgrade Historical Data.

If you do a bulk upgrade of historical data immediately after you install the latest version on

Historian, then save on upgrading while the system reboots.

b. To clear the log messages displayed in the page, select File > Clear Display.

c. To view the logs saved in the IHAMigration.log file, select File > View Log File > ..

Configuring Migration Options

1. In the Migration tool (MigrateIHA.exe for 32 bit or MigrateIHA_x64.exe for 64-bit), select

Options > Configure Options.

The Migration Options window appears showing the default server information and the default

migration options.

Historian | 2 - Getting Started Guide | 241

2. Enter options the following options.

Related reference

Server Pane (on page 241)

Options Pane (on page 242)

Tags to Migrate Pane (on page 242)

Time to Migrate Pane (on page 242)

Server Pane

Field Description

Server The default server (set during installation). If you do not want to write data to

the default server, enter the desired server in this field.

Username and Pass

word

If you have created and established Security Groups in your Historian Securi

ty Environment, you may need to enter the user name and password here. By

default, if you do not supply any information, the current logged in user will be

used in security checking.

Historian | 2 - Getting Started Guide | 242

Options Pane

It is always advisable to take a copy of the configuration file and work on the copy rather than working on

the original file.

Tags to Migrate Pane

Option Description

Migrate All Tags Select this option to migrate all the tags from the selected archiver.

Migrate only tags that

exist in destination

Select this option to migrate all the tags that exists in the source destination.

Migrate using tag mask Select this option to migrate tags with the mask specified. You can specify an

exact tag name to migrate that tag only.

Migrate only tags that

exist in source config

file

To migrate the tags that are present only with the source config file.

Time to Migrate Pane

Option Description

Use IHA TimeFrame Select this option to migrate all the tags which has the IHA time frame.

Use Below TimeFrame Select this option to migrate all the tags in the specified time frame. You need

to specify the Start Date/Time and End Date/Time if you select this option.

Data Migration Scenarios

You can migrate tags and their data on the same Historian Server or between servers. When migrating

your data, consider the following guidelines:

• Get new collection working first

When the data is collected from the collectors or the API programs, then you should consider

adding the tag definitions into the destination server and directing data to be written there before

you start migration, because migration may take several hours or days.

• Migrate data from oldest to newest

Historian | 2 - Getting Started Guide | 243

It is advisable to migrate the oldest data first and then the newest, to make the optimal use of

archive space.

• Pay attention to TagID

Every tag in Historian 4.5 and above has a property called TagID, that uniquely identifies it and

allows data retrieval to locate the data. Even if you have a tag of with the same name in another

archiver, that tag has a different TagID and is considered as a different tag. You can see the TagID

of a tag in the Excel Tag Export. Preserve that number when moving a tag from one system to

another.

The following are commonly used scenarios while migrating data on the same Historian server or

between servers.

• Migrating a Tag and its data from one data store into another data store.

• Merging a Historian Server into an existing data store on another machine. .

Migrating a Tag and its Data

If you want to separate a single large user data store of tag into multiple smaller data stores on the same

machine, and if your software license allows it, then you should assign the tag to the new data store and

then migrate the data.

Consider when data is collected for the year 2009 in Tag1. The collected data is archived in the default

User data store. If you want to move Tag1 residing in the User data store to another data store, (for

example, the Motor data store), then you must create the Motor data store if it does not already exist and if

your license allows it.

The next step is to change the data store of the tag. You can change the data store of the tag either using

Historian Administrator or using Excel Tag Import. The new incoming data gets collected in the Motor

data store. If you do a raw data query, you will get only the latest data and the previous data will not be

available. To get the old data, you must migrate the data residing in the User data store to the Motor data

store.

To migrate a tag and its data from one data store to another data store on the same server:

1. Use iharchivebackup -c to make a backup of the .ihc file.

The backup of the Config file is automatically created in the Archives folder.

2. In Historian Administrator, back up each archive from oldest to newest.

Historian | 2 - Getting Started Guide | 244

3. Launch the Migration Tool (MigrateIHA.exe for 32-bit or MigrateIHA_x64.exe for 64-bit)

using Administrator privileges.

4. Select Options > Configure Options.

5. In the Server pane, enter the Server name.

6. In the Options pane, enter the IHC File path in the Config File path field, using the browse button.

This is the path to the IHC backup that you made in step 1.

7. In the Tags to Migrate pane, select the Migrate Using Tag Mask option and enter the Tag Name

you moved to the new data store.

8. In the Time to Migrate pane, ensure the Use IHA TimeFrame option is selected.

9. Select File > Migrate Historical Data.

10. Select the archive file that you backed up in Step 2 and monitor the progress of the migration.

When the migration is complete, query the data to see the migrated data can be queried. Repeat

with the remaining archives from oldest to newest.

As needed, perform calculations on the migrated data. Ideally, you must create an archive already to store

the calculated data. For unsolicited calculation tags, migration of data will cause the calculation to be

triggered automatically for the time associated with the migrated data points. Archives will potentially

grow beyond the configured default size. To avoid this issue, adjust the value for the DataIsReadOnlyAfter

field on the Security section of the Data Store Maintenance page of Historian Administrator (or the

ActiveHours property) so that the value is large enough to contain the calculated data. By default, this

value is 1 month.

Merging a Historian Server

A typical scenario is to merge a Historian Server into an existing data store on another machine.

If your system architecture has evolved from multiple smaller servers into fewer large archives, you can

eliminate the smaller machines while preserving all your tag configuration and collected data.

Consider the following example. You have two machines, Machine A and Machine B. Machine A is running

current or any earlier version of Historian and has 100 tags and 10 archive files. The data of these tags

are collected from the collector and is being queried by users. Machine B is running the current version of

Historian.

Historian | 2 - Getting Started Guide | 245

Note:

• This example does not include Alarm migration. If Machine A was being used to store

alarms, then you need to migrate those before eliminating Machine A.

• You cannot migrate tags with Enumerated Data Sets. If you want to migrate data for

Enumerated Data Sets, then you must create the Enumerated Data Sets in Historian

Administrator or Microsoft Excel and then migrate the tags.

• To migrate tags which are condition based triggers, then you must create the condition-

based triggers for that tag in Historian Administrator or Microsoft Excel and then migrate

the tags.

You can migrate data only if the file format of the archive files format is .IHA. If the back-up archive is in

.zip format, extract the zip files and copy all the .IHA files separately in a folder.

1. Before migrating, copy the .IHC and all the .IHA files from Machine A to Machine B.

2. Launch the Migration Tool (MigrateIHA.exe for 32-bit or MigrateIHA_x64.exe for 64-bit) with

Administrator privileges.

3. Select Options > Configure Options.

4. In the Server pane, enter the Server name.

5. In the Tags to Migrate pane, ensure that the Migrate All Tags option is selected

6. In the Options pane, enter the IHC File path in the Config File path field, using the browse button.

The path you enter is the path to the .IHC file brought over from Machine A.

7. In the Time to Migrate pane, ensure the Use IHA TimeFrame option is selected.

8. Ensure Throttle Output is selected.

9. To migrate the data, select File > Migrate Historical Data and select the archive file that has the

oldest data.

The tags and data are migrated to the default data store in time slices. The MigrateIHA window

displays the progress and any Tag Add or Data Add errors are displayed in the log file. You can

estimate the remaining time by watching the progress.

10. Repeat the previous steps for each of the remaining archives, from oldest to newest data.

11. Add the collector to the Historian Server on Machine B.

See the Adding a Data Collector to an Historian Server topic in Data Collectors - General.

Historian | 2 - Getting Started Guide | 246

Migration Tool Command-Line Syntax

Command Syntax

• For 32-bit:

MigrateIHA.exe "<IHA file name with full path>" "<IHC filename with full path>"

• For 64-bit:

MigrateIHA_x64.exe "<IHA file name with full path>" "<IHC filename with full path>"

Command-line Options

Option Description

/NOTHROTTLE This does not throttle any part of the migration process, but may impact resources

on the server. Optionally, you can remove this switch as required. By default, throt

tling is rated at 5000 events per second.

/NOMESSAGES This does not migrate messages into the newly created archive. Using this switch

may or may not reduce the size of your archives, depending on the number of mes

sages stored in the archive. By default, messages are migrated if this switch is not

used.

/EXISTINGTAGS This will migrate data for only those tags that exist in the destination archiver.

/b This option of the start.exe file allows the IHA Migration tool to start without

opening a new window for each instance.

If you are migrating a pre 4.5 IHA file you will need to have the IHC file for that IHA

and specify the IHC file in the Options window or on the command line. Otherwise,

you will get a warning message.

/wait This option of the start.exe file allows each instance of the IHA Migration tool

to complete the migration before starting the next migration in the sequence.

/NOIHC This option skips verifying for IHC file and proceed with the migration. IHC file is

not required, if batch command have /NOIHC option.

Historian | 2 - Getting Started Guide | 247

Notes

• If you are migrating from a command line, provide IHC file, else, use /NOIHC option to omit the IHC

file.

• If you do not have the IHC or you are not sure you have the correct IHC then you should use the

pre-4.5 version of MigrateIHA to migrate the IHA. Otherwise, the data will not migrate correctly.

• You should keep a copy of the original IHA file.

• The IHC must contain all the tags that are in the IHA file, so use the most current IHC you have.

• You must use double quotes when you enter the IHA and IHC file even if you do not have spaces in

your file path or file name.

• Migrating an IHA will upgrade it to 4.5 format.

• If you are migrating a 4.5 IHA you should provide the IHC file in the Options window but if you do

not have the IHC you can safely continue past the warning message.

Creating a Batch File to Migrate Multiple IHA Files

The IHA Migration utility migrates only one archive at a time by design. However, if you need to add more

than one archive at a time, you can create a batch file to automate multiple archive merges.

When creating a batch file you need to provide the batch file with a logical name and save the batch

(.bat) file in a location that can be easily accessed using the command prompt.

Note:

When migrating any archive, you should start with the archive with the oldest data first, followed

by newer data, in sequence, to minimize the amount of disk space used in the Data Archiver.

For example:

cd c:\Program Files\Historian

start /b /wait migrateiha /NOTHROTTLE /NOMESSAGES

"c:\Historian Data\Backups\server_Archive001.iha"

"c:\Historian Data\Backups\server_Config.ihc".

Interoperability of Historian Versions

Interoperability guidelines for Historian versions include:

Historian | 2 - Getting Started Guide | 248

• Historian Collectors below v6.0 can write to Historian v7.0 Archivers; however, since the earlier

collector versions cannot automatically connect to a mirror, users need to point those collectors to

the mirror system.

• Historian Clients below v6.0 can retrieve data from Historian v7.0 Archivers.

• Historian v7.0 or later Clients can retrieve data from a single Historian Data Archiver below v6.0.

• Historian v7.0 or later Collectors can write to a single Historian Data Archiver below v6.0.

• An SDK program built on an Historian v7.0 or later node does not run on an Historian below v6.0.

• An SDK program that you created in Historian below v7.0 must be rebuilt on a computer with

Historian v7.0 or later if you want to run it on that version.

• It is recommended that you use consistent versions of client and server applications. If you do

use different client and server versions of the Historian, regularly back up all archives and tag

configurations.

Note:

To determine the version of the server, client, and SDK, select the About link in Historian

Administrator. The version of the Historian installer can be seen in the Control Panel / Uninstall

programs; this version is different from the Historian core version seen in Historian Administrator

About link.

Migrate User Authentication Data from Historian to Common Proficy
Authentication Service

Starting Historian 8.0 version, you can use the common Proficy Authentication service.

Note:

You can either choose the common Proficy Authentication deployed by any other products such

as, Operations Hub, Plant Apps; or the common Proficy Authentication deployed by Historian.

To use the common Proficy Authentication service, you must migrate the Proficy Authentication data

should from Historian to the new local or external Proficy Authentication.

To enable this migration of data the uaa_config_tool is introduced.

Historian | 2 - Getting Started Guide | 249

Note:

• While migrating Proficy Authentication details, we are setting default password as user123

for all the users. You should change it using Proficy Authentication config tool once

migration is done.

• While setting up new password, it may ask you to enter the port number. By default, the

port number is 443. If you have provided a different value in the Public https port field in

the TCP port assignments page while installing Web-based Clients, you must provide that

value.

• Using this tool, you can back up the Proficy Authentication data only for Historian 7.2 or

earlier. And, you can migrate the data to Historian 8.0 or later.

Important:

Back up the data before upgrading to the latest version of Web-based Clients.

It includes the following tasks:

1. Back up Historian Proficy Authentication data.

2. Migrate the data to an existing common Proficy Authentication service.

1. Open Command Prompt.

2. Mount the ISO and navigate to the Utilities folder where the uaa_config_tool.exe file is located.

After installation, uaa_config_tool is available in the following folder as well: <installation

drive of Historian>\Program Files\GE Digital\Historian Config

Important:

You should back up the data before upgrading to 8.0 (Web-based Clients)

3. Enter the following command to take a back up of the data:

C:\ uaa_config_tool.exe backup_data -d "<destination folder>"

<destination folder> is the location where you want to save the back up files. Note that you must

enter the value in quotes.

Historian | 2 - Getting Started Guide | 250

Note:

You may be prompted to enter the password twice for Historian Database and Proficy

Authentication. Enter the password as GEIP123User

Back up is generated and the data is saved in the destination folder.

4. Copy the backup files to the machine where Web-based Clients are installed.

5. Enter the following command to migrate the data:

uaa_config_tool.exe migrate_data -h <host-addr> -m <portnum> -u <username> -s <secret> -l

"<location path of backup files>"

Example: uaa_config_tool.exe migrate_data -h vmhistwin2016 -m 443 -u admin -s gowt43df -l

"c:\myuaabackupfiles"

Note:

While migrating Proficy Authentication details, it may ask for port number at migrating

historian database. The default value is 8432. If, however, you have provided a different

value in the Historian database port field in the TCP port assignments page while

installing Web-based Clients, provide that value.

Value Description

<host-addr> Address of the host or destination where you want to

migrate the data.

<portnum> Port number of the destination.

<username> Username

<secret> Client Secret

<location path of backup files> Source location where the data is backed up.

• The data is migrated to the destination that is, common Proficy Authentication service.

• The umtlog file is generated containing the details about backup and migration for users and

groups.

• The User_migration_report is generated which contains the migration status of the user data.

Historian | 2 - Getting Started Guide | 251

Note:

Creation and migration of users and groups can fail of the user or group already exists in the

destination.

If user migration fails, you can change the username in the backup file and repeat Step 5.

Implementing Historian Security

Implementing Historian Security

Historian is a high performance data archiving system designed to collect, store, and retrieve time-based

information efficiently. By default, access to these Historian archives, tags, and data files is available to

any valid operating system user account. In this default environment, all users are allowed to read, write,

change, and delete archives, tags, or data files in Historian Administrator, SDK, migration tools, and Excel

Add-In. However, you may want to make these features and data available only to authorized personnel.

You can do this by creating and defining Historian security groups in your Windows Security.

Historian includes an Electronic Signature and Electronic Records security feature. This option provides

installations related to the FDA's 21 CFR Part 11 regulation or any site interested in added security or

tracking the ability to require a signature and password every time a change in data or configuration is

requested. For more information on the Electronic Signature and Electronic Records feature, refer to

Historian in a Regulated Environment (on page 824).

To ensure a secure environment when using Historian security, do not create any local user accounts

unless Historian is set up on a standalone machine.

Whether or not you use Historian security, make sure that you disable Guest accounts on your computer

to limit access to valid Windows user accounts.

To run Proficy Authentication commands, refer to Managing Proficy Authentication Users Using the

Configuration Tool (on page 284).

About Protecting Your Process

If you want to restrict access to Historian archives, files, and tags, or protect your data files from

unauthorized changes, you can enable Historian security. Using security is optional and is disabled by

default. By enabling security, you can restrict access to:

• Modifying data using Excel Add-In

• Updating security for individual tags or groups of tags

Historian | 2 - Getting Started Guide | 252

• Creating, modifying, and removing tags

• Tag protection (adding, modifying, removing, and so on) can be applied at a global level to all tags

or at the individual tag level.

Refer to Implementing Tag Level Security for more information.

• Reading data in the iFIX Chart object, Excel Add-In, and Migration Utilities

• Writing data

• Starting and stopping collectors

• Creating and deleting collectors

• Creating, modifying, and deleting archives

Historian uses the operating system security groups to create a security structure. You can enable

security for a particular set of functions by adding specific Historian Security Groups to your groups. You

can also add security groups to your domain controller.

By defining one or all of the groups, you begin to set up a security structure. Refer to the Historian Security

Groups section for more information on the Historian Security Groups available.

Strict Authentication

With Historian's strict user account authentication features, Enforce Strict Client Authentication and

Enforce Strict Collector Authentication, you can control access to the Historian server and safeguard

user account credentials.

With strict authentication enabled, only known user accounts configured on the Data Archiver server

computer will be able to access a Historian server. Similarly, enabling strict collector authentication

enforces the same requirement for incoming collector connections.

For an account to be known at the Data Archiver, it has to exist on that archiver as a local account or exist

on a Domain Controller available to the data archiver. Historian will access the local accounts or Domain

Controller via Microsoft’s Security Support Provider Interface (SSPI) and this involves having a Kerberos

server setup optionally to assist in account validation.

By default, strict client and collector authentication is enabled on new installations to maximize security.

When upgrading from a previous version of Historian, strict client and collector authentication is disabled

to allow compatibility with older clients or collectors that cannot be upgraded concurrently.

It is recommended that all clients and collectors receive timely upgrade to the latest version, which

permits enabling both strict client and collector authentication on the server for the highest security

configuration.

Historian | 2 - Getting Started Guide | 253

By treating clients and collectors separately, it is possible to accommodate new and legacy authentication

during the upgrade process. However, upgrading all clients and collectors to the latest version

immediately will achieve a high level of security. The two options, Enforce Strict Client Authentication

and Enforce Strict Collector Authentication, permit flexibility during the upgrade process by selectively

accommodating legacy clients and collectors.

Local and Domain Security Groups:

You can choose local or domain security groups to access Historian. To do so, in Historian Administrator

> Data Stores > Security, select Use Local or Use Domain. The following table provides recommended

group to use based on the machine configuration and the security group of the logged-in user.

Machine Configuration
Security Group of

the Logged-In User
Recommended Security Group

Workgroup Local Local

Domain Local Domain

For domain machines, we recom

mend that you log in with a do

main-level user and create se

curity groups in the domain con

troller machine.

Domain Domain Domain

Strict Authentication Options:

This table provides guidelines about the different combinations of strict client and collector

authentication options and their use:

Strict Client Au

thentication

Strict Collector

Authentication
Comment

Enabled Enabled Use this for highest available security. You will need to install

SIMs, if available on all pre-6.0 collectors and clients. Clients

can refer to any program that connects to the Data Archiver.

This includes Historian Administrator, Microsoft Excel, any

OLE DB program, user written programs, or any other Proficy

software.

Historian | 2 - Getting Started Guide | 254

Strict Client Au

thentication

Strict Collector

Authentication
Comment

Enabled Disabled Use this if you are unable to upgrade collectors to the latest

version if there is no SIM update for your collector.

Disabled Enabled Use this if you have to support legacy clients and you are un

able to install the SIM update on all clients.

Disabled Disabled Use this for maximum compatibility with existing systems.

Trusted Connections in Distributed Historian Service Environment:

This trusted connection works only in the Domain environment and it is enabled by default.

Note:

If you are adding a mirror copy to an existing node, make sure that both the nodes are in the same

domain.

If you want to work in the workgroup setup, contact Online technical support &

GlobalCare:www.digitalsupport.ge.com.

Disabling Strict Client and Collector Authentication

To permit older versions of clients and collectors to access a Historian 7.0 (or later) server, disable strict

client and collector authentication.

1. Open the page and select DataStore Maintenance Security.

2. In the Global Security section:

◦ Select the Disabled option button for Enforce Strict Client Authentication.

◦ Select the Disabled option button for Enforce Strict Collector Authentication.

Security Strategy Guidelines

When you begin to implement security, you should first define a clear strategy. Consider the following

when beginning to set up your security strategy:

• If you disabled the Guest account, a user must provide a valid username and password even if no

groups are created.

• Protection is only provided for the functional areas for which you have built the associated

Historian Security Groups.

http://digitalsupport.ge.com/

Historian | 2 - Getting Started Guide | 255

• If you only choose to define some of the security groups, all users still have all access to any

uncreated groups. All users are still assumed to be a member of a group unless that group has

been created, with the exception of iH Audited Writers group. You must add the iH Audited Writers

group to the Windows security groups so that a user can become a member of this group.

For example, if you elect to define the iH Security Admins group and iH Archive Admins group, both

the members associated with those defined groups and all other valid users still have access to

such functions as creating and modifying tags until you create the iH Tag Admins security group.

• If you implement any Historian Security groups, you must first add and define the iH Security

Admins group.

Note:

If you do not create and define the iH Security Admins group, all valid users are assumed to be

members of this group. This membership overrides any other security group that you set.

See also Historian Security Groups (on page 256).

Setting Historian Login Security

Use Historian Login Security settings if you want to validate users at the Data Archiver, instead of at the

client. By applying these settings, users and applications are forced to provide a user name and password

at connect time so that the archiver can validate them. For example, users in the security group such as ih

Security Admins will be checked by the Archiver.

For Historian Login Security settings, you can view and set the property from the HistorianSDKsample

server properties. The current setting is shown in the data archiver SHW file.

Historian Login Security property is available only in Historian SDK.

To set login security using the Historian SDK:

1. Run the SDK sample.

2. Connect to a server.

3. Select the server in the list box.

The Server Properties window appears.

4. On the right side of the window, locate the AllowClientValidation setting. By default, this value is

set to TRUE. Select to set to FALSE, and select OK.

Historian | 2 - Getting Started Guide | 256

Historian Security Groups

Historian provides the following security groups:

iH Security Admins

Historian power security users. Security Administrators have rights to all Historian

functions. This group also has the ability to change tag level security, archive security, and

modify the Electronic Records and Signatures option. This is the only Historian security

group that overrides tag level security.

iH Collector Admins

Allowed to start and stop collectors, browse collectors, configure collectors, and add new

collectors.

iH Tag Admins

Allowed to create, modify, and remove tags. Tag level security can override rights given to

other Historian security groups. Tag Admins can also browse collectors.

iH Tag Admins are not responsible for setting Tag Level Security. This task can only be

performed by an iH Security Admins. For more information on setting Tag Level Security,

refer to the Implementing Tag Level Security section.

iH Archive Admins

Allowed to create, modify, remove, backup, and restore archives.

iH UnAudited Writers

Allowed to write data without creating any messages.

iH UnAudited Logins

Allowed to connect the DataArchiver without creating login successful audit messages.

iH Audited Writers

Allowed to write data and to produce a message each time a data value is added or

changed.

Tag, archive, and collector changes log messages regardless of whether the user is a

member of the iH Audited Writers Group.

iH Readers

Allowed to read data and system statistics. Also allowed access to Historian Administrator.

Use this table to identify the types of user groups you need to create and define in your security system.

Historian | 2 - Getting Started Guide | 257

Function

iH Se

curity

Admins

iH Un

Audited

Writers

iH Un

Audit

ed Login

iH Au

dited

Writers

iH Read

ers

iH

Archive

Admins

iH Tag

Admins

iH Col

lector

Admins

Create

Tags:

• Ex

cel

Add-

In

• SDK

• His

to

ri

an

Ad

mins

• File

col

lec

tor

X X

Remove

Tags:

• His

to

ri

an

Ad

mins

• SDK

X X

Modify

Tags:
X X

Historian | 2 - Getting Started Guide | 258

Function

iH Se

curity

Admins

iH Un

Audited

Writers

iH Un

Audit

ed Login

iH Au

dited

Writers

iH Read

ers

iH

Archive

Admins

iH Tag

Admins

iH Col

lector

Admins

• Ex

cel

Add-

In

• SDK

• His

to

ri

an

Ad

mins

• File

col

lec

tor

Modify

Archive

Security:

• SDK

• His

to

ri

an

Ad

mins

X

Backup

Archive:

• SDK

• His

to

ri

X X

Historian | 2 - Getting Started Guide | 259

Function

iH Se

curity

Admins

iH Un

Audited

Writers

iH Un

Audit

ed Login

iH Au

dited

Writers

iH Read

ers

iH

Archive

Admins

iH Tag

Admins

iH Col

lector

Admins

an

Ad

mins

Restore

Backup:

• SDK

• His

to

ri

an

Ad

mins

X X

Create

Archive:

• SDK

• His

to

ri

an

Ad

mins

X X

Start/

Stop Col

lector:

• SDK

• His

to

ri

an

X X

Historian | 2 - Getting Started Guide | 260

Function

iH Se

curity

Admins

iH Un

Audited

Writers

iH Un

Audit

ed Login

iH Au

dited

Writers

iH Read

ers

iH

Archive

Admins

iH Tag

Admins

iH Col

lector

Admins

Ad

mins

• Mis

sion

Con

trol

(iFIX)

Browse

Collector:

• His

to

ri

an

Ad

mins

X X

Read Da

ta:

• Chart

Ob

ject

• Ex

cel

Add-

In

• SDK

X X

Write Da

ta (UnAu

dited):

X X X

Historian | 2 - Getting Started Guide | 261

Function

iH Se

curity

Admins

iH Un

Audited

Writers

iH Un

Audit

ed Login

iH Au

dited

Writers

iH Read

ers

iH

Archive

Admins

iH Tag

Admins

iH Col

lector

Admins

• Ex

cel

Add-

In

• SDK

Write Da

ta (Audit

ed):

• Ex

cel

Add-

In

• SDK

X X

Modify

Data:

• Ex

cel

Add-

In

• SDK

X X X X

Update

Security

for Tag:

• Ex

cel

Add-

In

• SDK

• His

to

X

Historian | 2 - Getting Started Guide | 262

Function

iH Se

curity

Admins

iH Un

Audited

Writers

iH Un

Audit

ed Login

iH Au

dited

Writers

iH Read

ers

iH

Archive

Admins

iH Tag

Admins

iH Col

lector

Admins

ri

an

Ad

mins

Migrate:

• Mi

gra

tion

Tools

X

Login

Connec

tion Mes

sages

X X X X X X X

Recalcu

late Data
X X X X

Configure Internet Protocol Security (IPSEC)

Historian supports encryption based on Internet Protocol Security to secure traffic between various

Historian components and collectors without the need to use VPN or other security protocols.

1. Run wf.msc.

The Windows Defender Firewall with Advanced Security window appears.

2. Create a security method:

a. Select Actions > Properties.

The Windows Defender Firewall with Advanced Security on Local Computer window

appears.

Historian | 2 - Getting Started Guide | 263

b. Select IPsec Settings > Customize.

The IPsec Defaults window appears.

Historian | 2 - Getting Started Guide | 264

c. Under Key exchange (Main Mode), select Advanced > Customize.

The Customize Advanced Key Exchange Settings window appears.

Historian | 2 - Getting Started Guide | 265

d. Select Add.

The Add Security Method window appears.

e. Select the algorithms that you want to use for each purpose. The following image shows an

example.

Historian | 2 - Getting Started Guide | 266

Important:

You must provide the same values for all the machines for which you want to

configure IP security.

The security method that you have added appears in the list.

Historian | 2 - Getting Started Guide | 267

f. Move the security method that you have added to the top of the list. We recommend that

you remove the other methods.

g. Select OK.

3. Add integrity and encryption algorithms:

a. In the Customize IPsec Defaults window, under Data protection (Quick Mode), select

Advanced > Customize.

The Customize Data Protection Settings window appears.

Historian | 2 - Getting Started Guide | 268

b. Select the Require encryption for all connection and security rules that use these settings

check box.

c. Under Data integrity and encryption, select Add.

The Add Integrity and Encryption Algorithms window appears.

Historian | 2 - Getting Started Guide | 269

d. Under Protocol, ensure that ESP is selected.

e. Select the algorithms that you want to use for each purpose, and then select OK.

Historian | 2 - Getting Started Guide | 270

The algorithms that you have selected appear in the list.

f. Move the algorithms to the top of the list. We recommend that you remove the remaining

items in the list.

g. Select OK.

4. Create a first authentication method:

a. In the Customize IPsec Defaults window, under Authentication Method, select Advanced >

Customize.

The Customize Advanced Authentication Methods window appears.

b. Under First authentication methods, select Add.

The Add First Authentication Method window appears.

Historian | 2 - Getting Started Guide | 271

c. Provide the CA certificate that you want to use, and then select OK.

The certificate that you have provided appears in the list.

Historian | 2 - Getting Started Guide | 272

d. Move the certificate to the top of the list. We recommend that you remove the remaining

items in the list.

e. Select OK.

5. Create a connection security rule:

For Windows x86, run the following set of commands to create a rule:

netsh advfirewall

consec

add rule name=""<rule name>"" endpoint1=any endpoint2=any protocol=tcp port1=any port2=2010

action=requestinrequestout

For other versions, perform the following steps:

a. In the Windows Defender Firewall with Advanced Security window, select Connection

Security Rules.

b. Select Actions > New Rule.

The New Connection Security Rule Wizard window appears.

Historian | 2 - Getting Started Guide | 273

c. Select Custom, and then select Next.

d. Both for Endpoint 1 and Endpoint 2, select Any IP Address, and then select Next.

e. Select Require authentication for inbound and outbound connections, and then select Next.

f. Select Default, and then select Next.

g. Enter values as described in the following table, and then select Next.

Field Description

Protocol type Select TCP.

Endpoint 1 port Select All Ports.

Endpoint 2 port Select Specific Ports, and then enter 2010.

h. Select when to apply the rule, and then select Next.

i. Enter a name and description for the rule, and then select Finish.

The rule appears in the Connection Security Rules window.

j. Ensure that the rule is enabled.

6. If using Microsoft Windows Server 2019, 2016, 2012 R2 and/or Windows 8, 8.1, open up port

number 5000:

a. In the Windows Defender Firewall with Advanced Security window, select Inbound Rules.

b. Select Actions > New Rule.

The New Inbound Rule Wizard window appears.

Historian | 2 - Getting Started Guide | 274

c. Select Custom, and then select Next.

d. Select All programs, and then select Next.

e. Enter values as described in the following table, and then select Next.

Field Description

Protocol type Select UDP.

Protocol number Leave the default value as is.

Local port Select Specific Ports, and then enter 5000.

Remote port Leave the default value as is.

f. Both for the local and remote IP addresses, set the scope to Any IP address, and then select

Next.

g. Select Allow the connection, and then select Next.

Historian | 2 - Getting Started Guide | 275

h. Select when to apply the rule, and then select Next.

i. Enter a name and description for the rule, and then select Finish.

The rule appears in the Inbound Rules window.

j. Ensure that the rule is enabled.

IPSEC is now configured on the machine.

7. Repeat all the steps above on all the machines that host the Historian server and/or its

components/clients.

8. To verify that the IPSEC cryptography is used:

a. Ensure that the Historian server is running.

b. Ensure that the collectors are connected to the Historian server, and that the collectors are

running.

c. Specify the tags for data collection. You can do so using Configuration Hub (on page 357)

or Historian Administrator (on page 909).

d. Verify that the collector is collected data.

e. On each machine on which you configured IPSEC, run wf.msc.

The Windows Defender Firewall with Advanced Security window appears.

f. Select Monitoring > Security Associations > Main Mode.

The Main Mode section displays the connection that you have created.

Security Setup Example

The following example takes you through the process of establishing your security needs and defining

and setting up the levels of security.

For this example, assume the following user needs in a plant of 14 users:

User Needs Added to Security Group

USER1 Power user. Needs total access to security. iH Security Admins

USER2

USER3

• Read/Write Data (no messages).

• Create, modify, and delete tags.

• iH UnAudited Writers

• iH Tag Admins

Historian | 2 - Getting Started Guide | 276

User Needs Added to Security Group

USER5

USER6

USER8

• Backup, restore, and create archives.

• Connect to Data Archiver without creating login

successful audit messages

• iH Archive Admins

• iH UnAudited Logins

USER4

USER7

• iRead/Write Data (no messages).

• iCreate, modify, and delete tags.

• iStart/Stop Collectors.

• iBackup, restore, and create archives.

• iH UnAudited Writers

• iH Tag Admins

• iH Collector Admins

• iH Archive Admins

USER9-14 Read Data. iH Readers

1. Establish the needs of your users. For this example, assume the user needs in a plant of 14 users,

as described in the previous table.

2. Add and define the iH Security Admins Group.

Once you determine that you want to establish a security structure, you must create and define

the iH Security Admins group. This group of users is typically the "power users" of the Historian.

Security Administrator rights allow them to manage configuration and give them free rein to the

entire system. For this example, only USER1 would be added to the iH Security Admins group.

3. Establish and create any other Historian Security Groups as needed.

Note:

Any user with Windows administrative permissions can add or remove Windows groups

and users. As such, an administrator on a Windows computer, can add himself to any

Historian security group.

Set up the functional security groups as needed. For this example, Write, Tag, Archive, and

Collector security is required, so the groups associated with those functions should be added and

defined. There is no need for Audited Writers and all valid users can read data, so neither the iH

Audited Writers Group nor the iH Readers Group need to be added.

4. Define any individual Tag Level security.

In addition to defining iH Tag Admins that have the power to create, modify, and remove tags, you

can also define individual tag level security to restrict access to sensitive tags. You can grant read,

write, or administrative privileges per tag. For more information on setting Tag Level security, refer

to the Implementing Tag Level Security section.

Historian | 2 - Getting Started Guide | 277

Setting Up Historian Security Groups

This section describes how to add the Historian Security Groups to your local and domain Windows

security systems.

You can choose whether Historian uses LOCAL or DOMAIN security by selecting an option on the Security

section of the Data Store Maintenance page in Historian Administrator. If you select the local security

option, the groups are defined as local groups on the Historian server. If you select the Domain security

option, the groups are defined as global groups in the primary domain controller of the Historian server.

With domain security, Historian locates the Primary Domain Controller (PDC), if available, or a Backup

Domain Controller (BDC) in order to establish groups. If the PDC and all BDCs are unavailable, the system

locks all users out until rights can be established with a valid PDC or BDC.

Note:

If you change this setting, you must stop and re-start the Historian server for this change to take

effect.

Creating a Local Group on Windows

1. Do a Windows search and open Computer Management.

The Computer Management console appears.

2. In the left-side pane, expand System Tools, and then expand Local Users and Groups.

3. Select Groups in the system tree.

The list of all the available groups appear.

4. In the right-side pane, select Groups > More Actions, and then select New Group.

The New Group window appears.

5. Enter the Historian Security Group name in the Group Name field.

For a list of available Historian Security Groups and their functions, see Historian Security Groups

(on page 256).

Note:

You must enter the Historian Security Group name exactly as it appears. The security

groups are case sensitive.

6. Optionally, enter a description of the Historian Security Group in the Description field.

7. Select Create.

8. Select Close.

Historian | 2 - Getting Started Guide | 278

Adding Users to Windows Security Group

Add your users to the Windows system.

1. Do a Windows search and open Computer Management.

The Computer Management console appears.

2. In the left-side pane, expand System Tools, and then expand Local Users and Groups.

3. Select Groups in the system tree.

The list of all the available groups appear.

4. Select the group to which you want to add users.

5. In the right-side pane, select the user > More Actions, and then select Properties.

The user Properties window appears.

6. Select Add.

7. Select the users or groups to add from the listed users or enter the names of the users or groups

you want to add in the bottom field.

8. Select Add.

Note:

To validate the user or group names that you are adding, select Check Names.

9. When you have added all users to the group, select OK.

Adding a Local or a Domain User

1. Verify object type is Users or Groups.

2. If you want to add a local user, verify the From This Location setting is your local machine. (Select

Locations to specify the local machine, if required.). If you want to add a domain user:

a. Select Locations to specify the domain, if required.

b. Select Entire Directory or the specific domain underneath Entire Directory.

c. Select OK.

3. Select Advanced.

The Advanced window appears.

4. Select Find Now.

5. From the list of users, select the users or groups to add or enter the names of the users or groups

you want to add in the bottom field.

6. In the Advanced window, select OK.

7. In the Select Users window, select OK.

8. In the Group Properties window, select OK.

Historian | 2 - Getting Started Guide | 279

Active Directory Setup - an Overview

Historian Active Directory setup supports integration with complex models that include the following

complexities:

• Users and administrators may belong to different domains within a forest.

• Domains may have sub-domains (multi-level) that need to inherit or refine on inherited permissions

• Group names may be longer than average to cater for group differentiation

The Active Directory setup supports authentication and authorization of users as members of groups

from trusted or sub-domains (including assigning appropriate Historian access rights in line with

Historian security roles/groups access).

The following figure provides an overview of the Active Directory setup with examples:

Configuring the Domain Users for active directory setup
To configure the domain (single\multi) environment in Historian Administrator:

Historian Security Groups should be created on the machine where the Domain controller of the Historian

Server is installed. The India.Europe.US.com domain controllers must contain the following Historian

groups:

Historian | 2 - Getting Started Guide | 280

• iH Security Admins

• iH Collector Admins

• iH Tag Admins

• iH Archive Admins

• iH UnAudited Writers

• iH UnAudited Logins

• iH Readers

• iH Audited Writers

Note:

Historian Security Groups should be of type Domain-Local only.

1. On the Data Stores section, under Security > Global Security, select the Use domain option.

2. Stop the Historian Services.

3. Add the Registry Entries for ClientManager, ConfigManager and DataArchiver as shown below.

Registry path: \HKEY_LOCAL_MACHINE\SOFTWARE\Intellution, Inc.\iHistorian\Services\

Historian | 2 - Getting Started Guide | 281

4. Start the Historian Services. The new registry entries will now be read by the corresponding

Historian service.

Accessing Historian Server using Domain Users - Examples
Example 1: European domain user trying to connect to Historian Server installed in India.Europe.US.com

Domain Controller (DC).

1. Create a user EuropeUser1 in Europe.US.com DC.

2. Add the user (i.e. EuropeUser1) from Europe.US.com to “iH Security Admin” group in

India.Europe.US.com DC.

3. Log in to Historian Client using EuropeUser1 as shown below.

Historian | 2 - Getting Started Guide | 282

4. EuropeUser1 is added to iH Security Admin. The user will get full access to Historian Server.

Example 2: US domain user trying to connect to Historian Server (which is installed in

India.Europe.US.com Domain Controller (DC).

a. Create a user USUser1 in US.com DC.

b. Add the user (i.e. USUser1) from US.com to “iH Readers” group in India.Europe.US.com DC

c. Log in to Historian Client using USUser1 as shown below.

Historian | 2 - Getting Started Guide | 283

5. USUser1 is added to iH Readers. The user will get only data read access to Historian Server.

Adding Nested Domain Groups to Historian Security Groups
The following procedure describes, a European domain group user trying to connect to Historian server,

installed in India.Europe.US.com Domain Controller.

1. Create a user EuropeGroupUser1 in Europe.US.com DC.

2. Create a group EuropeGroup1.

3. Add the EuropGroupUser1 to EuropeGroup1.

4. Add the group (i.e. EuropeGroup1) from Europe.US.com to “iH Security Admin” group in

India.Europe.US.com DC

5. Log in to Historian Client using EuropeGroupUser1.

6. If a new user gets added to EuropeGroup1, then the user gets automatically synced with Historian

Security Groups.

Note:

As EuropeGroupUser1 is added to iH Security Admin, user will get full access to Historian

Server.

US domain group user trying to connect to Historian Server installed in India.Europe.US.com

Domain Controller.

Historian | 2 - Getting Started Guide | 284

a. Create a user USGroupUser1 in US.com DC (if not exist).

b. Create a group USGroup1.

c. Add the USGroupUser1 to USGroup1.

d. Add the group (i.e. USGroup1) from US.com to “iH Security Admin” group in

India.Europe.US.com DC

e. Login to Historian Client using USGroupUser1.

f. If a new user gets added to USGroup1, then it gets automatically synced with Historian

Security Groups.

Note:

As USGroupUser1 is added to iH Readers, user will get data read access to Historian

Server

Managing Proficy Authentication Users Using the Configuration Tool

Use the Proficy Authentication Config tool to perform the following tasks:

• Add a local Proficy Authentication user.

Note:

Here a local Proficy Authentication user means a user defined by Proficy Authentication,

not by an external identity provider such as LDAP.

• Remove a local Proficy Authentication user.

• Reset the password for a local Proficy Authentication user.

• Add a local Proficy Authentication user to an existing group.

Since OAuth2 scopes are implemented as Proficy Authentication groups, this means the same as

adding a scope to a user.

• Remove a local Proficy Authentication user from an existing group.

A user who performs these functions acts as the admin client and needs to know the secret of the admin

client. The tool does provide a way for the user to cache the secret safely to be used later.

By default, this tool is available in the following folder: C:\Program Files\GE Digital\Historian

Config. Run the tool from a Windows command prompt window.

Syntax

Historian | 2 - Getting Started Guide | 285

The tool’s syntax follows this format:

uaa_config_tool verb [options]

where verb is one of the following:

• add_user

• remove_user

• set_user_password

• add_user_to_group

• remove_user_from_group

• clear_secret

Run the tool without a verb or any other options to view the help page.

The uaa_config_tool utility prompts for a port number. This is the port number that you have specified in

the Public HTTS Port field in the TCP PORT ASSIGNMENTS page. By default, it is set to 443. If you have

changed the public HTTPS port number, enter the number. Otherwise, enter 443.

Options can be specified in the form of single dash followed by a short name, or double dash followed by

a long name, followed by the value of the option, if any. For example, you can specify the user name Alice

by either

-u Alice

or

--UserName Alice

Table 11. Options

Short name Long name Remark

-t --Target URL of the Proficy Authentication instance that the command

should be performed on. Typically, the URL is https://lo

calhost:443/uaa, which is the default value. This option

is optional and is only needed when the user wants to run the

command against a remote Proficy Authentication instance

(which is not recommended due to security concerns).

-n --ClientId ID of the client that the user is acting as. By default, it is ad

min. This option is optional and is only needed when the ad

Historian | 2 - Getting Started Guide | 286

Table 11. Options (continued)

min has set up the Proficy Authentication to delegate certain

operations to others.

-s --ClientSecret This is the secret used to authenticate the user for acting as

the admin client (or an alternative client given in a --ClientId

option). If the user has elected to cache the secret previous

ly, then this option can be omitted. Otherwise, it has to be pro

vided.

The password must satisfy the following conditions:

• Must not contain only numbers.

• Must not begin or end with a special character.

• Must not contain curly braces.

-c --CacheSecret This option is not followed by a value and is optional. If spec

ified, the tool will cache the client secret so when the next

time this tool is invoked the secret does not have to be spec

ified. Note that the secret is encrypted and only the current

Windows logon user can access and decrypt.

-u --UserName Name of the user that the tool is being invoked for. For exam

ple, the user that is being added or removed.

-p --UserPassword The password for the user being added or whose password

is being reset. The option is only needed for the add_user and

set_user_password commands.

-g --Group Name of the Proficy Authentication group (scope) that the

user is being added to or removed from. The option is only

needed for the add_user_to_group and remove_user_from_

group commands.

Examples

• To add a user named alice with the password Pa55word and the admin client secret myclientsecret

(this is the admin client secret that you entered while installing Web-based Clients):

uaa_config_tool add_user -u alice -p Pa55word -s myclientsecret -c

If the Proficy Authentication server is on a remote machine named webhost.lab:

Historian | 2 - Getting Started Guide | 287

uaa_config_tool add_user -u alice -p Pa55word -s myclientsecret -t https://webhost.lab:443/uaa -c

• To provide user privileges to access the Web Admin console and Trend Client:

uaa_config_tool add_user_to_group -u alice -g historian_visualization.user -t https://webhost.lab:443/uaa

• To provide admin privileges to access the Web Admin console and Trend Client:

uaa_config_tool add_user_to_group -u alice -g historian_visualization.admin -t https://webhost.lab:443/uaa

• To provide Configuration Hub privileges, add alice to the group historian_enterprise.admin, using

the previously cached admin secret:

uaa_config_tool add_user_to_group -u Alice -g historian_enterprise.admin -t https://webhost.lab:443/uaa

• To remove alice from a remote instance of Proficy Authentication as an alternative client (that is,

other than admin) useradmin:

uaa_config_tool remove_user -u alice -t https://webhost.lab:443/uaa -n useradmin -s MyOtherNonSecret

• To clear any cached client secret:

uaa_config_tool clear_secret

Note:

If the Windows logon account is not shared, it is not necessary to clear cached secret,

since the cache is encrypted and only the same Windows user account can decrypt.

When there are Historian security groups on the local historian machine or on the domain

server:

1. Create a new user account on the local Historian machine or on the domain server

with same login name and password as the local Proficy Authentication user.

2. Add the new user to the appropriate Historian Security group on the local historian

machine or on the domain server.

Create a Proficy Authentication Reader Client

To fetch Historian data, previously, you had to manually add each user to iH security groups. Only then

the users could fetch the data. Now, this process has been simplified. All you must do is create a Proficy

Authentication client. The Proficy Authentication client will be automatically added to the iH Readers

security group on the server side. Therefore, you can use the client to fetch Historian data using REST

APIs.

Historian | 2 - Getting Started Guide | 288

1. Access the Proficy Authentication Config tool, which is located in the following folder by default:

C:\Program files\GE Digital\Historian Config\uaa_config_tool

2. Access Command Prompt as an administrator, and then run the following command:

uaa_config_tool add_historian_reader_client -u <client name> -p <client password>

 -n <username> -s <password> -t https://<Proficy Authentication URI>:443/uaa

To create a client named client1:

uaa_config_tool add_historian_reader_client -u client1 -p password123

 -n user1 -s userpassword123 -t https://Proficy Authentication URI2010:443/uaa

The Proficy Authentication reader client is created. However, if it already exists, a message

appears, stating the same.

About Accessing Cross-Domain Historian

You can now access Historian across various domains regardless of the domain to which your user

account belongs. To do so:

• Ensure that all the domain controllers across various domains trust one another.

• Create iH security groups on each leaf node that contains the Historian server that you want to

access.

• Ensure that you are part of at least one iH security group. You can be part of an iH security group

directly, or you can be part of a universal domain group, which must be part of the iH security

group.

About Domain Security Groups

When you configure Historian to use domain security groups, the data archiver attempts to locate the

groups on the primary domain controller (PDC) or one of the backup domain controllers (BDC). When

using a PDC, if a primary or backup domain controller cannot be located when the Historian Data Archiver

service starts, access to Historian is denied to all users.

For troubleshooting, .shw file of the data archiver lists all PDCs and BDCs available at the time of archiver

startup. Use this list to verify that the Historian server has visibility into the appropriate domain.

When using a PDC, after the list of Domain Controllers has been established, the Historian Server will

use that list to query for Security Group Membership on an as needed basis. If at any time a request for

Group Membership information is made and the Primary Domain Controller is not available, Historian

selects the first Backup Domain Controller and attempts the same request. If a Backup Domain Controller

successfully responds to the request, the process of querying for Group Membership can stop. Otherwise,

Historian | 2 - Getting Started Guide | 289

Historian will attempt to query Group Membership information from the next available Backup Domain

Controller. If no Backup Domain Controller successfully responds, access to the system is denied.

Changing security group configuration from Local to Domain or vice versa requires that the Historian Data

Archiver service be restarted for the change to take effect.

Establishing Your Security Rights

Your security identity is established upon connecting to the server. This occurs through the following

steps:

1. Specifying a user name and password of an account.

Upon connection, the system checks to see if you have a valid Windows 2003 account. If you have

supplied a username and password (through the Excel Add-In for example), security checks that

user. If username and password are not supplied and you are on a Windows 2003 or Windows

2008 machine or higher, security checks the currently logged in user.

Note:

If you do not pass a domain name the account will be checked locally in the same way a

mapped drive attempt happens. You have to specify a username and password that exists

on the server.

2. Determining group membership of that account.

Once the account is validated, the server determines group membership. For more information on

the process and hierarchy of the groups, refer to the Security Checking Process diagram below.

3. Caching membership profile.

Once the group and tag membership are determined, it is cached for the connection and not looked

up again. If users are added to or deleted from a group, the cache is not updated.

Historian | 2 - Getting Started Guide | 290

Note:

The cache information is per connection, and not per IP address. In other words, it is

cached per application and not per system.

Figure 1. Security Checking Process

Historian | 2 - Getting Started Guide | 291

Implementing Tag-level Security

In addition to defining the iH Tag Admins who have the power to create, modify, and remove tags, you can

also define individual tag level security to protect sensitive tags.

Set tag level security in Historian Administrator. You need the Historian Security Groups to implement tag-

level security. You can use a Windows pre-defined group (power users, for example) or create your own

separate group specifically for this function. For more information on creating and adding groups, refer to

Setting Up Historian Security Groups (on page 277).

Users must have iH Security Admins rights to set individual tag level security, browse, or query tags in

Historian Administrator.

Note:

Tag security is not enforced in the Trend Client when it comes to browsing the full list of tags.

Security, however, is enforced when it comes to trending data for tags for which you have

permission. For example, if you are logged into the Trend Client as a user that is a member of the

User Group assigned to a tag's security Read Group, you will still be able to browse all Historian

tags. However, you are only allowed to trend the tags for which the user is a member of the User

Group assigned to the tag's security Read Group,

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

A list of all the tags appears.

3. Select the row containing the tag whose security you want to define.

The tag details appear in the DETAILS section.

4. Enter values as described in the following table.

Field Description

Read Group The Windows security group that can retrieve the tag data and plot it in a

trend chart.

For example, if you select a group with power users, in addition to mem

bers of the iH Security Admins group, only a member of the power users

group will be able to read data for that tag. Even a member of the iH

Readers group will not be able to access data for that tag, unless they

are also defined as a member of the power users group.

Historian | 2 - Getting Started Guide | 292

Field Description

Write Group The Windows security group that can write tag data (for example, using

the Excel Add-in for Historian).

Administer Group The Windows security group that can create, modify, and delete the tag.

Note:

◦ If you are using domain groups (instead of local groups), the Read Group, Write

Group, and Administer Group fields contain only the groups whose names begin

with iH<space> (case-sensitive). Therefore, ensure that the group that you want to

use begins with iH<space>. For more information on the security groups, refer to

Historian security groups (on page 256).

◦ If you are using Proficy Authentication, any custom groups that you created must be

defined in Proficy Authentication and added to the group whose names begin with

ih_<group_name>. For more information on the Proficy Authentication groups, refer

to about Proficy Authentication groups (on page 231).

Implementing Data Store-level Security

In addition to defining the iH Tag Admins who have the power to create, modify, and remove tags, the

individual tag-level security, you can also define individual data store-level security to protect sensitive

tags.

Note:

The security settings defined at the tag level, if any, take the precedence over those at the data

store-level.

You need the Historian Security Groups to implement data store-level security. You can use a Windows

pre-defined group (power users, for example) or create your own separate group specifically for this

function. For more information on creating and adding groups, refer to Setting Up Historian Security

Groups (on page 277).

Users must have iH Security Admins rights to set individual data store level security.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Data Stores.

A list of all the data stores appears.

Historian | 2 - Getting Started Guide | 293

3. Select the row containing the data store whose security you want to define.

The data store details appear in the DETAILS section.

4. In the SECURITY section, enter values as described in the following table.

Field Description

Read Group The Windows security group that can retrieve the tag data and plot it in a

trend chart for the selected data store.

For example, if you select a group with power users, in addition to mem

bers of the iH Security Admins group, only a member of the power users

group will be able to read data of the tags for that data store. Even a

member of the iH Readers group will not be able to access data of the

tags for the selected data store, unless they are also defined as a mem

ber of the power users group.

Write Group The Windows security group that can write tag data for the selected da

ta store (for example, using the Excel Add-in for Historian).

Administer Group The Windows security group that can create, modify, and delete the tags

for the selected data store.

Note:

When it comes to the group security, the security settings applied at the tag level, if any,

take the precedence over those at the data store level.

Note:

◦ If you are using domain groups (instead of local groups), the Read Group, Write

Group, and Administer Group fields contain only the groups whose names begin

with iH<space> (case-sensitive). Therefore, ensure that the group that you want to

use begins with iH<space>. For more information on the security groups, refer to

Historian security groups (on page 256).

◦ If you are using Proficy Authentication, any custom groups that you created must be

defined in Proficy Authentication and added to the group whose names begin with

ih_<group_name>. For more information on the Proficy Authentication groups, refer

to about Proficy Authentication groups (on page 231).

For more information on System Global security settings, refer to access system (on page

411).

Historian | 2 - Getting Started Guide | 294

Uninstalling Historian

Uninstalling Historian

Uninstalling Historian removes all saved Favorites from your Trend Client and all Users and Scopes you

created. To keep these and other configurations on an upgrade, do not uninstall Historian unless you are

changing server roles as previously described. If you must uninstall Historian on an upgrade, you can

Export your favorites and save your data and tag configuration files for future use.

For information on uninstalling OPC Data Collectors, refer to the Modifying and Uninstalling OPC Collectors

section of the Historian Data Collectors manual.

• When you want to uninstall Web-based Clients:

◦ If you select the Purge database during uninstall check box, the entire database will be

purged, and you must recreate the Proficy Authentication details, favourites, and so on.

Therefore, if you want to retain Proficy Authentication details, do not select that check box.

◦ If you have installed Operations Hub on the same machine, and if there is a shared Proficy

Authentication package between Operations Hub and Web-based Clients, in some cases,

a message appears, asking you to first uninstall Operations Hub before uninstalling Web-

based Clients. You can, however, uninstall Web-based Clients first; the shared Proficy

Authentication package will not be deleted in that case.

◦ Configuration Hub will not be uninstalled because it is a common component. If needed, you

can uninstall it separately.

• If you uninstall Historian after installing the Excel Add-In as described, ensure that you clear the

Historian check box in the Microsoft Excel Add-Ins window. If you do not clear this option, you will

receive an error each time you open Microsoft Excel.

1. To uninstall Historian from your computer:

a. Double-click the Programs / Uninstall a Program link in the Control Panel.

b. Select Historian and select Uninstall.

Note:

Historian archives are not removed by default. If you need to remove them, delete

the folder manually.

Historian | 2 - Getting Started Guide | 295

A progress bar appears, showing that the software is being uninstalled. This may take some

time.

To abort the uninstall, select Cancel.

2. To remove all related software from your computer:

a. Double-click the Programs / Uninstall a Program link in the Control Panel.

b. Select Proficy Common Licensing, and select Uninstall.

Troubleshooting

Managing Historian Log Files

Use the Historian LogTool to view, generate, or compress log files to use for troubleshooting.

Logtool.exe is located in the historian installation directory, for example: C:\Program Files\Proficy

\Proficy Historian\X64.

1. Go to your installation directory and execute the Logtool.exe file.

The LogTool appears, displaying the View Log section.

Historian | 2 - Getting Started Guide | 296

2. Select a component from the left panel to see the available log files, and select View Log.

3. Select Generate Logs to enable or disable the debug logging mode for Historian components:

This tool will enable/Disable the debug mode for Historian components. However, leaving the

debug mode enabled for longer time consume the disk space

1.Select the component

2.Choose enable/disable option

3.Select apply

Historian | 2 - Getting Started Guide | 297

a. Select a Historian Component and select Enable or Disable.

Note:

Leaving debug mode enabled for a component consumes disk space.

b. Select Apply.

Historian | 2 - Getting Started Guide | 298

4. Select Gather Logs and select Zip the log files to compress the log files and select Open zip file

location to view the zip files.

Troubleshooting the Historian Server

iFIX-Related Files in C Drive Even if iFIX is not Installed

Description

If you install only Historian without installing iFIX, you may find some iFIX-related files in the

C drive.

Workaround

You can ignore/delete them. If, however, you plan to install iFIX later, you must reinstall

Historian Client Tools after installing iFIX.

Error Message when Upgrading the Historian Server on a Passive Node in a Cluster

Description

If you are upgrading the Historian server on a passive node, an error message may appear

behind the installer screen, stating that the Archives directory is not created.

Error Message

Unable to create Archives directory.

Workaround

Historian | 2 - Getting Started Guide | 299

You can ignore this message, or you can make the node active before upgrading the

Historian server.

Historian Server Rejects Collector or Client User Credentials

Description

If a client or collector is attempting to connect to the Historian server with strict

authentication enabled on a Kerberos configuration, the server rejects valid credentials and

does not allow the connection.

Workaround

Ensure that the server time and the domain controller time match with each other.

Historian Resource in a Cluster Environment is not Online

Workaround

Ensure that the cluster feature is included in your license.

Historian Resource Runs for a Long Duration and Fails Over

Workaround

Debug the log messages of the Data Archiver and the Clusters before taking appropriate

actions.

While Label Error

Description

If the PFX file that you want to use with Historian does not contain a full-chained certificate,

a while label error message appears.

Workaround

1. Create a PEM file from the PFX file by copying the content from all the certificates

(such as root, intermittent, and leaf certificates) to the PEM file. It results in a full-

chained certificate.

2. Get a KEY file from the vendor. Or, use a KEY file extracted from the PFX file using

the Certificate Management tool. To do so, import the PFX file. The certificate

and the KEY file will then be available in the <Operations Hub installation

Historian | 2 - Getting Started Guide | 300

location>\httpd\conf\cert folder. You can then use the server.key file in

the folder.

3. Using the Certificate Management tool, import the PEM and KEY files to the

machines on which the Historian server, the Operations Hub server, and clients are

installed.

Troubleshooting Web-based Clients

Unable to Access Configuration Hub After Upgrading Web-based Clients

Description

After you upgrade Web-based Clients, you cannot access Configuration Hub.

Workaround

Clear your browser cache.

Error Occurs When You Try to Access Web-based Clients

Description

If you have logged in to Operations Hub, and then if you try to access Web-based Clients,

and vice versa, an error occurs. This is because the user credentials of the first application

to which you have logged in are used to log in to the other one as well.

Workaround

Try one of the following steps:

• Add the scopes of each application user to the other application.

• If you log in to Web-based Clients first, on the login page of Operations Hub, re-

log in with the Operations Hub user. If you log in to Operations Hub first, log out of

Operations Hub, log in to Web-based Clients, and then log in to Operations Hub, using

the credentials of the respective users for each application.

Unable to Access Web-based Clients

Description

When you upgrade Historian, after installing Web-based Clients, a message asking you to

restart the machine does not appear. Because of this, sometimes, you cannot access Web-

based Components such as Configuration Hub, Trend Client, the Web Admin console, and

REST APIs.

Workaround

Historian | 2 - Getting Started Guide | 301

Restart the machine, or start the following services:

• Proficy Historian PostgreSQL Database

• Proficy Historian Tomcat Server

• Proficy Operations Hub Httpd Reverse Proxy

• Proficy Authentication PostgreSQL Database

• Proficy Authentication Tomcat Web Server

Certificate Issues When Trying to Log in

Workaround

Connect to a Remote Proficy Authentication Service (on page 182)

Web-based Clients are not connected to the Historian server

Workaround

• Ensure that the Enforce Strict Client Authentication and Enforce Strict Collector

Authentication options are disabled in the Data Stores Security section in Historian

Administrator.

• Ensure that the Proficy Authentication URL used by Web-based Clients matches

the one you provided while installing the Historian server. If not, change the Proficy

Authentication server (on page 137) so that the Historian server points to the same

Proficy Authentication server as Web-based Clients.

Clients or Users Not Created

Description

Clients or users are not created because the required services were not running during the

installation of Web-based Clients.

• An error message appears when you access Web-based Clients or Trend Client.

• The visualization client is not found. The following error message appears: No client

with requested id: historian_visualization

• When you attempt to log in to Proficy Authentication, a message appears, stating that

the credentials are incorrect.

Workaround

Configure Web-based Clients (on page 186) to point to a different Configuration Hub and

Proficy Authentication instance.

Historian | 2 - Getting Started Guide | 302

The Reverse Proxy Service Stops Working

Description

If you install iFIX on a machine that has Historian Web-based Clients, the reverse proxy

service stops working.

Workaround

Restart the reverse proxy service - Proficy Operations Hub Httpd Reverse Proxy.

Chapter 3. Configuration Hub

Overview

About Configuration Hub

The Configuration Hub application allows you to manage the Historian models, Historian systems, and

their components.

Advantages of Using Configuration Hub:

• Creating a Historian model: You can create and manage object models, which is a hierarchical

classification of objects. A model contains object types, variables, and instances.

• A single application that enables you to manage multiple Historian systems: A Historian system

is a network of Historian servers that collect, store, and retrieve data related to tags, alarms, and

events.You can create and manage Historian systems using Configuration Hub. In addition, you

can manage collectors, data stores, and tags.

• Horizontal scalability: You can increase the storage capacity of a Historian system by connecting

multiple software entities so that they work as a single logical unit. This will improve the

Historian | 3 - Configuration Hub | 304

performance of the Historian system. The storage capacity depends on the number of Historian

licenses that you have purchased.

• High availability: You can create mirror locations in a Historian system to achieve high availability

of the server. If one of the servers is not available, you can retrieve data from the remaining servers

in the mirror location.

• Ease of setting up: You can install all the collectors used in a Historian system easily by providing

the required details with the help of the user-friendly interface.

Types of Historian Systems

• Stand-Alone: In a stand-alone Historian system, there is only one Historian server. This type of

system is suitable for a small-scale Historian setup. For information on setting up a stand-alone

Historian system, refer to About Setting up a Stand-Alone Historian System (on page 356).

• Horizontally scalable: In a horizontally scalable Historian system, there are multiple Historian

servers, all of which are connected to one another. This type of system is used to scale out the

system horizontally. For example, if you have 5,00,000 tags in your Historian system, you can

distribute them among the various servers to improve performance. For information on setting up

a horizontally scalable system, refer to About Setting up a Horizontally Scalable System (on page

359).

Limitations

• If only one machine remains in a mirror location, you cannot remove it.

• If you install Configuration Hub and the Web Admin console on the same machine, and use self-

signed certificates for both of them, the login page for Configuration Hub does not appear. To

prevent this issue, disable the domain security policies:

1. Access the following URL: chrome://net-internals/#hsts

2. In the Domain Security Policy section, in the Delete domain security policies field, enter the

domain name for Configuration Hub, and then select Delete.

• If the primary server is down, you cannot add tags using a distributed node because the

Configuration Manager service is down.

Configuration Hub Workflow

This topic provides the high-level steps in using Configuration Hub.

1. Set up Configuration Hub. This involves installing the Historian server, the collectors, and Web-

based Clients.

2. Apply the license (on page 82).

am_setting_up_config_hub.ditamap

Historian | 3 - Configuration Hub | 305

3. Depending on your requirements, set up a stand-alone system (on page 356) or a horizontally

scalable system (on page 359). This involves adding the required components.

Note:

When you set up Configuration Hub, by default, a system and a data store are created. You

can add more systems and data stores as needed.

4. For a horizontally scalable system, you can choose to set up high availability (on page 367).

5. As needed, create an object model (on page 371).

6. Specify the tags for data collection (on page 357).

After you perform these initial steps, data is collected and stored in the Historian server. You can then

retrieve and analyze the data.

Setting up Configuration Hub

About Setting up Configuration Hub

To set up Configuration Hub, you must perform the following steps:

1. Install the Historian server (on page 105).

◦ For a stand-alone Historian server, install single-server Historian.

◦ For a horizontally scalable Historian server, install the mirror primary server and distributed/

mirror servers.

2. Install Web-based Clients (on page 155).

3. Install collectors (on page 143).

4. Perform the post-installation tasks (on page 335).

If you want to upgrade Configuration Hub, refer to Upgrade Configuration Hub (on page 336).

After you install or upgrade the required components, you can access Configuration Hub (on page 336).

Install the Historian Server Using the Installer

• set up the Historian environment.

• If you want to install web-based clients and view Historian license information on Configuration

Hub, you must provide the Configuration Hub and Proficy Authentication server details during

installation. Therefore, ensure that you have already set up Proficy Authentication in Configuration

Historian | 3 - Configuration Hub | 306

Hub. For more information on setting up Proficy Authentication in Configuration Hub, refer to

https://www.ge.com/digital/documentation/confighub/version2023/t_authentication_setup.html.

• If you are changing the role of a Historian server that was previously a distributed/mirror server to

any other configuration (single-server or mirror primary server), you must first uninstall Historian.

• If you are installing a distributed/mirror server, use the same configuration, license key, installation

drive, Proficy Authentication instance, and domain as the primary server.

This topic describes how to install the Historian server using the installer.

You can also install it at a command prompt.

1. Log in as an administrator to the machine on which you want to install the Historian server.

2. Run the InstallLauncher.exe file.

3. Select Install Historian Server.

The welcome page appears.

4. Select Next.

The license agreement appears.

5. Select the Accept check box, and then select Next.

The Where do you want to install Historian? page appears.

https://www.ge.com/digital/documentation/confighub/version2023/t_authentication_setup.html

Historian | 3 - Configuration Hub | 307

6. If needed, change the default installation drive of the Historian server, and then select Next.

The Override the default Historian data Path? page appears.

7. If needed, change the default folder of the log files, and then select Next. If you want to include the

Historian server in a cluster, enter the path to the shared folder of the cluster.

The Register with Configuration Hub page appears.

Historian | 3 - Configuration Hub | 308

8. Select the Use existing Proficy Authentication and Configuration Hub Instance check box, and

provide values as described in the following table.

This step is needed only in the following cases:

◦ The Historian Server and the Web-based clients will be on two different machines.

◦ You already installed Proficy Authentication and Configuration Hub, and you want to use the

Historian Web-based clients and view the Historian license information on Configuration

Hub.

If you do not select the Use existing Proficy Authentication and Configuration Hub Instance

during the installation, to use the Historian Web-based clients and view the Historian license

information on Configuration Hub, you must use the Proficy Authentication Tool from the

Start menu to register with Proficy Authentication and Configuration Hub servers.

If you do not have Proficy Authentication and Configuration Hub installed, and you intend

to use the Historian Web-based clients and view the Historian license information on

Configuration Hub, you can install them while installing the Web-based clients.

Historian | 3 - Configuration Hub | 309

Note:

Proficy Authentication is required for user authentication. It provides identity-based

security for applications and APIs. It supports open standards for authentication and

authorization, including Oauth2.

Field Description

Proficy Authentication server name Enter the name of the machine on which the

Proficy Authentication server is installed. If the

machine uses a fully qualified domain name

(FQDN), provide the FQDN. By default, the local

hostname is considered.

Proficy Authentication Public https port Enter the port number used by the Proficy Au

thentication service. The default value is 443.

Ensure that this port number matches the one

Historian | 3 - Configuration Hub | 310

Field Description

on the TCP Port Assignments page during

Web-based Clients installation.

Proficy Authentication Admin Client Id The client ID to connect to the Proficy Authenti

cation service.

Proficy Authentication Admin Client Secret The password to connect to the Proficy Authen

tication service.

Configuration Hub server name The server name or the FQDN of the existing

Configuration Hub server, as displayed in the

address bar of the browser when you access

Configuration Hub from the machine where

Configuration Hub is installed.

Configuration Hub Public https port The web server (https) port that you want to

use for Configuration Hub. By default, it is

5000.

Test Connection Option to test the status of the connection with

external Proficy Authentication server.

Note:

If you change the Proficy Authentication server for Web-based Clients later, you must also

change the Proficy Authentication server for the Historian server. This can be done using

the Proficy Authentication Configuration Tool located at <Install Drive>:\Program

Files\Proficy\Proficy Historian\x64\Server without the need to install the

Historian server again. Alternatively, you can search for the Proficy Authentication Tool in

the Windows search bar and open it.

9. Select Next.

The Historian Security Groups page appears.

Using Historian security groups provides an added layer of control over access to your Historian

system.

By default, the option to create Historian security groups is not selected.

Historian | 3 - Configuration Hub | 311

10. If you want the installer to create Historian security groups (on page 256), select the corresponding

check box, and then select Next.

The Choose the type of install you want to perform page appears.

Historian | 3 - Configuration Hub | 312

11. Select the type of the Historian server that you want to install, and then select Next.

◦ Historian Single Server: This is for a stand-alone Historian system, which contains only one

Historian server. This type of system is suitable for a small-scale Historian setup.

◦ Historian Mirror Primary Server: This is for a horizontally scalable Historian system, which

contains multiple Historian servers, all of which are connected to one another. Installing this

server will allow you to add machines and distributed/mirror servers to this system.

◦ Historian Distributed/Mirror Node: This is for a horizontally scalable Historian system.

Installing this server will allow you to add this node to a primary server.

The Historian Server Certificate-based Security page appears.

Historian | 3 - Configuration Hub | 313

12. If you want to enable certificate-based security (MTLS-based security), leave the Enable

Certificate-based Security check box selected, and then enter Root Certificate Password.

Note:

Ensure to use the same password to create MTLS (client) certificates. For more

information on creating MTLS (client) certificates, refer to Generate MTLS certificate.

For more information on certificate-based security, refer to overview of the Certificate-based

Security in Historian (on page 206).

Warning:

If you do not select the Enable Certificate-based Security check box during the

installation, you must generate the root certificates manually, as described in the Manually

Install Certificates for Historian section. However, this is not recommended.

13. Select Next.

The You are ready to install page appears.

Historian | 3 - Configuration Hub | 314

14. Select Install.

The installation begins.

15. After the installation, when you are asked to reboot your system, select Yes.

The Historian server is installed on your machine in the following folder: <installation

drive>:\Program Files\Proficy\Proficy Historian\x64\Server, and the

following registry path is created: HKEY_LOCAL_MACHINE\SOFTWARE\Intellution, Inc.

\iHistorian\Services.

In addition, the following components are installed:

◦ The RemoteCollectorConfigurator utility: A command-line tool, which allows you to manage

collectors remotely. By default, it is located in the C:\Program Files\GE Digital

\NonWebCollectorInstantiationTool folder. For instructions on using this utility,

refer to About Installing and Managing Collectors Remotely.

◦ The Proficy Authentication Configuration tool: A utility that allows you to specify the Proficy

Authentication server details to match with the Proficy Authentication server used by Web-

based Clients. By default, it is located in the C:\Program Files\Proficy\Proficy

Historian\x64\Server folder. For instructions on using this tool, refer to Register with

Configuration Hub (on page 137).

Install Web-based Clients Using the Installer

1. Install the Historian server (on page 105). During the installation, in the Register with Configuration

Hub page, select the Use existing Proficy Authentication and Configuration Hub Instance check

box, and the provide the Proficy Authentication server and Configuration Hub server details.

Note:

This step is needed only in the following cases:

◦ The Historian Server and the Web-based clients will be on two different machines.

◦ You already installed Proficy Authentication and Configuration Hub, and you want

use the Historian Web-based clients and view the Historian license information on

Configuration Hub.

If you do not select the Use existing Proficy Authentication and Configuration

Hub Instance during the installation, to use the Historian Web-based clients and

view the Historian license information on Configuration Hub, you must use the

Proficy Authentication Tool (on page 137) to register with Proficy Authentication and

Configuration Hub servers.

Historian | 3 - Configuration Hub | 315

If you do not have Proficy Authentication and Configuration Hub installed, and

you intend to use the Historian Web-based clients and view the Historian license

information on Configuration Hub, you can install them while installing the Web-

based clients.

2. If you want to use Web-based Clients in a cluster environment, ensure that your network is enabled

for multicast traffic, and set up high availability on each node in the cluster.

This topic describes how to install Web-based Clients using a GUI-based installer.

You can also install Web-based Clients using the command line.

During the installation, you can choose to use Web-based Clients in a cluster environment, thus ensuring

high availability of connection to the Historian server using the client applications.

1. Run the InstallLauncher.exe file.

2. Select Install Web-based Clients.

https://www.ge.com/digital/documentation/historian/version2024/t_set_up_high_availability_of_wc.html
https://www.ge.com/digital/documentation/historian/version2024/c_installing_web-based_clients_using_the_command_line.html
https://www.ge.com/digital/documentation/historian/version2024/c_installing_web-based_clients_using_the_command_line.html
https://www.ge.com/digital/documentation/historian/version2024/c_installing_web-based_clients_using_the_command_line.html

Historian | 3 - Configuration Hub | 316

The welcome page appears.

3. Select Next.

The license agreement appears.

4. Select the Accept check box, and then select Next.

The TCP port assignments page appears.

5. As needed, change the values for TCP port assignments as described in the following table, and

then select Next.

Field Description

Public https

port

Port for https protocol communication used by Web-based Clients (through a fire

wall). The default value is 443. Ensure that this port number matches the one you

specify while installing the Historian server. In addition:

◦ If you will install Operations Hub later on the same machine, the value that

you provide in this field is populated while installing Operations Hub.

◦ If you have already installed Operations Hub on the same machine, this

field is disabled and populated with the value you have provided while in

stalling Operations Hub.

Historian | 3 - Configuration Hub | 317

Field Description

Proficy Au

thentication

http port

Port for http protocol communication used by the Proficy Authentication service.

The default value is 9480.

Proficy Au

thentication

database

port

Port for the Proficy Authentication database. The default value is 9432.

Historian

http port

Port for the http protocol communication used by Web-based Clients. The default

value is 8070.

Historian

database

port

Port for the PostgreSQL Historian database. The default value is 8432.

The Fully Qualified Domain Name(s) page appears.

◦ If you will install Operations Hub later on the same machine, the value that you provide in the

FQDNs field is populated while installing Operations Hub.

◦ If you have already installed Operations Hub on the same machine, the FQDNs field is

disabled and populated with the value you have provided while installing Operations Hub.

Historian | 3 - Configuration Hub | 318

6. In the FDQNs field, enter the fully qualified domain names, and then select Next.

This enables you to access Historian web applications remotely. You can use it to access the Web

Admin console using alias names. Enter the values separated by commas.

To access the Web Admin console using any of the following URLs, enter

Test.abc.ge.com,localhost,127.0.0.1,aliasName

◦ https:// Test.abc.ge.com /historian-visualization/hwa

◦ https:// 127.0.0.1 /historian-visualization/hwa

◦ https:// aliasName /historian-visualization/hwa

◦ https:// localhost /historian-visualization/hwa

Important:

◦ Do not enter a space between the values.

◦ You must add the IP address and alias name in the hosts file located at C:

\Windows\System32\drivers\etc. The IP address that you add must be a

static or fixed IP address.

Format: <IP address> <alias name>

https://win7profsp1.htclab.ge.com/historian-visualization/hwa
https://win7profsp1.htclab.ge.com/historian-visualization/hwa
https://win7profsp1.htclab.ge.com/historian-visualization/hwa
https://win7profsp1.htclab.ge.com/historian-visualization/hwa

Historian | 3 - Configuration Hub | 319

Example: 1.2.3.4 myservername

◦ FQDN is not supported for Configuration Hub.

The Cluster Configuration page appears.

If, however, you are upgrading Web-based Clients, this page does not appear. In that case, skip the

next step.

7. If you want high availability of Web-based Clients, select the Cluster Node check box, and enter

values as described in the following table.

Field Description

Historian Database Folder Provide the database folder in the shared dri

ve that you have created. The default value is

C:\ProgramData\GE\OperationsHub. You

must change this value.

Historian | 3 - Configuration Hub | 320

Field Description

Cluster FQDN Enter the client access point of the role for

which you have added the resources while set

ting up high availability (on page 182).

Multicast Address If needed, modify the common IP address that

all the nodes in the cluster can use. Enter a val

ue between 224.0.0.0 and 239.255.255.255

(or a hostname whose IP address falls in this

range).The default value is 228.0.0.4.

Historian Cluster Membership Port If needed, modify the common port number

that all the nodes in the cluster can use. The de

fault value is 45564. This port number, in con

junction with the multicast address, is used to

create the cluster.

Historian Cluster Receiver Port If needed, modify the multicast port number

that you want to use for incoming Historian da

ta. The default value is 4000.

8. Select Next.

The Proficy Authentication page appears, allowing you to choose whether you want to install

Proficy Authentication along with Web-based Clients installation or use an existing Proficy

Authentication.

Historian | 3 - Configuration Hub | 321

◦ If you want to install Proficy Authentication, clear the Use Existing Proficy Authentication

check box. If you want to include Proficy Authentication in the cluster, you must install

Proficy Authentication locally on each cluster node.

◦ If you want to use an existing Proficy Authentication server, select the Use Existing Proficy

Authentication check box. Proficy Authentication is detected if you installed it using a

unified installer or Operations Hub, or if Historian uses Proficy Authentication installed

remotely from an earlier version.

9. If you want to install Proficy Authentication, enter the Admin client secret, re-enter the secret, and

then select Next.

The admin client secret must satisfy the following conditions:

◦ Must not contain only numbers.

◦ Must not begin or end with a special character.

◦ Must not contain curly braces.

Historian | 3 - Configuration Hub | 322

Note:

The format of username for Historian Web-based Clients is <host name>.admin, where

<host name> is the machine on which Web-based Clients are installed. And, the default

client ID is admin. Both the host name and client ID are case-sensitive.

If, however, the Proficy Authentication server hostname is long, resulting in a username

longer than 20 characters, Windows does not allow you to create the user. In that case, you

can create a Proficy Authentication user, and then create the corresponding Windows user,

using the uaa_config_tool utility.

10. Alternatively, if you want to use an existing Proficy Authentication service (that is, a Proficy

Authentication instance already installed by an external application such as Operations Hub):

a. Select the Use Existing Proficy Authentication check box.

The fields for the existing Proficy Authentication service appear.

b. Enter values as described in the following table.

https://www.ge.com/digital/documentation/historian/version2024/t_hgs_using_the_uaa_config_tool.html

Historian | 3 - Configuration Hub | 323

Field Description

Profi

cy Au

thenti

cation

Base

URL

Enter the URL of the external Proficy Authentication server in the following for

mat: https://<Proficy Authentication server name>:<port number>, where <Proficy

Authentication server name> is the FQDN or hostname of the machine on which

Proficy Authentication is installed. By default, the port number is 443.

Note:

Do not enter a trailing slash character.

Admin

Client

ID

Enter the client name that you provided while installing the external Proficy Au

thentication. The default value is admin.

Admin

Client

Secret

Enter the client secret that you provided while installing the external Proficy Au

thentication.

c. Select Test Connection.

The results of the connection test appear. You cannot proceed until the connection is

successful.

11. Select Next.

The Configuration Hub Installation page appears, allowing you to choose whether you want to

install Configuration Hub along with Web-based Clients or use an existing Configuration Hub.

Historian | 3 - Configuration Hub | 324

Configuration Hub allows you to add and manage a collector instance remotely. For more

information, refer to About Configuration Hub.

If, however, an earlier version of Configuration Hub is available on the same machine, you will be

prompted to enter the details of the existing Configuration Hub, and it will be upgraded to the latest

version. If that happens, skip the next step.

Important:

By default, Configuration Hub points to the same Proficy Authentication server as the

one you provided during the Historian server installation. If you want to install Web-based

Clients in a cluster environment, ensure that:

◦ Configuration Hub does not use the same Proficy Authentication server as that used

by the cluster.

◦ The Proficy Authentication and Configuration Hub details must be the same for all

cluster nodes.

https://www.ge.com/digital/documentation/historian/version2024/c_about_enterprise_historian.html

Historian | 3 - Configuration Hub | 325

12. If you want to install Configuration Hub, ensure that the Use Existing Configuration Hub check box

is cleared, and then provide values as described in the following table.

Field Description

Install Location If needed, modify the installation folder for Con

figuration Hub.

Plugin Name If needed, modify the name of the Configuration

Hub plugin for Historian. The default value is in

the following format: Historian_<host name>. If,

however, you are installing Web-based Clients

in a cluster environment, the default value is

Historian_<cluster name>. You can modify this

value, but provide the same value for all the

nodes in the cluster.

Server Port If needed, modify the port number that you

want to use for the web server. The default val

ue is 5000. If you want to install Web-based

Clients in a cluster environment, provide the

same value for all the nodes in the cluster.

Container Port If needed, modify the port number for the Con

figuration Hub container. The default value is

4890.

ConfigHub Admin Port This is the port number of the Configuration

Hub admin. The default value is 4890. If need

ed, you can change the port number.

Client ID Enter the username to connect to Configuration

Hub. The default value is admin. The value that

you enter can contain:

◦ All English alphanumeric charac

ters (ABCDEFGHIJKLMNOPQRSTU

VXYZ abcdefghijklmnopqrstuvwxyz_

0123456789)

◦ The following special characters: ><:~!

@#$%^&*?|

Historian | 3 - Configuration Hub | 326

Field Description

Client Secret Enter the password to connect to Configuration

Hub. The value that you enter can contain:

◦ Must contain at least eight characters.

◦ All English alphanumeric charac

ters (ABCDEFGHIJKLMNOPQRSTU

VXYZ abcdefghijklmnopqrstuvwxyz_

0123456789)

◦ The following special characters: ><:~!

@#$%^&*?|

Re-enter Secret Re-enter the password to connect to Configura

tion Hub.

13. Alternatively, if you want to use an existing Configuration Hub:

a. Select the Use Existing Configuration Hub check box. This check box is disabled if an

existing Configuration Hub is detected.

The fields for the existing Configuration Hub appear.

Historian | 3 - Configuration Hub | 327

b. Provide values as described in the following table.

Field Description

Plugin Name If needed, modify the name of the Configu

ration Hub plugin for Historian. The default

value is in the following format: Historian_

<host name>

Server Name Enter the server name or the FQDN of the

existing Configuration Hub server, as dis

played in the address bar of the browser

when you access Configuration Hub from

the machine where Configuration Hub is in

stalled.

Server Port If needed, modify the port number that you

want to use for the web server. The default

value is 5000.

Client ID If needed, modify the username to connect

to Configuration Hub. The default value is

admin.

Client Secret Enter the password to connect to Configura

tion Hub.

c. Select Test Connection.

The results of the connection test appear. You cannot proceed until the connection is

successful.

14. Select Next.

The default installation drive appears.

Historian | 3 - Configuration Hub | 328

15. If needed, change the installation drive for Web-based Clients, and then select Next.

The log files location page appears.

Historian | 3 - Configuration Hub | 329

16. If needed, change the location for log files, and then select Next.

The destination Historian server page appears.

Historian | 3 - Configuration Hub | 330

17. Provide the name of the destination Historian server to which Web-based Clients are connected by

default. When you login to Configuration Hub, the default system will point to this server.

Note:

◦ Provide the name of either Historian single-server or mirror primary server

because the systems in Configuration Hub will be either a stand-alone system or a

horizontally scalable system.

◦ If you want to connect to a remote Historian server, you must disable the Enforce

Strict Client Authentication and Enforce Strict Collector Authentication options

using Historian Administrator in the remote server.

18. Select Next.

The You are ready to install page appears.

19. Select Install.

The Web-based Clients installation begins.

20. When you are prompted to reboot your machine, select Yes.

Historian | 3 - Configuration Hub | 331

Historian Web-based Clients are installed in the following folder: <installation drive>:\Program

Files\GE, and the following registry paths are created:

• HKEY_LOCAL_MACHINE\SOFTWARE\GE Digital

• HKEY_LOCAL_MACHINE\SOFTWARE\GE

If you want to use Configuration Hub installed using other products such as iFIX, Plant Applications, and

so on, set up authentication to point to the Proficy Authentication instance.

Install Collectors Using the Installer

After you install collectors, the following artefacts will be available:

• Executable files: These files are required to add a collector instance.

• Instances of the following collectors:

◦ The iFIX collector

◦ The iFIX Alarms & Events collector

◦ The OPC Classic Data Access collector for CIMPLICITY

◦ The OPC Classic Alarms and Events collector for CIMPLICITY

These instances will be created only if iFIX and/or CIMPLICITY are installed on the same machine

as the collectors.

• The Remote Collector Management agent: Provides the ability to manage collectors remotely.

1. Run the InstallLauncher.exe file.

2. Select Install Collectors.

The welcome page appears.

3. Select Next.

The license agreement appears.

4. Select the Accept check box, and then select Next.

The default installation drive appears.

https://www.ge.com/digital/documentation/confighub/version2024/t_authentication_setup.html

Historian | 3 - Configuration Hub | 332

5. If needed, modify the installation drive, and then select Next.

The data directory page appears.

Historian | 3 - Configuration Hub | 333

6. If needed, change the folder for storing the collector log files, and then select Next.

The destination Historian server page appears.

Historian | 3 - Configuration Hub | 334

7. Provide the credentials of the Windows user account of the destination Historian server to which

you want Remote Management Agent to connect.

These details are required for Remote Collector Manager to connect to Historian to manage the

collectors remotely. If you are installing collectors on same machine as the Historian server, and

if strict collector authentication is disabled, you need not provide these details; by default, the

machine name of the local Historian server is considered. If, however, they are installed on different

machines, or if strict collector authentication is enabled, you must provide the credentials of the

Historian server user.

8. Select Next.

The You are ready to install page appears.

9. Select Install.

The installation begins.

10. When you are prompted to reboot your system, select Yes.

Historian | 3 - Configuration Hub | 335

The collector executable files are installed in the following folder: <installation drive>:\Program

Files (x86)\GE Digital\<collector name>. The iFIX collectors are installed in the following

folder: C:\Program Files\GE\iFIX. The following registry paths are created:

• HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\ GE Digital\iHistorian\Services

\<collector type>

• HKEY_LOCAL_MACHINE\SOFTWARE\GE Digital\iHistorian\Services\<collector

type>

In addition, if iFIX and/or CIMPLICITY are installed on the same machine as the collectors, instances of

the following collectors are created:

• The iFIX collector

• The iFIX Alarms & Events collector

• The OPC Classic Data Access collector for CIMPLICITY

• The OPC Classic Alarms and Events collector for CIMPLICITY

Perform Post-Installation Tasks

1. If you do not want strict authentication, disable the Enforce Strict Client Authentication and

Enforce Strict Collector Authentication options under Historian Administrator > Data Stores >

Security.

2. While installing the Historian server, if you have allowed the installer to create Historian security

groups, create a local Windows user with the format <Web-based Clients server name>.admin, and

add the user to the ihSecurity Admins group. This user will log in to Web-based Clients.

Alternatively, you can create Proficy Authentication users in an external Proficy Authentication and

map their security groups. For information, refer to About Proficy Authentication Groups.

Depending on whether the Historian server will use local or domain security groups, select the

appropriate option in Historian Administrator.

3. Ensure that the Windows user that you have specified while installing collectors is added to the iH

Security Admins and iH Collector Admins groups.

4. Enable trust for a client certificate for Configuration Hub.

5. Enable trust for a self-signed certificate on Chrome.

6. Import an issuer certificate.

You are now ready to use Configuration Hub.

Access Configuration Hub (on page 336).

https://www.ge.com/digital/documentation/historian/version2024/t_hgs_adding_users_to_windows_security_groups.html
https://www.ge.com/digital/documentation/historian/version2024/c_about_user_groups.html
https://www.ge.com/digital/documentation/historian/version2024/r_security_section.dita
https://www.ge.com/digital/documentation/confighub/version2024/g_confighub_client_certificates.html
https://www.ge.com/digital/documentation/historian/version2024/t_hgs_enabling_trust_for_a_self_signed_certificate.html
https://www.ge.com/digital/documentation/opshub/windows/windows/t_import_certificate.html

Historian | 3 - Configuration Hub | 336

Upgrade Configuration Hub

If you install Web-based Clients before uninstalling the previous version, you cannot modify the

Configuration Hub credentials. If an earlier version of Configuration Hub is available on the same machine,

you will be allowed to use the same; you cannot install Configuration Hub again.

1. Uninstall Configuration Hub.

2. Set up Configuration Hub (on page 305).

Access Configuration Hub

Perform the tasks outlined in About Setting up Configuration Hub (on page 305).

1. Double-click the Configuration Hub icon on your desktop ().

The Configuration Hub login page appears.

2. Depending on whether you want to use Proficy Authentication or custom authentication, select the

appropriate tab. If custom authentication is not applicable, skip this step.

Note:

For instructions on setting up authentication, refer to https://www.ge.com/digital/

documentation/confighub/version2024/t_authentication_setup.html

3. Select the Configuration Hub node that you want to access, and then select Continue to Login.

The Proficy Authentication login page appears.

If you cannot access the login page, start the GE Operations Hub Httpd Reverse Proxy and the Data

Archiver services.

4. Log in with your credentials.

Note:

By default, the username is <host name>.admin, and the password is the value that you

have entered in the Admin client secret field on the Proficy Authentication Service page

during Web-based Clients installation.

The Configuration Hub application appears, displaying the following sections:

https://www.ge.com/digital/documentation/confighub/version2024/t_authentication_setup.html
https://www.ge.com/digital/documentation/confighub/version2024/t_authentication_setup.html

Historian | 3 - Configuration Hub | 337

◦ The Navigation section: Contains a list of systems that you have added. In addition, it helps

you navigate to the Model, Collectors, and Tags sections. You can also access Proficy

Authentication to create users and groups.

◦ The main section: Displays content based on your selection in the NAVIGATION section. For

example,if you select a Historian system, you can access a list of servers in the system. You

can also navigate to the system statistics as shown in the following image.

https://www.ge.com/digital/documentation/confighub/version2024/t_authentication_setup.html
https://www.ge.com/digital/documentation/confighub/version2024/t_authentication_setup.html

Historian | 3 - Configuration Hub | 338

Similarly, if you select Model in the NAVIGATION section, you can access the Historian

model.

Historian | 3 - Configuration Hub | 339

◦ The Details section: Contains the details of the item selected in the main section. For

example, If you select a system, you can view the description of the system, and add data

stores and mirror locations using the Details section.

Historian | 3 - Configuration Hub | 340

Historian | 3 - Configuration Hub | 341

Depending on your requirements, set up a stand-alone system or a horizontally scalable system.

Historian Plugin Management in Configuration Hub

About Historian Plugin Management in Configuration Hub

The Historian plugin in Configuration Hub enables you to perform several tasks like monitor, supervise,

retrieve, and control gathering functions from a server, client, or one or more remote nodes. However, it

operates as a web-based application.

When you install the Historian server and web-based clients, the Configuration Hub application is installed

along with Proficy Authentication. Additionally, the Historian node and plugin are automatically registered

with the Proficy Authentication and Configuration Hub based on the Historian HTTP and database port

numbers.

After installing the Historian Server and the Web-based clients, if you access the Configuration Hub, you

can see the Historian plugin displayed in the NAVIGATION pane. Also, the Historian node and the plugin

can be seen in the Administration plugin > Node Manager.

Note:

However, if during installation, the Historian node did not properly register with the Proficy

Authentication and Configuration Hub, and did not appear in the Node Manager, you can add a

Historian node (on page 344) on Configuration Hub using the Node Manager.

The Node Manger consolidates control over product and license details, and you can view the

corresponding Historian node's certificate, and license details. Using the Node Manager, if needed, you

can modify a plugin display name (on page 347), unregister a plugin (on page 350), and if you want to

register it at a later stage, you can register the plugin (on page 348) again.

Historian | 3 - Configuration Hub | 342

View Historian Node Details
Using the Historian node, you can view the Historian node-specific certificate and license details, and also

plugin-specific details.

1. Double-click the Configuration Hub icon on your desktop ().

The Configuration Hub login page appears.

2. Login with the default user credentials. That is, <hostname>.admin.

Historian | 3 - Configuration Hub | 343

The Configuration Hub application appears, listing the Historian plugin in the NAVIGATION pane.

3. In the NAVIGATION pane, select and expand Administration, and then select Node Manager.

The Node Manager administration page appears, listing the available Historian node and the

plugin.

4. To view the Historian node-specific license details, select the node. The node-specific details

appear in the right-side section. Also, the license details are displayed in the License Expiry and

Status columns.

5. To view the plugin-specific details, expand the node and select the plugin. The plugin-specific

details appear in the right-side section.

If you have the needed permission, you can perform additional certificate and node management

tasks. For more information, refer to Administration Plugin in the Configuration Hub help.

https://www.ge.com/digital/documentation/confighub/

Historian | 3 - Configuration Hub | 344

Add a Historian Node (Optional)
The steps listed in this topic are only needed if the Historian node was not properly configured during the

installation and is not being displayed in the Node Manager.

1. Double-click the Configuration Hub icon on your desktop ().

The Configuration Hub login page appears.

2. Login with the default user credentials. That is <hostname>.admin.

The configuration hub application appears, listing the Historian plugin in the NAVIGATION pane.

3. In the NAVIGATION pane, select and expand Administration, and then select Node Manager.

Historian | 3 - Configuration Hub | 345

The node manager administration page appears.

4. In the upper-right corner, select .

The Add Node Manager window appears.

Historian | 3 - Configuration Hub | 346

5. Enter the HOST NAME. Here, it is the Historian node host name in a fully qualified domain name

format. For example, testmachine123.testdomain.com.

6. Enter the DISPLAY NAME for the Historian node.

7. Enter the PORT NUMBER of the host that you entered.

8. You must trust the node manager certificate. To trust the certificate, select Not Trusted.

The Certificate Details window appears, listing the certificate information.

9. Read the certificate details and if you trust, select Trust.

In the Add Node Manager window, the certificate status changes to trusted.

10. Select Test Connection.

If the connection is successful, a success message appears. If not, check the host name and the

port are correct.

11. Select Add.

The Historian node along with the plugin are added.

By default, the plugin gets registered.

Historian | 3 - Configuration Hub | 347

In rare cases, for some reason, if the plugin is not registered, you can register the plugin (on page

348).

Modify a Historian Plugin Display Name

1. Double-click the Configuration Hub icon on your desktop ().

The Configuration Hub login page appears.

2. Login with the default user credentials. That is <hostname>.admin.

The configuration hub application appears, listing the Historian plugin in the NAVIGATION section.

3. In the NAVIGATION pane, select and expand Administration, and then select Node Manager.

The Node Manager administration page appears, listing the available Historian node and the

plugin.

4. Select and right-click the node, and then select Manage.

Historian | 3 - Configuration Hub | 348

The Manage Plug-ins window appears.

5. Change the plugin display name and select Update.

The changes you made are updated and applied to the plugin.

Register a Historian Plugin
If you had unregistered a plugin and want to register it again, or if, for some reason, the plugin was not

registered after installation, you can register the plugin using the Node Manager, provided that you have

the Historian node in the Node Manager. If the Historian node did not register properly, you must first add

a Historian node (on page 344) and then register the Historian node and its plugin.

1. Double-click the Configuration Hub icon on your desktop ().

The Configuration Hub login page appears.

Historian | 3 - Configuration Hub | 349

2. Login with the default user credentials. That is <hostname>.admin.

The configuration hub application appears, listing the Historian plugin in the NAVIGATION section.

3. In the NAVIGATION pane, select and expand Administration, and then select Node Manager.

The Node Manager administration page appears, listing the available Historian node and the

plugin.

4. Select and right-click the plugin, and then select Register.

Alternatively, you can select and right-click the node, and then select Manage.

You can register the plugin using the Register button available in the Manage Plug-ins window.

The Register Plug-in window appears.

Historian | 3 - Configuration Hub | 350

5. Enter the values as described in the following table:

Field Description

PLUGIN HOST The host name of the plugin in a fully qualified

domain name format.

PRODUCT TYPE The product type for the plugin. For example,

Historian.

DISPLAY NAME The plugin name that you want to see below the

Node Manager.

6. Select Register.

The plugin gets registered and added in the NAVIGATION pane.

7. For the plugin to work, you must refresh the browser or log out and log in again to restart

Configuration Hub.

8. Now try accessing the plugin.

Unregister a Historian Plugin
If you need to unregister a plugin, you can do that using the Node Manager.

Historian | 3 - Configuration Hub | 351

1. Double-click the Configuration Hub icon on your desktop ().

The Configuration Hub login page appears.

2. Login with the default user credentials. That is <hostname>.admin.

The configuration hub application appears, listing the Historian plugin in the NAVIGATION pane.

3. In the NAVIGATION pane, select and expand Administration, and then select Node Manager.

The node manager administration page appears.

4. Select and right-click the plugin, and then select Unregister.

Alternatively, you can select and right-click the node, and then select Manage.

The Mange Plug-ins window appears, listing all the available plugins.

Historian | 3 - Configuration Hub | 352

5. Select the plugin as needed.

6. Select Unregister.

The plugin gets unregistered.

Alternatively, you can also unregister a plugin from the Plugin DETAILS section by selecting X on

the top-left corner in the PLUG-IN section.

This will prompt you whether to delete the plugin. Selecting Continue will unregister the plugin.

Historian | 3 - Configuration Hub | 353

Common Tasks in Configuration Hub

Task Procedure

Show or hide the Navigation or

the Details section.
1. In the upper-right corner of the page, select .

2. Select the check boxes for the sections that you want to

show.

Show or hide columns in a table.

Note:

You cannot hide some

of the columns (for ex

ample, the COLLECTOR

NAME column).

1. In the upper-right corner of the table, select .

The Table Settings window appears.

2. Select the check boxes in the SHOW COLUMN column, and

then select Apply.

Historian | 3 - Configuration Hub | 354

Task Procedure

Reorder columns in a table.

Note:

You cannot reorder some

of the columns.

1. In the upper-right corner of the table, select .

The Table Settings window appears.

2. Use the arrow buttons in the RE-ORDER column, and then se

lect Apply.

Refresh a page/table.
In the upper-right corner of the main section or a table, select .

Historian | 3 - Configuration Hub | 355

Task Procedure

Select multiple tags or clear the

selection.

• To select multiple tags, select the check boxes corresponding

to the tags as needed.

Alternatively, to select all the available tags, select the check

box in the upper-left corner of table header.

Navigate through grids in a page When there are more than 100 rows in a grid, page numbers are en

abled at the bottom-right corner. You can use these page numbers to

navigate through the grid and access other available rows.

In addition to this, you can also see a grid's count (both total and se

lected).

Historian | 3 - Configuration Hub | 356

Setting up a Stand-Alone System

About Setting up a Stand-Alone Historian System

In a stand-alone Historian system, there is only one Historian server. This type of system is suitable for a

small-scale Historian setup.

To set up a stand-alone Historian system, you must first set up Configuration Hub (on page 305).

Components of a Historian System: In a Historian system, the following components are used. This list is

not comprehensive. For a complete list, refer to System Components (on page 73).

• The Historian server: You must install a single-server Historian, and apply the license (on page 82).

• A Historian system: A Historian system is a network of Historian servers that collect, store, and

retrieve data related to tags, alarms, and events.

By default, a system is created when you set up Configuration Hub.

• A data store: A data store is a logical collection of tags used to store, organize, and manage

tags according to your requirements. The primary use of data stores is segregating tags by data

collection intervals. For example, you can put name plate or static tags (where the value rarely

changes) in one data store, and put process tags in another data store. This can improve the query

performance.

By default, a user data store is created when you set up Configuration Hub. You can add more as

needed.

• A collector instance: Collectors are the applications that collect data from a data source, and send

it to an on-premises Historian server or a cloud destination such as Predix Time Series and Azure

IoT hub.

You must add a collector instance (on page 357) to begin collecting data. You can choose the

type of the collector depending on your need. You can use any existing instances (created during

collector installation or ported during an upgrade).

• Tags: Tags are the parameters for which you want to store data (for example, temperature,

pressure, torque).

You must specify the tags (on page 357) for which you want to collect data.

• Data archiver: This is a service that indexes all the data by tag name and timestamp, and stores

the result in an .iha file.

By default, this is installed when you install the Historian server.

Historian | 3 - Configuration Hub | 357

• Clients: These are applications that retrieve data from the archive files using the Historian API.

By default, these are installed when you set up Configuration Hub.

Add a Collector Instance

Before you begin using a collector, you must add an instance of the collector. You can add multiple

instances of the same collector or instances of multiple collectors. To add multiple instances of a

collector, perform the steps once again.

You can add and configure the following types of collector instances:

• The Calculation collector (on page 479)

• The CygNet collector (on page 482)

• The File collector (on page 486)

• The HAB collector (on page 489)

• The iFIX collector (on page 505)

• The MQTT collector (on page 510)

• The MQTT Sparkplug B collector (on page 519)

• The ODBC collector (on page 527)

• The OPC Classic Alarms and Events collector (on page 532)

• The OPC Classic DA collector (on page 534)

• The OPC Classic HDA collector (on page 540)

• The OPC UA DA collector (on page 544)

• The OSI PI collector (on page 549)

• The OSI PI distributor (on page 553)

• The Server-to-Server collector (on page 559)

• The Server-to-Server distributor (on page 563)

• The Simulation collector (on page 567)

• The Windows Performance collector (on page 571)

• The Wonderware collector (on page 575)

Add Tags for the Data Store Using Configuration Hub

• Add the collector instance (on page 357) using which you want to collect data. Ensure that the

collector is running.

• By default, the tag data is stored in the user data store, which is created automatically when you

set up Configuration Hub. If, however, you want to store the data in a different data store, create it

(on page 370).

Historian | 3 - Configuration Hub | 358

This topic describes how to specify the tags for which you want to collect data by browsing through the

tags in the data source. For example, for an iFIX collector, if there are 1,00,000 tags in the iFIX server, you

must specify the ones for which you want to collect data. Only then data is collected for those tags.

In addition to adding tags from the data source, you can create tags manually (on page 473).

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

3. Select .

The Add Tag-<system name> page appears. The Add Tags from Collector option is selected by

default.

4. Enter values as described in the following table.

Field Description

COLLECTOR NAME Select the collector instance that you want to use to collect da

ta. A value is required.

COLLECTED TYPE Specify whether you want to browse through all the tags in the

data source or only from the tags that you have not added yet. A

value is required.

SOURCE TAG NAME Enter the name of the tag (either completely or partially) to nar

row down the search results.

SOURCE TAG DESCRIPTION Enter the description of the tag (either completely or partially) to

narrow down the search results.

5. Select Search Tags.

A list of tags that match all the criteria that you have specified appears. If a tag is already added, it

is disabled.

6. Select the check box corresponding to each tag for which you want to collect data.

Historian | 3 - Configuration Hub | 359

7. In the DATA STORE field, if you want to store the data in a different data store than the user data

store, select the same.

8. Select Add Tag.

Data collection begins for the selected tags.

As needed, configure each tag by providing values for the tag properties. For information on the delta

query modes, refer to Counter Delta Queries.

Setting up a Horizontally Scalable System

About Setting up a Horizontally Scalable System

In a horizontally scalable Historian system, there are multiple Historian servers, all of which are connected

to one another. This type of system is used to scale out the system horizontally. For example, if you have

5,00,000 tags in your Historian system, you can distribute them among the various servers to improve

performance.

To set up a horizontally scalable system, you must first set up Configuration Hub (on page 305).

Components of a Historian System: In a Historian system, the following components are used. This list is

not comprehensive. For a complete list, refer to System Components (on page 73).

Historian | 3 - Configuration Hub | 360

• The Historian servers: You must install the following types of Historian servers:

◦ Primary: A primary server is the only server in a system where the Configuration Manager

service runs. For the entire system, Configuration Manager manages the system

configuration licensed by the user (that is, the number of tags, options, and so on). Each

system can have only one primary server.

You must apply the Enterprise license (on page 82) to the primary server.

◦ Distributed/Mirror: These servers collect and store data. If added to a mirror group/location,

you can achieve high availability (on page 367).

You must apply the Distributed license (on page 82) to the distributed/mirror servers.

• A Historian system: A Historian system is a network of Historian servers that collect, store, and

retrieve data related to tags, alarms, and events.

By default, a system is created when you set up Configuration Hub.

• Data stores: A data store is a logical collection of tags used to store, organize, and manage

tags according to your requirements. The primary use of data stores is segregating tags by data

collection intervals. For example, you can put name plate or static tags (where the value rarely

changes) in one data store, and put process tags in another data store. This can improve the query

performance.

By default, a user data store is created when you set up Configuration Hub. You can add more as

needed.

• Locations: These are virtual entities in which data stores are created. They are used for storage.

The following types of locations are used in a horizontally scalable system:

◦ Distributed location: This location is created automatically when you install a Historian

mirror primary server, or when you install a Historian distributed/mirror node and add it to

the primary server. You cannot modify or delete this location, and you cannot create another

one.

◦ Mirror location: This location is used to replicate data collected in a data store. For more

information, refer to About Data Mirroring (on page 367).

• A collector instance: Collectors are the applications that collect data from a data source, and send

it to an on-premises Historian server or a cloud destination such as Predix Time Series and Azure

IoT hub.

You must add a collector instance (on page 357) to begin collecting data. You can choose the

type of the collector depending on your need. You can use any existing instances (created during

collector installation or ported during an upgrade).

Historian | 3 - Configuration Hub | 361

• Tags: Tags are the parameters for which you want to store data (for example, temperature,

pressure, torque).

You must specify the tags (on page 357) for which you want to collect data.

• Data archiver: This is a service that indexes all the data by tag name and timestamp, and stores

the result in an .iha file.

By default, this is installed when you install the Historian server.

• Clients: These are applications that retrieve data from the archive files using the Historian API.

By default, these are installed when you set up Configuration Hub.

Add a Distributed/Mirror Server

1. Install Historian server (on page 105) on the machine that you want to add as a distributed server.

2. Add a system (on page 427). The server that you specify while adding the system serves as the

primary server for the system.

If you want to create a horizontally scalable Historian system, you must first add a primary server, and

then add one or more distributed/mirror machines to scale out the primary server horizontally and thus,

improve performance.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Systems.

A list of systems appears in the main section.

3. Expand the system in which you want to add a distributed/mirror server.

A list of servers in the system appears.

4. Select .

The Add Server Machine: <system name> window appears.

Historian | 3 - Configuration Hub | 362

5. Enter the host name or IP address of the machine that you want to add, and then select Add.

The distributed server is added to the system. A distributed location is added in the server. You

cannot modify or delete this location.

• If you want high availability of one or more data stores in the server, create a mirror location (on

page 368), and then add the data stores (on page 370). If not, add the data store (on page

370) to the distributed location.

• If you want to set a distributed node as backup to the primary node, set a distributed node as

backup (on page 365).

Add a Collector Instance

Before you begin using a collector, you must add an instance of the collector. You can add multiple

instances of the same collector or instances of multiple collectors. To add multiple instances of a

collector, perform the steps once again.

You can add and configure the following types of collector instances:

• The Calculation collector (on page 479)

• The CygNet collector (on page 482)

• The File collector (on page 486)

• The HAB collector (on page 489)

• The iFIX collector (on page 505)

• The MQTT collector (on page 510)

• The MQTT Sparkplug B collector (on page 519)

• The ODBC collector (on page 527)

• The OPC Classic Alarms and Events collector (on page 532)

• The OPC Classic DA collector (on page 534)

• The OPC Classic HDA collector (on page 540)

• The OPC UA DA collector (on page 544)

• The OSI PI collector (on page 549)

• The OSI PI distributor (on page 553)

• The Server-to-Server collector (on page 559)

• The Server-to-Server distributor (on page 563)

• The Simulation collector (on page 567)

• The Windows Performance collector (on page 571)

• The Wonderware collector (on page 575)

Historian | 3 - Configuration Hub | 363

Add Tags for the Data Store Using Configuration Hub

• Add the collector instance (on page 357) using which you want to collect data. Ensure that the

collector is running.

• By default, the tag data is stored in the user data store, which is created automatically when you

set up Configuration Hub. If, however, you want to store the data in a different data store, create it

(on page 370).

This topic describes how to specify the tags for which you want to collect data by browsing through the

tags in the data source. For example, for an iFIX collector, if there are 1,00,000 tags in the iFIX server, you

must specify the ones for which you want to collect data. Only then data is collected for those tags.

In addition to adding tags from the data source, you can create tags manually (on page 473).

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

3. Select .

The Add Tag-<system name> page appears. The Add Tags from Collector option is selected by

default.

4. Enter values as described in the following table.

Field Description

COLLECTOR NAME Select the collector instance that you want to use to collect da

ta. A value is required.

COLLECTED TYPE Specify whether you want to browse through all the tags in the

data source or only from the tags that you have not added yet. A

value is required.

Historian | 3 - Configuration Hub | 364

Field Description

SOURCE TAG NAME Enter the name of the tag (either completely or partially) to nar

row down the search results.

SOURCE TAG DESCRIPTION Enter the description of the tag (either completely or partially) to

narrow down the search results.

5. Select Search Tags.

A list of tags that match all the criteria that you have specified appears. If a tag is already added, it

is disabled.

6. Select the check box corresponding to each tag for which you want to collect data.

7. In the DATA STORE field, if you want to store the data in a different data store than the user data

store, select the same.

8. Select Add Tag.

Data collection begins for the selected tags.

As needed, configure each tag by providing values for the tag properties. For information on the delta

query modes, refer to Counter Delta Queries.

Historian | 3 - Configuration Hub | 365

Browse Tags using Distributed or Mirror Node Servers when Primary Server
is Inactive

In a horizontally scaled system, there can be multiple Historian servers that are connected to one another.

That is, if there are 100000 tags in your system, you can distribute them among the various servers.

Similarly, you can view the tags and their values in all the servers.

For example, consider the following setup:

In general, the Historian configuration manager of the primary node stores the tag information of

all the data stores in the system. Whenever a client machine requests tag information, the Historian

configuration manager sends the corresponding information for all nodes (primary, distributed 1, and

distributed 2) to the client machine through the client manager. Suppose the central configuration

manager is inactive, in that case, the client manager of the primary node sends the tag information

corresponding to the primary node (data store 1) to the client machine. Consequently, the tag information

of the other nodes will not be sent to the client machine.

To overcome this, you can assign the other nodes as backups for the primary node's central configuration

manager. Therefore, whenever the central configuration manager is inactive, the Data Archiver (DA) of the

backup node functions as a configuration manager and sends all tag information to the client manager.

The client manager will then forward the tag information response to the client machine. With this, you

can still browse tags and their details when the primary node's configuration manager is inactive.

Historian | 3 - Configuration Hub | 366

This topic describes how to set a distributed node as a backup node for the primary node.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, expand Systems, and

then select the system that you want to access.

The selected system and its details appear.

3. Expand the system to see the corresponding servers.

4. Select a distributed node that you want to set as the backup.

The selected distributed node's details appear in the DETAILS section.

Historian | 3 - Configuration Hub | 367

5. In the GENERAL section, enable Support for Browse Tags, if primary server down.

6. In the upper-left corner, select save.

The selected distributed node is set as a backup for the primary node's configuration manager.

If your primary node's configuration manager is inactive, you can still browse the tags and their details

corresponding to all the nodes within the horizontally scaled system.

Setting up High Availability

About Data Mirroring

Historian provides mirroring of stored data on multiple nodes to provide high levels of data reliability. Data

Mirroring also involves the simultaneous action of every insert, update and delete operations that occurs

on any node. Data mirroring provides continuous data read and write functionality.

In a typical data mirroring scenario, one server acts as a primary server to which the clients connect.

All communication goes through the Client Manager, and each Client Manager knows about the others.

Mirrors must be set up in a single domain.

When you create a mirror location, you add one or more servers to the group, and then create the data

stores whose data you want to replicate. For example, suppose you want to create a data store for

collecting the data for 100 tags, for which you want high availability. In that case, you must create a mirror

location, add two or more servers to the mirror location, and then create the data store. When you do so,

the data retrieved in the data store is stored in all the servers in the mirror location. If one of the servers is

down, you can retrieve the data from the other servers in the group.

Mirror Node Setup

The following diagram helps you to understand a typical single mirror node setup.

Historian | 3 - Configuration Hub | 368

Create a Mirror Location

Add one or more distributed servers (on page 361) to the system in which you want to create a mirror

group.

If you want high availability of one or more data stores, you must create a mirror group (also called a

mirror location), and then add servers to it. When you do so, the data in the data stores of the mirror

locations is replicated. Therefore, even if one of the servers is down, you can retrieve data from the other

servers in the mirror location, thus achieving high availability.

The following conditions apply when you create a mirror location:

• You must add minimum two servers to a mirror location. The maximum number of servers that you

can add depends on your Historian license.

• You can add a mirror location only in a horizontally scalable Historian system.

• You can rename a mirror location, remove a machine from a mirror location, or add an additional

one even after you create the mirror location. However, if only one machine remains in the group,

you cannot remove it.

Historian | 3 - Configuration Hub | 369

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Systems.

The Systems section appears, displaying a list of systems.

3. Right-click the system in which you want to create a mirror location (or select), and then select

Browse Locations.

A list of distributed locations in the system appears.

4. Select Mirror Locations.

A list of mirror locations in the system appears.

5. In the upper-right corner of the main section, select .

The Add Mirror Location window appears.

6. Provide values as described in the following table.

Field Description

MIRROR LOCATION NAME Enter a name for the mirror location. A value is

required and must be unique for the system.

SERVER MACHINES Select the servers that you want to add to the

mirror group. This box contains a list of all the

servers in the system. You must add minimum

two servers to a mirror location.

7. Select Add.

The mirror location is created.

Add a data store to the mirror location (on page 370).

Historian | 3 - Configuration Hub | 370

Create a Data Store

The number of data stores that you can create depends on your license.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Data Sores.

Alternatively, you can select Systems, right-click the system in which you want to create a data

store (or select), and then select Browse Data Stores.

The Data Stores section appears.

3. Select .

If Historian Standard version, then the Add Data Store window appears.

If Historian Enterprise version, then the Add Data Store: <location name> window appears.

4. Enter values as described in the following table.

Field Description

DATA STORE NAME Enter a unique name for the data store. A value is required. You can

use all alphanumeric characters and special characters except / \ * ?

< > |

DESCRIPTION Enter a description for the data store.

LOCATION Enter the host name or IP address of the distributed location on

which you want to create the data store. This field is available only

for a horizontally scalable system.

Is Default Switch the toggle on if you want to set this data store as the default

one. A default data store is the one that is considered if you do not

specify a data store while adding a tag. You can set only one data

store as default.

5. Select .

The data store is created.

When you add tags to the data store, it will have its own set of .IHA (iHistorian Archive) files.

Ensure that you back up the new data store archives periodically.

Historian | 3 - Configuration Hub | 371

Creating a Model

About a Historian Model

A Historian model is a hierarchical classification of various objects in a system. A model contains the

following components:

• Object Types

• Contained Types

• Object Instances

• Variables

Object Type: An object type is a blueprint, which you want to replicate that will have a common structure

(common properties/attributes and contained types). These object types can be the products you

manufacture, your assets, byproducts, or anything else for which you want to classify information

hierarchically and inherit properties/attributes. For example, in an automobile manufacturing unit, the

vehicles you manufacture are object types (for example, a car or a scooter).

Contained Types: A contained type is an object type that you can include in another object type. For

example, suppose you manufacture cars with the following types of engines:

• Petrol

• Diesel

Historian | 3 - Configuration Hub | 372

You can then create one contained type for a petrol engine and one for a diesel engine. Similarly, you can

create contained types for various types of brake systems, testing parameters, and so on.

When you create an object type for a car, you can include any of these contained types.

You can include multiple contained types in a single object instance. In addition, you can include a single

contained type in multiple object instances.

Object Instances: Each item of an object type that you manufacture is called an object instance. For

example, if you manufacture three cars, each one is an instance.

Historian | 3 - Configuration Hub | 373

An object instance is specific to a Historian system. An object type, however, is not associated with a

system.

Variables: Each attribute or property of an object is called a variable. These variables are common across

all objects of a certain type. They represent tags whose values are collected by data collectors. For

example, a car can have the following variables.

Historian | 3 - Configuration Hub | 374

When you create instances of an object type, by default, the variables in the object type are inherited to

all the instance as well. You can choose to include or exclude one or more of these variables for each

instance.

In the following image, all the variables of the car object type are inherited to each of the instances.

However, the first two instances do not include Storage. And the third instance does not include Mileage

and Fuel Type.

Historian | 3 - Configuration Hub | 375

If an object type contains contained types, the variables in the contained types are inherited as well.

After you create an object instance, you must store the values of each variable of the instance. To do so,

you must map each variable with a Historian tag or create one, depending on the type of the variable.

Historian | 3 - Configuration Hub | 376

Types of Variables:

• Direct: Tags for these variables are created in Historian when you select a collector instance. For

instructions on collecting data for these types of tags, refer to Collect Data for a Direct Variable (on

page 392).

• Indirect: These variables are mapped with existing Historian tags. For instructions on collecting

data for these types of tags, refer to Collect Data for an Indirect Variable (on page 395).

• Static: These variables have a static value, which you provide when you create an object instance.

For instructions on providing data for these types of tags, refer to Provide Data for a Static Variable

(on page 390).

Limitations:

• An OPC UA model is not supported.

• If the name of a tag associated with a variable in a model contains a period (.), you cannot import

the tag while importing the model into a Historian system.

About Object Templates

When you create an object type, you create a template. A template contains attributes/properties of an

object type, called variables. When you apply a template to an object instance, the variables included in

the template are added to the object instance.

Types of Templates:

• Default Template: The default template contains generic/common variables of an object type.

Each object type contains one and only one default template; you cannot delete it.

• Custom Template: In addition to the default template, if needed, you can create one or more

custom templates for an object type. When you do so, you can choose to include variables from

the default template or other custom templates in the same object type.

For example, suppose you have an automobile manufacturing unit. You can create a default template that

contains generic details about an automobile. Each of these details is a variable.

Historian | 3 - Configuration Hub | 377

In addition to the default template, you can create custom templates for the object type, and add variables

to it. For example, in the automobile object type, you can create a template for a car and another one for

a scooter. Some of the variables in the default template (such as storage and gear system) may not be

applicable to a scooter. Therefore, you can exclude them.

Historian | 3 - Configuration Hub | 378

Historian | 3 - Configuration Hub | 379

When you later create instances of the object type, you can choose any of the three templates. When you

do so, all the variables in the template are included in the object instance. You will then capture values of

these variables in Historian.

Workflow for Creating a Historian Model

To create a model and store tag values of object instances, you must perform the following steps.

Step

Number
Description Notes

1 Set up Configuration Hub (on page 305). This step is required. It involves installing

the required components to get started with

Configuration Hub.

2 Create a collector instance (on page 357). This step is required. It involves creating a

collector instance using which you want to

collect data from the object instance and

store it in an on-premises Historian server or

a cloud destination.

3 Specify the tags for data collection (on page

357).

This step is required. It involves specifying

the tags for which you want to collect da

ta by browsing through the tags in the da

ta source. For example, for an iFIX collec

tor, if there are 1,00,000 tags in the iFIX serv

er, you must specify the ones for which you

want to collect data. Only then data is col

lected for those tags.

You will later map these tags with the vari

ables in each object instance, thus collect

ing data for the variables (explained later in

this workflow).

4 Create an object type (on page 380). This step is required. It involves creating an

object type, a default template, one or more

custom templates as needed, and adding

variables to each object type.

5 Create an object instance (on page 388). This step is required. It involves creating an

object instance and applying the required

Historian | 3 - Configuration Hub | 380

Step

Number
Description Notes

template from the object type. The object in

stance then inherits the variables from the

object type.

6 Provide/collect data for static (on page

390), direct (on page 392), and indirect

(on page 395) variables.

This step is required. You can provide data

for the following types of variables:

• Static: For a static variable, the value

does not change; therefore, you just

provide the value of the variable.

• Direct: For a direct variable, you as

sociate the variable with a collector

instance and a tag. When you do so,

the tag is created in Historian, and

values for the variable are collected

by the collector instance and stored

in Historian.

• Indirect: For an indirect variable, you

associate the variable with a collec

tor instance and an existing Histo

rian tag. The values for the variable

are then collected by the collector in

stance and stored in Historian.

For more information on the types of vari

ables, refer to About a Historian Model (on

page 371).

Create an Object Type

When you create an object type, you also create the default template, custom templates, and variables

for each template. For information on each of these template types and variables, refer to About Object

Templates (on page 376) and About a Historian Model (on page 371).

This topic describes how to create an object type. You can also copy one (on page 403).

Historian | 3 - Configuration Hub | 381

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Model.

Alternatively, you can select Systems, and then in the row containing the system in which you want

to create a model, select , and then select Browse Model.

The Model section appears.

3. In the upper-right corner of the section, select .

The New Object Type window appears.

4. Enter values as described in the following table.

Field Description

NAME Enter a name for the object type. A value is re

quired and must be unique.

The value that you enter:

◦ Must begin with a letter or a number.

◦ Can contain up to 256 characters.

◦ Can include any of the following special

characters: /!|#{}%$-_

◦ Must not include a space or any of the

following characters: ~`+^:;.,?"*=@

DESCRIPTION Enter a description for the object type.

5. Select Create.

The object type is created.

6. In the main section, under Object Types, right-click the object type that you have created (or select

), and then select Edit.

Historian | 3 - Configuration Hub | 382

The <object type name> section appears. The OBJECT TYPE TEMPLATE field contains the default

template.

7. To add variables to the default template:

a. In the Variables table, select New.

A blank row appears in the table.

b. Enter values as described in the following table.

Column Description

VARIABLES Enter the name of the variable. A value is

required and must be unique for the object

type.

The value that you enter:

▪ Must begin with a letter or a number.

▪ Can contain up to 256 characters.

Historian | 3 - Configuration Hub | 383

Column Description

▪ Can include any of the following spe

cial characters: /!|#{}%$-_

▪ Must not include a space or any

of the following characters: ~`

+^:;.,?"*={}@

VARIABLE TYPE Choose one of the following types of vari

ables:

▪ Direct: Tags for these variables are

created in Historian for a selected

collector instance.

▪ Indirect: These variables are mapped

with existing Historian tags.

▪ Static: These variables have a stat

ic value, which you provide when you

create an object instance.

DATATYPE Select the data type of the variable.

DESCRIPTION Enter a description for the variable.

INCLUDE Switch the toggle to indicate whether you

want to include the variable in the template.

Note:

After you apply a template to an object instance, you cannot modify or delete a

variable in the object type; you can only add more variables. You can, however, copy

the object type (on page 403), and modify or delete variables in the copied one.

c. Press ENTER.

The default template is created, along with the variable that you have added. You can add

more variables or include/exclude variables later too.

Note:

If you want to create a variable by copying an existing one, select the check box next

to the variable that you want to copy, and then select . You can copy only one

variable at a time.

Historian | 3 - Configuration Hub | 384

8. To create a custom template:

a. Next to the TEMPLATE field, select , and then select New.

The New Object Template window appears.

b. Enter values as described in the following table.

Field Description

NAME Enter a name for the template. A value is re

quired and must be unique.

The value that you enter:

▪ Must begin with a letter or a number.

▪ Can contain up to 256 characters.

▪ Can include any of the following spe

cial characters: /!|#{}%$-_

▪ Must not include a space or any

of the following characters: ~`

+^:;.,?"*={}@

DESCRIPTION Enter a description for the template.

c. Repeat step 7 to add variables to the custom template.

The custom template is created, along with the variables. You can add more variables, and include/

exclude existing variables later too.

9. In the upper-left corner of the page, select Save.

Historian | 3 - Configuration Hub | 385

The object type, along with the default template, custom templates, and variables, is created.

Create an object instance (on page 388).

Include a Contained Type in an Object Type

Create an object type (on page 380) that you want to use as a contained type.

A contained type is an object type that you can include in another object type. When you do so, you can

reuse the variables in the contained type without creating them again manually. These variables are

inherited by object instances of the object type in which you include the contained type.

You can include a single contained type in multiple object types and multiple contained types in a single

object type.

For more information, refer to About a Historian Model (on page 371).

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Model.

Alternatively, you can select Systems, and then in the row containing the system in which you want

to create a contained type, select , and then select Browse Model.

The Model section appears.

3. Under Object Types, right-click the object type in which you want to include the contained type (or

select), and then select Edit.

Historian | 3 - Configuration Hub | 386

The <object type name> section appears, displaying a list of variables in the object type.

4. Select Contained Types.

A list of contained types in the object type appears.

5. In the CONTAINED TYPES table, select New.

Historian | 3 - Configuration Hub | 387

A blank row appears in the table.

6. Enter values as described in the following table, and press ENTER.

Field Description

ALIAS Enter a name for the contained type. A value is

required. It need not match the original name of

the contained type that you want to include.

The value that you enter:

◦ Must begin with a letter or a number.

◦ Can contain up to 256 characters.

◦ Can include any of the following special

characters: /!|#{}%$-_

◦ Must not include a space or any of the

following characters: ~`+^:;.,?"*=@

TYPE Select the object type that you want to include

as a contained type. This field contains a list of

all the object types in the Historian system.

TEMPLATE Select the template from the object type that

you want to include. This field contains a list of

templates in the object type. Only the variables

in the selected template will be inherited by in

stances of the object type in which you want to

include the contained type.

The contained type is included in the object instance.

Historian | 3 - Configuration Hub | 388

7. In the upper-left corner of the page, select Save.

The changes to the object type are saved.

Create an object instance (on page 388). The object instance will include the variables directly added in

the object type, along with the ones in the selected template in the contained type.

Create an Object Instance

Create an object type (on page 380).

For each item of an object type, you must create an object instance so that you can capture values of the

variables in the instance. These values are then stored in Historian.

Note:

After you create an object instance, you cannot rename, import, export, or delete a variable,

contained types, or templates in the associated object type; you can only create new ones.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Model.

Alternatively, you can select Systems, and then in the row containing the system in which you want

to create a model, select , and then select Browse Model.

The Model section appears.

3. In the SYSTEM list, select the system in which you want to create an object instance.

4. Under Object Types, right-click the object type whose instance you want to create (or select),

and then select Add Object Instance.

Historian | 3 - Configuration Hub | 389

The New Object Instance window appears.

5. Enter values as described in the following table.

Field Description

NAME Enter a name for the object instance. A value

is required and must be unique for the object

type.

The value that you enter:

◦ Must begin with a letter or a number.

◦ Can contain up to 256 characters.

◦ Can include any of the following special

characters: /!|#{}%$-_

◦ Must not include a space or any of the

following characters: ~`+^:;.,?"*=@

DESCRIPTION Enter a description for the object instance.

OBJECT TYPE This field is disabled and populated with the ob

ject type that you have selected.

OBJECT TYPE TEMPLATE Select the template that you want to apply to

the object instance.

Note:

After you apply a template to an object

instance, you cannot modify or delete a

Historian | 3 - Configuration Hub | 390

Field Description

variable in the object type; you can only

add more variables.

6. Select Create.

The object instance is created.

7. In the Model section, under Instances, expand the instance that you have created, and then expand

Variables.

A list of variables inherited from the template in the object type appear.

8. Select a variable.

The details of the variable appear in the DETAILS section.

Tip:

If the DETAILS section does not appear, in the upper-right corner of the page, select ,

and then select DETAILS.

• Provide data for static variables (on page 390).

• Collect data for direct (on page 392) and indirect (on page 395) variables.

Provide Data for a Static Variable

A static variable contains a fixed value. Therefore, when you create an object instance, you can access the

variable, and provide its value.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Model.

Alternatively, you can select Systems, and then in the row containing the system in which you want

to create a model, select , and then select Browse Model.

The Model section appears.

3. Under Object Instances, expand the object instance, expand Variables, and then select the variable

whose data you want to provide.

Historian | 3 - Configuration Hub | 391

The details of the variable appear in the DETAILS section.

Note:

If the DETAILS section does not appear, in the upper-right corner of the page, select ,

and then select DETAILS.

4. In the DETAILS section, in the Static Value field, enter the value that you want to provide for the

variable, and then press ENTER.

Historian | 3 - Configuration Hub | 392

5. In the upper-left corner of the page, select Save.

The value for the variable is saved.

Collect Data for a Direct Variable

1. Create a collector instance (on page 357) using which you want to collect data for the variable.

2. Add the tag (on page 357) using which you want to collect data.

To collect data of a direct variable, you must associate the variable with a collector instance and a tag.

When you do so, the tag is created in Historian, and values for the variable are collected by the collector

instance and stored in Historian.

Important:

If the name of a tag associated with a variable in a model contains a period (.), you cannot import

the tag while importing the model into a Historian system.

Historian | 3 - Configuration Hub | 393

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Model.

Alternatively, you can select Systems, and then in the row containing the system in which you want

to create a model, select , and then select Browse Model.

The Model section appears.

3. Under Object Instances, expand the object instance, expand Variables, and then select the variable

whose data you want to collect.

The details of the variable appear in the DETAILS section.

Note:

If the DETAILS section does not appear, in the upper-right corner of the page, select ,

and then select DETAILS.

Historian | 3 - Configuration Hub | 394

4. In the Source Address field, select .

The Browse Source Tag window appears.

5. Enter values as described in the following table.

Historian | 3 - Configuration Hub | 395

Field Description

COLLECTOR NAME Enter the name of the collector using which you

want to collect data of the variable. A value is

required.

COLLECTED TYPE Specify whether you want to browse through

all the tags in the data source or only from the

tags that you have not added yet. A value is re

quired.

SOURCE TAG NAME Enter the name of the tag (either completely or

partially) to narrow down the search results.

SOURCE TAG DESCRIPTION Enter the description of the tag (either com

pletely or partially) to narrow down the search

results.

6. Select Search Tags.

A list of tags that match all the search criteria appears.

7. Select the collector tag that you want to map with the variable, and then select Apply.

8. In the upper-left corner of the page, select Save.

The tag is mapped with the variable. A corresponding tag is created in Historian. The details of

the tag and the collector instance are disabled and populated in the DETAILS section. All the data

that is collected for the tag is now stored in Historian (or in a cloud destination as configured in the

collector instance).

Collect Data for an Indirect Variable

1. Add or ensure there is a collector instance (on page 357) which you want to collect data for the

variable.

2. Add the tag (on page 357) that you want to map with the variable.

Historian | 3 - Configuration Hub | 396

To collect data of an indirect variable, you must associate the variable with a collector instance and an

existing Historian tag. The values for the variable are then collected by the collector instance and stored in

Historian.

Important:

• If the name of a tag associated with a variable in a model contains a period (.), you cannot

import the tag while importing the model into a Historian system.

• If you want to later delete the tag, first remove the mapping between the tag and the

variable.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Model.

Alternatively, you can select Systems, and then in the row containing the system in which you want

to create a model, select , and then select Browse Model.

The Model section appears.

3. Under Object Instances, expand the object instance, expand Variables, and then select the variable

whose data you want to collect.

Historian | 3 - Configuration Hub | 397

The details of the variable appear in the DETAILS section.

Note:

If the DETAILS section does not appear, in the upper-right corner of the page, select ,

and then select DETAILS.

4. In the DETAILS section, in the Tag Name field, select .

Historian | 3 - Configuration Hub | 398

The Tag Selection: <variable name> window appears.

5. Select Search to search for tags.

6. Enter the search criteria, and then select Search. You can enter a name or a value partially or use

the wildcard character asterisk (*). You can add more search criteria by selecting Add Attribute.

The list of tags are filtered based on the search criteria.

7. Select the collector tag that you want to map with the variable, and then select Apply.

8. In the upper-left corner of the page, select Save.

You can choose any of the following options provided while mapping the indirect variable with an

existing Historian tag to save in Historian with or without the model hierarchy.

Historian | 3 - Configuration Hub | 399

Table 12.

Field Description

Use as is Choosing this option will not update the His

torian tag name. Mapping Information will be

saved only in model database. Mapping infor

mation won’t be available with Historian (when

you export and try to trend with trending tools

like Operations Hub, you will not be able to

trend as they are connected to Historian Data

base).

Create Alias Choosing this option creates an alias of Histori

an tag mapped with indirect variable.

This option will save the model tag both in the

model database and Historian database as an

alias. When you export the model, you will be

able to trend and see the data. (This is the de

fault option.)

Rename Permanently Choosing this option will permanently rename

the Historian tag mapped with the model indi

Historian | 3 - Configuration Hub | 400

Field Description

rect variable and removes the existing tag. So,

there will be chance that existing trends using

this Historian tag might have impact.

Export an Object Type/Instance

When you create an object type or an object instance, you can use it only in the Historian system in which

you have created it. If, however, you want to use the object type/instance in a different Historian system or

Operations Hub, you can export it and then import it into the other Historian system or Operations Hub.

The following conditions apply when you export an object type/instance:

• You can export each object type/instance separately or all the object types and object instances in

a Historian system at once.

• You can choose to export the variables or object instances of an object type (or both).

• You can choose to export the variables and templates of an object instance (or both). You cannot,

however, export templates to Operations Hub.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Model.

Alternatively, you can select Systems, and then in the row containing the system in which you want

to create a model, select , and then select Browse Model.

The Model section appears.

3. If you want to export all the object types/instances in the Historian system, in the upper-right

corner of the main section, select .

If you want to export a single object type/instance, under Object Types or Object Instances, right-

click the object type/instance that you want to export (or select), and then select Export.

Historian | 3 - Configuration Hub | 401

The Export Model window appears. Depending on whether you are exporting all the object types/

instances in the system or just a single one, the File name field contains a value in the following

format: <host name>.csv or <object type>.csv or <object instance.csv.

4. If needed, modify the value in the File name field.

5. Depending on whether you want to export to another Historian system or Operations Hub, select

the appropriate option.

6. Operations Hub 2023 supports multi model with multiple roots, you can choose the version while

exporting the model either to 2023 or versions prior to 2023.

Historian | 3 - Configuration Hub | 402

7. Depending on whether you want to export the templates, the object instances, or both, ensure that

the corresponding check boxes are selected. However, you can export templates only to a Historian

system, not to Operations Hub.

8. Select Export.

The object types/instances, along with the underlying object variables, are exported in to a .csv file.

Import an Object Type/Instance

When you create an object type or an object instance, you can use it only in the Historian system in which

you have created it. If, however, you want to use the object type/instance in a different Historian system or

Operations Hub, you can export it and then import it into the other Historian system or Operations Hub.

Historian | 3 - Configuration Hub | 403

You can import each object type/instance separately or all the object types/instances in a Historian

system at once.

Important:

If the name of a tag associated with a variable in a model contains a period (.), you cannot import

the tag while importing the model into a Historian system.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Model.

Alternatively, you can select Systems, and then in the row containing the system in which you want

to create a model, select , and then select Browse Model.

The Model section appears.

3. In the upper-right corner of the main section, select .

The Import Model window appears.

4. Select Choose File, and then select the .csv file that contains the object types/instances that you

want to import.

5. Depending on whether you want to import the templates, the object instances, or both, ensure that

the corresponding check boxes are selected.

6. Select Import.

The object types/instances are imported.

Copy an Object Type

When you create an object type, you also create the default template, custom templates, and variables for

each template. For information on each of these template types and variables, refer to About a Historian

Model (on page 371) and About Object Templates (on page 376).

When you copy an object type, all the templates and variables are copied too.

This topic describes how to copy an object type. You can also create one (on page 380).

Historian | 3 - Configuration Hub | 404

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Model.

Alternatively, you can select Systems, and then in the row containing the system in which you want

to create a model, select , and then select Browse Model.

The Model section appears.

3. Under Object Types, select the object type that you want to copy, and then select Duplicate.

The Duplicate Object Type window appears.

4. Enter values as described in the following table.

Field Description

NAME Enter a name for the object type. A value is re

quired and must be unique.

The value that you enter:

◦ Must begin with a letter or a number.

◦ Can contain up to 256 characters.

◦ Can include any of the following special

characters: /!|#{}%$-_

◦ Must not include a space or any of the

following characters: ~`+^:;.,?"*=@

DESCRIPTION Enter a description for the object type.

Historian | 3 - Configuration Hub | 405

5. Select Create.

The object type is copied, along with the variables and templates in the original object type.

6. Right-click the object type that you have copied (or select), and then select Edit.

The <object type name> section appears. The OBJECT TYPE TEMPLATE field contains all the

templates in the original object type. In addition, each template contains all the variables as

defined in the original object type.

7. To add more variables to a template:

a. In the OBJECT TYPE TEMPLATE field, select the template to which you want to add more

variables.

b. In the Variables table, select New.

A blank row appears in the table.

c. Enter values as described in the following table.

Historian | 3 - Configuration Hub | 406

Column Description

VARIABLES Enter the name of the variable. It must be

unique for the object type.

VARIABLE TYPE Choose one of the following types of vari

ables:

▪ Direct: Tags for these variables are

created in Historian when you select

a collector instance.

▪ Indirect: These variables are mapped

with existing Historian tags.

▪ Static: These variables have a stat

ic value, which you provide when you

create an object instance.

DATATYPE Select the data type of the variable.

DESCRIPTION Enter a description for the variable.

INCLUDE Switch the toggle to indicate whether you

want to include the variable in the template.

Tip:

If you want to modify a variable, change the values in the aforementioned fields.

If you want to delete a variable, select the check box next to the variable, and then

select .

Note:

After you apply a template to an object instance, you cannot modify or delete a

variable in the object type; you can only add more variables.

d. Press ENTER.

Historian | 3 - Configuration Hub | 407

The default template is modified, and the new variables have been added. You can add more

variables or include/exclude variables later too.

Note:

If you want to create a variable by copying an existing one, select the check box next

to the variable that you want to copy, and then select . You can copy only one

variable at a time.

8. In the upper-left corner of the page, select Save.

The object type, along with the default template, custom templates, and variables, is created.

Create an object instance (on page 388).

Delete a Template

This topic describes how to delete a custom template. You cannot delete a template that is in use (that is,

an object instance has been created for the object type). And, you cannot delete the default template in an

object type.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Model.

Alternatively, you can select Systems, and then in the row containing the system in which you want

to create a model, select , and then select Browse Model.

The Model section appears.

3. In the main section, under Object Types, right-click the object type from which you want to delete a

template (or select), and then select Edit.

Historian | 3 - Configuration Hub | 408

The <object type name> section appears. The OBJECT TYPE TEMPLATE field contains the default

template.

4. In the OBJECT TYPE TEMAPLTE field, select the template that you want to delete.

5. Next to the OBJECT TYPE TEMPLATE field, select , and then select Delete.

A message appears, asking you to confirm that you want to delete the template.

6. Select Yes.

The template is deleted.

7. In the upper-left corner of the page, select Save.

Historian | 3 - Configuration Hub | 409

The changes to the object type are saved.

Delete an Object Instance

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Model.

Alternatively, you can select Systems, and then in the row containing the system in which you want

to create a model, select , and then select Browse Model.

The Model section appears.

3. Under Object Instances, right-click the object instance that you want to delete (or select), and

then select Delete.

Historian | 3 - Configuration Hub | 410

A message appears, asking you to confirm that you want to delete the object instance. If there are

direct variables in the object type, you can also choose to delete the tags associated with these

variables (along with their data).

4. Select Yes.

The object instance is deleted, along with the underlying variables and templates.

Delete an Object Type

You cannot delete an object type if it is used in an object instance; you must first delete the object

instance (on page 409).

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Model.

Alternatively, you can select Systems, and then in the row containing the system in which you want

to create a model, select , and then select Browse Model.

The Model section appears.

3. Under Object Types, right-click the object type that you want to delete (or select), and then

select Delete.

Historian | 3 - Configuration Hub | 411

A message appears, asking you to confirm that you want to delete the object type.

4. Select Yes.

The object type is deleted, along with the underlying variables and templates in the object type.

If, however, the object type is used in an object instance, a message appears, asking you to first

delete the object instance.

Managing Historian Systems

Access a System

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, expand Systems, and

then select the system that you want to access.

The system appears in the main section. The following details of the system appear in the

DETAILS section.

Historian | 3 - Configuration Hub | 412

Table 13. The General Section

Field Description

Name The name of the system.

System Type The type of the system (whether stand-alone or distributed).

Primary Server The primary server of the system.

Description The description of the system.

Default System Indicates whether the system is a default one. If yes, when you

log in to Configuration Hub, this system appears by default. The

following conditions apply for a default system:

◦ You can have only one default system in Configuration

Hub.

◦ You cannot delete a default system.

For instructions of setting a default system, refer to Set a De

fault System (on page 445).

Collectors The number of collectors in the system.

Tags The number of tags in the system.

Data Stores The number of data stores in the system.

Tip:

If you hover over, the names of the data stores will be

displayed.

Clients The number of clients in the system.

Server Time The current time of the server.

Server Version The version of the server.

Demo Mode Indicates whether the server is currently in demo-license mode.

Clustered Indicates whether the server is currently in clustered environ

ment.

Historian | 3 - Configuration Hub | 413

Table 14. The System Defaults Section

Field Description

Default Data Store The default data store in the system. A default data store is the

one that is considered if you do not specify a data store while

adding a tag. For instructions on setting a data store as default,

refer to Set a Default Data Store (on page 462).

Default Location The default location in the system. A default location is a server

in a system which is considered when you do not specify a loca

tion while creating a Data Store. By default, the distributed loca

tion on the primary server is the default location. You can, how

ever, set a different default location. To set the default location

select .

Table 15. The Alarms and Events Section

Field Description

Alarms Rate The rate at which alarm data (on page 750) is collected in the

system.

Table 16. The License Section

Field Description

Historian Tags The number of tags in the system (out of the total number of li

censed tags).

Note:

If this field displays 100 tags and the Users field dis

plays 1 client, you are likely running in demonstration

mode and may have incorrectly installed your hardware

key.

Scada Tags The number of SCADA tags in the system (out of the total num

ber of licensed SCADA tags).

Users The number of users in the system (out of the total number of

users authorized to access Historian using the software key and

license).

Historian | 3 - Configuration Hub | 414

Field Description

The number of users that are authorized to access Historian is

strictly based on the software key and license. However, if you

have utilized your available Client Access Licenses (CAL) and

need an additional one to use the system in an emergency, you

have an option to reserve a CAL. This reserved CAL allows you

to access the server. To do so, provide the reserved CAL to the

system administrators and add them to the ih Security Admins

group. A system administrator can then connect to Historian in

an emergency.

This facility is optional and does not provide a guaranteed con

nection. It only eliminates the emergency situations when a CAL

is preventing you from accessing the system and may not work

if there are other conditions. For example, if the Historian server

is busy, you will not be able to connect using this feature.

Data Stores The number of data stores in the system (out of the total num

ber of licensed data stores).

Calculations Indicates whether the Calculation collector is licensed on the

software key.

Server to Server Indicates whether the Server-to-Server collector is licensed on

the software key.

OPC HDA Server Indicates whether the OPC Classic HDA server is licensed on

the software key.

OPC UA HDA Server Indicates whether the OPC UA HDA server is licensed on the

software key.

Model Indicates whether the object model is licensed on the software

key.

Electronic Signature Indicates whether electronic signature is licensed on the soft

ware key.

Historian | 3 - Configuration Hub | 415

Table 17. The Global Security Section

Field Description

Security Group Indicates the type of authorization you want to use for the Histo

rian security groups. The following options are available:

◦ Use Domain- If you select this option, the system will use

the groups specific to this domain for authorization. Only

the users and groups that belong to the domain will have

specific permissions and access rights. For more infor

mation on the security groups, refer to Historian security

groups (on page 256).

◦ Use Local- If you select this option, the system will use

the groups specific to the local system for authorization.

◦ Use Proficy Authentication- If you select this option, the

system will use the groups specific to Proficy Authenti

cation (UAA) for authorization. Only the users or groups

that belong to the Proficy Authentication will have specif

ic permissions and access rights. For more information

on the Proficy Authentication groups, refer to about Profi

cy Authentication groups (on page 231).

Before you select this option, ensure that you perform the

configurations listed in Configurations to use Proficy Au

thentication Security Groups (on page 232).

Enforce Strict Client Authenti

cation

If you enable this option, only known user accounts configured

on the Data Archiver server computer will be able to access the

Historian server.

Enforce Strict Collector Au

thentication

If you enable this option, only known collector connections con

figured on the Data Archiver server computer will be able to

send data to the Historian server.

For more information on global security, refer to Strict Authentication (on page 252).

Historian | 3 - Configuration Hub | 416

Table 18. The Electronic Signatures/Records Section

Field Description

Require Point Verification Indicates whether you must enter identifying information when

ever you attempt a restricted action. Whenever you attempt to

change the system configuration (for the tag, archive, or collec

tor), a tag value, or another record, you must electronically sign

the action with a username and password. If the user is autho

rized to make this change, the identity of the person, the action

performed, and the time it was performed, are all recorded in the

audit trail.

Note:

◦ The audit features are not dependent on this feature be

ing enabled. Historian audits all user actions regardless

of whether this option is enabled.

Enabling electronic signatures and electronic records also re

quires you to reverify your identity when you use the Histori

an Excel Add-in, modify or create a tag, or import data or mes

sages.

Note:This feature is available only if you have purchased the

Electronic Signatures and Electronic Records option.

Verification Message When point verification is enabled, whenever you attempt to per

form an action specified as requiring point verification, you are

prompted to authenticate.

◦ USERNAME: This is populated with the user that is

logged in to Configuration Hub and disabled.

◦ PASSWORD: The logged in user's password.

◦ DOMAIN: The logged in user's domain.

3. Expand the system in the main section.

A list of servers in the system appears, displaying the following information.

Historian | 3 - Configuration Hub | 417

Field Description

MACHINE NAME In a stand-alone Historian system, this column displays the host

name of the Historian server. In a horizontally scalable Historian

system, this column displays the host name of the primary serv

er.

STATUS The current status of the Historian system.

ARCHIVE COMPRESSION The current effect of archive data compression. At the system

level, this value is calculated as the average of the correspond

ing values of individual servers in the system.

If the value is zero, it indicates that archive compression is ei

ther ineffective or turned off. To increase the effect of data

compression, increase the value of archive compression dead

bands on individual tags in the Tags section to activate com

pression.

In calculating the effect of archive compression, Historian

counts internal system tags as well as data source tags. There

fore, when working with a very small number of tags and with

compression disabled on data source tags, this field may in

dicate a value other than zero. If you use a realistic number of

tags, however, system tags will constitute a very small percent

age of total tags and will therefore not cause a significant error

in calculating the effect of archive compression on the total sys

tem.

WRITE CACHE HIT RATIO The hit ratio of the write cache in percentage of total writes. At

the system level, this value is calculated as the average of the

corresponding values of individual servers in the system.

It is a measure of how efficiently the system is collecting data.

Typically, this value should range from 95 to 99.99%. If the data

is changing rapidly over a wide range, however, the hit percent

age drops significantly because current values differ from re

cently cached values. More regular sampling may increase the

hit percentage. Out-of-order data also reduces the hit ratio.

Historian | 3 - Configuration Hub | 418

Field Description

CONSUMPTION RATE The rate at which the archive disk space is consumed. At the

system level, this value is calculated as the sum of the corre

sponding values of individual servers in the system.

If the value is too high, you can reduce it by slowing the poll rate

on selected tags or data points or by increasing the filtering on

the data (widening the compression deadband to increase com

pression).

READ THREAD USAGE The percentage of the read threads currently in use by the sys

tem. At the system level, this value is calculated as the average

of the corresponding values of individual servers in the system.

WRITE THREAD USAGE The percentage of the write threads currently in use by the sys

tem. At the system level, this value is calculated as the average

of the corresponding values of individual servers in the system.

OUT OF ORDER WRITE RATE The number of out-of-order events per minute. At the system

level, this value is calculated as the sum of the corresponding

values of individual servers in the system.

MIN DISK SPACE LEFT The minimum free disk space in MB that must be available on

the computer. If the minimum space required is not available

when the collector starts, the collector will shut down.

FAILED WRITE RATE (EVEN

TS/MIN)

The number of samples that failed to be written per minute. At

the system level, this value is calculated as the sum of the cor

responding values of individual servers in the system.

Since failed samples are a measure of system malfunctions or

an indication of offline archive problems, this value should be

zero. If you observe a non-zero value, investigate the cause of

the problem and take corrective action.

Historian also generates a message if a writing a sample fails.

Note that the message only appears once per tag, for a succes

sion of failed writes associated with that tag. For example, if the

number displayed in this field is 20, but they all pertain to one

Historian tag, you will only receive one message until that Histo

rian tag is functional again.

Historian | 3 - Configuration Hub | 419

Field Description

MEMORY USAGE Indicates how much server memory is being consumed.

READ QUEUE RATE (40 MSG/

MIN)

The number of read requests processed per minute, that came

into the archiver from all clients.

WRITE QUEUE RATE (MSG/

MIN)

The number of write requests processed per minute, that came

into the archiver from all clients.

MESSAGE QUEUE RATE (MSG/

MIN)

The number of messages processed per minute.

READ QUEUE SIZE (EVENTS) The total number of messages present in the Read queue.

WRITE QUEUE SIZE (EVENTS) The total number of messages present in the Write queue.

MESSAGE QUEUE SIZE (MSG) The total number of messages present in the Message queue.

Tip:

You can show/hide/reorder columns in the table. For instructions, refer to Common Tasks

in Configuration Hub (on page 353).

4. To access the system performance, right-click the system (or select), and then select View

Server Performance.

Historian | 3 - Configuration Hub | 420

The <system name> - Performance section appears, displaying graphs for some of the metrics

described in the previous table.

Access the Collectors in a System

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, expand Systems, and

then select the system whose collectors you want to access.

The system appears in the main section.

3. Right-click the system whose collectors you want to access (or select), and then select

Browse Collectors.

This displays the list of Historian collectors and Offline configuration collectors. By default, the

Historian collector instances added to the system appear, displaying the following information.

Column Description

COLLECTOR NAME The name of the collector instance. If you select the link in this

column, the details of the collector instance appears.

STATUS The status of the collector. Contains one of the following val

ues:

Historian | 3 - Configuration Hub | 421

Column Description

◦ Started

◦ Stopped

◦ Running

◦ Paused

◦ Unknown

CONFIGURATION The source of the tag configuration for the collector. Contains

one of the following values:

◦ HISTORIAN: Indicates that tags are configured using His

torian Administrator.

◦ OFFLINE: Indicates that tags are configured using an of

fline configuration (on page 2039) file.

MACHINE The name of the machine on which the collector is installed.

VERSION The version number of the collector.

REDUNDANCY Indicates whether collector redundancy is enabled, which de

creases the likelihood of lost data due to software or hardware

failures. For more information, refer to About Collector Redun

dancy (on page 975).

REPORT RATE The average rate at which the collector is sending data. This is a

general indicator of load on the collector.

OVERRUNS The total number of data events not collected. In normal oper

ation and under normal conditions, this value should always be

zero. If the value is not zero, which indicates that data is being

lost, you must take steps to reduce peak load on the system by

increasing the collection interval.

COMPRESSION The effectiveness of collector compression. If the value is low,

you can increase the compression deadbands to pass fewer val

ues and thus increase the effect of compression.

OUT OF ORDER The total number of out-of-order samples for the collector.

TAG COUNT The number of tags for which the collector collects data.

COMMENTS The comments that you have entered for the collector.

Historian | 3 - Configuration Hub | 422

Tip:

◦ To access the details of a collector, select the row containing the collector instance.

The details appear in the DETAILS section.

◦ You can show/hide/reorder columns in the table. For instructions, refer to Common

Tasks in Configuration Hub (on page 353).

Access Offline Configuration Collectors

Offline Configuration Collectors are the instances of collectors whose destination is the cloud and display

the configuration details as Offline Configuration.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, expand Systems, and

then select the system whose collectors you want to access.

The system appears in the main section.

3. Right-click the system whose collectors you want to access (or select), and then select

Browse Collectors.

This displays the list of Historian collectors and Offline configuration collectors. By default, the

Historian collector instances added to the system appear, displaying the following information.

Historian | 3 - Configuration Hub | 423

Tip:

◦ To access the details of a collector, select the row containing the collector instance.

The details appear in the DETAILS section.

◦ You can show/hide/reorder columns in the table. For instructions, refer to Common

Tasks in Configuration Hub (on page 353).

The Details panel for the Offline Configuration Collector Interface contains information

regarding the instance configuration provided for the destination while installing software

Historian | 3 - Configuration Hub | 424

like Predix, MQTT, or Azure. For example, here is an example of the Details panel for the

Offline Configuration Collector:

Manage Offline Configuration Collectors

Like other Historian collectors, Offline Configuration collectors can also be managed by selecting different

options:

Historian | 3 - Configuration Hub | 425

Refer to the following sections on how to use these options:

• Start a Collector (on page 637)

• Stop a Collector (on page 638)

• Restart a Collector (on page 639)

• Delete the Buffer Files of a Collector (on page 643)

• Move the Buffer Files of the Collector (on page 644)

• Delete a Collector Instance (on page 654)

Access the Tags in a System

This topic describes how to access all the tags in a system, regardless of whether they are added to a

collector instance. You can also access all the tags added to a collector instance (on page 631).

Historian | 3 - Configuration Hub | 426

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, expand Systems, and

then select the system whose tags you want to access.

3. Right-click the system whose tags you want to access (or select), and then select Browse

Tags.

The tags added to the system appears, displaying the following information.

Column Description

TAG NAME The name of the tag.

DESCRIPTION The description of the tag.

COLLECTOR NAME The name of the collector instance to which

you have added the tag.

LAST 10 VALUES The last 10 values collected for the tag, plot

ted as a trend chart. If you pause over the chart,

the minimum, maximum, first, and last values

among the 10 values appear.

DATA COLLECTION Indicates the status of the data collection.

TAG ALIAS Indicates whether the tag contains aliases,

which are created when you rename the tag us

ing an alias (on page 698).

Tip:

You can show/hide/reorder columns in the table. For instructions, refer to Common Tasks

in Configuration Hub (on page 353).

4. To narrow down your search results:

You can enter a name or a value partially or use the wildcard character asterisk (*).

a. Select Search.

b. Enter the search criteria, and then select Apply. You can add more search criteria by

selecting Add Attribute.

Historian | 3 - Configuration Hub | 427

The list of tags are filtered based on the search criteria. The search criteria that you have provided

appear at the top of the page. You can remove any of the criteria as needed.

Tip:

To access the details of a tag, select the row containing the tag. The details appear in the

DETAILS section.

Add a System

Install Historian on the machine that you want to add. If you want to create a stand-alone system, install

single-server Historian (on page 105). If you want to create a horizontally scalable system, install Historian

primary server (on page 105).

If you want to manage a Historian system using Configuration Hub, you must add it to Configuration Hub.

When you access Configuration Hub for the first time, a default Historian system is available. In a

distributed environment, the primary server of this system is the machine whose Configuration Hub

details you enter while installing Web-based Clients. This topic describes how to add another system.

Note:

Adding a Historian system is specific to the logged-in user.

1. Access Configuration Hub (on page 336)

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Systems.

A list of systems appears in the main section.

3. Select .

The Add System window appears.

4. Provide values as specified in the following table.

Field Description

SYSTEM NAME Enter a name for the Historian system. This name must be

unique for a user.

HISTORIAN SERVER Enter the host name or the IP address of the system that you

want to add. This name must be unique for a user.

DESCRIPTION Enter a description for the system.

Historian | 3 - Configuration Hub | 428

Field Description

Set as Default System Select this check box if you want to set this system as the de

fault one. If you do so, when you access Configuration Hub, this

system appears by default. The default system varies with the

user.

5. Select Add.

The Historian system is added, and it appears in the Navigation section.

• As needed, add another data store (on page 370).

• If you want to create a horizontally scalable system, the machine that you have added serves as

the primary server. On the machines that you want to use as distributed servers, you must install

Historian distributed nodes (on page 105) and then add them to the system (on page 361).

Add a Distributed/Mirror Server

1. Install Historian server (on page 105) on the machine that you want to add as a distributed server.

2. Add a system (on page 427). The server that you specify while adding the system serves as the

primary server for the system.

If you want to create a horizontally scalable Historian system, you must first add a primary server, and

then add one or more distributed/mirror machines to scale out the primary server horizontally and thus,

improve performance.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Systems.

A list of systems appears in the main section.

3. Expand the system in which you want to add a distributed/mirror server.

A list of servers in the system appears.

4. Select .

Historian | 3 - Configuration Hub | 429

The Add Server Machine: <system name> window appears.

5. Enter the host name or IP address of the machine that you want to add, and then select Add.

The distributed server is added to the system. A distributed location is added in the server. You

cannot modify or delete this location.

• If you want high availability of one or more data stores in the server, create a mirror location (on

page 368), and then add the data stores (on page 370). If not, add the data store (on page

370) to the distributed location.

• If you want to set a distributed node as backup to the primary node, set a distributed node as

backup (on page 365).

Set Up a Mirror of Mirror

1. Install Historian server (on page 105) on each machine that you want to use in the mirror of mirror

setup.

2. Set up Configuration Hub (on page 305) on each machine that you want to use in the mirror of

mirror setup.

3. Add a system (on page 427). The server that you specify while adding the system serves as the

primary server for the system.

4. Create data stores (on page 370) in the primary server in the public/IT network with the same

name as the data stores in the primary server in your organization network.

You can set up a mirror of the Historian server in a network different from that of your organization. When

you do so, any tag/data update requests to the Historian server can be routed to the public and IT network

instead of your organization's network.

Note:

For the Historian Enterprise Mirror Architecture, only "Time based" archives are supported.

Single-Node Setup: The following image shows two networks - OT and IT - with a Historian server

installed in each network. These networks communicate using port 14000.

Historian | 3 - Configuration Hub | 430

In this setup:

1. Server 1 is the primary server in the OT network; it stores data from collectors.

2. Server 2 is the primary server in the IT network; it is connected to clients.

3. When a tag/data is created, updated, or deleted, Client Manager 1 communicates the same with

Client Manager 2 (installed with Server 2 in the IT network).

4. The change in the tag/data is replicated in Server 2 (that is, data is created, updated, or deleted

accordingly).

5. The latest data is retrieved from Server 2 using the clients.

Mirror Setup: The following image shows two mirrors:

• Mirror 1 includes Mirror Server 1 and Mirror Node 1, which is a backup/standby node for Mirror

Server 1; both these machines are in the OT network.

• Mirror 2 includes Mirror Server 2 and Mirror Node 2, which is a backup/standby node for Mirror

Server 2; both these machines are in the IT network.

Client Manager 1 in Mirror Server 1 communicates with Client Manager 2 in Mirror Server 2.

Historian | 3 - Configuration Hub | 431

If Mirror Server 1 goes down, Client Manager M1 in Mirror Node 1 communicates with Client Manager 2 in

Mirror Server 2.

Similarly, if Mirror Server 2 goes down, Client Manager 1 in Mirror Server 1 communicates with Client

Manager M2 in Mirror Node 2.

Historian | 3 - Configuration Hub | 432

If both Mirror Server 1 and Mirror Server 2 are down, Client Managers M1 and M2 communicate with each

other.

If Mirror Server 1 and/or Mirror Server 2 are available, the connection is re-established using these primary

servers.

Historian | 3 - Configuration Hub | 433

Thus, you can choose to always retrieve data from either Mirror Server 2 or Mirror Node 2. In addition, the

store-and-forward functionality is available (in case Client Managers are not yet connected).

This topic describes how to set up a mirror of mirror for the configuration described in the preceding

example. It includes the following high-level steps:

1. Installing the Historian server on all the machines

2. Setting up mirror 1

3. Setting up mirror 2

4. Setting up a mirror of mirror

Installing the Historian server

Historian | 3 - Configuration Hub | 434

1. On the machines designated as the mirror primary servers (Mirror Server 1 and Mirror Server 2 in

the example), install the Historian server (on page 105). During the installation, select Historian

Mirror Primary Server on the Choose the type of install you want to perform page.

2. On the machines designated as mirror nodes (Mirror Node 1 and Mirror Node 2 in the example),

install the Historian server (on page 105). During the installation, select Historian Distributed/

Mirror Node on the Choose the type of install you want to perform page.

Set up Mirror 1:

3. On the mirror primary server in your organization's network (Mirror Server 1 in the example), access

Configuration Hub (on page 336).

4. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Systems.

A list of systems appears in the main section.

5. Expand Mirror Server 1.

A list of servers in the system appears.

6. Select .

Historian | 3 - Configuration Hub | 435

The Add Server Machine: <system name> window appears.

7. Enter the host name or IP address of the mirror node in your organization's network (Mirror Node 1

in the example), and then select Add.

The distributed server is added to the system. A distributed location is added in the server.

8. Right-click Mirror Node 1, and then select Browse Locations.

A list of distributed locations in the system appears.

9. Select Mirror Locations.

A list of mirror locations in the system appears.

10. In the upper-right corner of the main section, select .

The Add Mirror Location window appears.

11. Provide values as described in the following table.

Field Description

MIRROR LOCATION NAME Enter a name for the mirror location. A value is required and

must be unique for the system.

Historian | 3 - Configuration Hub | 436

Field Description

SERVER MACHINES Select the servers that you want to add to the mirror group (Mir

ror Server 1 and Mirror Node 1 in this example). This box con

tains a list of all the servers in the system. You must add mini

mum two servers to a mirror location.

12. Select Add.

Mirror Node 1 is created.

13. Right-click the system name, and then select Add Data Store.

The Add Data Store: Mirror Node 1 window appears.

14. Enter values as described in the following table.

Field Description

DATA STORE NAME Enter a unique name for the data store. A value is required. You can

use all alphanumeric characters and special characters except / \ * ?

< > |

You must provide the same name for the mirror setup in the IT net

work (mirror 2 in the example).

DESCRIPTION Enter a description for the data store.

Set as default data store

for the system

Select this check box if you want to set this data store as the default

one. A default data store is the one that is considered if you do not

specify a data store while adding a tag. You can set only one data

store as default.

15. Select Add.

Mirror 1 is configured.

Set up Mirror 2:

16. On the mirror primary server in the IT network (Mirror Server 2 in the example), access

Configuration Hub (on page 336).

17. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Systems.

A list of systems appears in the main section.

18. Expand Mirror Server 2.

A list of servers in the system appears.

19. Select .

Historian | 3 - Configuration Hub | 437

The Add Server Machine: <system name> window appears.

20. Enter the host name or IP address of the mirror node in your organization's network (Mirror Node 2

in the example), and then select Add.

The distributed server is added to the system. A distributed location is added in the server.

21. Right-click the system name, and then select Browse Locations.

A list of distributed locations in the system appears.

22. Select Mirror Locations.

A list of mirror locations in the system appears.

23. In the upper-right corner of the main section, select .

The Add Mirror Location window appears.

24. Provide values as described in the following table.

Field Description

MIRROR LOCATION NAME Enter a name for the mirror location. A value is required and

must be unique for the system.

Historian | 3 - Configuration Hub | 438

Field Description

SERVER MACHINES Select the servers that you want to add to the mirror group (Mir

ror Server 2 and Mirror Node 2 in this example). This box con

tains a list of all the servers in the system. You must add mini

mum two servers to a mirror location.

25. Select Add.

Mirror Node 2 is created.

26. Right-click Mirror Node 2, and then select Add Data Store.

The Add Data Store: Mirror Node 2 window appears.

27. Enter values as described in the following table.

Field Description

DATA STORE NAME Provide the same name that you provided while setting up mirror 1.

DESCRIPTION Enter a description for the data store.

Set as default data store

for the system

Select this check box if you want to set this data store as the default

one. A default data store is the one that is considered if you do not

specify a data store while adding a tag. You can set only one data

store as default.

28. Select Add.

Mirror 2 is configured.

Set up Mirror of Mirror:

29. Access Configuration Hub in the primary server in the OT network (Mirror Server 2).

30. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Systems.

A list of systems appears in the main section.

31. Expand Mirror Server 1.

A list of servers in the system appears.

32. Select .

The Add Server Machine: <system name> window appears.

33. Enter the host name or IP address of the mirror server in the IT network (Mirror Server 2 in the

example), select the Set as Mirror of Mirror check box, and then select Add.

The distributed server is added to the system. A distributed location is added in the server.

34. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Systems.

Historian | 3 - Configuration Hub | 439

A list of systems appears in the main section.

35. Expand Mirror Server 1.

A list of servers in the system appears. In the example, Mirror Server 1, Mirror Node 1, and Mirror

Server 2 appear.

A mirror of mirror is configured with one primary node and one mirror node each in the OT and IT

networks. As needed, you can add more mirror nodes in each network.

Remove a Distributed/Mirror Server

• Delete the data stores (on page 2884) in the machine (using the Web Admin console).

• If the machine is added to a mirror location, remove it from the location (on page 449).

You cannot delete the default server in a system.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Systems.

A list of systems appear in the main section.

3. Expand the system from which you want to remove a distributed/mirror server.

A list of servers in the system appears.

4. In the row containing the server that you want to remove, select , and then select Delete

Server.

A message appears, asking you to confirm that you want to remove the distributed machine from

the system.

5. Select Delete.

The machine is removed from the system.

Set a Default Location

A default location is a server in a system which is considered when you do not specify a location while

adding a data store (on page 370). By default, the distributed location in the primary server is the default

location. You can, however, set a different default location. The following conditions apply when you set a

default location:

• You can have only one default location in a system.

• You cannot delete a default location.

• You can set any of the distributed/mirror locations as default.

Historian | 3 - Configuration Hub | 440

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Systems.

A list of systems appears in the main section.

3. Select the system in which you want to set a default location.

The details of the system appear in the DETAILS section.

4. Expand System Defaults, and then next to Default Location, select .

The Default Location: <system name> window appears. The Location box contains a list of all the

servers in the system.

5. Select the location that you want to set as default, and then select Set as Default.

The location is set as default.

Modify a Historian System

You can change the following details of a system:

• Name

• Description

• Default data store

• Default location (in case of a horizontally scalable system)

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, expand Systems, and

then select the system that you want to modify.

The details of the system appear in the DETAILS section.

3. Modify values as specified in the following table.

Field Description

Name Enter a name for the Historian system. This val

ue must be unique for a user.

Description Enter a description for the system.

4. If you want to change the default data store:

a. Under System Defaults, next to Default Data Store, select .

The Default Data Store: <system name> window appears.

b. Select the data store that you want to set as default, and then select Set as Default.

Historian | 3 - Configuration Hub | 441

The default data store is changed.

5. If you want to change the default location:

a. Under System Defaults, next to Default Location, select .

The Default Location: <system name> window appears. The Location box contains a list of

all the servers in the system.

b. Select the location that you want to set as default, and then select Set as Default.

The changes to the system are saved automatically.

Configure Advanced Settings of a System

You can now configure a few advanced settings for the Archiver, Collector, and Data Store to achieve

some specific functionality in Historian. You must be careful while modifying the configuration as this

might impact the stability and security of the Historian System.

Ensure that you are a member of the iH Security Admins group.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Systems.

A list of systems appears in the main section.

3. Right-click the system whose advanced settings you want to configure, and then select Advanced

Configuration.

The advanced settings of the system appear, displaying the Server section by default.

4. Enter values as described in the following table.

Note:

If you have changed the values of any * marked fields, restart the Historian Data Archiver

service. Only then will your changes be reflected.

Field Description

ALARM TIMESTAMP CHECK Specify whether you want to speed up, slow down, or disable

alarm timestamp checking:

Historian | 3 - Configuration Hub | 442

Field Description

◦ 0 - Disabled: Select this option if you want to disable

alarm timestamp checking. Only the data is sent to the

alarm archiver.

◦ 1 - Fast: Select this option if you want to check the time

stamp of the alarm data for the last 10 minutes.

◦ 2 - Slow: Select this option if you want to check the time

stamp of the alarm data beyond the last 10 minutes.

ALLOW DATA OVERWRITES Switch the toggle to enable or disable overwriting data.

ARCHIVER MEMORY SIZE Enter the memory usage in MB that you want to allocate to an

archive. If you enter 0, Data Archiver will dynamically allocate

the memory usage. If Data Archiver is running on a 32-bit oper

ating system, you can allocate upto 1800 MB. If Data Archiver is

running on a 64-bit operating system, we recommend that you

use the default value.

BUFER MEMORY MAX Enter the maximum memory buffer size in MB that an archiver

queue can use before switching to disk buffer.

COLLECTOR IDLE TIME (SE

CONDS)

Enter the number of seconds of no data collection after which a

collector is considered idle.

DEBUG MODE Specify whether you want to enable or disable the debug mode.

If you enable this option, the debug information is included in

the Historian log files, which helps you troubleshoot issues.

However, this can result in large size of the log files.

DISABLE CA HOSTING Enable CA Hosting to continue using the Client Access API

based clients when you have converted a Mirror Primary to a

standalone server while installing the Historian server.

DO NOT ZIP ARCHIVES Switch the toggle to store the archive files as .zip files. This will

help optimize the storage space of the archive files. However, if

you are collecting alarm data as well, the alarm data may not be

backed up. Also, you cannot export alarm data to another Data

Archiver. Therefore, exercise caution while enabling this option

if you are collecting alarm data as well.

FIREWALL PERMISSION Use this parameter to disable port 14000 in the firewall. By de

fault, Historian installation enables port 14000 in the firewall.

Historian | 3 - Configuration Hub | 443

Field Description

MAINTAIN AUTO RECOVERY

FILE

Switch the toggle if you want to back up the archive and config

uration files (.iha and .ihc files) every hour. This will prevent data

loss. However, these files are used by Historian internally. Also,

exercise caution in enabling this option because it can impact

Historian performance.

MAX QUERY TIME (SECONDS) Enter the maximum time in seconds that a query can take to

process. After this time limit exceeds, the query is terminated.

MAXIMUM QUERY INTERVALS Enter the maximum number of samples per tag that Historian

can return from a query on non-raw data. You can use this set

ting to limit the number of query results on non-raw data.

NUMBER OF READ THREADS Enter the number of read threads to use parallel reading of data.

The minimum number you can enter is 8.

NUMBER OF WRITE THREADS Enter the number of write threads to use parallel writing of data.

USE ADSI CALLS Switch the toggle to allow Data Archiver to use Active Directory

Service Interfaces (ADSI) calls.

5. Select Save.

6. Expand Collector, and then select the collector whose settings you want to configure.

The fields specific to the selected collector appear.

7. Enter values as described in the following table.

Field Description

BUFFER FLUSH MULTIPLIER Select the multiplier to the buffer flow speed while using the

store-and-forward feature:

◦ 0: Select this option if you want to disable throttling.

◦ 1: Select this option if you want normal speed.

◦ 2: Select this option if you want the collector to never

send data faster than twice the normal speed.

NUM INTERVALS FLUSH Specify how quickly you want the collector to send data to Da

ta Archiver. The value you enter in this field is multiplied by 100

milliseconds. For example, if you enter 5, the collector sends da

ta to Data Archiver every 500 milliseconds. We recommend that

you enter 5.

Historian | 3 - Configuration Hub | 444

8. Select Save.

A message appears, asking you whether you want to save and restart the collector as well.

9. If you want to save your changes and restart the collector as well, select Save and Restart. If you

want to just save your changes, select Save. In that case, you must restart the collector later for the

changes to reflect.

Your changes are saved. If you have selected Save and Restart, the collector is restarted.

10. Expand Data Store, and then, select the data store whose settings you want to configure.

The fields specific to the selected data store appear,

11. Enter values as described in the following table.

Field Description

ALLOW FUTURE DATA Switch the toggle to enable storing future data (on page 1037).

CREATE OFFLINE ARCHIVES Switch the toggle to create offline archives. This is to avoid re

ceiving an outside-active-hours error. It happens if you attempt

to store data when the current archive file is set to read-only.

12. Select Save.

The advanced settings are configured for the data store.

Configure Labels of Spare Fields

For each tag, a set of five spare fields are available, which are named Spare 1 to Spare 5. You can use

these fields to enter values for any tag details apart from those captured in the tag fields (for example, the

name, location, and phone number of the manufacturer of a device).

This topic describes how to change the label of these spare fields at the system level. The changes are

then cascaded to all the tags in the system.

You can configure any or all of these fields. The new labels of the fields then appear under SPARE FIELDS

in the DETAILS section when you access a tag.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, expand Systems, and

then select the system that you want to modify.

The details of the system appear in the DETAILS section.

3. Right-click the system whose spare fields you want to configure (or select), and then select

Configure Spare Fields Labels.

The Configure Spare Fields Labels: <system name> window appears.

4. Enter values in the available fields, and then select Save.

Historian | 3 - Configuration Hub | 445

For example, if you want to capture the name, location, and phone number of the manufacturer of

a device, enter Name, Location, and Phone Number in the SPARE FIELD 1 LABEL, SPARE FIELD 2

LABEL, and SPARE FIELD 3 LABEL fields.

The labels of the spare fields are configured. When you access a tag, the new labels appear under

SPARE FIELDS in the DETAILS section.

Note:

The labels that you have configured only appear in Configuration Hub. For other

applications, such as Historian Administrator, Trend Client, and so on, Spare 1 to Spare 5

are displayed. The values of spare fields can be configured for tags.

Set a Default System

If you set a system as default, when you log in to Configuration Hub, this system appears by default. The

following conditions apply when you set a system as default:

• You can have only one default system in Configuration Hub.

• You cannot delete a default system.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Systems.

A list of systems appears in the main section.

3. Right-click the system that you want to set as default (or select), and then select Set as

Default System.

The system is set as default.

Delete a Historian System

You can delete a Historian system if you no longer want to manage it using Configuration Hub. You

cannot, however, delete a system if it is set as default.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Systems.

A list of systems appears in the main section.

3. Right-click the system that you want to delete (or select), and then select Delete.

A message appears, asking if you want to delete the system.

4. Select Delete.

The system is deleted.

Historian | 3 - Configuration Hub | 446

Managing Mirror Locations

Create a Mirror Location

Add one or more distributed servers (on page 361) to the system in which you want to create a mirror

group.

If you want high availability of one or more data stores, you must create a mirror group (also called a

mirror location), and then add servers to it. When you do so, the data in the data stores of the mirror

locations is replicated. Therefore, even if one of the servers is down, you can retrieve data from the other

servers in the mirror location, thus achieving high availability.

The following conditions apply when you create a mirror location:

• You must add minimum two servers to a mirror location. The maximum number of servers that you

can add depends on your Historian license.

• You can add a mirror location only in a horizontally scalable Historian system.

• You can rename a mirror location, remove a machine from a mirror location, or add an additional

one even after you create the mirror location. However, if only one machine remains in the group,

you cannot remove it.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Systems.

The Systems section appears, displaying a list of systems.

3. Right-click the system in which you want to create a mirror location (or select), and then select

Browse Locations.

A list of distributed locations in the system appears.

Historian | 3 - Configuration Hub | 447

4. Select Mirror Locations.

A list of mirror locations in the system appears.

5. In the upper-right corner of the main section, select .

The Add Mirror Location window appears.

6. Provide values as described in the following table.

Field Description

MIRROR LOCATION NAME Enter a name for the mirror location. A value is

required and must be unique for the system.

SERVER MACHINES Select the servers that you want to add to the

mirror group. This box contains a list of all the

servers in the system. You must add minimum

two servers to a mirror location.

7. Select Add.

The mirror location is created.

Add a data store to the mirror location (on page 370).

Rename a Mirror Location

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Systems.

The Systems section appears, displaying a list of systems.

3. Right-click the system in which you want to rename a mirror location (or select), and then

select Browse Locations.

Historian | 3 - Configuration Hub | 448

A list of distributed locations in the system appears.

4. Select Mirror Locations.

A list of mirror locations in the system appears.

5. Select the location that you want to rename.

The details of the mirror location appear in the Details section.

6. In the Name field, enter the new name of the mirror location.

7. In the upper-left corner of the page, select Save.

The mirror location is renamed.

Add a Machine to a Mirror Location

If you want to add machine to a mirror location that already contains machines,and if you want to copy

the archive and configuration information from the existing machines to the new machine, perform the

following steps:

1. Copy the archive files and configuration files from an existing machine in the mirror location to the

one that you have added.

2. Rename the configuration file <machine name>_Config.ihc.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Systems.

The Systems section appears, displaying a list of systems.

3. Right-click the system to which you want to add a machine (or select), and then select Browse

Locations.

Historian | 3 - Configuration Hub | 449

A list of distributed locations in the system appears.

4. Select Mirror Locations.

A list of mirror locations in the system appears.

5. Right-click the mirror location in which you want to add a machine (or select), and then select

Add Server Machine.

The Add Machine: <mirror location> window appears. The SERVER MACHINES field contains a list

of machines in the system that are not yet added to the mirror location.

6. In the SERVER MACHINES field, select the machine that you want to add to the mirror location, and

then select Add.

The machine is added to the mirror location.

Remove a Machine from a Mirror Location

If a mirror location contains only one machine, you cannot remove it.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Systems.

The Systems section appears, displaying a list of systems.

3. Right-click the system from which you want to remove a machine (or select), and then select

Browse Locations.

Historian | 3 - Configuration Hub | 450

A list of distributed locations in the system appears.

4. Select Mirror Locations.

A list of mirror locations in the system appears.

5. Right-click the mirror location from which you want to remove a machine (or select), and then

select Remove Server Machine.

The Remove Server Machine: <mirror location> window appears, displaying a list of machines in

the mirror location.

6. Select the machine that you want to remove, and then select Remove.

A message appears, asking you to confirm that you want to remove the machine from the mirror

location.

7. Select Remove.

The machine is removed from the mirror location.

Delete a Mirror Location

Delete all the data stores in the mirror location; you cannot delete a mirror location if it contains a data

store.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Systems.

The Systems section appears, displaying a list of systems.

3. Right-click the system in which you want to delete a mirror location (or select), and then select

Browse Locations.

Historian | 3 - Configuration Hub | 451

A list of distributed locations in the system appears.

4. Select Mirror Locations.

A list of mirror locations in the system appears.

5. Right-click the mirror location that you want to delete (or select), and then select Delete Mirror

Location.

A message appears, asking you to confirm that you want to delete the mirror location.

6. Select Delete.

The mirror location is deleted.

Managing Data Stores

About Data Stores

A data store is a logical collection of tags. It is used to store, organize, and manage tags according to the

data source and storage requirements. A data store can have multiple archive files (*.IHA), and includes

both logical and physical storage definitions.

Tags can be segregated into separate archives through the use of data stores. The primary use of data

stores is to segregate tags by data collection intervals. For example, you can put a name plate or static

tags where the value rarely changes into one data store, and your process tags into another data store.

This can improve query performance.

Historian data stores are stored as archive files that contain data gathered from all data sources during a

specific period of time. You can write and read data from the archive files.

You can define two types of data stores:

Historian | 3 - Configuration Hub | 452

• Historical Data Store: Tags stored under historical data store will store data as long as the disk

space is available. Depending on your license, you may be able to create multiple historical data

stores. The maximum number of historical data stores supported depends on the license.

• SCADA Buffer Data Store: Tags stored under the SCADA buffer data store will store data for a

specific duration of time based on license.

When you install the Historian server, two historical data stores are installed by default.

• System: Stores Historian messages and performance tags. This is only for internal usage within

Historian, and you cannot add tags to this data store. You cannot rename or delete the system data

store.

• User: Stores tag data. This is a default data store. You can rename and delete a user data store as

long as there is another default data store set for tag addition.

Based on your license, a SCADA Buffer data store may also be installed. It stores short-term tags and

data.

Create a Data Store

The number of data stores that you can create depends on your license.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Data Sores.

Alternatively, you can select Systems, right-click the system in which you want to create a data

store (or select), and then select Browse Data Stores.

The Data Stores section appears.

3. Select .

If Historian Standard version, then the Add Data Store window appears.

If Historian Enterprise version, then the Add Data Store: <location name> window appears.

4. Enter values as described in the following table.

Field Description

DATA STORE NAME Enter a unique name for the data store. A value is required. You can

use all alphanumeric characters and special characters except / \ * ?

< > |

DESCRIPTION Enter a description for the data store.

Historian | 3 - Configuration Hub | 453

Field Description

LOCATION Enter the host name or IP address of the distributed location on

which you want to create the data store. This field is available only

for a horizontally scalable system.

Is Default Switch the toggle on if you want to set this data store as the default

one. A default data store is the one that is considered if you do not

specify a data store while adding a tag. You can set only one data

store as default.

5. Select .

The data store is created.

When you add tags to the data store, it will have its own set of .IHA (iHistorian Archive) files.

Ensure that you back up the new data store archives periodically.

Access a Data Store

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Data Stores.

Alternatively, you can select Systems, right-click the system in which the data store is available (or

select), and then select Browse Data Stores.

The Data Stores section appears.

3. Select the data store that you want to access.

The DETAILS section displays the following details of the data store.

Table 19. General

Field Description

Data Store Name The name of the data store. A value is required and must be

unique for the system.

Description The description of the data store.

State The current state of the data store:

◦ Running: Indicates that the data store is actively storing

data.

◦ Stopped: Indicates that the data store is not storing data.

This field is read-only.

Historian | 3 - Configuration Hub | 454

Field Description

Location The host name or IP address of the distributed location on

which the data store has been created. This field is available on

ly for a horizontally scalable system. It is disabled.

Storage Type The storage type of the data store, which can be one of the fol

lowing values:

◦ Historical: Tags stored in a historical data store will store

data as long as disk space is available. The maximum

number of Historical data stores supported depends on

the license.

◦ SCADA Buffer: Tags stored under SCADA buffer data

store will store data for a specific duration of time based

on license.

This field is disabled.

System Default Storage Indicates whether the data store is a default one. If yes, while

creating a tag, this data store will be used by default.

Number of Tags The number of tags in the data store. For instructions on how

to add a tag, refer to Add Tags for the Data Store Using Config

uration Hub (on page 357) and Add a Tag Manually (on page

473).

Table 20. Archive Creation

Field Description

Create Archive By Indicates whether you want to create a new archive automatical

ly after the current one reaches a specific size or after a specif

ic duration. This field is enabled only if you switch the Automati

cally Create Archives toggle on.

Select one of the following options:

◦ Size: Select this option if you want to create a new

archive when the current one reaches a specific size.

Specify the size in the Default Size (MB) field (which ap

pears only if you select Size).

Historian | 3 - Configuration Hub | 455

Field Description

◦ Days or Hours: Select one of these options if you want to

create a new archive after a specific duration. Specify the

duration in the Archive Duration field (which appears only

if you select Days or Hours).

Default Size (MB) The default size of an archive after which a new one will be

automatically created if you switch the Automatically Create

Archives toggle on. The Default Size (MB) field appears only if

you select Size in the Create Archive By field.

Automatically Create Archives Indicates whether you want to create an archive automatical

ly (on page 727) after the current one is full. An archive file

is considered full based on the size or duration you specify in

the Create Archive By and the Archive Duration or Default Size

fields.

Overwrite Old Archives Indicates whether you want to overwrite an old archive file when

a new one is created.

If you enable this option, the oldest archived data is replaced

with the latest one when the latest archive default size is

reached. Since this action deletes historical data, exercise cau

tion in using this feature. Be sure that you have a backup of the

archive so that you can restore it later. Best practice is to create

an additional archive to prevent premature loss of data due to

overwriting. For example, if you want to save 12 months of data

into 12 archives, create 13 archives.

Archive Duration The duration after which a new archive will be automatically cre

ated if you switch the Automatically Create Archives toggle on.

The Archive Duration field appears only if you select Days or

Hours in the Create Archive By field.

Multiple Archive Paths Indicates whether you want to create multiple archive paths for

the selected data store. This field allows you to back up your

high-volume archives to another storage path, for example, an

external storage disk. For more information, refer to about multi

ple archive path (on page 464) and configure multiple archive

paths (on page 468).

Historian | 3 - Configuration Hub | 456

Table 21. Maintenance

Field Description

Default Archive Path The default folder in which you want to create archives.

Default Backup Path The default folder in which you want to place the backup

archives.

Base Archive Name A prefix that you want to add to all the archive name.

Base Archive Filename A prefix that you want to add to all the archive filenames.

Free Space Required (MB) Indicates the remaining disk space required after a new archive

is created. If the available space is less than the requirement, a

new archive is not created. The default value is 5000 MB.

This field is not applicable to alarms and events archives. The

alarms and events archiver will continue writing to the alarms

and events archive until the drive is full. If this occurs, the

alarms and events archiver will buffer incoming alarms and

events data until the drive has free space. An error message is

logged in the Historian message log.

Store OPC Quality Indicates whether OPC data quality is stored.

Use Caching Indicates whether caching is enabled. When reading data from

the archiver, some data is saved in the system memory and re

trieved using caching. This results in faster retrieval as the data

is already stored in the buffer.

Stale Period (Days) Indicates the number of days after which the data store is con

sidered stale.

Stale Period Check (Days) Indicates the number of days or the frequency for checking data

store validity.

Table 22. Security

Field Description

Data is Read-Only After

(Hours)

The number of hours for data to be stored in a read/write

archive. After the time lapses, that portion of the archive file is

automatically made read-only. Incoming data values with time

stamps prior to this time are rejected. A single archive file, there

Historian | 3 - Configuration Hub | 457

Field Description

fore, may have a portion made read-only, another portion that is

read/write containing recently written data, and another that is

unused free space.

Generate Message on Data

Update

Indicates whether an audit log entry will be made any time the

value of a previously archived data point is overwritten. This log

entry will contain both the original and new values.

Read Group The Windows security group that can retrieve the tag data and

plot it in a trend chart for the selected data store.

For example, if you select a group with power users, in addition

to members of the iH Security Admins group, only a member of

the power users group will be able to read data of the tags for

that data store. Even a member of the iH Readers group will not

be able to access data of the tags for the selected data store,

unless they are also defined as a member of the power users

group.

Write Group The Windows security group that can write tag data for the se

lected data store (for example, using the Excel Add-in for Histo

rian).

Administer Group The Windows security group that can create, modify, and delete

the tags for the selected data store.

For more information, refer to implementing Data store-level security (on page 292).

Note:

When it comes to the group security, the security settings applied at the tag level, if any,

take the precedence over those at the data store level.

4. As needed, modify values in the available fields.

5. In the upper-left corner of the page, select Save.

Historian | 3 - Configuration Hub | 458

The data store is modified.

Rename a Data Store

You cannot rename the system data store. You can rename a user data store as long as there is another

default data store set for tag addition.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Data Stores.

Alternatively, you can select Systems, right-click the system in which the data store is available (or

select), and then select Browse Data Stores.

The Data Stores section appears.

3. Select the data store that you want to access.

The details section displays the following details of the data store.

Table 23. General

Field Description

Data Store Name The name of the data store. A value is required and must be

unique for the system.

Description The description of the data store.

State The current state of the data store (whether it is running). This

field is disabled.

Location The host name or IP address of the distributed location on

which the data store has been created. This field is available on

ly for a horizontally scalable system. It is disabled.

Historian | 3 - Configuration Hub | 459

Field Description

Storage Type The storage type of the data store, which can be one of the fol

lowing values:

◦ Historical: Tags stored in a historical data store will store

data as long as disk space is available. The maximum

number of Historical data stores supported depends on

the license.

◦ SCADA Buffer: Tags stored under SCADA buffer data

store will store data for a specific duration of time based

on license.

This field is disabled.

System Default Storage Indicates whether the data store is a default one. If yes, while

creating a tag, this data store will be used by default.

Number of Tags The number of tags in the data store. For instructions on how

to add a tag, refer to Add Tags for the Data Store Using Config

uration Hub (on page 357) and Add a Tag Manually (on page

473).

Table 24. Archive Creation

Field Description

Automatically Create Archives Indicates whether you want to create a new archive (on page

723) automatically after the current one is full. An archive file

is considered full based on the size or duration you specify in

the Create Archive By and the Archive Duration or Default Size

fields.

Overwrite Old Archives Indicates whether you want to overwrite an old archive file when

a new one is created.

If you enable this option, the oldest archived data is replaced

with the latest one when the latest archive default size is

reached. Since this action deletes historical data, exercise cau

tion in using this feature. Be sure that you have a backup of the

archive so that you can restore it later. Best practice is to create

an additional archive to prevent premature loss of data due to

Historian | 3 - Configuration Hub | 460

Field Description

overwriting. For example, if you want to save 12 months of data

into 12 archives, create 13 archives.

Create Archive By Indicates whether you want to create a new archive automatical

ly after the current one reaches a specific size or after a specif

ic duration. This field is enabled only if you switch the Automati

cally Create Archives toggle on.

Select one of the following options:

◦ Size: Select this option if you want to create a new

archive when the current one reaches a specific size.

Specify the size in the Default Size (MB) field (which ap

pears only if you select Size).

◦ Days or Hours: Select one of these options if you want to

create a new archive after a specific duration. Specify the

duration in the Archive Duration field (which appears only

if you select Days or Hours).

Default Size (MB) The default size of an archive after which a new one will be

automatically created if you switch the Automatically Create

Archives toggle on. The Default Size (MB) field appears only if

you select Size in the Create Archive By field.

Archive Duration The duration after which a new archive will be automatically cre

ated if you switch the Automatically Create Archives toggle on.

The Archive Duration field appears only if you select Days or

Hours in the Create Archive By field.

Table 25. Maintenance

Field Description

Default Archive Path The default folder in which you want to create archives.

Default Backup Path The default folder in which you want to place the backup

archives.

Base Archive Name A prefix that you want to add to all the archive files.

Free Space Required (MB) Indicates the remaining disk space required after a new archive

is created. If the available space is less than the requirement, a

new archive is not created. The default value is 5000 MB.

Historian | 3 - Configuration Hub | 461

Field Description

This field is not applicable to alarms and events archives. The

alarms and events archiver will continue writing to the alarms

and events archive until the drive is full. If this occurs, the

alarms and events archiver will buffer incoming alarms and

events data until the drive has free space. An error message is

logged in the Historian message log.

Store OPC Quality Indicates whether OPC data quality is stored.

Use Caching Indicates whether caching is enabled. When reading data from

the archiver, some data is saved in the system memory and re

trieved using caching. This results in faster retrieval as the data

is already stored in the buffer.

Table 26. Security

Field Description

Data is Read-Only After

(Hours)

The number of hours for data to be stored in a read/write

archive. After the time lapses, that portion of the archive file is

automatically made read-only. Incoming data values with time

stamps prior to this time are rejected. A single archive file, there

fore, may have a portion made read-only, another portion that is

read/write containing recently written data, and another that is

unused free space.

Generate Message on Data

Update

Indicates whether an audit log entry will be made any time the

value of a previously archived data point is overwritten. This log

entry will contain both the original and new values.

4. As needed, modify values in the available fields.

5. In the upper-left corner of the page, select Save.

Historian | 3 - Configuration Hub | 462

The data store is modified.

Set a Default Data Store

A default data store is the one that is considered if you do not specify a data store while adding a tag.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Data Stores.

Alternatively, you can select Systems, right-click the system in which the data store is available (or

select), and then select Browse Data Stores.

3. Select the system whose default data store you want to change.

The details of the system appear in the DETAILS section.

4. Under System Defaults, next to Default Data Store, select .

The Default Data Store: <data store name> window appears, displaying a list of data stores in the

system.

5. Select the data store that you want to set as default, and then select Set as Default.

6. In the upper-left corner of the page, select Save.

The data store is set as default.

Historian | 3 - Configuration Hub | 463

Access the Archives in a Data Store

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Data Stores.

Alternatively, you can select Systems, right-click the system in which the data store is available (or

select), and then select Browse Data Stores.

The Data Stores section appears.

3. Right-click the data store whose archives you want to access (or select), and then select

Browse Archives.

The archives in the data store appear, indicating the current one and the old ones.

Apply the Configuration Template to a Data Store
You can apply the created template to user-created data store as needed. You will be prompted to confirm

whether you want to overwrite few of the configuration values with the values in the template.

• Ensure that you have a data store created (on page 370).

• Ensure that you have a configuration template for data stores (on page 767).

This topic describes how to apply a data store configuration template to a data store. You can apply a

data store configuration template to a user-created data store, provided they are not the default data

store.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Data Stores.

The Data Stores section appears.

3. Right-click the data store (or select), and then select Apply Configuration Template.

Historian | 3 - Configuration Hub | 464

The Apply Configuration Template window appears, listing the available templates.

Note:

You can apply a data store configuration template to a user-created data store, provided

they are not the default data store.

4. Select Apply.

A confirmation window appears, prompting you to confirm whether you want to overwrite few of

the configuration values with the values in the template.

5. Select Ok.

6. In the upper-left corner, select Save.

The configurations in the template are applied to the data store.

Multiple Archive Paths

About Multiple Archive Paths
Multiple archive paths feature extends the ability to configure a default archive path for each data store.

Historian | 3 - Configuration Hub | 465

This feature enables you to automatically store your archives in different locations based on the age of

the archive. It can be useful when splitting the data for a data store across multiple hard drives, primarily

for performance and cost optimization. Additionally, it could help optimize disk space constraints.

For instance, in a performance and cost optimization scenario, the most recent data could reside on

a fast/expensive NVMe or SSD drive, intermediate data on a slower/cheaper local HDD, and older

data on even slower/cheaper long-term storage (for example, NAS or cloud). The requirement for the

drive is that it must be mapped to the Historian server node as a drive or folder and accessible by the

DataArchiver service. For example, it could be a shared drive such as \\Server\HistorianData mapped

to H:\HistorianData. The physical location of the drive does not matter if the DataArchiver service can

access it.

Note:

There are many sources of drives and various methods to map them. The Historian team has not

tested all possibilities and cannot guarantee compatibility with every configuration. However, if

the drive can be accessed (with read and write permissions) by the DataArchiver service, it will

likely function properly.

About Multiple Archive Path Configuration

Configuration for multiple archive paths can be done on a per-data store basis. Additionally, each data

store could have different configurations, so you can decide whether you want to configure multiple

archive paths for all the data stores or not. When configuring the archive paths, you can specify a path

and an age.

Where,

The age defines how far in the past the archive end time must be before it could be moved.

The path is the directory where the archive will be moved to.

Once the end time of the archive becomes older than the current time minus the age, the archive will be

moved. Since moving an archive can be a slow process, ensure that the archive is not modified during the

move. Therefore, only archives that have become read-only can be moved. Archives become read-only

when their end time is older than the Data is Read Only After (Hours) property. Therefore, be sure to set

your time offsets greater than this property. If you set it smaller than this property, then the value of the

property is used instead.

Historian | 3 - Configuration Hub | 466

The duration of the move depends on the size of the archives and the speed of the source and destination

disks. During the move, the source archive is still available for reading. Once the move has completed

successfully, the source archive is deleted.

A move is stopped in the following scenarios:

• If a move failure occurs: The move is stopped, and an appropriate message is logged in the log file.

The move retires later.

• If system shuts down during the move: The move is stopped. Since archives are being moved and

deleted during this process, it is important to have proper backups of the system in case errors

occur.

Note:

When configuring archive paths in a Mirror setup, the configured paths must exist on all mirror

nodes.

Example of Multiple Archive Paths

Consider that your system setup includes the following:

• A fast NVME drive (N:), though not very large.

• A slow HDD (H:), which is larger compared to the fast NVME drive (N;).

• A remote NAS drive mapped to (Z:), the largest of the three drives.

Note:

All the three drives use the \Proficy Historian Data\Archives directory.

Your system design requirement is to have your frequently used data on the NVME for the best

performance. The NVME drives greatly improve read and write performance than the traditional HDDs.

Looking at your data access needs, data storage rate, and the NVME size, you decide to have three

months of data there. You do the same for the HDD and decide to have nine months of data there. Data

older than that goes to the NAS drive. For a simpler understanding, let us consider that you decide to have

daily archives. Finally, you decide that data becomes read-only in a month.

Before you configure multiple archive paths, know the following:

• The multiple archive paths feature is available for any data store other than the System data store.

• While moving archives can be helpful, if not managed well, it may strain disk resources and impact

system performance. Although it is ensured that system performance is not impacted by moving

Historian | 3 - Configuration Hub | 467

archives, it is recommended that you move archives in smaller sizes and be mindful that your

configurations do not affect system performance.

• Archive performance, particularly read performance, is crucial to be considered. When data is

moved to slower drives, slower read performance is expected, but this is acceptable only for data

on those slower paths. Data reads on faster paths should remain unaffected. To manage this, the

Historian treats all paths except the default one as "slower" locations. Determining which archives

are needed for queries can be challenging until after the query is executed.

For instance, queries like "Raw By Number" reading backwards could require access to any archive

in the past. However, queries with specific time ranges reveal which archives will be necessary. If

the system identifies that archives on these "slower" drives are required, the query will be executed

at a lower priority using Low Priority Read Threads. The configured number of read threads is

divided into three categories: High, Medium, and Low, each with its specific number of threads.

Additionally, each category can utilize lower priority threads if necessary.

For example, a high priority query initially uses a High priority thread but can use a Medium or Low

priority thread if all high priority threads are busy. The same flexibility applies to Medium priority

queries. It is important to note that thread priority does not affect Windows thread priority; all

threads run at the same Windows priority level, so executing queries on Low Priority threads does

not affect their performance. Instead, it operates as a thread reservation system. By identifying

and assigning "slow" queries to Low priority threads, High and Medium threads remain available for

other queries. Generally, most queries are Medium priority unless programmatically changed. You

must determine the appropriate number of read threads to configure to ensure adequate resources

are provided.

Example Configuration procedure

1. Configure the default path. This can be done in the same way as you do for data stores. In this

example, this is set to N:\Proficy Historian Data\Archives.

2. Configure the archive locations (on page 468) based on the time.

Time Offset (Hours) Path

2232 (3 months) h:\Proficy Historian Data\Archives

8760 (1 year) Z:\Proficy Historian Data\Archives

Based on the configuration, the DataArchiver will periodically look if any archives need to be moved.

Only archives that are closed (that is, are time-based or have a fixed end time), and are read-only will be

checked. The DataArchiver will check the archive’s end time against each configured age, from smallest to

Historian | 3 - Configuration Hub | 468

largest. The first age where the archive end time is older will be used to determine the directory to which

the archive must move to.

So, based on this example, the following will happen:

1. The newly created archive will go into the normal default path, that is, N:\Proficy Historian Data

\Archives. That archive will exist and be written to until after a month. At that point, it will become

read-only because that is what was configured.

2. When the archive is three months (2232 hours) old, the DataArchiver will move the archive to H:

\Proficy Historian Data\Archive, as the end time is older than the 2232 hours that you configured

and less than the 8760 hours. If the move is successful, the original archive is deleted. This

process will repeat when the archive is older than 8760 hours.

3. Then it will be moved to Z:\Proficy Historian Data\Archives. Here it will stay unless the

configuration is changed. If, for example, the 8760 was changed to 16520, then an archive that was

10000 hours old would be moved back to H:\Proficy Historian Data\Archives.

Configure Multiple Archive Paths
Multiple archive paths feature extends the ability to configure a default archive path for each data store.

• Ensure that you read about multiple archive paths (on page 464).

• You already have a Default Archive Path configured for this data store.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Data Stores.

The Data Stores section appears.

3. Select the data store as needed.

The DETAILS section displays the details of the data store.

4. In the ARCHIVE CREATION group, in the Multiple Archive Paths property, select .

Historian | 3 - Configuration Hub | 469

The Multiple Archive Paths Configuration window appears.

5. In ARCHIVE LOCATION, enter the path as needed.

6. In DURATION (HOURS), enter a duration after which the archive files should be transferred to the

specified path.

Note:

The duration you specify must be greater than the archive hours specified in Data is Read-

Only After (Hours) property.

7. To add more paths, select Add Path.

8. After you add the paths and duration as needed, select Done.

The specified multiple archive paths are added. The archive files in the existing path will be

transferred to the new path after the specified duration from their creation or modification.

Historian | 3 - Configuration Hub | 470

Access the Activity Logs of a Data Store

Activity logs are generated when activities are performed on tags and collectors in a data store.

Examples:

• When a tag is created, modified, or deleted

• When a collector instance is created, modified, or deleted

• When data collection for a tag or a collector begins or ends

• When an archive is created or will be closed soon

You can access these logs for each tag/collector or for all the tags and collectors in a system. You can

filter these logs based on the start and end dates, priority, topics, and the content in the logs. You can also

export all the logs or selected ones.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Data Stores.

Alternatively, you can select Systems, right-click the system in which the data store is available (or

select), and then select Browse Data Stores.

The Data Stores section appears.

3. Right-click the data store whose archives you want to access (or select), and then select

Browse Activity Logs.

The activity logs of the data store appear. You can filter on the Start Time and End Time along with

other fields to search for activity log.

Access the Tags in a Data Store

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Data Stores.

Alternatively, you can select Systems, right-click the system in which the data store is available (or

select), and then select Browse Data Stores.

The Data Stores section appears.

3. Right-click the data store whose tags you want to access (or select), and then select Browse

Tags.

The tags in the data store appear, indicating the current status of the data collection for each tag.

Historian | 3 - Configuration Hub | 471

Add Tags for the Data Store Using Configuration Hub

• Add the collector instance (on page 357) using which you want to collect data. Ensure that the

collector is running.

• By default, the tag data is stored in the user data store, which is created automatically when you

set up Configuration Hub. If, however, you want to store the data in a different data store, create it

(on page 370).

This topic describes how to specify the tags for which you want to collect data by browsing through the

tags in the data source. For example, for an iFIX collector, if there are 1,00,000 tags in the iFIX server, you

must specify the ones for which you want to collect data. Only then data is collected for those tags.

In addition to adding tags from the data source, you can create tags manually (on page 473).

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

3. Select .

The Add Tag-<system name> page appears. The Add Tags from Collector option is selected by

default.

4. Enter values as described in the following table.

Field Description

COLLECTOR NAME Select the collector instance that you want to use to collect da

ta. A value is required.

COLLECTED TYPE Specify whether you want to browse through all the tags in the

data source or only from the tags that you have not added yet. A

value is required.

Historian | 3 - Configuration Hub | 472

Field Description

SOURCE TAG NAME Enter the name of the tag (either completely or partially) to nar

row down the search results.

SOURCE TAG DESCRIPTION Enter the description of the tag (either completely or partially) to

narrow down the search results.

5. Select Search Tags.

A list of tags that match all the criteria that you have specified appears. If a tag is already added, it

is disabled.

6. Select the check box corresponding to each tag for which you want to collect data.

7. In the DATA STORE field, if you want to store the data in a different data store than the user data

store, select the same.

8. Select Add Tag.

Data collection begins for the selected tags.

As needed, configure each tag by providing values for the tag properties. For information on the delta

query modes, refer to Counter Delta Queries.

Historian | 3 - Configuration Hub | 473

Add a Tag Manually

• Add the collector instance (on page 357) using which you want to collect data.

• By default, the tag data is stored in the user data store, which is created automatically when you

set up Configuration Hub. If, however, you want to store the data in a different data store, create it

(on page 370).

After you create a collector instance, you specify which tags from the source must be used for data

collection (on page 357). In addition, if you want to use the same tag twice (say, with a different

collection interval or collector compression settings), you can add the tag manually. You can also create a

calculation tag or a tag to store the values imported using the Excel Add-in.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

3. Select .

The Add Tag-<system name> page appears. The Add Tags from Collector option is selected by

default.

4. Select Add Manually.

Historian | 3 - Configuration Hub | 474

5. Enter values as described in the following table.

Field Description

COLLECTOR NAME Select the collector instance that you want to use to collect da

ta. If, however, this tag is not associated with a collector, you

can leave the field blank (for example, you want to ingest this

data manually instead of using a collector).

SOURCE ADDRESS Specify the source tag to which you want to map the one you

are creating. This field is enabled only if you select a value in

the COLLECTOR NAME field. When you select , the Browse

Source Tag: <collector name> window appears. Provide the

search criteria to find the tag that you want to map.

TAG NAME Enter a name for the tag. A value is required and must be unique

for the Historian server.

The value that you enter:

◦ Must begin with a letter or a number.

◦ Can contain up to 256 characters.

Historian | 3 - Configuration Hub | 475

Field Description

◦ Can include any of the following special characters: /!|

#{}%$-_

◦ Must not include a space or any of the following charac

ters: ~`+^:;.,?"*=@

DATA TYPE Select the data type of the tag data. To find out the data types

supported by a collector, refer to the documentation on the col

lector that you have created.

Important:

If you select an unsupported data type, you may receive

incorrect data or even lose data.

If you select Multi-Field, the USER-DEFINED TYPE NAME field

appears, and the ENUMERATED SET and ARRAY TAG fields are

disabled.

If you select Fixed String, the STRING LENGTH field appears.

STRING LENGTH Enter the maximum character length allowed for the tag data.

This field appears only if the value in the DATA TYPE field is

Fixed String. A value is required.

You can enter a value between 1 and 255. The default value is 8.

USER-DEFINED TYPE NAME Select the user-defined data type (UDT) (on page 719) that you

want to assign to the tag. This field appears only if the value in

the DATA TYPE field is Multi-Field. A value is required.

ENUMERATED SET Select the enumerated set (on page 707) that you want to as

sign to the tag. This field is not applicable for string and mul

ti-field data types (enumerated sets) and for array tags.

ARRAY TAG Switch the toggle to indicate whether the tag stores an array of

data. This field is disabled if you select a value in the ENUMER

ATED SET field or if the value in the DATA TYPE field is Mul

ti-Field.

For information on array tags, refer to About Array Tags (on

page 660).

Historian | 3 - Configuration Hub | 476

Field Description

TIME RESOLUTION Select the time resolution for the tag. A value is required.

For example, if you select Seconds, when you plot the data on a

trend chart, the timestamp of the data points will be one second

apart.

DATA STORE If you want to store the data in a different data store that the

user data store, select the same.

6. Select Add Tag.

Data collection begins for the selected tags.

As needed, configure each tag by providing values for the tag properties. For information on the delta

query modes, refer to Counter Delta Queries.

View the Performance of a Data Store

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Data Stores.

Alternatively, you can select Systems, right-click the system in which the data store is available (or

select), and then select Browse Data Stores.

The Data Stores section appears.

3. Right-click the data store whose performance you want to access (or select), and then select

View Data Store Performance.

The performance of the data store appears, displaying the following information.

Field Description

ARCHIVE COMPRESSION The current effect of archive data compression. If the value

is zero, it indicates that archive compression is either ineffec

tive or disabled. To increase the effect of data compression, in

crease the value of archive compression deadbands on individ

ual tags.

In calculating the effect of archive compression, Historian

counts internal system tags as well as data source tags. There

fore, when working with a very small number of tags and with

compression disabled on data source tags, this field may in

dicate a value other than zero. If you use a realistic number of

Historian | 3 - Configuration Hub | 477

Field Description

tags, however, system tags will constitute a very small percent

age of total tags and will therefore not cause a significant error

in calculating the effect of archive compression on the total sys

tem.

WRITE CACHE HIT The hit ratio of the write cache in percentage of total writes. It is

a measure of how efficiently the system is collecting data. Typ

ically, this value should range from 95 to 99.99%. If the data is

changing rapidly over a wide range, however, the hit percentage

drops significantly because current values differ from recently

cached values. More regular sampling may increase the hit per

centage. Out-of-order data also reduces the hit ratio.

RECEIVE RATE Indicates how busy the server is at a given instance and the rate

at which the server is receiving data from collectors.

FREE SPACE Indicates how much disk space (in MB) is left in the current

archive.

CONSUMPTION RATE Indicates how fast the archive disk space is consumed. If the

value is too high, you can reduce it by slowing the poll rate on

selected tags or data points or by increasing the filtering on the

data (widening the compression deadband to increase com

pression).

EST. DAYS TO FULL Indicates how much time is left before the archive is full, based

on the current consumption rate. This value is dynamically cal

culated by the server and becomes more accurate as an archive

file gets closer to completion. This value is only an estimate and

will vary based on a number of factors, including the current

compression effectiveness. The system sends messages noti

fying you at 5, 3, and 1 days until full. After the archive is full, a

new archive must be created (can be automatic or manual).

To increase this value, you must reduce the consumption rate.

To ensure that collection is not interrupted, make sure that the

Automatically Create Archives option is enabled.

You may also want to enable the Overwrite Old Archives option

if you have limited disk capacity. Enabling this option, however,

Historian | 3 - Configuration Hub | 478

Field Description

means that some old data will be lost when new data overwrites

the data in the oldest online archive. Use this feature only when

necessary.

FAILED WRITES Indicates the number of samples that failed to be written. Since

failed writes are a measure of system malfunctions or an indica

tion of offline archive problems, this value should be zero. If you

observe a non-zero value, investigate the cause of the problem

and take corrective action.

Historian also generates a message if a write fails. Note that the

message only appears once per tag, for a succession of failed

writes associated with that tag. For example, if the number dis

played in this field is 20, but they all pertain to one Historian

tag, you will only receive one message until that Historian tag is

functional again.

ALERTS SINCE STARTUP Indicates a count of system warnings or alerts generated since

the last startup. A high value here may indicate a problem of

some kind. You should review the alerts and determine the prob

able cause. The count resets to zero on restart. The message

database, however, may contain more alerts than this value.

MESSAGE SINCE STARTUP Displays a count of system messages generated since the last

startup. The system resets the value to zero on restart. The

message database, however, may contain more messages than

this value.

Delete a Data Store

The following conditions apply when deleting a data store:

• You cannot delete the system data store.

• You cannot delete a data store if it contains tags. If you remove the tags from the system or

permanently delete them, you can delete the data store. However, the archives are not deleted.

• You cannot delete the default data store. You can delete a user data store as long as there is

another default data store set for tag addition.

Historian | 3 - Configuration Hub | 479

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Data Stores.

The Data Stores section appears.

3. Right-click the data store that you want to delete (or select), and then select Delete.

A message appears, asking you to confirm that you want to delete the data store.

4. Select Delete.

The data store is deleted. However, the archives in the data store are not deleted.

Adding a Collector Instance

Add and Configure a Calculation Collector

Using the Calculation collector, you can perform data calculations on values already in the archiver. It

retrieves data from tags in the Historian archive, performs the calculation, and then stores the resulting

values into new archive tags.

You can create a Calculation collector only for an on-premises Historian server, not for a cloud

destination.

This topic describes how to add a collector instance using Configuration Hub. You can also add a

collector instance using the RemoteCollectorConfigurator utility (on page 797), which does not require

you to install Web-based Clients.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors in the default system appears.

3. In the upper-right corner of the main section, select .

Historian | 3 - Configuration Hub | 480

The Add Collector Instance: <system name> window appears, displaying the Collector Selection

section. The MACHINE NAME field contains a list of machines on which you have installed

collectors.

4. In the MACHINE NAME field, select the machine in which you want to add a collector instance.

5. In the COLLECTOR TYPE field, select Calculation Collector, and then select Get Details.

The INSTALLATION DRIVE and DATA DIRECTORY fields are disabled and populated.

6. Select Next.

The Source Configuration section appears. The HISTORIAN SERVER field is disabled and

populated.

7. Select Next.

The Destination Configuration section appears. Under CHOOSE DESTINATION, the Historian

Server option is selected by default; the other options are disabled. In addition, the DESTINATION

HISTORIAN SERVER field is disabled and populated with the value you selected in the MACHINE

NAME field in the Collector Selection section.

8. If you created security groups or enabled a strict client/collector authentication, enter the

USERNAME and PASSWORD of the on-premises Historian server that you created during the

installation of the collector.

If you entered the USERNAMEand PASSWORD, select Test Connection. This will help you to test if

the Historian server that you are trying to connect is valid or if the credentials that you entered are

valid.

9. Select Next.

The Collector Initiation section appears.

10. If needed, modify the value in the COLLECTOR NAME field.

The value that you enter:

Historian | 3 - Configuration Hub | 481

◦ Must be unique.

◦ Must not exceed 15 characters.

◦ Must not contain a space.

◦ Must not contain special characters except a hyphen, period, and an underscore.

11. In the RUNNING MODE field, select one of the following options.

◦ Service - Local System Account: Select this option if you want to run the collector as a

Windows service using the credentials of the local user (that is, the currently logged-in user).

If you select this option, the USERNAME and PASSWORD fields are disabled.

◦ Service Under Specific User Account: Select this option if you want to run the collector as

a Windows service using a specific user account. If you select this option, you must enter

values in the USERNAME and PASSWORD fields. If you have enabled the Enforce Strict

Collector Authentication option in Historian Administrator, you must provide the credentials

of a user who is added to at least one of the following security groups:

▪ iH Security Admins

▪ iH Collector Admins

▪ iH Tag Admins

You can also configure the collector to start automatically when you start the computer.

12. Select Add.

The collector instance is added. The fields specific to the collector section appear in the DETAILS

section.

13. Under COLLECTOR SPECIFIC CONFIGURATION, configure values as described in the following

table.

Field Description

Calculation Timeout (sec) The maximum time a calculation must be performed before being

terminated. The default value is 10 seconds. If the calculation takes

longer, it is cancelled, and a bad data quality sample is stored in the

destination tag with a subquality, calculation error.

Max Recovery Time (hr) The maximum time, in hours till now, that the collector will attempt to

restore data. This is applicable only to event-based tags. The default

value is 4 hours.

If you want to disable automatic calculation of the tag, set the value

of this field to 0.

MTLS Security Indicates whether you want to use Mutual TLS (MTLS) protocol to

enforce a secure and strong authentication mechanism.

Historian | 3 - Configuration Hub | 482

Field Description

MTLS Data Encryption Indicates whether you want to encrypt the data that the collector

shares to the data archiver (DA).

For more information on how to enable MTLS Security, refer to Enable MTLS Security (on page

632).

14. If needed, enter values in the other sections (on page 579).

15. In the upper-left corner of the page, select Save.

The changes to the collector instance are saved.

16. If needed, restart the collector.

Specify the tags (on page 357) whose data you want to collect using the collector.

Add and Configure a CygNet Collector

A CygNet collector collects data from a CygNet server and stores it in the Historian server. For more

information, refer to Overview of the CygNet Collector (on page 2167).

Note:

You cannot send data to a cloud destination using a CygNet collector.

This topic describes how to add a collector instance using Configuration Hub. You can also add a

collector instance using the RemoteCollectorConfigurator utility (on page 797), which does not require

you to install Web-based Clients.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors in the default system appears.

3. In the upper-right corner of the main section, select .

Historian | 3 - Configuration Hub | 483

The Add Collector Instance: <system name> window appears, displaying the Collector Selection

section. The MACHINE NAME field contains a list of machines on which you have installed

collectors.

4. In the MACHINE NAME field, select the machine in which you want to add a collector instance.

5. In the COLLECTOR TYPE field, select Cygnet Collector, and then select Get Details.

The INSTALLATION DRIVE and DATA DIRECTORY fields are disabled and populated.

6. Select Next.

The Source Configuration section appears.

7. In the SERVER SITE field, enter the host name or IP address of the CygNET server from which you

want to collect data.

8. Select Next.

The Destination Configuration section appears. Under CHOOSE DESTINATION, the Historian

Server option is selected by default; the other options are disabled.

9. If you created security groups or enabled a strict client/collector authentication, enter the

USERNAME and PASSWORD of the on-premises Historian server that you created during the

installation of the collector.

If you entered the USERNAMEand PASSWORD, select Test Connection. This will help you to test if

the Historian server that you are trying to connect is valid or if the credentials that you entered are

valid.

If the entered credentials are valid, a successful connection message appears.

10. Select Next.

The Collector Initiation section appears. The COLLECTOR NAME field is populated with a value in

the following format: <Historian server name>_Cygnet

11. If needed, modify the value in the COLLECTOR NAME field.

Historian | 3 - Configuration Hub | 484

The value that you enter:

◦ Must be unique.

◦ Must contain the string Cygnet.

◦ Must not exceed 15 characters.

◦ Must not contain a space.

◦ Must not contain special characters except a hyphen, period, and an underscore.

12. In the RUNNING MODE field, select one of the following options.

◦ Service - Local System Account: Select this option if you want to run the collector as a

Windows service using the credentials of the local user (that is, the currently logged-in user).

By default, this option is selected, and the USERNAME and PASSWORD fields are disabled.

◦ Service Under Specific User Account: Select this option if you want to run the collector as

a Windows service using a specific user account. If you select this option, you must enter

values in the USERNAME and PASSWORD fields.

If you have enabled the Enforce Strict Collector Authentication option in Historian

Administrator, you must provide the credentials of a user who is added to at least one of the

following security groups:

▪ iH Security Admins

▪ iH Collector Admins

▪ iH Tag Admins

You can also configure the collector to start automatically when you start the computer.

13. Select Add.

The collector instance is added. The fields specific to the collector section appear in the DETAILS

section.

14. Under COLLECTOR SPECIFIC CONFIGURATION, configure values as described in the following

table.

Field Description

Re

covery

Time

The maximum time, in hours, for which the collector will attempt to recover data after

the collector is started or when connection between the collector and the CygNet serv

er is re-established. This time is calculated as the duration between the current time and

the last known write time.

Continuous data collection is resumed only after the previous data has been recovered.

By default, this value is set to 0, which means data recovery is not attempted. The maxi

mum value you can provide is 168 hours (that is, 7 days).

Historian | 3 - Configuration Hub | 485

Field Description

Thread

Count

The maximum number of threads that you want to collector to use to query data from

the CygNet server.

CygNet

Debug

Mode

The debug mode for the collector. You can enter a value between 0 and 255, where 0

turns off debugging and 255 enables detailed debugging (with query transactions).

Note:

Do not turn on debugging for a long period. If you do so, very large log files are

created, which can consume a great deal of disk space. We recommend a maxi

mum of 10 minutes.

Gen

eral

Opti

mized

Indicates whether you want to apply optimization on the tag data reads.

Ser

vice

Site

Identifies the CygNet site or data source from which the CygNet collector collects data.

A value is required.

MTLS

Secu

rity

Indicates whether you want to use Mutual TLS (MTLS) protocol to enforce a secure and

strong authentication mechanism.

MTLS

Da

ta En

cryp

tion

Indicates whether you want to encrypt the data that the collector shares to the data

archiver (DA).

For more information on how to enable MTLS Security, refer to Enable MTLS Security (on page

632).

15. If needed, enter values in the other sections common to all collectors (on page 579).

16. In the upper-left corner of the page, select Save.

Historian | 3 - Configuration Hub | 486

The changes to the collector instance are saved.

17. If needed, restart the collector.

Specify the tags (on page 357) whose data you want to collect using the collector.

Add and Configure a File Collector

A File collector is used to send data from one Historian server to another one.

Note:

• You cannot send data to a cloud destination using the File collector.

• You can create only one instance of the File collector.

For more information, refer to Overview of the File Collector (on page 2181).

This topic describes how to add a collector instance using Configuration Hub. You can also add a

collector instance using the RemoteCollectorConfigurator utility (on page 797), which does not require

you to install Web-based Clients.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors in the default system appears.

3. In the upper-right corner of the main section, select .

Historian | 3 - Configuration Hub | 487

The Add Collector Instance: <system name> window appears, displaying the Collector Selection

section. The MACHINE NAME field contains a list of machines on which you have installed

collectors.

4. In the MACHINE NAME field, select the machine in which you want to add a collector instance. The

collector will send data to this machine.

5. In the COLLECTOR TYPE field, select File Collector, and then select Get Details.

The INSTALLATION DRIVE and DATA DIRECTORY fields are disabled and populated.

6. Select Next.

The Destination Configuration section appears. Under CHOOSE DESTINATION, the Historian

Server option is selected by default; the other options are disabled.

7. If you created security groups or enabled a strict client/collector authentication, enter the

USERNAME and PASSWORD of the on-premises Historian server that you created during the

installation of the collector.

If you entered the USERNAMEand PASSWORD, select Test Connection. This will help you to test if

the Historian server that you are trying to connect is valid or if the credentials that you entered are

valid.

If the entered credentials are valid, a successful connection message appears.

8. Select Next.

The Collector Initiation section appears. The COLLECTOR NAME field is populated with a value in

the following format: <Historian server name>_File

9. If needed, modify the value in the COLLECTOR NAME field.

The value that you enter:

◦ Must be unique.

◦ Must not exceed 15 characters.

Historian | 3 - Configuration Hub | 488

◦ Must not contain a space.

◦ Must not contain special characters except a hyphen, period, and an underscore.

10. In the RUNNING MODE field, select one of the following options.

◦ Service - Local System Account: Select this option if you want to run the collector as a

Windows service using the credentials of the local user (that is, the currently logged-in user).

By default, this option is selected, and the USERNAME and PASSWORD fields are disabled.

◦ Service Under Specific User Account: Select this option if you want to run the collector as

a Windows service using a specific user account. If you select this option, you must enter

values in the USERNAME and PASSWORD fields. If you have enabled the Enforce Strict

Collector Authentication option in Historian Administrator, you must provide the credentials

of a user who is added to at least one of the following security groups:

▪ iH Security Admins

▪ iH Collector Admins

▪ iH Tag Admins

You can also configure the collector to start automatically when you start the computer.

11. Select Add.

The collector instance is added. The fields specific to the collector section appear in the DETAILS

section.

12. In the COLLECTOR SPECIFIC CONFIGURATION section, configure values as described in the

following table.

Field Description

Scan Interval The interval, in seconds, after which the collector initiates an import operation.

The maximum value that you can enter is 65.

CSV File Spec The file extension for a CSV file to be imported. You can specify more than one

extension type, such as csv, txt, dat.

XML File Spec The file extension for an XML file to be imported.

Purge

Processed

(days)

The number of days after which you want the contents of the Processed

Files folder to be automatically purged.

Purge Error

(days)

The number of days after which you want the contents of the Error Files

folder to be automatically purged.

13. Ad needed, enter values in the other sections common to all collectors (on page 579).

14. In the upper-left corner of the page, select Save.

Historian | 3 - Configuration Hub | 489

The changes to the collector instance are saved.

15. If needed, restart the collector.

Import files using the collector (on page 2188).

Add and Configure a HAB Collector

The HAB collector collects data from Habitat, which is a SCADA application that contains real-time data.

The collector interacts with the Habitat Sampler application to fetch data from the Habitat database

records and stores the data in a Historian server. For more information, refer to Overview of the HAB

Collector (on page 2208).

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors in the default system appears.

3. On the right, next to Settings in the main section, select .

Historian | 3 - Configuration Hub | 490

The Add Collector Instance: <system name> window appears, displaying the Collector Selection

section. The MACHINE NAME field contains a list of machines on which you have installed

collectors.

4. In the MACHINE NAME field, select the machine in which you want to add a collector instance.

5. In the COLLECTOR TYPE field, select Hab Collector, and then select Get Details.

The INSTALLATION DRIVE and DATA DIRECTORY fields are disabled and populated.

6. Select Next.

The Source Configuration section appears.

7. Enter values as described in the following table.

Field Description

SERVER SITE Enter name that you want to assign to the site. A value is re

quired and must be unique. It is used by Habitat to identify the

collector instance. By default, this field is populated with a value

in the following format: <Historian server name>Hab

SERVER 1 (under NODE 1) Enter the host name or IP address of the Habitat server in the

primary site from which you want to collect data. This server

acts as the primary/active server from which the collector re

ceives data. A value is required.

SERVER 1 (under NODE 2) Enter the host name or IP address of the Habitat server in the

second/backup site from which you want to collect data. This

server acts as a standby server in case server 1 under node 1

fails. A value is required. If you do not have a secondary/backup

site, enter the same value as SERVER 1 under node 1.

SERVER 2 (under NODE 1) Enter the host name or IP address of the Habitat server that you

want to use as a standby server in the same site as server 1.

This server acts as a standby server in case server 1 under node

2 fails.

SERVER 2 (under NODE 2) Enter the host name or IP address of the Habitat server in the

secondary/backup site from which you want to collect data.

This server acts as a standby server in case server 2 under node

1 fails.

For example, suppose Machine A and Machine B are in node

AB, and Machine X and Machine Y are in node XY. Suppose you

Historian | 3 - Configuration Hub | 491

Field Description

want to use Machine A as the primary server and the remaining

machines as standby servers. In that case, enter values as fol

lows:

◦ SERVER 1 (under Node 1): Machine A

◦ SERVER 2 (under Node 1): Machine B

◦ SERVER 1 (under Node 2): Machine X

◦ SERVER 2 (under Node 2): Machine Y

If Machine A fails, the Machine B becomes active. If Machine B

fails, Machine X becomes active. If Machine X fails, Machine Y

becomes active.

SOCKET The socket number (port number) used by the Habitat Sampler

application to connect. Each collector instance can connect to

only one socket. The default value is 8040.

RETRY The duration, in seconds, after which the collector tries to com

municate with the site. The default value is 5 seconds.

8. Select Next.

The Destination Configuration section appears. Under CHOOSE DESTINATION, the Historian

Server option is selected by default. The other options are disabled because you cannot send data

to a cloud destination using the HAB collector.

9. If you created security groups or enabled a strict client/collector authentication, enter the

USERNAME and PASSWORD of the on-premises Historian server that you created during the

installation of the collector.

If you entered the USERNAMEand PASSWORD, select Test Connection. This will help you to test if

the Historian server that you are trying to connect is valid or if the credentials that you entered are

valid.

If the entered credentials are valid, a successful connection message appears.

10. Select Next.

The Collector Initiation section appears. By default, the COLLECTOR NAME field is populated with

a value in the following format: <Historian server name>_Hab

11. If needed, modify the value in the COLLECTOR NAME field.

The value that you enter:

◦ Must be unique.

◦ Must not exceed 15 characters.

Historian | 3 - Configuration Hub | 492

◦ Must not contain a space.

◦ Must not contain special characters except a hyphen, period, and an underscore.

12. In the SamplerID field, enter the user ID to connect to Habitat Sampler.

By default, this field contains the Collector Name. You can first provide the Collector Name and

update the Sample ID field as this filed will automatically takes the Collector Name.

13. In the RUNNING MODE field, select one of the following options.

◦ Service - Local System Account: Select this option if you want to run the collector as a

Windows service using the credentials of the local user (that is, the currently logged-in user).

If you select this option, the USERNAME and PASSWORD fields are disabled. By default, this

option is selected.

◦ Service Under Specific User Account: Select this option if you want to run the collector as

a Windows service using a specific user account. If you select this option, you must enter

values in the USERNAME and PASSWORD fields.

If you have enabled the Enforce Strict Collector Authentication option in Historian

Administrator, you must provide the credentials of a user who is added to at least one of the

following security groups:

▪ iH Security Admins

▪ iH Collector Admins

▪ iH Tag Admins

14. Select Add.

The collector instance is added. The fields specific to the collector appear in the DETAILS section.

15. Depending on whether you want to configure tags or alarms, select next to the corresponding

field under Collection Definitions.

Historian | 3 - Configuration Hub | 493

The Data Collections or Alarm Collections section appears.

16. Select , and then enter values in the available fields for data collection and/or alarm collection

(on page 495). You can also copy a collection definition by right-clicking it and selecting

Duplicate.

17. Under COLLECTOR SPECIFIC CONFIGURATION, configure values as described in the following

table.

Field Description

Auto Tag Sync If you enable this option, the collector creates tags automati

cally in Historian based on the key value. In addition, any tag

changes in Habitat (such as adding, renaming, and deleting

tags) will reflect automatically in Historian. No manual steps are

required.

If you disable this option, any tag changes in Habitat will be cap

tured in the <collector name>_Tag_Unconfirmed.xml

file. Only after you approve these changes (on page 2243), they

are reflected in Historian.

Tag Deletion Type Specify whether deleted tags in Habitat that you have approved

must be deleted or disabled for data collection in Historian. En

ter one of the following values:

Historian | 3 - Configuration Hub | 494

Field Description

◦ DISABLE_TAG (this is the default value)

◦ DELETE_TAG

MTLS Security Indicates whether you want to use Mutual TLS (MTLS) protocol

to enforce a secure and strong authentication mechanism.

MTLS Data Encryption Indicates whether you want to encrypt the data that the collec

tor shares to the data archiver (DA).

For more information on how to enable MTLS Security, refer to Enable MTLS Security (on page

632).

18. As needed, provide values in the the other sections common to all collectors (on page 579).

19. In the upper-left corner of the page, select Save.

The changes to the collector instance are saved.

20. Start the collector (on page 637).

If you have disabled the automatic tag sync option in the configuration file, tag changes in Habitat (such

as adding, renaming, and deleting tags) are captured in the <collector_name>_tag.xml file. You

must approve the changes so that they are reflected in Historian. To do so:

1. Right-click the HAB collector instance that you have created, and then select Confirm Queued

Tags.

A list of tags that have been changed appears.

2. Select the check boxes corresponding to the tags whose changes you want to approve, and then

select Confirm. You can filter the list using the TAG TYPE field.

The tag changes are approved. The status of the tags is updated in the

<collector_name>_tag.xml file (that is, the Confirmed parameter is set to true).

Historian | 3 - Configuration Hub | 495

Collection Definitions of a HAB Collector

Table 27. Tag Data Collection Definition Parameters

Parameter Description

DEFINITION NAME The name of the collection definition. A value is required and must

be unique.

Important:

You must not change the name after the collector starts col

lecting data. If, however, you want to change the name af

ter the collector has started collecting data, refer to FAQs on

HAB Collector (on page 2246).

STATUS Indicates whether the collection definition is enabled. If an error oc

curs while processing the collection definition, the collector auto

matically disables the collection definition.

FAMILY The name of the Habitat family from which you want to collect data

(for example, EMS, DTS). A value is required and must be unique.

APPLICATION The name of the Habitat application from which you want to collect

data (for example, SCADA). A value is required.

DATABASE The name of the Habitat database from which you want to collect

data (for example, SCADAMOM). A value is required.

RECORD TYPE The name of the HDB record from which you want to collect data

(for example, ANALOG,POINT,COUNT). A value is required. Enter any

record type that contains the composite key and MRID fields (be

cause the collector uses these two fields to create tags).

COLLECTION TYPE Indicates whether you want to perform polled or unsolicited data col

lection.

• Polled: Indicates a periodic data collection, where data is col

lected at a regular time interval (indicated as PERIODIC in

Habitat).

• Unsolicited: Indicates that data is collected only when values

have changed since the last time data was collected (indicat

ed as EXCEPTION in Habitat).

Historian | 3 - Configuration Hub | 496

Table 27. Tag Data Collection Definition Parameters (continued)

Parameter Description

KEY The value that will be used to filter tags for data collection. A value is

required. You can use the wildcard character * to get a range of val

ues. For example, if you want to collect data from all tags that begin

with SUBSTN.LAKEVIEW, enter: SUBSTN.LAKEVIE*.*.*.*.*

PREFIX FIELD The prefix that you want to use for tags. You can provide a differ

ent value for each collection definition, which helps you identify tags

based on the collection definition.

TAG NAME FIELD Determines how the tags created in Historian must be named. A val

ue is required.

For example, if you want the tags to be named after the value in

the LOC_CIRCLG field, enter LOC_CIRCLG. When you do so, if the val

ue in the LOC_CIRCLG field in Habitat is DOUGLAS, the tag creat

ed in Historian will be named <TagPrefix value>.<AlarmPrefix val

ue>.DOUGLAS.

You can enter multiple values separated by commas.

For example, if you want the tags to be named after the values in the

LOC_CIRCLG and PRIOR_CIRCLG fields, enter LOC_CIRCLG,PRIOR_

CIRCLG. When you do so, if the values in the LOC_CIRCLG and

PRIOR_CIRCLG fields are Douglas and 1 respectively, the tag creat

ed in Historian will be named <TagPrefix value>.<AlarmPrefix val

ue>.DOUGLAS.1.

MRID FIELD The MRID of the record. A value is required. If, however, MRID is not

available, enter the composite key or any other unique identifier of

the record.

DESCRIPTION FIELD The description of the tag. A value is required.

VALUE FIELD The name of the property that stores the tag value in Habitat. A value

is required.

You can enter multiple values, separated by commas. One Historian

tag will be created for each value you enter in this field.

Historian | 3 - Configuration Hub | 497

Table 27. Tag Data Collection Definition Parameters (continued)

Parameter Description

TIMESTAMP FIELD The name of the property that stores the timestamp of a tag in Habi

tat. You can use a HDB timestamp or custom/alias timestamps.

Examples:

For analog, you can use:

• FIELDTIME: A combination of FLDTIME_ANALOG and FLD

MSEC_ANALOG, in the hour: min:sec: millisec format.

• SCADATIME: Used to capture SCTIME_ANALOG in the hour:

min:sec: millisec format.

• SAMPLETIME: The time at which the data sample was col

lected in Habitat in the hour: min:sec format.

For point, you can use:

• FIELDTIME: A combination of FLDTIME_POINT and FLD

MSEC_POINT, in the hour: min:sec: millisec format.

• SCADATIME: Used to capture SCTIME_POINT in the hour:

min:sec: millisec format.

• SAMPLETIME: The time at which the data sample was col

lected in Habitat in the hour: min:sec format.

For count, you can use:

• FIELDTIME: A combination of FLDTIME_COUNT and FLD

MSEC_COUNT, in the hour: min:sec: millisec format.

• SAMPLETIME: The time at which the data sample was col

lected in Habitat in the hour: min:sec format.

You can edit the names of these custom/alias timestamps using the

registry entries FieldTimeCustomFieldName, ScadaTimeCustom

FieldName, and SampleTimeCustomFieldName respectively.

QUALITY FIELD The name of the property that stores the tag quality in Habitat.

SAMPLE RATE The rate at which you want to collect or poll data. A value is required.

Historian | 3 - Configuration Hub | 498

Table 27. Tag Data Collection Definition Parameters (continued)

Parameter Description

For example, if the sample rate is 10 seconds:

• For a polled collection type, data is written to Data Archiver

every 10 seconds.

• For an unsolicited collection type, the collector checks for any

data changes every 10 seconds. Only if there are changes, the

data is written to Data Archiver.

SAMPLE UNIT The unit of measurement for the sample rate. A value is required.

Valid values:

• sec

• min

• hour

• day

• week

• month

PERMANENT Indicates whether you want to store the data in buffer files in Habitat

in the event of a connection loss. We strongly recommend that you

set this parameter to true to prevent loss of data.

Table 28. Alarm Data Collection Definition Parameters

Parameter Description

DEFINITION NAME The name of the collection definition. A value is required and must

be unique.

Important:

You must not change the name after the collector starts col

lecting data. If, however, you want to change the name af

ter the collector has started collecting data, refer to FAQs on

HAB Collector (on page 2246).

Historian | 3 - Configuration Hub | 499

Table 28. Alarm Data Collection Definition Parameters (continued)

Parameter Description

STATUS Indicates whether the collection definition is enabled. If an error oc

curs while processing the collection definition, the collector auto

matically disables the collection definition.

FAMILY The name of the Habitat family from which you want to collect data

(for example, EMS, DTS). A value is required and must be unique.

APPLICATION The name of the Habitat application from which you want to collect

data (for example, SCADA). A value is required.

DATABASE The name of the Habitat database from which you want to collect

data (for example, ALARMLIST). A value is required.

RECORD TYPE The name of the HDB record from which you want to collect data

(for example, CIRCLG, ALMQ). A value is required. Enter any record

type that contains the composite key and MRID fields (because the

collector uses these two fields to create tags).

KEY This field is not applicable to alarms. Enter *.

TAG NAME FIELD Determines how the tags created in Historian must be named. A val

ue is required.

For example, if you want the tags to be named after the value in

the LOC_CIRCLG field, enter LOC_CIRCLG. When you do so, if the val

ue in the LOC_CIRCLG field in Habitat is DOUGLAS, the tag creat

ed in Historian will be named <TagPrefix value>.<AlarmPrefix val

ue>.DOUGLAS.

You can enter multiple values separated by commas.

For example, if you want the tags to be named after the values in the

LOC_CIRCLG and PRIOR_CIRCLG fields, enter LOC_CIRCLG,PRIOR_

CIRCLG. When you do so, if the values in the LOC_CIRCLG and

PRIOR_CIRCLG fields are Douglas and 1 respectively, the tag creat

ed in Historian will be named <TagPrefix value>.<AlarmPrefix val

ue>.DOUGLAS.1.

Historian | 3 - Configuration Hub | 500

Table 28. Alarm Data Collection Definition Parameters (continued)

Parameter Description

PREFIX The prefix that you want to use for tags. A value is required. You can

provide a different value for each collection definition, which helps

you identify tags based on the collection definition.

VALUE The name of the property that stores the tag value in Habitat. A value

is required.

You can enter multiple values, separated by commas (for example,

TEXT_CIRCLG, PRIOR_CIRCLG, TIME_CIRCLG). The values will then be

concatenated in the corresponding Historian tag.

TIMESTAMP This field is not applicable to alarms. Leave the field blank. You can

use the VALUE FIELD field to provide the timestamp (for example,

TIME_CIRCLG).

QUALITY This field is not applicable to alarms. Leave the field blank.

DISABLED Switch the toggle to enable alarm filtering. You can then collect data

only for the filtered alarms.

ALARM LOCATION The alarm location based on which you want to filter alarm data. A

value is required if alarm filtering is enabled. You can enter multiple

values separated by commas (for example, LA,NY). The default val

ue is *, which indicates that data for that parameter is not filtered.

ALARM AREA The alarm area based on which you want to filter alarm data. A value

is required if alarm filtering is enabled. You can enter multiple values

separated by commas (for example, LAKEVIEW,RICHVIEW). The de

fault value is *, which indicates that data for that parameter is not fil

tered.

ALARM CATEGORY The alarm category based on which you want to filter alarm data. A

value is required if alarm filtering is enabled. You can enter multiple

values separated by commas (for example, PressureSensor,Motion

Sensor). The default value is *, which indicates that data for that pa

rameter is not filtered.

ALARM PRIORITY The alarm priority based on which you want to filter alarm data. A

value is required if alarm filtering is enabled. You can enter multiple

Historian | 3 - Configuration Hub | 501

Table 28. Alarm Data Collection Definition Parameters (continued)

Parameter Description

values separated by commas (for example, 1,2). The default value is

*, which indicates that data for that parameter is not filtered.

ALARM EXCEPTION The alarm exception based on which you want to filter alarm data. A

value is required if alarm filtering is enabled. You can enter multiple

values separated by commas. The default value is *, which indicates

that data for that parameter is not filtered.

SAMPLE RATE The rate at which you want to collect data. A value is required.

SAMPLE UNIT The unit of measurement for the sample rate. A vaue is required.

Valid values:

• sec

• min

• hour

• day

• week

• month

PERMANENT Indicates whether you want to store the data in buffer files in Habitat

in the event of a connection loss. We strongly recommend that you

set this parameter to true to prevent loss of data.

About Adding an iFIX Collector Instance

This topic provides guidelines on how to configure the iFIX collector using Configuration Hub based on

the running mode of iFIX. It also describes the collector behaviour and recommended configuration in

each case.

iFIX Running Mode
Recommended Configura

tion for the iFIX Collector

Collector Behaviour After You

Add the Collector Instance

iFIX is running in service mode

and is secured.

The iFIX Alarms and Events and

the OPC Alarms and Events

Servers are running as service.

Configure the iFIX collector ser

vices under a user account un

der which iFIX is running as a ser

vice. While adding an instance

of the iFIX collector or the iFIX

• The iFIX collector starts

running as a service. It ap

pears in the collectors list

in Configuration Hub.

Historian | 3 - Configuration Hub | 502

iFIX Running Mode
Recommended Configura

tion for the iFIX Collector

Collector Behaviour After You

Add the Collector Instance

Alarms and Events collector us

ing Configuration Hub, select

Service Under Specific User Ac

count.

• You can run the collector

at a command prompt us

ing the Collector Start ac

tion. A shortcut is creat

ed in the Windows Start

menu so that you can run

the collector in the com

mand-line mode.

• By default, when not start

ed as an SCU task, the iFIX

collector points to the iFIX

nodename. You must con

figure the iFIX node in the

Collector Configuration

section in Historian Ad

ministrator.

iFIX is running as a service and is

not secured.

The iFIX Alarms and Events and

the OPC Alarms and Events

servers are running as service.

You can configure the iFIX col

lector service using a local sys

tem account or a specific user

account.

• The iFIX collector starts

running as a service.

• You can run the collector

at a command prompt us

ing the Collector Start ac

tion. A shortcut is creat

ed in the Windows Start

menu so that you can run

the collector in the com

mand-line mode.

• By default, when not start

ed as an SCU task, the iFIX

collector points to the iFIX

nodename. You must con

figure the iFIX node in the

Collector Configuration

section in Historian Ad

ministrator.

Historian | 3 - Configuration Hub | 503

iFIX Running Mode
Recommended Configura

tion for the iFIX Collector

Collector Behaviour After You

Add the Collector Instance

iFIX is not running as a service

mode and is secured.

Configure the iFIX collector ser

vices under a user account that

is added in the IFIXUSERS group.

Do not configure as a local sys

tem service. While adding an in

stance of the iFIX collector or the

iFIX Alarms and Events collector

using Configuration Hub, select

Service Under Specific User Ac

count.

• Since Remote Collector

Manager tries to start the

collector as a service, and

iFIX is not running as a

service, an error message

appears while adding a

collector instance. How

ever, the instance is con

figured successfully al

though it does not appear

in the collectors list in

Configuration Hub.

• A shortcut is created in

the Windows Start menu

so that you can run the

collector in the com

mand-line mode, and the

related registry folder is

created.

• You must start the collec

tor manually for the first

time using the shortcut.

It will then connect to the

Historian server, and it will

then appear in the collec

tors list in Configuration

Hub.

• Once connected to server,

you can start/stop it at a

command prompt.

iFIX is not running as a service

mode, and is not secured.

You can configure the iFIX col

lector service using a local sys

tem account or a specific user

account.

• Since Remote Collector

Manager tries to start the

collector as a service, and

iFIX is not running as a

Historian | 3 - Configuration Hub | 504

iFIX Running Mode
Recommended Configura

tion for the iFIX Collector

Collector Behaviour After You

Add the Collector Instance

service, an error message

appears while adding a

collector instance. Howev

er, the instance is config

ured successfully.

• A shortcut is created in

the Windows Start menu

so that you can run the

collector in the com

mand-line mode, and the

related registry folder is

created.

• You must start the collec

tor manually for the first

time using the shortcut.

It will then connect to the

Historian server.

• Once connected to server,

you can start/stop it at a

command prompt.

iFIX is not running. You can configure the iFIX col

lector service using a local sys

tem account or a specific user

account, as per the security con

figuration of iFIX.

• Since Remote Collector

Manager tries to start the

collector as a service, and

iFIX is not running as a

service, an error message

appears while adding a

collector instance. How

ever, the instance is con

figured successfully al

though it does not appear

in the collectors list in

Configuration Hub.

• A shortcut is created in

the Windows Start menu

so that you can run the

Historian | 3 - Configuration Hub | 505

iFIX Running Mode
Recommended Configura

tion for the iFIX Collector

Collector Behaviour After You

Add the Collector Instance

collector in the com

mand-line mode, and the

related registry folder is

created.

• After you start iFIX, you

must start the collector

manually for the first time

using the shortcut. It will

then connect to the Histo

rian server.

• Once connected to server,

you can start/stop it at a

command prompt.

Add and Configure an iFIX Collector

Ensure that iFIX is running in a Windows-service mode. For more information, refer to About Adding an

iFIX Collector Instance (on page 501).

The iFIX collectors collect data from iFIX and store it in the Historian server. They include:

• The iFIX collector

• The iFIX Alarms and Events collector

When you install collectors, if iFIX is installed on the same machine as the collectors, instances of the iFIX

collectors are created automatically. This topic describes how to create additional instances if needed.

This topic describes how to add a collector instance using Configuration Hub. You can also add a

collector instance using the RemoteCollectorConfigurator utility (on page 797), which does not require

you to install Web-based Clients.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors in the default system appears.

3. In the upper-right corner of the main section, select .

Historian | 3 - Configuration Hub | 506

The Add Collector Instance: <system name> window appears, displaying the Collector Selection

section. The MACHINE NAME field contains a list of machines on which you have installed

collectors.

4. In the MACHINE NAME field, select the machine in which you want to add a collector instance.

5. In the COLLECTOR TYPE field, select iFIX Alarms Events Collector or iFIX Collector, and then

select Get Details.

The INSTALLATION DRIVE and DATA DIRECTORY fields are disabled and populated.

6. Select Next.

The Source Configuration section appears. The iFIX SERVER field is disabled and populated.

7. Select Next.

The Destination Configuration section appears. The Historian Server option is selected by default.

You cannot select any other option for an iFIX Alarms and Events collector.

Under CHOOSE DESTINATION, the Historian Server option is selected by default. In addition, the

DESTINATION HISTORIAN SERVER field is disabled and populated with the collector machine

name.

8. Select the destination to which you want to send data, and then enter the values in the

corresponding fields. You can send data to an on-premises Historian server or to a cloud

destination.

Historian | 3 - Configuration Hub | 507

a. If you need to send data to a cloud destination, select the cloud destinations as needed.

▪ Predix Timeseries- Select this if you need to send data to Predix cloud. For more

information, refer to Predix Cloud (on page 621).

▪ Azure IoT Hub- Select this if you need to send data to Azure Cloud in KairosDB

format. For more information, refer to Azure IoT Hub (KairosDB format) (on page

608).

▪ MQTT- Select this if you need to send data to any of the following cloud destination.

▪ Alibaba cloud. For more information, refer to Alibaba Cloud (on page 587).

▪ AWS cloud. For more information, refer to AWS Cloud (on page 594).

▪ Google cloud. For more information, refer to Google Cloud (on page 614).

b. If you need to send data to an on-premises Historian server, select Historian Server.

If you created security groups or enabled a strict client/collector authentication, enter the

USERNAME and PASSWORD of the on-premises Historian server that you created during the

installation of the collector.

If you entered the USERNAMEand PASSWORD, select Test Connection. This will help you to

test if the Historian server that you are trying to connect is valid or if the credentials that you

entered are valid.

If the entered credentials are valid, a successful connection message appears.

9. Select Next.

10. In the RUNNING MODE field, select one of the following options.

◦ Service - Local System Account: Select this option if you want to run the collector as a

Windows service using the credentials of the local user (that is, the currently logged-in user).

If you select this option, the USERNAME and PASSWORD fields are disabled. By default, this

option is selected.

◦ Service Under Specific User Account: Select this option if you want to run the collector as

a Windows service using a specific user account. If you select this option, you must enter

values in the USERNAME and PASSWORD fields.

If you have enabled the Enforce Strict Collector Authentication option in Historian Administrator,

you must provide the credentials of a user who is added to at least one of the following security

groups:

◦ iH Security Admins

◦ iH Collector Admins

◦ iH Tag Admins

11. Select Next.

The Collector Initiation section appears.

Historian | 3 - Configuration Hub | 508

12. If needed, modify the value in the COLLECTOR NAME field.

The value that you enter:

◦ Must be unique.

◦ Must not exceed 15 characters.

◦ Must not contain a space.

◦ Must not contain special characters except a hyphen, period, and an underscore.

13. In the RUNNING MODE field, select one of the following options.

◦ Service - Local System Account: Select this option if you want to run the collector as a

Windows service using the credentials of the local user (that is, the currently logged-in user).

If you select this option, the USERNAME and PASSWORD fields are disabled.

◦ Service Under Specific User Account: Select this option if iFIX is running in a secured mode,

or if you want to run the collector as a Windows service using a specific user account. If

you select this option, you must enter the credentials of the iFIX user in the USERNAME and

PASSWORD fields.

If you have enabled the Enforce Strict Collector Authentication option in Historian

Administrator, you must provide the credentials of a user who is added to at least one of the

following security groups:

▪ iH Security Admins

▪ iH Collector Admins

▪ iH Tag Admins

You can also configure the collector to start automatically when you start iFIX.

14. Select Add.

The collector instance is added, and appears in the Collectors list. A shortcut is created so that you

can open it at a command prompt.

If iFIX is not running in a service mode, an error message may appear. However, the collector

instance is created; therefore, you can ignore the error message. Although the collector instance

does not appear in the list of collectors in Configuration Hub, a shortcut is created. You can run the

collector manually at a command prompt or as a SCU task. For more information, refer to About

Adding an iFIX Collector Instance (on page 501).

15. In the COLLECTOR SPECIFIC CONFIGURATION section, configure the values as described in the

following table.

Field Description

Nodes to Browse Enter the mask that you want to use to select

tags when browsing for tags in the collector.

The default value is FIX.

Historian | 3 - Configuration Hub | 509

Field Description

If you want to browse for tags on other iFIX

nodes via FIX networking, you can enter the oth

er node name(s) here, separated by commas

with no spaces. You must have the iFIX system

configured for networking. For more informa

tion, refer to the iFIX product documentation on

iFIX networking.

Note:

If you have modified iFIX node name,

then you must also update the value

in the Nodes to Browse field before

browsing for tags in the iFIX collector.

When you browse multiple nodes for

tags to add to an iFIX collector, do not

use space characters between node

names or between the required comma

and next node name. All characters af

ter the space are ignored.

Tag Browse Criteria Specify the tags for data collection (on page

357).

Note:

If you want to add block or field types

to the list, edit the FixTag.dat file for

Historian Administrator you are us

ing. Refer to Editing FixTag.dat File (on

page 2257) for more information.

MTLS Security Indicates whether you want to use Mutual TLS

(MTLS) protocol to enforce a secure and strong

authentication mechanism.

Historian | 3 - Configuration Hub | 510

Field Description

MTLS Data Encryption Indicates whether you want to encrypt the da

ta that the collector shares to the data archiver

(DA).

For more information on how to enable MTLS Security, refer to Enable MTLS Security (on page

632).

16. As needed, enter values in the other sections common o all collectors (on page 579).

17. In the upper-left corner of the page, select Save.

The changes to the collector instance are saved.

18. If needed, restart the collector.

Specify the tags whose data you want to collect using the collector. In the CHOOSE CONFIGURATION

field,

• If you have selected Historian Configuration, specify the tags using Configuration Hub (on page

357).

• If you have selected Offline Configuration, modify the offline configuration file of the collector.

By default, the file is available in the following location: <installation folder of

Historian>\GE Digital\<collector name>. For information, refer to Offline Configuration

for Collectors (on page 2039). This option is applicable only if you have selected a cloud

destination. This option is not applicable to an iFIX Alarms and Events collector.

Add and Configure an MQTT Collector

1. Ensure that you have an MQTT broker.

Note:

We have tested with the MQTT brokers Mosquitto 2.0.15 and HiveMQ-4.2.1. You can,

however, use other MQTT brokers as well.

Historian | 3 - Configuration Hub | 511

2. If you want to use username/password-based authentication or certificate-based authentication to

connect the MQTT broker and the MQTT collector, configure the authentication in the MQTT broker.

3. If you want to use certificate-based authentication, ensure that the following files are available on

your collector machine:

◦ CA server root file

◦ Private key file

◦ Client certificate file

The MQTT collector collects data published to a topic using an MQTT broker. For more information, refer

to Overview of the MQTT Collector (on page 2298).

This topic describes how to add a collector instance using Configuration Hub. You can also add a

collector instance using the RemoteCollectorConfigurator utility (on page 797), which does not require

you to install Web-based Clients.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors in the default system appears.

3. In the upper-right corner of the main section, select .

The Add Collector Instance: <system name> window appears, displaying the Collector Selection

section. The MACHINE NAME field contains a list of machines on which you have installed

collectors.

4. In the MACHINE NAME field, select the machine in which you want to add a collector instance.

5. In the COLLECTOR TYPE field, select MQTT Collector, and then select Get Details.

The INSTALLATION DRIVE and DATA DIRECTORY fields are disabled and populated.

Historian | 3 - Configuration Hub | 512

6. Select Next.

The Source Configuration section appears.

7. Enter values as described in the following table.

Field Description

MQTT BROKER ADDRESS Enter the host name of the MQTT broker using which you want

to collect data. A value is required.

MQTT BROKER PORT Enter the port number of the MQTT broker. A value is required.

TOPIC Enter the MQTT topic from which you want to collect data. A val

ue is required. You can enter multiple topics separated by com

mas.

If you want to use the Sparkplug B format, enter a value in the

following format: namespace/group_id/message_type/edge_n

ode_id/device_id

where:

◦ namespace is the Sparkplug version. Enter spBv1.0.

◦ group_id is the ID of the group of nodes from which you

want to collect data.

◦ message_type is the message type from which you want

to collect data. The collector processes data only from

NDATA and DDATA message types.

◦ edge_node_id is used to identify the MQTT EoN node with

in the infrastructure.

◦ device_id a device attached to the MQTT EoN node ei

ther physically or logically.

You can use the wildcard character # for any of these parame

ters (except for namespace).

USERNAME Enter the username to connect to the MQTT broker. A value is

required if you have configured username/password-based au

thentication in the MQTT broker.

PASSWORD Enter the password to connect to the MQTT broker. A value is

required if you have configured username/password-based au

thentication in the MQTT broker.

Historian | 3 - Configuration Hub | 513

Field Description

CA SERVER ROOT FILE Enter the path to the CA server root file to connect to the

MQTT broker. A value is required if you have configured certifi

cate-based authentication in the MQTT broker.

PRIVATE KEY FILE Enter the path to the private key file to connect to the MQTT bro

ker. A value is required if you have configured certificate-based

authentication in the MQTT broker.

CLIENT CERTIFICATE FILE Enter the path to the client certificate file to connect to the

MQTT broker. A value is required if you have configured certifi

cate-based authentication in the MQTT broker.

REQUESTED QUALITY OF

SERVICE (QOS) LEVEL

Select the quality of service that you want to use while collect

ing data from an MQTT broker.

◦ QoS 0: Indicates that the message is delivered at most

once or it is not delivered at all.

◦ QoS 1: Indicates that the message is always delivered at

least once.

◦ QoS 2: Indicates that the message is delivered once.

For more information, refer to https://www.hivemq.com/blog/

mqtt-essentials-part-6-mqtt-quality-of-service-levels/.

MQTT VERSION Select the version of the MQTT that you want to use.

CLEAN SESSION Select one of the following options:

◦ True: Select this option if you do not want to create a

new session when the MQTT broker and the collector are

disconnected from each other.

◦ False: Select this option if you want to retain the session

when the MQTT broker and the collector are disconnect

ed from each other. This ensures that there is no loss of

data. If you want to choose this option, ensure that you

have selected QoS 1 or QoS 2 in the REQUESTED QUALI

TY OF SERVICE (QOS) LEVEL field.

SESSION EXPIRY INTERVAL Enter the duration, in seconds, after which the data will be dis

carded when connection between the MQTT broker and collec

tor is re-established.

https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels/
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels/

Historian | 3 - Configuration Hub | 514

Field Description

For example, if you enter 100 in this field, and if the MQTT bro

ker and collector are disconnected for 90 seconds, the data is

collected. If, however, the MQTT broker and the collector are

disconnected for more than 100 seconds, the data will be dis

carded.

This field is applicable only for MQTT V5 and only if you set the

CLEAN SESSION field to False.

CONTENT TYPE Select the format that you want to use for the payload:

◦ JSON: Select this option if you want to use the KairosDB

format.

◦ SparkPlug B v1.0: Select this option if you want to use

the Sparkplug format.

8. Select Next.

The Destination Configuration section appears. The collector machine name provided by you is

selected as the Source Configuration by default.

Under CHOOSE DESTINATION, the Historian Server option is selected by default. In addition, the

DESTINATION HISTORIAN SERVER field is disabled and populated with the collector machine

name.

9. Select the destination to which you want to send data, and then enter the values in the

corresponding fields. You can send data to an on-premises Historian server or to a cloud

destination.

a. If you need to send data to a cloud destination, select the cloud destinations as needed.

▪ Predix Timeseries- Select this if you need to send data to Predix cloud. For more

information, refer to Predix Cloud (on page 621).

▪ Azure IoT Hub- Select this if you need to send data to Azure Cloud in KairosDB

format. For more information, refer to Azure IoT Hub (KairosDB format) (on page

608).

▪ MQTT- Select this if you need to send data to any of the following cloud destination.

▪ Alibaba cloud. For more information, refer to Alibaba Cloud (on page 587).

▪ AWS cloud. For more information, refer to AWS Cloud (on page 594).

▪ Google cloud. For more information, refer to Google Cloud (on page 614).

b. If you need to send data to an on-premises Historian server, select Historian Server.

Historian | 3 - Configuration Hub | 515

If you created security groups or enabled a strict client/collector authentication, enter the

USERNAME and PASSWORD of the on-premises Historian server that you created during the

installation of the collector.

If you entered the USERNAMEand PASSWORD, select Test Connection. This will help you to

test if the Historian server that you are trying to connect is valid or if the credentials that you

entered are valid.

If the entered credentials are valid, a successful connection message appears.

10. Select Next.

The Collector Initiation section appears.

11. If needed, modify the value in the COLLECTOR NAME field. The value must be unique, must contain

the string MQTT, and must not contain a space.

The value that you enter:

◦ Must be unique.

◦ Must contain the string MQTT.

◦ Must not exceed 15 characters.

◦ Must not contain a space.

◦ Must not contain special characters except a hyphen, period, and an underscore.

12. In the RUNNING MODE field, select one of the following options.

◦ Service - Local System Account: Select this option if you want to run the collector as a

Windows service using the credentials of the local user (that is, the currently logged-in user).

If you select this option, the USERNAME and PASSWORD fields are disabled.

◦ Service Under Specific User Account: Select this option if you want to run the collector as

a Windows service using a specific user account. If you select this option, you must enter

values in the USERNAME and PASSWORD fields.

If you have enabled the Enforce Strict Collector Authentication option in Historian

Administrator, you must provide the credentials of a user who is added to at least one of the

following security groups:

▪ iH Security Admins

▪ iH Collector Admins

▪ iH Tag Admins

You can also configure the collector to start automatically when you start the computer.

13. Select Add.

The collector instance is added. The fields specific to the collector section appear in the DETAILS

section.

Historian | 3 - Configuration Hub | 516

14. In the COLLECTOR SPECIFIC CONFIGURATION and INSTANCE CONFIGURATION sections,

configure the values as described in the following table.

COLLECTOR SPECIFIC CONFIGURATION

Field Description

MTLS Security Indicates whether you want to use Mutual TLS

(MTLS) protocol to enforce a secure and strong

authentication mechanism.

MTLS Data Encryption Indicates whether you want to encrypt the da

ta that the collector shares to the data archiver

(DA).

For more information on how to enable MTLS Security, refer to Enable MTLS Security (on page

632).

INSTANCE CONFIGURATION

Field Description

MQTT Broker Address Enter the host name of the MQTT broker using which you want

to collect data. A value is required.

MQTT Broker Topic Enter the MQTT topic from which you want to collect data. A val

ue is required. You can enter multiple topics separated by com

mas.

If you want to use the Sparkplug B format, enter a value in the

following format: namespace/group_id/message_type/edge_n

ode_id/device_id

where:

◦ namespace is the Sparkplug version. Enter spBv1.0.

◦ group_id is the ID of the group of nodes from which you

want to collect data.

◦ message_type is the message type from which you want

to collect data. The collector processes data only from

NDATA and DDATA message types.

Historian | 3 - Configuration Hub | 517

Field Description

◦ edge_node_id is used to identify the MQTT EoN node with

in the infrastructure.

◦ device_id a device attached to the MQTT EoN node ei

ther physically or logically.

You can use the wildcard character # for any of these parame

ters (except for namespace).

MQTT Brker Port Enter the port number of the MQTT broker. A value is required.

Username Enter the username to connect to the MQTT broker. A value is

required if you have configured username/password-based au

thentication in the MQTT broker.

Password Enter the password to connect to the MQTT broker. A value is

required if you have configured username/password-based au

thentication in the MQTT broker.

CA Server Root File Enter the path to the CA server root file to connect to the

MQTT broker. A value is required if you have configured certifi

cate-based authentication in the MQTT broker.

Private Key File Enter the path to the private key file to connect to the MQTT bro

ker. A value is required if you have configured certificate-based

authentication in the MQTT broker.

CLIENT Certificate File Enter the path to the client certificate file to connect to the

MQTT broker. A value is required if you have configured certifi

cate-based authentication in the MQTT broker.

Requested Quality Of Service

(QoS) Level

Select the quality of service that you want to use while collect

ing data from an MQTT broker.

◦ QoS 0: Indicates that the message is delivered at most

once or it is not delivered at all.

◦ QoS 1: Indicates that the message is always delivered at

least once.

◦ QoS 2: Indicates that the message is delivered once.

For more information, refer to https://www.hivemq.com/blog/

mqtt-essentials-part-6-mqtt-quality-of-service-levels/.

MQTT Version Select the version of the MQTT that you want to use.

https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels/
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels/

Historian | 3 - Configuration Hub | 518

Field Description

CLEAN Session Select one of the following options:

◦ True: Select this option if you do not want to create a

new session when the MQTT broker and the collector are

disconnected from each other.

◦ False: Select this option if you want to retain the session

when the MQTT broker and the collector are disconnect

ed from each other. This ensures that there is no loss of

data. If you want to choose this option, ensure that you

have selected QoS 1 or QoS 2 in the REQUESTED QUALI

TY OF SERVICE (QOS) LEVEL field.

SESSION Expiry Interval Enter the duration, in seconds, after which the data will be dis

carded when connection between the MQTT broker and collec

tor is re-established.

For example, if you enter 100 in this field, and if the MQTT bro

ker and collector are disconnected for 90 seconds, the data is

collected. If, however, the MQTT broker and the collector are

disconnected for more than 100 seconds, the data will be dis

carded.

This field is applicable only for MQTT V5 and only if you set the

CLEAN SESSION field to False.

Content Type Select the format that you want to use for the payload:

◦ JSON: Select this option if you want to use the KairosDB

format.

◦ SparkPlug B v1.0: Select this option if you want to use

the Sparkplug format.

15. As needed, enter values in the other sections common to all collectors (on page 579).

16. In the upper-left corner of the page, select Save.

Historian | 3 - Configuration Hub | 519

The changes to the collector instance are saved.

17. If needed, restart the collector.

Specify the tags whose data you want to collect using the collector. In the CHOOSE CONFIGURATION

field,

• If you have selected Historian Configuration, specify the tags using Configuration Hub (on page

357).

• If you have selected Offline Configuration, modify the offline configuration file of the collector.

By default, the file is available in the following location: <installation folder of

Historian>\GE Digital\<collector name>. For information, refer to Offline Configuration

for Collectors (on page 2039). This option is applicable only if you have selected a cloud

destination.

Add an MQTT Sparkplug B Collector Instance using Configuration Hub

1. Install the Historian server (on page 104) and collectors (on page 142).

2. Ensure that you have an MQTT broker.

3. If you want to use username/password-based authentication or certificate-based authentication to

connect the MQTT broker and the MQTT Sparkplug B collector, configure the authentication in the

MQTT broker.

4. If you want to use certificate-based authentication, ensure that the following files are available on

your collector machine:

◦ CA server root file

◦ Private key file

◦ Client certificate file

This topic describes how to add and configure an MQTT Sparkplug B collector instance using

Configuration hub. You can also add and configure an MQTT Sparkplug B collector instance using

RemoteCollectorConfigurator.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors in the default system appears.

3. In the upper-right corner of the main section, select .

Historian | 3 - Configuration Hub | 520

The Add Collector Instance: <system name> window appears, displaying the Collector Selection

section. The MACHINE NAME field contains a list of machines on which you have installed

collectors.

4. In the MACHINE NAME field, select the machine in which you want to add a collector instance.

5. In the COLLECTOR TYPE field, select MQTT Sparkplug B Collector, and then select Get Details.

Note:

The INSTALLATION DRIVE and BASE DATA DIRECTORY fields cannot be changed. This

is the drive location and the data directory folder that you provided during Collectors

installation.

The INSTALLATION DRIVE and DATA DIRECTORY fields are populated with the drive location and

the data directory folder.

6. Select Next.

The Source Configuration section appears.

7. Enter the values as described in the following table:

Field Description

BROKER CONFIGURATION

BROKER ADDRESS Enter the host name of the MQTT broker using

which you want to collect data. A value is re

quired.

BROKER PORT Enter the port number of the MQTT broker. A

value is required.

CLIENT ID Enter the client ID of the MQTT Sparkplug B col

lector is running. This is required if you want to

send the data to a cloud destination. If you do

not have a client ID set up, by default, the inter

face name is taken.

Historian | 3 - Configuration Hub | 521

Field Description

PRIMARY HOST ID Enter the unique host ID of the Collector. The

Collector will publish the STATE message top

ic using this host ID and then the Publisher will

subscribe and start publishing the topics to this

host ID.

REORDER TIMEOUT Enter the duration for waiting before sending

a CMD message if a sequence is skipped. You

can enter the duration in milliseconds.

MQTT VERSION Select the version of the MQTT that you want to

use. The following versions are supported:

◦ MQTT_V311

◦ MQTT_V5

TOPIC: The parameters that need to be included in the topic:

Namespace/Groupname/<Message Type>/NodeID/<DeviceID>

You can also use wildcards in the GROUP ID, EDGE NODE ID, and DEVICE ID fields. The following

wildcards are supported:

◦ + (single-level wildcard): Supported for all the three fields.

◦ # (Multi-level wildcard): Supported for the EDGE NODE ID and DEVICE ID

+ (Single-level wildcard): Can be used to subscribe to only one topic level. For example, if you

subscribe to a topic <Admin>/+/<ABC-123>, you will receive messages from all the nodes corre

sponding to the group and device. That is,

<Admin>/Node1/<ABC-123>

<Admin>/Node2/<ABC-123>

<Admin>/Node3/<ABC-123>

...

<Admin>/Noden/<ABC-123>

(Multi-level wildcard): Can be used to subscribe to any number of levels within a topic. For ex

ample, if you subscribe to a topic <Admin>/#, you will receive messages from all the nodes and de

vices corresponding to the group,

Historian | 3 - Configuration Hub | 522

Field Description

<Admin>/Node1/<ABC-123>

<Admin>/Node2/<ABC-123>

<Admin>/Node3/<ABC-123>

<Admin>/Node1/<ABC-124

<Admin>/Node2/<ABC-124>

...

<Admin>/Noden/<Devicen>

GROUP ID Enter the Sparkplug B group name to which

you want your collector to subscribe. If this is

empty along with the other fields below TOPIC,

the collector will subscribe to all the available

groups, nodes, and devices.

EDGE NODE ID Enter the Sparkplug B edge node ID to which

you want your collector to subscribe. If this is

empty, then the Collector will subscribe to all

the edge nodes corresponding to the entered

GROUP ID. If the GROUP ID and DEVICE ID are

also empty, then the collector will subscribe to

all the available groups, nodes and devices.

DEVICE ID Enter the Sparkplug B device name. If this is

empty, the collector subscribes to node mes

sages if a NODE ID is entered, otherwise, if a

DEVICE ID is entered, it subscribes to device

messages.

TAG CONFIGURATION

TAG NAME PREFIX FORMAT

ELEMENT Enter a prefix to be included in the tag. By us

ing this field, you can clearly identify a tag. For

example, you can clearly differentiate the tags

that are collected.

The following options are available:

Historian | 3 - Configuration Hub | 523

Field Description

◦ <interfacename>

◦ <groupid>

◦ <edgenodeid>

◦ <deviceid>

For example, if all four fields are provided and

the interface/collector name is "sparkplug1"

and the Topic contains group id = g1 edge

node id = n1, device id = d1 then device tags

will be created in Historian as “sparkplug1.g1.

n1.d1.tag1”.

DELIMITER Enter a delimiter you need to be included in the

tag. You can use any special characters as de

limiter. However, it is recommended that you

use a delimiter that is ideal and clear to be iden

tified. For example, "/", ".", "_".

Note:

"?" and "*" are not allowed.

PREVIEW The preview of how the tags will be created

and stored based on the TAG PREFIX and the

DELIMTER that you selected.

TAG MASK

TAGS TO ADD Provide a mask along with wildcard to collect

those tags that include the mask you provid

ed and store in Historian. For example, *Pres

sure*. This will collect all the tags that begin

with "Pressure". If you enter Pressure*, all the

tags that end with "Pressure" will be collected.

Similarly, if you enter *Pres?, all the tags that

contain "pres" at the beginning will be collected.

It can be "Pressure", "Press", or "Pres1".

Historian | 3 - Configuration Hub | 524

Field Description

Note:

Whenever a new tag is collected, the

collector verifies the tag availability in

the Historian and, if not present, adds

the tag, then adds the data samples,

streaming the data to the Historian

server or a cloud destination.

TAGS TO EXCLUDE Provide a mask along with wildcard to exclude

those tags that include the mask you provided.

For example, *Pressure*. This will exclude all

the tags that begin with "Pressure". If you enter

Pressure*, all the tags that end with "Pressure"

will be excluded. Similarly, if you enter *Pres?,

all the tags that contain "pres" at the beginning

will be excluded. It can be "Pressure", "Press", or

"Pres1".

AUTHENTICATION

USER CREDENTIALS

USERNAME Enter the username to connect to the MQTT

broker. A value is required if you have config

ured username/password-based authentication

in the MQTT broker.

PASSWORD Enter the password to connect to the MQTT

broker. A value is required if you have config

ured username/password-based authentication

in the MQTT broker.

SSL/TLS

CA SERVER ROOT FILE Enter the path to the CA server root file to con

nect to the MQTT broker. A value is required if

you have configured certificate-based authenti

cation in the MQTT broker.

Historian | 3 - Configuration Hub | 525

Field Description

PRIVATE KEY FILE Enter the path to the private key file to connect

to the MQTT broker. A value is required if you

have configured certificate-based authentica

tion in the MQTT broker.

CLIENT CERTIFICATE FILE Enter the path to the client certificate file to

connect to the MQTT broker. A value is required

if you have configured certificate-based authen

tication in the MQTT broker.

8. Select Next.

The Destination Configuration section appears.

Under CHOOSE DESTINATION, the Historian Server option is selected by default. In addition, the

DESTINATION HISTORIAN SERVER field is disabled and populated with the collector machine

name.

9. Select the destination to which you want to send data, and then enter the values in the

corresponding fields. You can send data to an on-premises Historian server or to a cloud

destination.

a. If you need to send data to a cloud destination, select the cloud destinations as needed.

▪ Predix Timeseries- Select this if you need to send data to Predix cloud. For more

information, refer to Predix Cloud (on page 621).

▪ Azure IoT Hub- Select this if you need to send data to Azure Cloud in KairosDB

format. For more information, refer to Azure IoT Hub (KairosDB format) (on page

608).

▪ MQTT- Select this if you need to send data to any of the following cloud destination.

▪ Alibaba cloud. For more information, refer to Alibaba Cloud (on page 587).

▪ AWS cloud. For more information, refer to AWS Cloud (on page 594).

▪ Google cloud. For more information, refer to Google Cloud (on page 614).

b. If you need to send data to an on-premises Historian server, select Historian Server.

If you created security groups or enabled a strict client/collector authentication, enter the

USERNAME and PASSWORD of the on-premises Historian server that you created during the

installation of the collector.

Historian | 3 - Configuration Hub | 526

If you entered the USERNAMEand PASSWORD, select Test Connection. This will help you to

test if the Historian server that you are trying to connect is valid or if the credentials that you

entered are valid.

If the entered credentials are valid, a successful connection message appears.

10. After you selected the destination, select Next.

The Collector Initiation section appears.

11. If needed, modify the value in the COLLECTOR NAME field.

Note:

If you will be using the collector in Historian Administrator, the COLLECTOR NAME must

include Sparkplug B in it.

The value that you enter:

◦ Must be unique.

◦ Must not exceed 15 characters.

◦ Must not contain a space.

◦ Must not contain special characters except a hyphen, period, and an underscore.

12. In the RUNNING MODE field, select one of the following options.

◦ Service - Local System Account: Select this option if you want to run the collector as a

Windows service using the credentials of the local user (that is, the currently logged-in user).

If you select this option, the USERNAME and PASSWORD fields are disabled.

◦ Service Under Specific User Account: Select this option if you want to run the collector as

a Windows service using a specific user account. If you select this option, you must enter

values in the USERNAME and PASSWORD fields.

If you have enabled the Enforce Strict Collector Authentication option in Historian

Administrator, you must provide the credentials of a user who is added to at least one of the

following security groups:

▪ iH Security Admins

▪ iH Collector Admins

▪ iH Tag Admins

You can also configure the collector to start automatically when you start the computer.

13. Select Add.

The collector instance is added. The fields specific to the collector section appear in the DETAILS

section.

14. If needed, enter values in available fields (on page 579).

Historian | 3 - Configuration Hub | 527

15. In the upper-left corner of the page, select Save.

16. If needed, restart the collector.

• Specify the tags whose data you want to collect using the collector. In the CHOOSE

CONFIGURATION field,

◦ If you have selected Historian Configuration, specify the tags using Configuration Hub (on

page 357).

◦ If you have selected Offline Configuration, modify the offline configuration file of the

collector. By default, the file is available in the following location: <installation folder

of Historian>\GE Digital\<collector name>. For information, refer to Offline

Configuration for Collectors (on page 2039). This option is applicable only if you have

selected a cloud destination.

• If needed, you can configure the collector instance (on page 2331).

Add and Configure an ODBC Collector Using Configuration Hub

The ODBC collector collects data from an application based on an ODBC driver. For more information,

refer to Overview of the ODBC Collector (on page 2341).

This topic describes how to add a collector instance using Configuration Hub. You can also add a

collector instance using the RemoteCollectorConfigurator utility (on page 797), which does not require

you to install Web-based Clients.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors in the default system appears.

3. In the upper-right corner of the main section, select .

Historian | 3 - Configuration Hub | 528

The Add Collector Instance: <system name> window appears, displaying the Collector Selection

section. The MACHINE NAME field contains a list of machines on which you have installed

collectors.

4. In the MACHINE NAME field, select the machine in which you want to add a collector instance.

5. In the COLLECTOR TYPE field, select ODBC Collector, and then select Get Details.

The INSTALLATION DRIVE and DATA DIRECTORY fields are disabled and populated.

6. Select Next.

The Source Configuration section appears.

7. Enter values as described in the following table.

Field Description

ODBC SERVER Enter the host name or IP address of the ODBC

server from which you want to collect data. A

value is required.

USERNAME Enter the username to connect to the ODBC

server. A value is required.

PASSWORD Enter the password to connect to the ODBC

server. A value is required.

8. Select Next.

The Destination Configuration section appears. The collector machine name provided by you is

selected as the Source Configuration by default.

Historian | 3 - Configuration Hub | 529

Under CHOOSE DESTINATION, the Historian Server option is selected by default. In addition, the

DESTINATION HISTORIAN SERVER field is disabled and populated with the collector machine

name.

9. Select the destination to which you want to send data, and then enter the values in the

corresponding fields. You can send data to an on-premises Historian server or to a cloud

destination.

a. If you need to send data to a cloud destination, select the cloud destinations as needed.

▪ Predix Timeseries- Select this if you need to send data to Predix cloud. For more

information, refer to Predix Cloud (on page 621).

▪ Azure IoT Hub- Select this if you need to send data to Azure Cloud in KairosDB

format. For more information, refer to Azure IoT Hub (KairosDB format) (on page

608).

▪ MQTT- Select this if you need to send data to any of the following cloud destination.

▪ Alibaba cloud. For more information, refer to Alibaba Cloud (on page 587).

▪ AWS cloud. For more information, refer to AWS Cloud (on page 594).

▪ Google cloud. For more information, refer to Google Cloud (on page 614).

b. If you need to send data to an on-premises Historian server, select Historian Server.

If you created security groups or enabled a strict client/collector authentication, enter the

USERNAME and PASSWORD of the on-premises Historian server that you created during the

installation of the collector.

If you entered the USERNAMEand PASSWORD, select Test Connection. This will help you to

test if the Historian server that you are trying to connect is valid or if the credentials that you

entered are valid.

If the entered credentials are valid, a successful connection message appears.

10. Select Next.

The Collector Initiation section appears.

11. If needed, modify the value in the COLLECTOR NAME field.

The value that you enter:

◦ Must be unique.

◦ Must contain the string ODBC.

◦ Must not exceed 15 characters.

◦ Must not contain a space.

◦ Must not contain special characters except a hyphen, period, and an underscore.

12. In the RUNNING MODE field, select one of the following options.

Historian | 3 - Configuration Hub | 530

◦ Service - Local System Account: Select this option if you want to run the collector as a

Windows service using the credentials of the local user (that is, the currently logged-in user).

If you select this option, the USERNAME and PASSWORD fields are disabled.

◦ Service Under Specific User Account: Select this option if you want to run the collector as

a Windows service using a specific user account. If you select this option, you must enter

values in the USERNAME and PASSWORD fields.

If you have enabled the Enforce Strict Collector Authentication option in Historian

Administrator, you must provide the credentials of a user who is added to at least one of the

following security groups:

▪ iH Security Admins

▪ iH Collector Admins

▪ iH Tag Admins

You can also configure the collector to start automatically when you start the computer.

13. Select Add.

The collector instance is added. The fields specific to the collector appear in the DETAILS section.

14. In the COLLECTOR SPECIFIC CONFIGURATION section, configure values as described in the

following table.

Field Description

Recovery Time (hours) Enter the maximum time, in hours, for which

the collector will attempt to recover data after

the collector is started or when connection be

tween the collector and the ODBC server is re-

established. This time is calculated as the du

ration between the current time and the last

known write time.

Continuous data collection is resumed only af

ter the previous data has been recovered.

By default, this value is set to 0, which means

data recovery is not attempted. The maximum

value you can provide is 168 hours (that is, 7

days).

Throttle (Milliseconds) Enter the frequency, in milliseconds, at which

you want the ODBC collector to query the ODBC

Historian | 3 - Configuration Hub | 531

Field Description

server for tag data. This will minimize the load

on the ODBC server. You can enter a value up to

16 hours.

Note:

If this field is blank, enter the required

minimum value of 100 milliseconds.

MTLS Security Indicates whether you want to use Mutual TLS

(MTLS) protocol to enforce a secure and strong

authentication mechanism.

MTLS Data Encryption Indicates whether you want to encrypt the da

ta that the collector shares to the data archiver

(DA).

For more information on how to enable MTLS Security, refer to Enable MTLS Security (on page

632).

15. As needed, enter values in the other sections common to all collectors (on page 579).

16. In the upper-left corner of the page, select Save.

The changes to the collector instance are saved.

17. If needed, restart the collector.

Specify the tags whose data you want to collect using the collector. In the CHOOSE CONFIGURATION

field,

• If you have selected Historian Configuration, specify the tags using Configuration Hub (on page

357).

• If you have selected Offline Configuration, modify the offline configuration file of the collector.

By default, the file is available in the following location: <installation folder of

Historian | 3 - Configuration Hub | 532

Historian>\GE Digital\<collector name>. For information, refer to Offline Configuration

for Collectors (on page 2039). This option is applicable only if you have selected a cloud

destination.

Add and Configure an OPC Classic Alarms and Events Collector

The OPC Classic Alarms and Events collector collects alarms and events data from any OPC 1.0 or OPC

2.0 compliant OPC server.

You can create an OPC Alarms and Events collector only for an on-premises Historian server, not for a

cloud destination.

This topic describes how to add a collector instance using Configuration Hub. You can also add a

collector instance using the RemoteCollectorConfigurator utility (on page 797), which does not require

you to install Web-based Clients.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors in the default system appears.

3. In the upper-right corner of the main section, select .

The Add Collector Instance: <system name> window appears, displaying the Collector Selection

section. The MACHINE NAME field contains a list of machines on which you have installed

collectors.

4. In the MACHINE NAME field, select the machine in which you want to add a collector instance.

5. In the COLLECTOR TYPE field, select OPC Alarms and Events Collector, and then select Get

Details.

Historian | 3 - Configuration Hub | 533

The INSTALLATION DRIVE and DATA DIRECTORY fields are disabled and populated.

6. Select Next.

The Source Configuration section appears.

7. In the OPC A&E SERVER field, enter the host name or IP address of the OPC server from which you

want to collect alarms and events data.

8. Select Next.

The Destination Configuration section appears. Under CHOOSE DESTINATION, the Historian

Server option is selected by default; the other options are disabled. In addition, the DESTINATION

HISTORIAN SERVER field is disabled and populated with the value you selected in the MACHINE

NAME field in the Collector Selection section.

9. If you created security groups or enabled a strict client/collector authentication, enter the

USERNAME and PASSWORD of the on-premises Historian server that you created during the

installation of the collector.

If you entered the USERNAMEand PASSWORD, select Test Connection. This will help you to test if

the Historian server that you are trying to connect is valid or if the credentials that you entered are

valid.

10. Select Next.

The Collector Initiation section appears.

11. If needed, modify the value in the COLLECTOR NAME field.

The value that you enter:

◦ Must be unique.

◦ Must not exceed 15 characters.

◦ Must not contain a space.

◦ Must not contain special characters except a hyphen, period, and an underscore.

12. In the RUNNING MODE field, select one of the following options.

◦ Service - Local System Account: Select this option if you want to run the collector as a

Windows service using the credentials of the local user (that is, the currently logged-in user).

If you select this option, the USERNAME and PASSWORD fields are disabled.

◦ Service Under Specific User Account: Select this option if you want to run the collector as

a Windows service using a specific user account. If you select this option, you must enter

values in the USERNAME and PASSWORD fields.

If you have enabled the Enforce Strict Collector Authentication option in Historian

Administrator, you must provide the credentials of a user who is added to at least one of the

following security groups:

▪ iH Security Admins

▪ iH Collector Admins

▪ iH Tag Admins

Historian | 3 - Configuration Hub | 534

You can also configure the collector to start automatically when you start the computer.

13. Select Add.

The collector instance is added. The fields specific to the collector section appear in the DETAILS

section.

14. In the COLLECTOR SPECIFIC CONFIGURATION section, configure the values as described in the

following table.

Field Description

MTLS Security Indicates whether you want to use Mutual TLS

(MTLS) protocol to enforce a secure and strong

authentication mechanism.

MTLS Data Encryption Indicates whether you want to encrypt the da

ta that the collector shares to the data archiver

(DA).

For more information on how to enable MTLS Security, refer to Enable MTLS Security (on page

632).

15. As needed, enter values in the other sections common to all collectors (on page 579).

16. In the upper-left corner of the page, select Save.

The changes to the collector instance are saved.

17. If needed, restart the collector.

Specify the tags (on page 357) whose data you want to collect using the collector.

Add and Configure an OPC Classic Data Access Collector

The OPC Classic Data Access (DA) collector collects data from any OPC 1.0 or OPC 2.0 compliant OPC

Classic server. For more information, refer to Overview of the OPC Classic DA Collector (on page 2356).

Historian | 3 - Configuration Hub | 535

This topic describes how to add a collector instance using Configuration Hub. You can also add a

collector instance using the RemoteCollectorConfigurator utility (on page 797), which does not require

you to install Web-based Clients.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors in the default system appears.

3. In the upper-right corner of the main section, select .

The Add Collector Instance: <system name> window appears, displaying the Collector Selection

section. The MACHINE NAME field contains a list of machines on which you have installed

collectors.

4. In the MACHINE NAME field, select the machine in which you want to add a collector instance.

5. In the COLLECTOR TYPE field, select OPC Collector, and then select Get Details.

The INSTALLATION DRIVE and DATA DIRECTORY fields are disabled and populated.

6. Select Next.

The Source Configuration section appears.

7. Enter values as described in the following table.

Field Description

OPC SERVER Select the machine on which you have installed

the OPC Classic DA server from which you want

to collect data.

Historian | 3 - Configuration Hub | 536

Field Description

MACHINE NAME Enter the host name or IP address of the OPC

server. This field appears only if you have se

lected a remote OPC server. A value is required.

OPC DA SERVER PROG ID Enter the prog ID of the OPC server. This field

appears only if you have selected a remote OPC

server. A value is required.

8. Select Next.

The Destination Configuration section appears. The collector machine name provided by you is

selected as the Source Configuration by default.

Under CHOOSE DESTINATION, the Historian Server option is selected by default. In addition, the

DESTINATION HISTORIAN SERVER field is disabled and populated with the collector machine

name.

9. Select the destination to which you want to send data, and then enter the values in the

corresponding fields. You can send data to an on-premises Historian server or to a cloud

destination.

a. If you need to send data to a cloud destination, select the cloud destinations as needed.

▪ Predix Timeseries- Select this if you need to send data to Predix cloud. For more

information, refer to Predix Cloud (on page 621).

▪ Azure IoT Hub- Select this if you need to send data to Azure Cloud in KairosDB

format. For more information, refer to Azure IoT Hub (KairosDB format) (on page

608).

▪ MQTT- Select this if you need to send data to any of the following cloud destination.

▪ Alibaba cloud. For more information, refer to Alibaba Cloud (on page 587).

▪ AWS cloud. For more information, refer to AWS Cloud (on page 594).

▪ Google cloud. For more information, refer to Google Cloud (on page 614).

b. If you need to send data to an on-premises Historian server, select Historian Server.

If you created security groups or enabled a strict client/collector authentication, enter the

USERNAME and PASSWORD of the on-premises Historian server that you created during the

installation of the collector.

Historian | 3 - Configuration Hub | 537

If you entered the USERNAMEand PASSWORD, select Test Connection. This will help you to

test if the Historian server that you are trying to connect is valid or if the credentials that you

entered are valid.

If the entered credentials are valid, a successful connection message appears.

10. Select Next.

The Collector Initiation section appears. The COLLECTOR NAME field is populated with a value in

the following format: <system name>_OPC_<OPC server name>

11. If needed, modify the value in the COLLECTOR NAME field.

The value that you enter:

◦ Must be unique.

◦ Must not exceed 15 characters.

◦ Must not contain a space.

◦ Must not contain special characters except a hyphen, period, and an underscore.

12. In the RUNNING MODE field, select one of the following options.

◦ Service - Local System Account: Select this option if you want to run the collector as a

Windows service using the credentials of the local user (that is, the currently logged-in user).

By default this option is selected, and the USERNAME and PASSWORD fields are disabled.

◦ Service Under Specific User Account: Select this option if you want to run the collector as

a Windows service using a specific user account. If you select this option, you must enter

values in the USERNAME and PASSWORD fields.

If you have enabled the Enforce Strict Collector Authentication option in Historian

Administrator, you must provide the credentials of a user who is added to at least one of the

following security groups:

▪ iH Security Admins

▪ iH Collector Admins

▪ iH Tag Admins

You can also configure the collector to start automatically when you start the computer.

13. Select Add.

The collector instance is added. The fields specific to the collector section appear in the DETAILS

section.

14. Under COLLECTOR SPECIFIC CONFIGURATION, configure values as described in the following

table.

Historian | 3 - Configuration Hub | 538

Field Description

OPC Server Prog ID The program ID of the OPC server from which you want to

collect data.

Read Mode The read mode that you want the collector to use. For in

formation, refer to the documentation of the OPC server

that you are using or the OPC specification on the OPC

Foundation website.

First Browse Criteria A comma-separated first-level search criterion for brows

ing tags from the data source. The top-level and sec

ond-level criteria are used together by the AND operation

to browse tags.

For example, if you enter USGB014 in the First Browse Cri

teria field and F_CV, B_CUALM in the Second Browse Crite

ria field, it returns all the tags that contain:

◦ USGB014

-and-

◦ F_CV or B_CUALM

Second Browse Criteria A comma-separated second-level search criterion for

browsing tags from the data source. The top-level and

second-level criteria are used together by the AND opera

tion to browse tags.

Threading Model The type of the threading model selected for the collec

tor. The model selected must match the threading model

of the OPC server.

◦ Multithreaded: Select this option for better perfor

mance. We recommend that you configure your

collector to use the default multi-threading model.

◦ Apparent: Select this option for best compatibili

ty. Some OPC servers do not work well with mul

ti-threading. If you experience problems running

your collector with multi-threading, use the apart

ment model.

Historian | 3 - Configuration Hub | 539

Field Description

The default setting is multi-threaded. For information, re

fer to the documentation of the OPC server you are using.

Configuration Changes Indicates whether the collector configuration changes are

processed in real time or after restarting the collector.

◦ Made On-Line: Select this option to process any

configuration changes immediately (after 30 sec

onds) after you select the Update button.

Note:

▪ Some OPC servers cannot handle

processing configuration changes

online. If you experience any insta

bility with changes made online,

use the next option.

◦ Made After Collector Restart: Select this option to

hold all configuration changes until you manually

restart the collector.

MTLS Security Indicates whether you want to use Mutual TLS (MTLS)

protocol to enforce a secure and strong authentication

mechanism.

MTLS Data Encryption Indicates whether you want to encrypt the data that the

collector shares to the data archiver (DA).

For more information on how to enable MTLS Security, refer to Enable MTLS Security (on page

632).

15. As needed, enter values in the other sections common to all collectors (on page 579).

16. In the upper-left corner of the page, select Save.

Historian | 3 - Configuration Hub | 540

The changes to the collector instance are saved.

17. If needed, restart the collector.

Specify the tags whose data you want to collect using the collector. In the CHOOSE CONFIGURATION

field,

• If you have selected Historian Configuration, specify the tags for data collection (on page 357).

• If you have selected Offline Configuration, modify the offline configuration file of the collector.

By default, the file is available in the following location: <installation folder of

Historian>\GE Digital\<collector name>. For information, refer to Offline Configuration

for Collectors (on page 2039). This option is applicable only if you have selected a cloud

destination.

Add and Configure an OPC Classic HDA Collector

The OPC Classic Historical Data Access (HDA) collector collects data from any OPC HDA 1.2 - compliant

OPC Classic HDA server. For more information, refer to Configure the OPC Classic HDA Collector Using

Historian Administrator (on page 2380).

This topic describes how to add a collector instance using Configuration Hub. You can also add a

collector instance using the RemoteCollectorConfigurator utility (on page 797), which does not require

you to install Web-based Clients.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

3. In the upper-right corner of the main section, select .

Historian | 3 - Configuration Hub | 541

The Add Collector Instance: <system name> window appears, displaying the Collector Selection

section. The MACHINE NAME field contains a list of machines on which you have installed

collectors.

4. In the MACHINE NAME field, select the machine in which you want to add a collector instance.

5. In the COLLECTOR TYPE field, select OPC HDA Collector, and then select Get Details.

The INSTALLATION DRIVE and DATA DIRECTORY fields are disabled and populated.

6. Select Next.

The Source Configuration section appears.

7. Enter values as described in the following table.

Field Description

OPC HDA SERVER Select the machine on which you have installed

the OPC Classic HDA server from which you

want to collect data.

MACHINE NAME Enter the host name or IP address of the OPC

server. This field appears only if you have se

lected a remote OPC server. A value is required.

OPC DA SERVER PROG ID Enter the prog ID of the OPC server. This field

appears only if you have selected a remote OPC

server. A value is required.

8. Select Next.

The Destination Configuration section appears. The collector machine name provided by you is

selected as the Source Configuration by default.

Under CHOOSE DESTINATION, the Historian Server option is selected by default. In addition, the

DESTINATION HISTORIAN SERVER field is disabled and populated with the collector machine

name.

9. Select the destination to which you want to send data, and then enter the values in the

corresponding fields. You can send data to an on-premises Historian server or to a cloud

destination.

Historian | 3 - Configuration Hub | 542

a. If you need to send data to a cloud destination, select the cloud destinations as needed.

▪ Predix Timeseries- Select this if you need to send data to Predix cloud. For more

information, refer to Predix Cloud (on page 621).

▪ Azure IoT Hub- Select this if you need to send data to Azure Cloud in KairosDB

format. For more information, refer to Azure IoT Hub (KairosDB format) (on page

608).

▪ MQTT- Select this if you need to send data to any of the following cloud destination.

▪ Alibaba cloud. For more information, refer to Alibaba Cloud (on page 587).

▪ AWS cloud. For more information, refer to AWS Cloud (on page 594).

▪ Google cloud. For more information, refer to Google Cloud (on page 614).

b. If you need to send data to an on-premises Historian server, select Historian Server.

If you created security groups or enabled a strict client/collector authentication, enter the

USERNAME and PASSWORD of the on-premises Historian server that you created during the

installation of the collector.

If you entered the USERNAMEand PASSWORD, select Test Connection. This will help you to

test if the Historian server that you are trying to connect is valid or if the credentials that you

entered are valid.

If the entered credentials are valid, a successful connection message appears.

10. Select Next.

The Collector Initiation section appears.

11. If needed, modify the value in the COLLECTOR NAME field.

The value that you enter:

◦ Must be unique.

◦ Must contain the string OPCHDA.

◦ Must not exceed 15 characters.

◦ Must not contain a space.

◦ Must not contain special characters except a hyphen, period, and an underscore.

12. In the RUNNING MODE field, select one of the following options.

◦ Service - Local System Account: Select this option if you want to run the collector as a

Windows service using the credentials of the local user (that is, the currently logged-in user).

By default, this option is selected, and the USERNAME and PASSWORD fields are disabled.

◦ Service Under Specific User Account: Select this option if you want to run the collector as

a Windows service using a specific user account. If you select this option, you must enter

values in the USERNAME and PASSWORD fields.

Historian | 3 - Configuration Hub | 543

If you have enabled the Enforce Strict Collector Authentication option in Historian

Administrator, you must provide the credentials of a user who is added to at least one of the

following security groups:

▪ iH Security Admins

▪ iH Collector Admins

▪ iH Tag Admins

You can also configure the collector to start automatically when you start the computer.

13. Select Add.

The collector instance is added. The fields specific to the collector section appear in the DETAILS

section.

14. As needed, under COLLECTOR SPECIFIC CONFIGURATION, configure values as described in the

following table.

Field Description

Recovery Time It indicates the maximum time, in hours, for

which the collector will attempt to recover da

ta after the collector is started or when connec

tion between the collector and the OPC server

is re-established. This time is calculated as the

duration between the current time and the last

known write time.

Continuous data collection is resumed only af

ter the previous data has been recovered.

You can enter a value between 1 and 150.

MTLS Security Indicates whether you want to use Mutual TLS

(MTLS) protocol to enforce a secure and strong

authentication mechanism.

MTLS Data Encryption Indicates whether you want to encrypt the da

ta that the collector shares to the data archiver

(DA).

For more information on how to enable MTLS Security, refer to Enable MTLS Security (on page

632).

15. As needed, enter values in the other sections common to all collectors (on page 579).

Historian | 3 - Configuration Hub | 544

16. In the upper-left corner of the page, select Save.

The changes to the collector instance are saved.

17. If needed, restart the collector.

Specify the tags whose data you want to collect using the collector. In the CHOOSE CONFIGURATION

field,

• If you have selected Historian Configuration, specify the tags using Configuration Hub (on page

357).

• If you have selected Offline Configuration, modify the offline configuration file of the collector.

By default, the file is available in the following location: <installation folder of

Historian>\GE Digital\<collector name>. For information, refer to Offline Configuration

for Collectors (on page 2039). This option is applicable only if you have selected a cloud

destination.

Add and Configure an OPC UA Data Access Collector

The OPC UA Data Access (DA) collector gathers and collects data from a OPC UA 1.0-compliant OPC UA

DA server. For more information, refer to Configure an OPC UA DA Collector Using Historian Administrator

(on page 2432).

This topic describes how to add a collector instance using Configuration Hub. You can also add a

collector instance using the RemoteCollectorConfigurator utility (on page 797), which does not require

you to install Web-based Clients.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors in the default system appears.

3. In the upper-right corner of the main section, select .

Historian | 3 - Configuration Hub | 545

The Add Collector Instance: <system name> window appears, displaying the Collector Selection

section. The MACHINE NAME field contains a list of machines on which you have installed

collectors.

4. In the MACHINE NAME field, select the machine in which you want to add a collector instance.

5. In the COLLECTOR TYPE field, select OPC UA DA Collector, and then select Get Details.

The INSTALLATION DRIVE and DATA DIRECTORY fields are disabled and populated.

6. Select Next.

The Source Configuration section appears.

7. In the OPC UA SERVER URI field, enter the URI to connect to the OPC server in the following format:

opc.tcp://<host name or IP address of the OPC UA server>:<port number>

8. Select Next.

The Destination Configuration section appears. The collector machine name provided by you is

selected as the Source Configuration by default.

Under CHOOSE DESTINATION, the Historian Server option is selected by default. In addition, the

DESTINATION HISTORIAN SERVER field is disabled and populated with the collector machine

name.

9. Select the destination to which you want to send data, and then enter the values in the

corresponding fields. You can send data to an on-premises Historian server or to a cloud

destination.

Historian | 3 - Configuration Hub | 546

a. If you need to send data to a cloud destination, select the cloud destinations as needed.

▪ Predix Timeseries- Select this if you need to send data to Predix cloud. For more

information, refer to Predix Cloud (on page 621).

▪ Azure IoT Hub- Select this if you need to send data to Azure Cloud in KairosDB

format. For more information, refer to Azure IoT Hub (KairosDB format) (on page

608).

▪ MQTT- Select this if you need to send data to any of the following cloud destination.

▪ Alibaba cloud. For more information, refer to Alibaba Cloud (on page 587).

▪ AWS cloud. For more information, refer to AWS Cloud (on page 594).

▪ Google cloud. For more information, refer to Google Cloud (on page 614).

b. If you need to send data to an on-premises Historian server, select Historian Server.

If you created security groups or enabled a strict client/collector authentication, enter the

USERNAME and PASSWORD of the on-premises Historian server that you created during the

installation of the collector.

If you entered the USERNAMEand PASSWORD, select Test Connection. This will help you to

test if the Historian server that you are trying to connect is valid or if the credentials that you

entered are valid.

If the entered credentials are valid, a successful connection message appears.

10. Select Next.

The Collector Initiation section appears. The COLLECTOR NAME field is populated with a value in

the following format: <Historian server name>_OPCUACollector_<number>

11. If needed, modify the value in the COLLECTOR NAME field.

The value that you enter:

◦ Must be unique.

◦ Must contain the string OPCUACollector.

◦ Must not exceed 15 characters.

◦ Must not contain a space.

◦ Must not contain special characters except a hyphen, period, and an underscore.

12. In the RUNNING MODE field, select one of the following options.

◦ Service - Local System Account: Select this option if you want to run the collector as a

Windows service using the credentials of the local user (that is, the currently logged-in user).

If you select this option, the USERNAME and PASSWORD fields are disabled.

◦ Service Under Specific User Account: Select this option if you want to run the collector as

a Windows service using a specific user account. If you select this option, you must enter

values in the USERNAME and PASSWORD fields.

Historian | 3 - Configuration Hub | 547

If you have enabled the Enforce Strict Collector Authentication option in Historian

Administrator, you must provide the credentials of a user who is added to at least one of the

following security groups:

▪ iH Security Admins

▪ iH Collector Admins

▪ iH Tag Admins

You can also configure the collector to start automatically when you start the computer.

13. Select Add.

The collector instance is added. The fields specific to the collector section appear in the DETAILS

section.

14. In the COLLECTOR SPECIFIC CONFIGURATION section, configure values as described in the

following table.

Field Description

OPC UA Server URL The URI to connect to the OPC UA server. Enter a value

in the following format: opc.tcp://<host name or IP ad

dress of the OPC UA server>:<port number>

Secured Connectivity Indicates whether you want a secured connection be

tween the OPC UA server and the collector. By default,

this field is set to false.

You can establish a secured connectivity in one of the fol

lowing ways:

◦ Using certificates: To use certificates, switch off

the User Security toggle.

◦ Using user authentication: To use user authentica

tion, switch on the User Security toggle.

User Security This field is enabled only if you have enabled secured

connectivity. Switch on this toggle if you want to use user

authentication to connect to the OPC server. When you

do so, the User Name and Password fields are enabled.

You can either enter the user credentials in these fields,

or you can use the values in the ClientConfig.ini

file. For instructions, refer to Connect with the OPC UA DA

Server Securely (on page 2434).

Historian | 3 - Configuration Hub | 548

Field Description

Username This field is enabled only if you have set the secured con

nectivity to true and switched on the User Security tog

gle. Enter the username that you want to use to connect

to the OPC server. If you do not provide a value, the user

name from the ClientConfig.ini file is considered.

Password This field id enabled only if you have set the secured con

nectivity to true and selected the Enable User Security

check box. Enter the password that you want to use to

connect to the OPC server. If you do not provide a value,

the password from the ClientConfig.ini file is con

sidered.

MTLS Security Indicates whether you want to use Mutual TLS (MTLS)

protocol to enforce a secure and strong authentication

mechanism.

MTLS Data Encryption Indicates whether you want to encrypt the data that the

collector shares to the data archiver (DA).

For more information on how to enable MTLS Security, refer to Enable MTLS Security (on page

632).

15. As needed, enter values in the other sections common to all collectors (on page 579).

16. In the upper-left corner of the page, select Save.

The changes to the collector instance are saved.

17. If needed, restart the collector.

If you have enabled secured connection, establish a secured connection between the OPC server and the

collector (on page 2434).

Historian | 3 - Configuration Hub | 549

Add and Configure an OSI PI Collector

Install PI AF SDK version 2.7.5 or later.

The OSI PI collector collects data from an OSI PI server. For more information, refer to Overview of the OSI

PI Collector (on page 2443).

This topic describes how to add a collector instance using Configuration Hub. You can also add a

collector instance using the RemoteCollectorConfigurator utility (on page 797), which does not require

you to install Web-based Clients.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors in the default system appears.

3. In the upper-right corner of the main section, select .

The Add Collector Instance: <system name> window appears, displaying the Collector Selection

section. The MACHINE NAME field contains a list of machines on which you have installed

collectors.

4. In the MACHINE NAME field, select the machine in which you want to add a collector instance.

5. In the COLLECTOR TYPE field, select OSI PI Collector, and then select Get Details.

The INSTALLATION DRIVE and DATA DIRECTORY fields are disabled and populated.

6. Select Next.

The Source Configuration section appears.

7. Enter values as described in the following table.

Historian | 3 - Configuration Hub | 550

Field Description

PI SERVER Enter the host name or IP address of the OSI PI

server from which you want to collect data. A

value is required.

PI USERNAME Enter the username to connect to the OSI PI

server.

PI PASSWORD Enter the password to connect to the OSI PI

server.

8. Select Next.

The Destination Configuration section appears. The collector machine name provided by you is

selected as the Source Configuration by default.

Under CHOOSE DESTINATION, the Historian Server option is selected by default. In addition, the

DESTINATION HISTORIAN SERVER field is disabled and populated with the collector machine

name.

9. Select the destination to which you want to send data, and then enter the values in the

corresponding fields. You can send data to an on-premises Historian server or to a cloud

destination.

a. If you need to send data to a cloud destination, select the cloud destinations as needed.

▪ Predix Timeseries- Select this if you need to send data to Predix cloud. For more

information, refer to Predix Cloud (on page 621).

▪ Azure IoT Hub- Select this if you need to send data to Azure Cloud in KairosDB

format. For more information, refer to Azure IoT Hub (KairosDB format) (on page

608).

▪ MQTT- Select this if you need to send data to any of the following cloud destination.

▪ Alibaba cloud. For more information, refer to Alibaba Cloud (on page 587).

▪ AWS cloud. For more information, refer to AWS Cloud (on page 594).

▪ Google cloud. For more information, refer to Google Cloud (on page 614).

b. If you need to send data to an on-premises Historian server, select Historian Server.

If you created security groups or enabled a strict client/collector authentication, enter the

USERNAME and PASSWORD of the on-premises Historian server that you created during the

installation of the collector.

Historian | 3 - Configuration Hub | 551

If you entered the USERNAMEand PASSWORD, select Test Connection. This will help you to

test if the Historian server that you are trying to connect is valid or if the credentials that you

entered are valid.

If the entered credentials are valid, a successful connection message appears.

10. Select Next.

The Collector Initiation section appears. The COLLECTOR NAME field is populated with a value in

the following format: <host name or IP address of the PI server>_PICollector

11. If needed, modify the value in the COLLECTOR NAME field.

The value that you enter:

◦ Must be unique.

◦ Must not exceed 15 characters.

◦ Must not contain a space.

◦ Must not contain special characters except a hyphen, period, and an underscore.

12. In the RUNNING MODE field, select one of the following options.

◦ Service - Local System Account: Select this option if you want to run the collector as a

Windows service using the credentials of the local user (that is, the currently logged-in user).

By default, this option is selected, and the USERNAME and PASSWORD fields are disabled.

◦ Service Under Specific User Account: Select this option if you want to run the collector as

a Windows service using a specific user account. If you select this option, you must enter

values in the USERNAME and PASSWORD fields.

If you have enabled the Enforce Strict Collector Authentication option in Historian

Administrator, you must provide the credentials of a user who is added to at least one of the

following security groups:

▪ iH Security Admins

▪ iH Collector Admins

▪ iH Tag Admins

You can also configure the collector to start automatically when you start the computer.

13. Select Add.

The collector instance is added. The fields specific to the collector appear in the DETAILS section.

14. In the COLLECTOR SPECIFIC CONFIGURATION sections, configure values in the following table.

Field Description

Max Recovery Time (hours) Enter the maximum time, in hours, for which

the collector will attempt to recover data after

the collector is started or when connection be

Historian | 3 - Configuration Hub | 552

Field Description

tween the collector and the OSI PI server is re-

established. This time is calculated as the du

ration between the current time and the last

known write time.

Continuous data collection is resumed only af

ter the previous data has been recovered.

The default value is 4 hours.

Data Source Specify whether you want to collect data from

PI archive or PI snapshot:

◦ Archive: Stores timeseries-based data.

◦ Snapshot: Stores the most recent values

of tags.

MTLS Security Indicates whether you want to use Mutual TLS

(MTLS) protocol to enforce a secure and strong

authentication mechanism.

MTLS Data Encryption Indicates whether you want to encrypt the da

ta that the collector shares to the data archiver

(DA).

For more information on how to enable MTLS Security, refer to Enable MTLS Security (on page

632).

15. As needed, enter values in the other sections common to all collectors (on page 579).

16. In the upper-left corner of the page, select Save.

The changes to the collector instance are saved.

17. If needed, restart the collector.

Historian | 3 - Configuration Hub | 553

Specify the tags whose data you want to collect using the collector. In the CHOOSE CONFIGURATION

field,

• If you have selected Historian Configuration, specify the tags using Configuration Hub (on page

357).

• If you have selected Offline Configuration, modify the offline configuration file of the collector.

By default, the file is available in the following location: <installation folder of

Historian>\GE Digital\<collector name>. For information, refer to Offline Configuration

for Collectors (on page 2039). This option is applicable only if you have selected a cloud

destination.

Add and Configure an OSI PI Distributor

Install PI AF SDK version 2.7.5 or later.

An OSI PI distributor collects data from a Historian server and sends it to an OSI PI server. For more

information, refer to Overview of the OSI PI Distributor (on page 2457).

This topic describes how to add a collector instance using Configuration Hub. You can also add a

collector instance using the RemoteCollectorConfigurator utility (on page 797), which does not require

you to install Web-based Clients.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors in the default system appears.

3. In the upper-right corner of the main section, select .

Historian | 3 - Configuration Hub | 554

The Add Collector Instance: <system name> window appears, displaying the Collector Selection

section. The MACHINE NAME field contains a list of machines on which you have installed

collectors.

4. In the MACHINE NAME field, select the machine in which you want to add a collector instance.

5. In the COLLECTOR TYPE field, select OSI PI Distributor Collector, and then select Get Details.

The INSTALLATION DRIVE and DATA DIRECTORY fields are disabled and populated.

6. Select Next.

The Source Configuration section appears.

7. Enter values as described in the following table.

Field Description

HISTORIAN SOURCE SERVER Enter the host name or IP address of the Histo

rian server from which you want to collect data.

A value is required.

USERNAME Enter the username to connect to the Historian

server. A value is required.

PASSWORD Enter the password to connect to the Historian

server. A value is required.

8. Select Next.

The Destination Configuration section appears. Under CHOOSE DESTINATION, the PI Server

option is selected by default; the other options are disabled.

9. Enter values as described in the following table.

Field Description

PI SERVER Enter the host name or IP address of the OSI PI

server to which you want to send data. A value

is required.

PI USERNAME Enter the username to connect to the OSI PI

server.

PI PASSWORD Enter the password to connect to the OSI PI

server.

10. Select Next.

The Collector Initiation section appears.

Historian | 3 - Configuration Hub | 555

11. If needed, modify the value in the COLLECTOR NAME field.

The value that you enter:

◦ Must be unique.

◦ Must not exceed 15 characters.

◦ Must not contain a space.

◦ Must not contain special characters except a hyphen, period, and an underscore.

12. In the RUNNING MODE field, select one of the following options.

◦ Service - Local System Account: Select this option if you want to run the collector as a

Windows service using the credentials of the local user (that is, the currently logged-in user).

By default, this option is selected, and the USERNAME and PASSWORD fields are disabled.

◦ Service Under Specific User Account: Select this option if you want to run the collector as

a Windows service using a specific user account. If you select this option, you must enter

values in the USERNAME and PASSWORD fields.

If you have enabled the Enforce Strict Collector Authentication option in Historian

Administrator, you must provide the credentials of a user who is added to at least one of the

following security groups:

▪ iH Security Admins

▪ iH Collector Admins

▪ iH Tag Admins

You can also configure the collector to start automatically when you start the computer.

13. Select Add.

The collector instance is added. The fields specific to the collector instance appear in the DETAILS

section.

14. In the COLLECTOR SPECIFIC CONFIGURATION section, configure values in the following table.

Field Description

Max Recovery Time (hours) Enter the maximum time, in hours, for which

the collector will attempt to recover data after

the collector is started or when connection be

tween the collector and the OSI PI server is re-

established. This time is calculated as the du

ration between the current time and the last

known write time.

Continuous data collection is resumed only af

ter the previous data has been recovered.

Historian | 3 - Configuration Hub | 556

Field Description

The default value is 4 hours.

Data Source Specify whether you want to collect data from

PI archive or PI snapshot:

◦ Archive: Stores timeseries-based data.

◦ Snapshot: Stores the most recent values

of tags.

MTLS Security Indicates whether you want to use Mutual TLS

(MTLS) protocol to enforce a secure and strong

authentication mechanism.

MTLS Data Encryption Indicates whether you want to encrypt the da

ta that the collector shares to the data archiver

(DA).

For more information on how to enable MTLS Security, refer to Enable MTLS Security (on page

632).

15. As needed, enter values in the other sections common to all collectors (on page 579).

16. In the upper-left corner of the page, select Save.

The changes to the collector instance are saved.

17. If needed, restart the collector.

Specify the tags (on page 357) whose data you want to collect using the collector.

Add a Python Collector Instance using Configuration Hub

• Install Python Collector (on page 2464).

This topic describes how to add a Python collector instance using Configuration hub.

Historian | 3 - Configuration Hub | 557

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors in the default system appears.

3. In the upper-right corner of the main section, select .

The Add Collector Instance: <system name> window appears, displaying the Collector Selection

section. The MACHINE NAME field contains a list of machines on which you have installed

collectors.

4. In the MACHINE NAME field, select the machine in which you want to add a collector instance.

5. In the COLLECTOR TYPE field, select Python Collector, and then select Get Details.

Note:

The INSTALLATION DRIVE and BASE DATA DIRECTORY fields cannot be changed. This

is the drive location and the data directory folder that you provided during Collectors

installation.

The INSTALLATION DRIVE and DATA DIRECTORY fields are populated with the drive location and

the data directory folder.

6. Select Next.

The Destination Configuration section appears. The collector machine name provided by you is

selected as the Source Configuration by default.

Under CHOOSE DESTINATION, the Historian Server option is selected by default. In addition, the

DESTINATION HISTORIAN SERVER field is disabled and populated with the collector machine

name.

7. Select the destination to which you want to send data, and then enter the values in the

corresponding fields. You can send data to an on-premises Historian server or to a cloud

destination.

Historian | 3 - Configuration Hub | 558

a. If you need to send data to a cloud destination, select the cloud destinations as needed.

▪ Predix Timeseries- Select this if you need to send data to Predix cloud. For more

information, refer to Predix Cloud (on page 621).

▪ Azure IoT Hub- Select this if you need to send data to Azure Cloud in KairosDB

format. For more information, refer to Azure IoT Hub (KairosDB format) (on page

608).

▪ MQTT- Select this if you need to send data to any of the following cloud destination.

▪ Alibaba cloud. For more information, refer to Alibaba Cloud (on page 587).

▪ AWS cloud. For more information, refer to AWS Cloud (on page 594).

▪ Google cloud. For more information, refer to Google Cloud (on page 614).

b. If you need to send data to an on-premises Historian server, select Historian Server.

If you created security groups or enabled a strict client/collector authentication, enter the

USERNAME and PASSWORD of the on-premises Historian server that you created during the

installation of the collector.

If you entered the USERNAMEand PASSWORD, select Test Connection. This will help you to

test if the Historian server that you are trying to connect is valid or if the credentials that you

entered are valid.

If the entered credentials are valid, a successful connection message appears.

8. After you selected the destination, select Next.

The Collector Initiation section appears.

9. If needed, modify the value in the COLLECTOR NAME field.

The value that you enter:

◦ Must be unique.

◦ Must not exceed 15 characters.

◦ Must not contain a space.

◦ Must not contain special characters except a hyphen, period, and an underscore.

10. In the RUNNING MODE field, select one of the following options.

◦ Service - Local System Account: Select this option if you want to run the collector as a

Windows service using the credentials of the local user (that is, the currently logged-in user).

If you select this option, the USERNAME and PASSWORD fields are disabled.

◦ Service Under Specific User Account: Select this option if you want to run the collector as

a Windows service using a specific user account. If you select this option, you must enter

values in the USERNAME and PASSWORD fields.

Historian | 3 - Configuration Hub | 559

If you have enabled the Enforce Strict Collector Authentication option in Historian

Administrator, you must provide the credentials of a user who is added to at least one of the

following security groups:

▪ iH Security Admins

▪ iH Collector Admins

▪ iH Tag Admins

You can also configure the collector to start automatically when you start the computer.

11. Select Add.

The collector instance is added. The fields specific to the collector section appear in the DETAILS

section.

Specify the tags (on page 357) whose data you want to collect using the collector.

Add and Configure a Server-to-Server Collector

The Server-to-Server collector collects data and messages from a source Historian server to a destination

Historian server or a cloud destination. For more information, refer to Overview of the Server-to-Server

Collector (on page 2499).

This topic describes how to add a collector instance using Configuration Hub. You can also add a

collector instance using the RemoteCollectorConfigurator utility (on page 797), which does not require

you to install Web-based Clients.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors in the default system appears.

3. In the upper-right corner of the main section, select .

Historian | 3 - Configuration Hub | 560

The Add Collector Instance: <system name> window appears, displaying the Collector Selection

section. The MACHINE NAME field contains a list of machines on which you have installed

collectors.

4. In the MACHINE NAME field, select the machine in which you want to add a collector instance.

5. In the COLLECTOR TYPE field, select Server to Server Collector, and then select Get Details.

The INSTALLATION DRIVE and DATA DIRECTORY fields are disabled and populated.

6. Select Next.

The Source Configuration section appears.

7. In the HISTORIAN SOURCE SERVER field, enter the host name or IP address of the Historian server

from which you want to collect data. By default, the local host name appears.

8. If you created security groups or enabled a strict client/collector authentication, enter the

USERNAME and PASSWORD of the on-premises Historian server that you created during the

installation of the collector.

If you entered the USERNAMEand PASSWORD, select Test Connection. This will help you to test if

the Historian server that you are trying to connect is valid or if the credentials that you entered are

valid.

If the entered credentials are valid, a successful connection message appears.

9. Select Next.

The Destination Configuration section appears. The collector machine name provided by you is

selected as the Source Configuration by default.

Under CHOOSE DESTINATION, the Historian Server option is selected by default. In addition, the

DESTINATION HISTORIAN SERVER field is populated with the collector machine name, you can

change it in case of a remote Historian server.

Historian | 3 - Configuration Hub | 561

10. Select the destination to which you want to send data, and then enter the values in the

corresponding fields. You can send data to an on-premises Historian server or to a cloud

destination.

a. If you need to send data to a cloud destination, select the cloud destinations as needed.

▪ Predix Timeseries- Select this if you need to send data to Predix cloud. For more

information, refer to Predix Cloud (on page 621).

▪ Azure IoT Hub- Select this if you need to send data to Azure Cloud in KairosDB

format. For more information, refer to Azure IoT Hub (KairosDB format) (on page

608).

▪ MQTT- Select this if you need to send data to any of the following cloud destination.

▪ Alibaba cloud. For more information, refer to Alibaba Cloud (on page 587).

▪ AWS cloud. For more information, refer to AWS Cloud (on page 594).

▪ Google cloud. For more information, refer to Google Cloud (on page 614).

b. If you need to send data to an on-premises Historian server, select Historian Server.

If you created security groups or enabled a strict client/collector authentication, enter the

USERNAME and PASSWORD.

If you entered the USERNAMEand PASSWORD, select Test Connection.

If the entered credentials are valid, a successful connection message appears.

11. Select Next.

The Collector Initiation section appears.

12. If needed, modify the value in the COLLECTOR NAME field.

The value that you enter:

◦ Must be unique.

◦ Must not exceed 15 characters.

◦ Must not contain a space.

◦ Must not contain special characters except a hyphen, period, and an underscore.

13. In the RUNNING MODE field, select one of the following options.

◦ Service - Local System Account: Select this option if you want to run the collector as a

Windows service using the credentials of the local user (that is, the currently logged-in user).

If you select this option, the USERNAME and PASSWORD fields are disabled.

◦ Service Under Specific User Account: Select this option if you want to run the collector as

a Windows service using a specific user account. If you select this option, you must enter

values in the USERNAME and PASSWORD fields.

Historian | 3 - Configuration Hub | 562

If you have enabled the Enforce Strict Collector Authentication option in Historian

Administrator, you must provide the credentials of a user who is added to at least one of the

following security groups:

▪ iH Security Admins

▪ iH Collector Admins

▪ iH Tag Admins

You can also configure the collector to start automatically when you start the computer.

14. Select Add.

The collector instance is added. The fields specific to the collector section appear in the DETAILS

section.

15. In the COLLECTOR SPECIFIC CONFIGURATION section, configure values as described in the

following table.

Field Description

Alarm Replication Indicates whether you want to enable or disable alarm replication. If you

enable alarm replication, all collected alarm data will be transferred from

the source server to the destination server. If you enable alarm replica

tion, you also enable alarm recovery. However, if you set the Max Recov

ery Time value to zero, alarm recovery does not happen.

Message Replication Indicates whether you to want to enable or disable message replication.

If you enable message replication, messages will be transferred from

the source server to the destination server. You can use this data for au

dits. If you enable message replication, you also enable message recov

ery. However, if you set the Max Recovery Time value to zero, message

recovery does not happen.

Calculation Timeout

(sec)

The maximum time allowed for a tag's calculation formula to execute

before being terminated. The default value is 10 seconds.

Max Recovery Time

(hr)

The maximum duration, in hours, for which the collector will attempt to

restore data during recovery logic. The default value is 4 hours.

Add Prefix to Mes

sages

The prefix to identify replicated messages on the destination.

Alarms and events data will automatically have a prefix added to it with

the following syntax: MachineName_Datasource

Historian | 3 - Configuration Hub | 563

Field Description

For example, if your alarm is forwarded from the server Almserver12 with

a data source named OPCAE, the prefix will be Almserver12_OPCAE.

MTLS Security Indicates whether you want to use Mutual TLS (MTLS) protocol to en

force a secure and strong authentication mechanism.

MTLS Data Encryption Indicates whether you want to encrypt the data that the collector shares

to the data archiver (DA).

For more information on how to enable MTLS Security, refer to Enable MTLS Security (on page

632).

16. As needed, enter values in the other sections common to all collectors (on page 579).

17. In the upper-left corner of the page, select Save.

The changes to the collector instance are saved.

18. If needed, restart the collector.

Specify the tags whose data you want to collect using the collector. In the CHOOSE CONFIGURATION

field,

• If you have selected Historian Configuration, specify the tags using Configuration Hub (on page

357).

• If you have selected Offline Configuration, modify the offline configuration file of the collector.

By default, the file is available in the following location: <installation folder of

Historian>\GE Digital\<collector name>. For information, refer to Offline Configuration

for Collectors (on page 2039). This option is applicable only if you have selected a cloud

destination.

Add and Configure a Server-to-Server Distributor

The Server-to-Server distributor is used to send data from a smaller Historian server to a larger,

centralized on-premises Historian server. For more information, refer to Overview of the Server-to-Server

Historian | 3 - Configuration Hub | 564

Distributor (on page 2554). If you want to send data to a cloud destination, use the Server-to-Server

collector (on page 559) instead.

This topic describes how to add a collector instance using Configuration Hub. You can also add a

collector instance using the RemoteCollectorConfigurator utility (on page 797), which does not require

you to install Web-based Clients.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors in the default system appears.

3. In the upper-right corner of the main section, select .

The Add Collector Instance: <system name> window appears, displaying the Collector Selection

section. The MACHINE NAME field contains a list of machines on which you have installed

collectors.

4. In the MACHINE NAME field, select the machine in which you want to add a collector instance.

5. In the COLLECTOR TYPE field, select Server to Server Distributor Collector, and then select Get

Details.

The INSTALLATION DRIVE and DATA DIRECTORY fields are disabled and populated.

6. Select Next.

The Source Configuration section appears.

7. In the HISTORIAN SOURCE SERVER field, enter the host name or IP address of the Historian server

from which you want to collect data. By default, the local host name appears.

Historian | 3 - Configuration Hub | 565

8. If you created security groups or enabled a strict client/collector authentication, enter the

USERNAME and PASSWORD of the on-premises Historian server that you created during the

installation of the collector.

If you entered the USERNAMEand PASSWORD, select Test Connection. This will help you to test if

the Historian server that you are trying to connect is valid or if the credentials that you entered are

valid.

If the entered credentials are valid, a successful connection message appears.

9. Select Next.

The Destination Configuration section appears. Under CHOOSE DESTINATION, the Historian

Server option is selected by default; the other options are disabled. In addition, the DESTINATION

HISTORIAN SERVER field is populated with the collector machine name, you can change it in case

of a remote Historian server.

10. In the USERNAME and PASSWORD fields, enter the credentials to access the destination Historian

server. Values are required only for a remote Historian server.

If you entered the USERNAMEand PASSWORD, select Test Connection. This will help you to test if

the Historian server that you are trying to connect is valid or if the credentials that you entered is

valid.

11. Select Next.

The Collector Initiation section appears.

12. If needed, modify the value in the COLLECTOR NAME field.

The value that you enter:

◦ Must be unique.

◦ Must not exceed 15 characters.

◦ Must not contain a space.

◦ Must not contain special characters except a hyphen, period, and an underscore.

13. In the RUNNING MODE field, select one of the following options.

◦ Service - Local System Account: Select this option if you want to run the collector as a

Windows service using the credentials of the local user (that is, the currently logged-in user).

If you select this option, the USERNAME and PASSWORD fields are disabled.

◦ Service Under Specific User Account: Select this option if you want to run the collector as

a Windows service using a specific user account. If you select this option, you must enter

values in the USERNAME and PASSWORD fields.

If you have enabled the Enforce Strict Collector Authentication option in Historian

Administrator, you must provide the credentials of a user who is added to at least one of the

following security groups:

Historian | 3 - Configuration Hub | 566

▪ iH Security Admins

▪ iH Collector Admins

▪ iH Tag Admins

You can also configure the collector to start automatically when you start the computer.

14. Select Add.

The collector instance is added. The fields specific to the collector section appear in the DETAILS

section.

15. In the COLLECTOR SPECIFIC CONFIGURATION section, configure values as described in the

following table.

Field Description

Alarm Replication Indicates whether you want to enable or disable alarm replication. If you

enable alarm replication, all collected alarm data will be transferred from

the source server to the destination server. If you enable alarm replica

tion, you also enable alarm recovery. However, if you set the Max Recov

ery Time value to zero, alarm recovery does not happen.

Message Replication Indicates whether you to want to enable or disable message replication.

If you enable message replication, you also enable message recovery.

However, if you set the Max Recovery Time value to zero, message re

covery does not happen.

Calculation Timeout

(sec)

The maximum time allowed for a tag's calculation formula to execute

before being terminated. The default value is 10 seconds.

Max Recovery Time

(hr)

The maximum duration, in hours, for which the collector will attempt to

restore data during recovery logic. The default value is 4 hours.

Add Prefix to Mes

sages

The prefix to identify replicated messages on the destination.

Alarms and events data will automatically have a prefix added to it with

the following syntax:

MachineName_Datasource

For example, if your alarm is forwarded from the server Almserver12 with

a data source named OPCAE, the prefix will be Almserver12_OPCAE.

MTLS Security Indicates whether you want to use Mutual TLS (MTLS) protocol to en

force a secure and strong authentication mechanism.

Historian | 3 - Configuration Hub | 567

Field Description

MTLS Data Encryption Indicates whether you want to encrypt the data that the collector shares

to the data archiver (DA).

For more information on how to enable MTLS Security, refer to Enable MTLS Security (on page

632).

16. As needed, enter values in the other sections common to all collectors (on page 579).

17. In the upper-left corner of the page, select Save.

The changes to the collector instance are saved.

18. If needed, restart the collector.

Specify the tags (on page 357) whose data you want to collect using the collector.

Add and Configure a Simulation Collector

The Simulation collector generates random numbers and string patterns for demonstration purposes. For

more information, refer to Overview of the Simulation Collector (on page 2558).

This topic describes how to add a collector instance using Configuration Hub. You can also add a

collector instance using the RemoteCollectorConfigurator utility (on page 797), which does not require

you to install Web-based Clients.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors in the default system appears.

3. In the upper-right corner of the main section, select .

Historian | 3 - Configuration Hub | 568

The Add Collector Instance: <system name> window appears, displaying the Collector Selection

section. The MACHINE NAME field contains a list of machines on which you have installed

collectors.

4. In the MACHINE NAME field, select the machine in which you want to add a collector instance.

5. In the COLLECTOR TYPE field, select Simulation Collector, and then select Get Details.

The INSTALLATION DRIVE and DATA DIRECTORY fields are disabled and populated.

6. Select Next.

The Source Configuration section appears. The COLLECTOR MACHINE NAME field is disabled and

populated.

7. Select Next.

The Destination Configuration section appears. The collector machine name provided by you is

selected as the Source Configuration by default.

Under CHOOSE DESTINATION, the Historian Server option is selected by default. In addition, the

DESTINATION HISTORIAN SERVER field is disabled and populated with the collector machine

name.

8. Select the destination to which you want to send data, and then enter the values in the

corresponding fields. You can send data to an on-premises Historian server or to a cloud

destination.

Historian | 3 - Configuration Hub | 569

a. If you need to send data to a cloud destination, select the cloud destinations as needed.

▪ Predix Timeseries- Select this if you need to send data to Predix cloud. For more

information, refer to Predix Cloud (on page 621).

▪ Azure IoT Hub- Select this if you need to send data to Azure Cloud in KairosDB

format. For more information, refer to Azure IoT Hub (KairosDB format) (on page

608).

▪ MQTT- Select this if you need to send data to any of the following cloud destination.

▪ Alibaba cloud. For more information, refer to Alibaba Cloud (on page 587).

▪ AWS cloud. For more information, refer to AWS Cloud (on page 594).

▪ Google cloud. For more information, refer to Google Cloud (on page 614).

b. If you need to send data to an on-premises Historian server, select Historian Server.

If you created security groups or enabled a strict client/collector authentication, enter the

USERNAME and PASSWORD of the on-premises Historian server that you created during the

installation of the collector.

If you entered the USERNAMEand PASSWORD, select Test Connection. This will help you to

test if the Historian server that you are trying to connect is valid or if the credentials that you

entered are valid.

If the entered credentials are valid, a successful connection message appears.

9. Select Next.

The Collector Initiation section appears.

10. If needed, modify the value in the COLLECTOR NAME field.

The value that you enter:

◦ Must be unique.

◦ Must not exceed 15 characters.

◦ Must not contain a space.

◦ Must not contain special characters except a hyphen, period, and an underscore.

11. In the RUNNING MODE field, select one of the following options.

◦ Service - Local System Account: Select this option if you want to run the collector as a

Windows service using the credentials of the local user (that is, the currently logged-in user).

If you select this option, the USERNAME and PASSWORD fields are disabled.

◦ Service Under Specific User Account: Select this option if you want to run the collector as

a Windows service using a specific user account. If you select this option, you must enter

values in the USERNAME and PASSWORD fields.

Historian | 3 - Configuration Hub | 570

If you have enabled the Enforce Strict Collector Authentication option in Historian

Administrator, you must provide the credentials of a user who is added to at least one of the

following security groups:

▪ iH Security Admins

▪ iH Collector Admins

▪ iH Tag Admins

You can also configure the collector to start automatically when you start the computer.

12. Select Add.

The collector instance is added. The fields specific to the collector section appear in the DETAILS

section.

13. In the COLLECTOR SPECIFIC CONFIGURATION section, configure values as described in the

following table.

Field Description

Number of Tags The number of Historian tags that you want the create for the collector.

Function Period

(seconds)

The period, in seconds, of the SIN,STEP, and RAMP functions implemented in the

collector.

MTLS Security Indicates whether you want to use Mutual TLS (MTLS) protocol to enforce a

secure and strong authentication mechanism.

MTLS Data En

cryption

Indicates whether you want to encrypt the data that the collector shares to the

data archiver (DA).

For more information on how to enable MTLS Security, refer to Enable MTLS Security (on page

632).

14. As needed, enter values in the other sections common to all collectors (on page 579).

15. In the upper-left corner of the page, select Save.

Historian | 3 - Configuration Hub | 571

The changes to the collector instance are saved.

16. If needed, restart the collector.

Specify the tags whose data you want to collect using the collector. In the CHOOSE CONFIGURATION

field,

• If you have selected Historian Configuration, specify the tags using Configuration Hub (on page

357).

• If you have selected Offline Configuration, modify the offline configuration file of the collector.

By default, the file is available in the following location: <installation folder of

Historian>\GE Digital\<collector name>. For information, refer to Offline Configuration

for Collectors (on page 2039). This option is applicable only if you have selected a cloud

destination.

Add and Configure Windows Performance Collector

The Windows Performance collector collects Windows performance counter data. For more information,

refer to Overview of the Windows Performance Collector (on page 2562).

This topic describes how to add a collector instance using Configuration Hub. You can also add a

collector instance using the RemoteCollectorConfigurator utility (on page 797), which does not require

you to install Web-based Clients.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors in the default system appears.

3. In the upper-right corner of the main section, select .

Historian | 3 - Configuration Hub | 572

The Add Collector Instance: <system name> window appears, displaying the Collector Selection

section. The MACHINE NAME field contains a list of machines on which you have installed

collectors.

4. In the MACHINE NAME field, select the machine in which you want to add a collector instance.

5. In the COLLECTOR TYPE field, select Windows Performance Collector, and then select Get Details.

The INSTALLATION DRIVE and DATA DIRECTORY fields are disabled and populated.

6. Select Next.

The Source Configuration section appears. The WINDOWS MACHINE NAME field is disabled and

populated.

7. Select Next.

The Destination Configuration section appears. The collector machine name provided by you is

selected as the Source Configuration by default.

Under CHOOSE DESTINATION, the Historian Server option is selected by default. In addition, the

DESTINATION HISTORIAN SERVER field is disabled and populated with the collector machine

name.

8. Select the destination to which you want to send data, and then enter the values in the

corresponding fields. You can send data to an on-premises Historian server or to a cloud

destination.

Historian | 3 - Configuration Hub | 573

a. If you need to send data to a cloud destination, select the cloud destinations as needed.

▪ Predix Timeseries- Select this if you need to send data to Predix cloud. For more

information, refer to Predix Cloud (on page 621).

▪ Azure IoT Hub- Select this if you need to send data to Azure Cloud in KairosDB

format. For more information, refer to Azure IoT Hub (KairosDB format) (on page

608).

▪ MQTT- Select this if you need to send data to any of the following cloud destination.

▪ Alibaba cloud. For more information, refer to Alibaba Cloud (on page 587).

▪ AWS cloud. For more information, refer to AWS Cloud (on page 594).

▪ Google cloud. For more information, refer to Google Cloud (on page 614).

b. If you need to send data to an on-premises Historian server, select Historian Server.

If you created security groups or enabled a strict client/collector authentication, enter the

USERNAME and PASSWORD of the on-premises Historian server that you created during the

installation of the collector.

If you entered the USERNAMEand PASSWORD, select Test Connection. This will help you to

test if the Historian server that you are trying to connect is valid or if the credentials that you

entered are valid.

If the entered credentials are valid, a successful connection message appears.

9. Select Next.

The Collector Initiation section appears. The COLLECTOR NAME field is populated with a value in

the following format: <Historian server name>_WindowsPerfMon

10. If needed, modify the value in the COLLECTOR NAME field.

The value that you enter:

◦ Must be unique.

◦ Must not exceed 15 characters.

◦ Must not contain a space.

◦ Must not contain special characters except a hyphen, period, and an underscore.

11. In the RUNNING MODE field, select one of the following options.

◦ Service - Local System Account: Select this option if you want to run the collector as a

Windows service using the credentials of the local user (that is, the currently logged-in user).

By default, this option is selected, and the USERNAME and PASSWORD fields are disabled.

◦ Service Under Specific User Account: Select this option if you want to run the collector as

a Windows service using a specific user account. If you select this option, you must enter

values in the USERNAME and PASSWORD fields.

Historian | 3 - Configuration Hub | 574

If you have enabled the Enforce Strict Collector Authentication option in Historian

Administrator, you must provide the credentials of a user who is added to at least one of the

following security groups:

▪ iH Security Admins

▪ iH Collector Admins

▪ iH Tag Admins

You can also configure the collector to start automatically when you start the computer.

12. Select Add.

The collector instance is added.

13. Select the collector instance.

The fields specific to the collector section appear in the DETAILS section.

14. In the COLLECTOR SPECIFIC CONFIGURATION section, configure values as described in the

following table.

Field Description

MTLS Security Indicates whether you want to use Mutual TLS

(MTLS) protocol to enforce a secure and strong

authentication mechanism.

MTLS Data Encryption Indicates whether you want to encrypt the da

ta that the collector shares to the data archiver

(DA).

For more information on how to enable MTLS Security, refer to Enable MTLS Security (on page

632).

15. As needed, enter values in the the other sections common to all collectors (on page 579).

16. In the upper-left corner of the page, select Save.

The changes to the collector instance are saved.

17. If needed, restart the collector.

Historian | 3 - Configuration Hub | 575

Specify the tags whose data you want to collect using the collector. In the CHOOSE CONFIGURATION

field,

• If you have selected Historian Configuration, specify the tags using Configuration Hub (on page

357).

• If you have selected Offline Configuration, modify the offline configuration file of the collector.

By default, the file is available in the following location: <installation folder of

Historian>\GE Digital\<collector name>. For information, refer to Offline Configuration

for Collectors (on page 2039). This option is applicable only if you have selected a cloud

destination.

Add and Configure a Wonderware Collector

The Wonderware Collector gathers data samples from a Wonderware Historian 2014 R2 server and stores

it in the Proficy Historian server. For more information, refer to Overview of the Wonderware Collector (on

page 2566).

This topic describes how to add a collector instance using Configuration Hub. You can also add a

collector instance using the RemoteCollectorConfigurator utility (on page 797), which does not require

you to install Web-based Clients.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors in the default system appears.

3. In the upper-right corner of the main section, select .

Historian | 3 - Configuration Hub | 576

The Add Collector Instance: <system name> window appears, displaying the Collector Selection

section. The MACHINE NAME field contains a list of machines on which you have installed

collectors.

4. In the MACHINE NAME field, select the machine in which you want to add a collector instance.

5. In the COLLECTOR TYPE field, select Wonderware Collector, and then select Get Details.

The INSTALLATION DRIVE and DATA DIRECTORY fields are disabled and populated.

6. Select Next.

The Source Configuration section appears. The field is disabled and populated.

7. In the WONDERWARE SERVER field, enter the host name or IP address of the Wonderware

Historian server from which you want to collect data.

8. Enter values in the USERNAME and PASSWORD fields to connect to the Wonderware Historian

server.

9. Select Next.

The Destination Configuration section appears. The collector machine name provided by you is

selected as the Source Configuration by default.

Under CHOOSE DESTINATION, the Historian Server option is selected by default. In addition, the

DESTINATION HISTORIAN SERVER field is disabled and populated with the collector machine

name.

10. Select the destination to which you want to send data, and then enter the values in the

corresponding fields. You can send data to an on-premises Historian server or to a cloud

destination.

a. If you need to send data to a cloud destination, select the cloud destinations as needed.

▪ Predix Timeseries- Select this if you need to send data to Predix cloud. For more

information, refer to Predix Cloud (on page 621).

▪ Azure IoT Hub- Select this if you need to send data to Azure Cloud in KairosDB

format. For more information, refer to Azure IoT Hub (KairosDB format) (on page

608).

▪ MQTT- Select this if you need to send data to any of the following cloud destination.

▪ Alibaba cloud. For more information, refer to Alibaba Cloud (on page 587).

▪ AWS cloud. For more information, refer to AWS Cloud (on page 594).

▪ Google cloud. For more information, refer to Google Cloud (on page 614).

b. If you need to send data to an on-premises Historian server, select Historian Server.

If you created security groups or enabled a strict client/collector authentication, enter the

USERNAME and PASSWORD of the on-premises Historian server that you created during the

installation of the collector.

Historian | 3 - Configuration Hub | 577

If you entered the USERNAMEand PASSWORD, select Test Connection. This will help you to

test if the Historian server that you are trying to connect is valid or if the credentials that you

entered are valid.

If the entered credentials are valid, a successful connection message appears.

11. Select Next.

The Collector Initiation section appears. The COLLECTOR NAME field is populated with a value in

the following format: <Historian server name>_Wonderware

12. If needed, modify the value in the COLLECTOR NAME field.

The value that you enter:

◦ Must be unique.

◦ Must contain the string Wonderware.

◦ Must not exceed 15 characters.

◦ Must not contain a space.

◦ Must not contain special characters except a hyphen, period, and an underscore.

13. In the RUNNING MODE field, select one of the following options.

◦ Service - Local System Account: Select this option if you want to run the collector as a

Windows service using the credentials of the local user (that is, the currently logged-in user).

By default, this option is selected, and the USERNAME and PASSWORD fields are disabled.

◦ Service Under Specific User Account: Select this option if you want to run the collector as

a Windows service using a specific user account. If you select this option, you must enter

values in the USERNAME and PASSWORD fields.

If you have enabled the Enforce Strict Collector Authentication option in Historian

Administrator, you must provide the credentials of a user who is added to at least one of the

following security groups:

▪ iH Security Admins

▪ iH Collector Admins

▪ iH Tag Admins

You can also configure the collector to start automatically when you start the computer.

14. Select Add.

The collector instance is added.

15. Select the collector instance.

The fields specific to the collector section appear in the DETAILS section.

16. In the COLLECTOR SPECIFIC CONFIGURATION section, configure values as described in the

following table.

Historian | 3 - Configuration Hub | 578

Field Description

Recovery Time

(hours)

Enter the maximum time, in hours, for which the collector will attempt to

recover data after the collector is started or when connection between the

collector and the Wonderware Historian server is re-established. This time

is calculated as the duration between the current time and the last known

write time.

Continuous data collection is resumed only after the previous data has

been recovered.

The default value is 0 hours.

Throttle (Millisec

onds)

Enter the frequency of Wonderware data polling. This is to minimize the

load on the Wonderware Historian server. By default, Wonderware Collec

tor tries to query the tag data every 100 milliseconds based on the collec

tion interval time. You can change this value to any time between 100 mil

liseconds to 16 hours.

MTLS Security Indicates whether you want to use Mutual TLS (MTLS) protocol to enforce

a secure and strong authentication mechanism.

MTLS Data Encryp

tion

Indicates whether you want to encrypt the data that the collector shares to

the data archiver (DA).

For more information on how to enable MTLS Security, refer to Enable MTLS Security (on page

632).

17. As needed, enter values in the the other sections common to all collectors (on page 579).

18. In the upper-left corner of the page, select Save.

The changes to the collector instance are saved.

19. If needed, restart the collector.

Historian | 3 - Configuration Hub | 579

Specify the tags whose data you want to collect using the collector. In the CHOOSE CONFIGURATION

field,

• If you have selected Historian Configuration, specify the tags using Configuration Hub (on page

357).

• If you have selected Offline Configuration, modify the offline configuration file of the collector.

By default, the file is available in the following location: <installation folder of

Historian>\GE Digital\<collector name>. For information, refer to Offline Configuration

for Collectors (on page 2039). This option is applicable only if you have selected a cloud

destination.

Collector Configuration - Common Fields

This topic provides a list of general fields that you can configure for any collector instance. These

fields appear in the DETAILS section when you select a collector instance. For fields specific to a cloud

destination, refer to Alibaba Cloud (on page 587), AWS Cloud (on page 594), Azure Cloud (on page

601), Google Could (on page 614), and Predix Cloud (on page 621). For fields specific to the

collector type, refer to the topics on adding and configuring each individual collector.

After you enter/modify a value in these fields, the changes are saved automatically after you place the

cursor in a different field. Until the changes are saved, the values appear in bold formatting.

Table 29. The General Section

Field Description

Collector Name The name of the collector instance. This field is

disabled.

Collector Type The type of the collector instance. This field is dis

abled.

Description The description of the collector instance. This field

is disabled.

Memory Buffer Size (MB) The size of the memory buffer currently assigned

to the store-and-forward function. The memory

buffer stores data during short-term or momen

tary interruptions of the server connection; the disk

buffer handles long duration outages. To estimate

the size you need for this buffer, you need to know

how fast the collector is trying to send data to the

Historian | 3 - Configuration Hub | 580

Table 29. The General Section (continued)

Field Description

server and how long the server connection is likely

to be down. With those values and a safety margin,

you can compute the required size of the buffer.

The default value is 20.

Minimum Free Space (MB) The minimum free disk space that must be avail

able on the computer. If the minimum space re

quired is not available when the collector starts,

the collector will shut down.

Total Events Collected This field is disabled.

Total Events Reported This field is disabled.

Table 30. The Tags section

Field Description

Tag Prefix The prefix that will be added to each tag that you

configure for the collector instance. This field is

disabled and populated with the name of the col

lector instance.

This field applies to all collectors except File and

Calculation collectors.

Collection Interval Value The interval at which the collector collects data for

all the tags configured in the collector instance.

• For polled data collection, this value repre

sents the time required to complete a poll of

tags in the collector.

• For unsolicited data collection, it represents

the frequency at which data is retrieved

from tags in the collector. The collection

interval can be individually configured for

each tag.

You can set this value for each tag as well.

Historian | 3 - Configuration Hub | 581

Table 30. The Tags section (continued)

Field Description

Important:

For an OPC collector, to avoid collecting

redundant values when using device time

stamps, specify a collection interval that is

greater than the OPC server update rate.

Collection Interval The units of measure for the collection interval val

ue.

Collection Type The type of the data collection:

• Polled: Data is collected based on a sched

uled time interval. This type of data collec

tion is supported only for:

◦ The Calculation collector

◦ The HAB collector

◦ The iFIX collector

◦ The OPC Classic DA collector

◦ The OPC UA DA collector

◦ The Python collector

◦ The Simulation collector

◦ The Windows Performance collector

• Unsolicited: Data is collected based on an

event. This type of data collection is sup

ported only for:

◦ The Calculation collector

◦ The HAB collector

◦ The MQTT collector

◦ The MQTT Sparkplug B collector

◦ The ODBC collector

◦ The OPC Classic DA collector

◦ The OPC Classic HDA collector

◦ The OPC UA DA collector

◦ The OSI PI collector

◦ The OSI PI distributor

Historian | 3 - Configuration Hub | 582

Table 30. The Tags section (continued)

Field Description

◦ The Python collector

◦ The Server-to-Server collector

◦ The Server-to-Server distributor

◦ The Wonderware Collector

Time Assigned By Indicates whether the timestamp for the collected

data is set based on the data source or the collec

tor. For example, for an OSI PI collector, if you se

lect Source, the timestamp of the OSI PI server is

considered for the values collected by the collec

tor. If you select Collector, the timestamp of the

collector is considered.

Table 31. The Collector Compression Section

Field Description

Collector Compression Indicates whether you want to apply collector com

pression, which is a smoothing filter to data re

trieved from the data source. By ignoring small

changes in values that fall within a deadband cen

tered around the last reported value, only signifi

cant changes are stored in Historian, thus consum

ing less archive storage space.

For more information, refer to About Collector and

Archive Compression (on page 660).

Deadband Indicates whether you want to apply a deadband

based on the percentage of values or on absolute

values.

For example, if you set the deadband to 20% for a

range of 0 to 500 engineering units, the deadband

value is 100 units, which is 50 units on each side.

Therefore, only if the difference between two val

ues is greater than 50, they are stored in Historian.

Historian | 3 - Configuration Hub | 583

Table 31. The Collector Compression Section (continued)

Field Description

Note:

If the data quality changes from good to

bad or vice versa, the values are stored in

Historian regardless of the deadband val

ue.

Deadband Value The deadband value that you want to use for

values collected by the collector. Depending on

whether you have selected percent or absolute, the

deadband value is determined.

For example, if you want to set a deadband of 5

units on either side of a value (that is, value +/- 5),

enter 10 in the Deadband Value field, and select

Absolute in the Deadband field. Similarly, if you

want to set a deadband of 5% on either side of a

value, enter 10 in the Deadband Value field, and se

lect Percent in the Deadband field.

For more information, refer to About Collector and

Archive Compression (on page 660).

Compression Timeout The time for one poll cycle for which collector

compression is not used, thus sending all the sam

ples to Historian.

This is used for a Calculation collector or Server-to-

Server collector, when calculations fail, you may

possibly observe collector compression (even if it

is not enabled), thus producing no results or bad

quality data. In such cases, you can use compres

sion timeout, thus sending all the samples to His

torian.

For more information, refer to About Collector and

Archive Compression (on page 660).

Historian | 3 - Configuration Hub | 584

Table 31. The Collector Compression Section (continued)

Field Description

Compression Timeout Interval The units of measure for compression timeout.

Spike Logic Control Indicates whether you want to apply spike logic to

tag values. When you apply spike logic, in the event

of a sudden change in tag values, a data sample

is inserted just before the spike. The timestamp of

the inserted sample is determined by your polling

interval. If samples are collected at 1 second in

tervals, the inserted sample's timestamp will be 1

second before the spike. This helps clearly identi

fy the spike, and retains a more accurate picture of

the data leading up to it.

For more information, refer to Enable Spike Logic

(on page 970).

Multiplier Specifies how much larger a spike value must be

than the deadband range before the spike logic is

invoked.

For example, if you enter 3 in the Multiplier field,

and the deadband is set to 5%, the spike logic will

not be invoked until the difference between the

spike value and the previously archived data point

is 15% of the EGU range.

Interval Specifies how many samples must have been

compressed before the spike logic is invoked. For

example, if you enter 4 in the Interval field, and

6 values have been compressed since the last

archived data sample, the spike logic will be in

voked.

Historian | 3 - Configuration Hub | 585

Table 32. The Collector Options Section

Field Description

Online Tag Configuration Changes Indicates whether you want tag configuration

changes to reflect immediately. If you disable this

option, any tag configuration changes will reflect

only after you restart the collector instance.

Browse Source Address Space Indicates whether you want to allow browsing for

tags in the source. You may sometimes want to

disable this option to reduce processing load on

the collector.

Synchronize Timestamps to Server Indicates whether you want to adjust the time

stamp of data to align with the time setting in the

Historian server. Note that this does not change

the time setting in the collector machine; it only

calculates the timestamp based on the difference

between the time settings in the server machine

and the collector machine, independent of time

zone or daylight saving differences.

Note:

• This option is applicable only if the

timestamp of the collector is con

sidered (instead of that of the da

ta source - as specified in the Time

Assigned By field).

• If this option is disabled, and if the

time in the collector machine is

more than 15 minutes ahead of the

time in the server machine, data will

not be stored in Historian.

Source/Device Timestamp in The source/device timestamp format. Either UTC

or Local.

Historian | 3 - Configuration Hub | 586

Table 32. The Collector Options Section (continued)

Field Description

Delay Collection at Startup (sec) The duration, in seconds, after which you want the

data collection to begin post tag configuration.

Table 33. The Advanced Section

Field Description

Debug Mode The debug mode for collector logs. 0 indicates nor

mal log level, whereas 255 indicates that debug

ging is enabled.

Note:

Leaving the debug mode enabled for a

long time consumes disk space.

Message Compression Indicates whether you want to apply message

compression.

Table 34. The Collector Status Output Section

Field Description

Rate Output Address The address in the source database into which the

collector writes the output of events/minute. This

will help an operator (or a HMI/SCADA application)

learn the performance of the collector. Values are

captured once a minute.

You must enter the address of a writable analog

field.

For example, for an iFIX collector, enter the ad

dress of an iFIX tag in the following format: <node

name>.<tag name>.<field name> (for example, MyN

ode.MySIM_AO.F_CV).

Status Output Address The address in the source database into which the

collector writes the current value of its status (for

example, running, stopped). This will help an opera

Historian | 3 - Configuration Hub | 587

Table 34. The Collector Status Output Section (continued)

Field Description

tor (or a HMI/SCADA application) learn the current

status of the collector. The value is updated only if

the status of the collector changes.

You must enter the address of a writable text field

of at least eight characters.

For an iFIX collector, use TX tag for the output ad

dress. Enter the address in the following format:

<node name>.<tag name>.<field name> (for exam

ple, MyNode.MyCollector_TX.A_CV).

Heartbeat Output Address The address in the source database into which the

collector writes the heartbeat signal output. Values

are captured once a minute.

You must enter the address of a writable analog

field.

For an iFIX data collector, use an iFIX tag for the

output address. Enter the address in the following

format: <node name>.<tag name>.<field name> (for

example, MyNode.MyCollector_TX.A_CV).

You can program the iFIX database to generate an

alarm if values are not written every minute, notify

ing you that the collector has stopped.

Sending Data to Cloud

Send Data to Alibaba Cloud

Generate a password using the utility. While generating the password, use the same algorithm that you

will use to connect to Alibaba Cloud.

To send data to Alibaba Cloud, you can choose any of the following collectors:

http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/189223/cn_zh/1605168543507/MQTT_Password.7z

Historian | 3 - Configuration Hub | 588

• The iFIX collector

• The MQTT collector

• The ODBC collector

• The OPC Classic DA collector

• The OPC Classic HDA collector

• The OPC UA DA collector

• The OSI PI collector

• The Python Collector

• The Server-to-Server collector

• The Simulation collector

• The Windows Performance collector

• The Wonderware collector

1. Access Alibaba IoT Platform console.

2. Create a product. When you do so:

◦ In the Node Type field, select Directly Connected Device.

◦ In the Network Connection Method field, select Wi-Fi.

◦ In the Data Type field, select ICA Standard Data Format.

https://www.alibabacloud.com/help/doc-detail/73705.htm

Historian | 3 - Configuration Hub | 589

3. Note down the region ID for the region you have selected. For a list of region IDs, refer to https://

www.alibabacloud.com/help/doc-detail/40654.htm.

4. Access the product certificate, and note down the product secret and product key values.

5. Create a device.

6. Access Configuration Hub (on page 336).

7. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors in the system appears.

8. If needed, select the system in which you want to add a collector instance.

https://www.alibabacloud.com/help/doc-detail/40654.htm
https://www.alibabacloud.com/help/doc-detail/40654.htm
https://www.alibabacloud.com/help/doc-detail/73729.htm?spm=a2c63.p38356.0.0.2b213e18OFQyNj#task-yk1-rnl-vdb

Historian | 3 - Configuration Hub | 590

9. In the upper-right corner of the main section, select .

The Add Collector Instance: <system name> window appears, displaying the Collector Selection

section. The MACHINE NAME field contains a list of machines on which you have installed

collectors.

10. In the COLLECTOR TYPE field, select a collector type, and then select Get Details.

The INSTALLATION DRIVE and DATA DIRECTORY fields are disabled and populated.

11. Select Next.

The Source Configuration section appears, populating the hostname of the collector machine.

12. As needed, enter values in the available fields, and then select Next.

The Destination Configuration section appears.

Historian | 3 - Configuration Hub | 591

13. In the CHOOSE DESTINATION field, select MQTT, and then provide values as described in the

following table.

Field Description

HOST ADDRESS Enter a value in the following format: <product name>.iot-as-

mqtt.<region ID>.aliyuncs.com. A value is required.

For example: a23dr53dwrt.iot-as-mqtt.cn-shanghai.aliyuncs

.com

PORT Enter 1883. A value is required.

CLIENT ID Enter a value in the following format: <device name>|securemod

e=<value>,signmethod=<algorithm name>. A value is required.

◦ For securemode, enter 2 for direct TLS connection, or en

ter 3 for direct TCP connection.

◦ For signmethod, specify the signature algorithm that

you want to use. Valid values are hmacmd5, hmacsha1,

hmacsha256, and sha256. You must use the same algo

rithm to generate the password.

For example: MyDevice|securemode=3,signmethod=hmacsha1

Historian | 3 - Configuration Hub | 592

Field Description

TOPIC Enter a value in the following format: /sys/<product name>/<de

vice name>/thing/event/property/post. A value is required.

For example: /sys/a23dr53dwrt/MyDevice/thing/event/proper

ty/post

USERNAME Enter a value in the following format: <device name><product

name>. A value is required.

For example: MyDevicea23dr53dwrt

PASSWORD Enter the password that you have generated. A value is required.

CHOOSE CONFIGURATION Select the type of the configuration to specify the tags whose

data you want to collect. Select one of the following options:

◦ Historian Configuration: Select this option if you want

to add the tags manually using Historian Administrator

(on page 659). If you select this option, the CONFIGU

RATION HISTORIAN SERVER field appears.

◦ Offline Configuration: Select this option if you want to

provide the tag names using the offline configuration (on

page 2039) file instead of adding tags manually. By de

fault, this file is located in the following location: <in

stallation folder of Historian>\GE Digi

tal\<collector name>

14. Select Next.

The Collector Initiation section appears.

Historian | 3 - Configuration Hub | 593

15. Enter a collector name.

The value that you enter:

◦ Must be unique.

◦ Must not exceed 15 characters.

◦ Must not contain a space.

◦ Must not contain special characters except a hyphen, period, and an underscore.

16. In the RUNNING MODE field, select one of the following options.

◦ Service - Local System Account: Select this option if you want to run the collector as a

Windows service using the credentials of the local user (that is, the currently logged-in user).

If you select this option, the USERNAME and PASSWORD fields are disabled.

◦ Service Under Specific User Account: Select this option if you want to run the collector as

a Windows service using a specific user account. If you select this option, you must enter

values in the USERNAME and PASSWORD fields. If you have enabled the Enforce Strict

Collector Authentication option in Historian Administrator, you must provide the credentials

of a user who is added to at least one of the following security groups:

▪ iH Security Admins

▪ iH Collector Admins

▪ iH Tag Admins

If you choose the first option, you can also configure the collector to start automatically when you

start the computer, or, in the case of iFIX collectors, whenever you start iFIX.

Historian | 3 - Configuration Hub | 594

17. Select Add.

The collector instance is created.

18. Specify the tags for which you want to collect data.

◦ If you have selected Historian Configuration in the CHOOSE CONFIGURATION field, specify

the tags manually (on page 357).

◦ If you have selected Offline Configuration in the CHOOSE CONFIGURATION field, specify the

tags using the offline configuration file (on page 2039).

The collector begins sending Historian data to the device that you have created.

Send Data to AWS IoT Core

To send data to an AWS IoT Code, you can choose any of the following collectors:

• The iFIX collector

• The MQTT collector

• The ODBC collector

• The OPC Classic DA collector

• The OPC Classic HDA collector

• The OPC UA DA collector

• The OSI PI collector

• The Python Collector

• The Server-to-Server collector

• The Simulation collector

• The Windows Performance collector

• The Wonderware collector

1. Access the AWS Management Console page.

2. Search and select IoT Core.

The AWS IoT page appears.

3. Create a policy allowing the permissions that you want to grant on your device (for example,

iot:Connect, iot:Publish, iot:Subscribe, iot:Receive). For the resource, provide the topic name. If,

however, you want to use all topics, enter *.

4. Create a thing, linking it with the policy that you have created.

5. Download the certificates and key files for the device to communicate. In addition, download the

root CA certificate.

https://docs.aws.amazon.com/iot/latest/developerguide/iot-moisture-policy.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-moisture-create-thing.html

Historian | 3 - Configuration Hub | 595

Important:

This is mandatory, and it is the only time you can download the certificates.

6. In the left navigation pane, select Settings.

7. Make a note of the endpoint that appears.

8. Access Configuration Hub (on page 336).

9. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors in the system appears.

Historian | 3 - Configuration Hub | 596

10. If needed, select the system in which you want to add a collector instance.

11. In the upper-right corner of the main section, select .

The Add Collector Instance: <system name> window appears, displaying the Collector Selection

section. The MACHINE NAME field contains a list of machines on which you have installed

collectors.

12. In the COLLECTOR TYPE field, select a collector type (except the File collector and the Server-to-

Server collector), and then select Get Details.

The INSTALLATION DRIVE and DATA DIRECTORY fields are disabled and populated.

13. Select Next.

The Source Configuration section appears, populating the hostname of the collector machine.

14. As needed, enter values in the available fields, and then select Next.

The Destination Configuration section appears.

Historian | 3 - Configuration Hub | 597

15. In the CHOOSE DESTINATION field, select MQTT, and then provide values as described in the

following table.

Field Description

HOST ADDRESS Enter the endpoint that you have noted down. A

value is required.

PORT Enter 8883. A value is required.

CLIENT ID Enter the thing name. A value is required.

TOPIC Enter the MQTT topic to which you want the

collector to publish data. A value is required.

For information on topic names, refer to https://

docs.aws.amazon.com/iot/latest/developer

guide/topics.html.

USERNAME Enter any value. Since we will use a certifi

cate-based authentication, username and pass

word will not be used; however, you must still

enter a value.

https://docs.aws.amazon.com/iot/latest/developerguide/topics.html
https://docs.aws.amazon.com/iot/latest/developerguide/topics.html
https://docs.aws.amazon.com/iot/latest/developerguide/topics.html

Historian | 3 - Configuration Hub | 598

Field Description

PASSWORD Enter any value. Since we will use a certifi

cate-based authentication, username and pass

word will not be used; however, you must still

enter a value.

CA SERVER ROOT FILE Enter the path of the root CA certificate file that

you have downloaded.

CLIENT CERTIFICATE Enter the path of the device certificate that you

have downloaded.

PRIVATE KEY FILE Enter the path of the private key file that you

have downloaded.

PUBLIC KEY FILE Enter the path of the public key file that you

have downloaded.

CHOOSE CONFIGURATION Select the type of the configuration to specify

the tags whose data you want to collect. Select

one of the following options:

◦ Historian Configuration: Select this op

tion if you want to add the tags manu

ally using Historian Administrator (on

page 659). If you select this option, the

CONFIGURATION HISTORIAN SERVER

field appears.

◦ Offline Configuration: Select this option

if you want to provide the tag names us

ing the offline configuration (on page

2039) file instead of adding tags man

ually. By default, this file is located in

the following location: <installation

folder of Historian>\GE Digi

tal\<collector name>

16. Select Next.

The Collector Initiation section appears.

Historian | 3 - Configuration Hub | 599

17. Enter a collector name.

The value that you enter:

◦ Must be unique.

◦ Must not exceed 15 characters.

◦ Must not contain a space.

◦ Must not contain special characters except a hyphen, period, and an underscore.

18. In the RUNNING MODE field, select one of the following options.

◦ Service - Local System Account: Select this option if you want to run the collector as a

Windows service using the credentials of the local user (that is, the currently logged-in user).

If you select this option, the USERNAME and PASSWORD fields are disabled.

◦ Service Under Specific User Account: Select this option if you want to run the collector as

a Windows service using a specific user account. If you select this option, you must enter

values in the USERNAME and PASSWORD fields. If you have enabled the Enforce Strict

Collector Authentication option in Historian Administrator, you must provide the credentials

of a user who is added to at least one of the following security groups:

▪ iH Security Admins

▪ iH Collector Admins

▪ iH Tag Admins

If you choose the first option, you can also configure the collector to start automatically when you

start the computer, or, in the case of iFIX collectors, whenever you start iFIX.

Historian | 3 - Configuration Hub | 600

19. Select Add.

The collector instance is created.

20. Specify the tags for which you want to collect data.

◦ If you have selected Historian Configuration in the CHOOSE CONFIGURATION field, specify

the tags manually (on page 357).

◦ If you have selected Offline Configuration in the CHOOSE CONFIGURATION field, specify the

tags using the offline configuration file (on page 2039).

The collector begins sending Historian data to the thing that you have created.

21. Access AWS IoT Core, and in the left pane, select Test.

The MQTT test client page appears.

22. Subscribe to the topic to which the collector is publishing data, and then select Subscribe.

The messages received from the topic appear, indicating that the collector is sending data to the

AWS IoT device.

AWS supports a payload of maximum 128 KB. Therefore, if the message size is greater than 128

KB, create a registry key named CloudMaxSamplesPerMsg for the collector instance, and decrease

the value to 700 or less. If, however, you want to send more data in a message, we recommend that

you create another collector instance and send data to another thing resource in AWS.

Historian | 3 - Configuration Hub | 601

Tip:

To find out the message size, modify the collector instance (on page 634) and set the log

level to 3 or more.

23. Create a VPC destination or an HTTP destination for the messages.

24. Monitor the data that you have collected.

Send Data to Azure Cloud in the Key-Value Format

To send data to an Azure IoT Hub device, you can choose any of the following collectors:

• The iFIX collector

• The MQTT collector

• The ODBC collector

• The OPC Classic DA collector

• The OPC Classic HDA collector

• The OPC UA DA collector

• The OSI PI collector

• The Python Collector

• The Server-to-Server collector

• The Simulation collector

• The Windows Performance collector

• The Wonderware collector

This topic describes how to send data in the key-value format. In this

format, the message size is bigger because names of the tag properties are

repeated. However, it provides clarity to novice users. For example: {"body":

[{"tagname":"Azure_Iot_simulation_tag_1","epochtime":1629730936000,"tagvalue":7129.124023438,"quality":3},

{"tagname":"Azure_Iot_simulation_tag_2","epochtime":1629730936000,"tagvalue":123.3738924567,"quality":3}] ,"messageId":436 ,"statusCode":0}

You can also send data in the KairosDB format (on page 608).

Note:

Data in Azure IoT Hub is stored for maximum seven days, after which it is deleted from the hub.

Therefore, you must consume the data within seven days. Based on your requirement, you can

store it in a relevant Azure storage. You can then use Azure functions or streaming analytics to

analyse the data.

https://docs.aws.amazon.com/iot/latest/developerguide/vpc-rule-action.html
https://docs.aws.amazon.com/iot/latest/developerguide/rule-destination.html
https://docs.aws.amazon.com/iot/latest/developerguide/monitoring_overview.html

Historian | 3 - Configuration Hub | 602

1. Create Azure IoT Hub.

Tip:

To choose the correct Azure IoT Hub tier based on your data throughput, refer to https://

docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-quotas-throttling. For guidance

on choosing the appropriate subscription, refer to https://azure.microsoft.com/en-

us/pricing/details/iot-hub/

2. After you create Azure IoT Hub, select Go to resource, and then note down the hostname:

3. Create devices in Azure IoT Hub to group related tag information; thus mapping a collector

instance to a device. We recommend that you create one device per collector instance. Ensure that

the device is running.

When you create a device, use the following guidelines to choose the authentication type:

◦ Symmetric Key: Select this option if you want to use a Shared Access Signature (SAS)

authentication.

◦ X.509 Self-Signed: Select this option if you want to create self-signed certificates using

OpenSSL. We recommend that you use these certificates only for testing purposes. For

instructions, refer to https://docs.microsoft.com/en-us/azure/iot-hub/tutorial-x509-self-

sign.

◦ X.509 CA Signed: Select this option if you want to use CA-signed certificates

4. If you have selected Symmetric Key in the previous step, select the link in the Device ID column,

and note down the shared access key value.

https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-create-through-portal
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-create-through-portal
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-quotas-throttling
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-quotas-throttling
https://azure.microsoft.com/en-us/pricing/details/iot-hub/
https://azure.microsoft.com/en-us/pricing/details/iot-hub/
https://docs.microsoft.com/en-us/azure/iot-edge/how-to-register-device?view=iotedge-2020-11&tabs=azure-portal
https://docs.microsoft.com/en-us/azure/iot-edge/how-to-register-device?view=iotedge-2020-11&tabs=azure-portal
https://docs.microsoft.com/en-us/azure/iot-hub/tutorial-x509-self-sign
https://docs.microsoft.com/en-us/azure/iot-hub/tutorial-x509-self-sign

Historian | 3 - Configuration Hub | 603

5. Access Configuration Hub (on page 336).

6. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors in the default system appears.

7. If needed, select the system in which you want to add a collector instance.

8. If needed, select the system in which you want to add a collector instance.

9. In the upper-right corner of the main section, select .

The Add Collector Instance: <system name> window appears, displaying the Collector Selection

section. The MACHINE NAME field contains a list of machines on which you have installed

collectors.

10. In the COLLECTOR TYPE field, select a collector type, and then select Get Details.

The INSTALLATION DRIVE and DATA DIRECTORY fields are disabled and populated.

11. Select Next.

The Source Configuration section appears.

12. As needed, enter values in the available fields.

13. Select Next.

Historian | 3 - Configuration Hub | 604

The Destination Configuration section appears.

14. Select MQTT, and provide values as described in the following table.

Field Description

HOST ADDRESS Enter the host name of the resource that you

have noted down in step 2. A value is required

and must be in the following format: <Azure IoT

Hub name>.azure-devices.net

PORT Enter 8883.

CLIENT ID Enter the ID of the device that you created in

step 3. A value is required and must be unique

for an MQTT broker.

TOPIC Enter devices/<device ID>/messages/events.

AUTO REFRESH Indicates whether you want to automatically

create/refresh the SAS authentication token

when it expires.

Historian | 3 - Configuration Hub | 605

Field Description

◦ If you switch the toggle off, you must

manually provide the token as soon as it

expires.

◦ If you switch the toggle on, you must

provide the shared access key that you

have noted down in step 4. And, you can

leave the PASSWORD field blank.

This is applicable only if you have selected

Symmetric Key in step 3.

USERNAME Enter a value in the following format: <host

name or IP address>/<device ID>/?api-ver

sion=2018-06-30

PASSWORD Enter the SAS token. This is applicable only if

you have selected Symmetric Key in step 3 and

if you have switched off the AUTO REFRESH

toggle.

For instructions on generating a SAS token, re

fer to https://docs.microsoft.com/en-us/azure/

cognitive-services/translator/document-trans

lation/create-sas-tokens?tabs=Containers.

DEVICE SHARED KEY Enter the shared access key value that you not

ed down in step 4. A value is required. This is

applicable only if you have selected Symmetric

Key in step 3 and if you have switched the AU

TO REFRESH toggle on.

CA SERVER ROOT FILE Enter the path of the CA server root file that

you want to use. You can find the file here:

https://github.com/Azure-Samples/IoTMQT

TSample/blob/master/IoTHubRootCA_Balti

more.pem.

CLIENT CERTIFICATE Enter the path to the client certificate. A value is

required. This is applicable only if you have se

lected one of these options in step 3:

https://docs.microsoft.com/en-us/azure/cognitive-services/translator/document-translation/create-sas-tokens?tabs=Containers
https://docs.microsoft.com/en-us/azure/cognitive-services/translator/document-translation/create-sas-tokens?tabs=Containers
https://docs.microsoft.com/en-us/azure/cognitive-services/translator/document-translation/create-sas-tokens?tabs=Containers
https://github.com/Azure-Samples/IoTMQTTSample/blob/master/IoTHubRootCA_Baltimore.pem
https://github.com/Azure-Samples/IoTMQTTSample/blob/master/IoTHubRootCA_Baltimore.pem
https://github.com/Azure-Samples/IoTMQTTSample/blob/master/IoTHubRootCA_Baltimore.pem

Historian | 3 - Configuration Hub | 606

Field Description

◦ X.509 Self-Signed: If you have selected

this option, you can generate the certifi

cate using OpenSSL.

◦ X.509 CA Signed: If you have selected

this option, you would receive the certifi

cate from CA.

PRIVATE KEY FILE Enter the complete path to the private key file.

A value is required. This is applicable only if you

have selected one of these options in step 3:

◦ X.509 Self-Signed: If you have selected

this option, you can generate the key file

using OpenSSL.

◦ X.509 CA Signed: If you have selected

this option, you would receive the key file

from CA.

PUBLIC KEY FILE Enter the path to the public key file. This is ap

plicable only if you have selected one of these

options in step 3:

◦ X.509 Self-Signed: If you have selected

this option, you can generate the key file

using OpenSSL.

◦ X.509 CA Signed: If you have selected

this option, you would receive the key file

from CA.

CHOOSE CONFIGURATION The type of the configuration to specify the

tags whose data you want to collect. Select one

of the following options:

◦ Historian Configuration: Select this op

tion if you want to add the tags manually

(on page 357). If you select this option,

the CONFIGURATION HISTORIAN SERV

ER field appears.

◦ Offline Configuration: Select this option

if you want to provide the tag names us

ing the offline configuration (on page

Historian | 3 - Configuration Hub | 607

Field Description

2039) file instead of adding tags man

ually. By default, this file is located in

the following location: <installation

folder of Historian>\GE Digi

tal\<collector name>

CONFIGURATION HISTORIAN SERVER The host name of the machine from which you

want to access Historian Administrator to add

the tags manually for the collector. This field

appears only if you have selected Historian

Configuration in the CHOOSE CONFIGURATION

field.

15. Select Next.

The Collector Initiation section appears.

16. Enter a collector name.

The value that you enter:

◦ Must be unique.

◦ Must not exceed 15 characters.

Historian | 3 - Configuration Hub | 608

◦ Must not contain a space.

◦ Must not contain special characters except a hyphen, period, and an underscore.

17. In the RUNNING MODE field, select one of the following options.

◦ Service - Local System Account: Select this option if you want to run the collector as a

Windows service using the credentials of the local user (that is, the currently logged-in user).

If you select this option, the USERNAME and PASSWORD fields are disabled.

◦ Service Under Specific User Account: Select this option if you want to run the collector as

a Windows service using a specific user account. If you select this option, you must enter

values in the USERNAME and PASSWORD fields. If you have enabled the Enforce Strict

Collector Authentication option in Historian Administrator, you must provide the credentials

of a user who is added to at least one of the following security groups:

▪ iH Security Admins

▪ iH Collector Admins

▪ iH Tag Admins

If you choose the first option, you can also configure the collector to start automatically when you

start the computer, or, in the case of iFIX collectors, whenever you start iFIX.

18. Select Add.

The collector instance is created.

19. Specify the tags for which you want to collect data.

◦ If you have selected Historian Configuration in the CHOOSE CONFIGURATION field, specify

the tags manually (on page 357).

◦ If you have selected Offline Configuration in the CHOOSE CONFIGURATION field, specify the

tags using the offline configuration file (on page 2039).

The collector begins sending Historian data to the Azure IoT Hub device that you have created.

Send Data to Azure Cloud in the KairosDB Format

To send data to an Azure IoT Hub device, you can choose any of the following collectors:

• The iFIX collector

• The MQTT collector

• The ODBC collector

• The OPC Classic DA collector

• The OPC Classic HDA collector

• The OPC UA DA collector

• The OSI PI collector

• The Server-to-Server collector

Historian | 3 - Configuration Hub | 609

• The Simulation collector

• The Windows Performance collector

• The Wonderware collector

This topic describes how to send data in the KairosDB format. In this format, the message

size is less because names of the tag properties are not repeated. For example: [{"<tag

name>":"Cloud_GCYSS3X2E.Simulation00001","<timestamp, tag value, and quality>":

[[1586260104000,132560.203125000,3]]}. If you use this format, you can only use SAS-based

authentication; you cannot use certificate-based authentication.

You can also send data in the key-value format (on page 601).

Note:

Data in Azure IoT Hub is stored for maximum seven days, after which it is deleted from the hub.

Therefore, you must consume the data within seven days. Based on your requirement, you can

store it in a relevant Azure storage. You can then use Azure functions or streaming analytics to

analyse the data.

1. Create Azure IoT Hub.

Tip:

To choose the correct Azure IoT Hub tier based on your data throughput, refer to https://

docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-quotas-throttling. For guidance

on choosing the appropriate subscription, refer to https://azure.microsoft.com/en-

us/pricing/details/iot-hub/

2. Create devices in Azure IoT Hub to group related tag information; thus mapping a collector

instance to a device. We recommend that you create one device per collector instance. Ensure that

the device is running.

When you create a device, use only in the Symmetric Key authentication.

3. Select the link in the Device ID column, and note down the primary connection string value.

https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-create-through-portal
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-create-through-portal
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-quotas-throttling
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-quotas-throttling
https://azure.microsoft.com/en-us/pricing/details/iot-hub/
https://azure.microsoft.com/en-us/pricing/details/iot-hub/
https://docs.microsoft.com/en-us/azure/iot-edge/how-to-register-device?view=iotedge-2020-11&tabs=azure-portal
https://docs.microsoft.com/en-us/azure/iot-edge/how-to-register-device?view=iotedge-2020-11&tabs=azure-portal

Historian | 3 - Configuration Hub | 610

4. Access Configuration Hub (on page 336).

5. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors in the default system appears.

6. If needed, select the system in which you want to add a collector instance.

7. If needed, select the system in which you want to add a collector instance.

8. In the upper-right corner of the main section, select .

Historian | 3 - Configuration Hub | 611

The Add Collector Instance: <system name> window appears, displaying the Collector Selection

section. The MACHINE NAME field contains a list of machines on which you have installed

collectors.

9. In the COLLECTOR TYPE field, select a collector type, and then select Get Details.

The INSTALLATION DRIVE and DATA DIRECTORY fields are disabled and populated.

10. Select Next.

The Source Configuration section appears.

11. As needed, enter values in the available fields.

12. Select Next.

The Destination Configuration section appears.

13. Select Azure IoT Hub, and provide values as described in the following table.

Field Description

DEVICE CONNECTION STRING Identifies the Azure IoT device to which you

want to send data. Enter the primary connec

tion string value that you have noted down in

step 3.

Historian | 3 - Configuration Hub | 612

Field Description

TRANSPORT PROTOCOL The protocol that you want to use to send da

ta to Azure IoT Hub. Select one of the following

options:

◦ HTTP

◦ MQTT

◦ AMQP

◦ MQTT_OVER_WEBSOCKETS

◦ AMQP_OVER_WEBSOCKETS

For information on which protocol to use, re

fer to Protocols and Port Numbers (on page

626).

PROXY Identifies the URL of the proxy server to be

used for both the authentication process and

for sending data. If the collector is running on

a network where proxy servers are used to ac

cess web resources outside of the network,

then you must provide the proxy server set

tings. However, it does not affect the proxy

server used by Windows when establishing se

cure connections. As a result, you must still

configure the proxy settings for the Windows

user account under which the collector service

runs.

PROXY USERNAME The username to connect to the proxy server.

PROXY PASSWORD The password to connect to the proxy server.

CHOOSE CONFIGURATION The type of the configuration to specify the

tags whose data you want to collect. Select one

of the following options:

◦ Historian Configuration: Select this op

tion if you want to add the tags manually

(on page 357). If you select this option,

the CONFIGURATION HISTORIAN SERV

ER field appears.

Historian | 3 - Configuration Hub | 613

Field Description

◦ Offline Configuration: Select this option

if you want to provide the tag names us

ing the offline configuration (on page

2039) file instead of adding tags man

ually. By default, this file is located in

the following location: <installation

folder of Historian>\GE Digi

tal\<collector name>

CONFIGURATION HISTORIAN SERVER The host name of the machine from which you

want to access Historian Administrator to add

the tags manually for the collector. This field

appears only if you have selected Historian

Configuration in the CHOOSE CONFIGURATION

field.

The collector instance is created and connected to the Azure IoT Hub device.

14. Select Next.

The Collector Initiation section appears.

15. Enter a collector name.

Historian | 3 - Configuration Hub | 614

The value that you enter:

◦ Must be unique.

◦ Must not exceed 15 characters.

◦ Must not contain a space.

◦ Must not contain special characters except a hyphen, period, and an underscore.

16. In the RUNNING MODE field, select one of the following options.

◦ Service - Local System Account: Select this option if you want to run the collector as a

Windows service using the credentials of the local user (that is, the currently logged-in user).

If you select this option, the USERNAME and PASSWORD fields are disabled.

◦ Service Under Specific User Account: Select this option if you want to run the collector as

a Windows service using a specific user account. If you select this option, you must enter

values in the USERNAME and PASSWORD fields. If you have enabled the Enforce Strict

Collector Authentication option in Historian Administrator, you must provide the credentials

of a user who is added to at least one of the following security groups:

▪ iH Security Admins

▪ iH Collector Admins

▪ iH Tag Admins

If you choose the first option, you can also configure the collector to start automatically when you

start the computer, or, in the case of iFIX collectors, whenever you start iFIX.

17. Select Add.

The collector instance is created.

18. Specify the tags for which you want to collect data.

◦ If you have selected Historian Configuration in the CHOOSE CONFIGURATION field, specify

the tags manually (on page 357).

◦ If you have selected Offline Configuration in the CHOOSE CONFIGURATION field, specify the

tags using the offline configuration file (on page 2039).

The collector begins sending Historian data to the Azure IoT Hub device that you have created.

Send Data to Google Cloud

1. Download the Google root CA certificate from https://pki.google.com/roots.pem.

2. Create public/private key pairs. Use OpenSSL only for testing purposes.

To send data to a Google Cloud device, you can choose any of the following collectors:

• The iFIX collector

• The MQTT collector

https://pki.google.com/roots.pem
https://cloud.google.com/iot/docs/how-tos/credentials/keys

Historian | 3 - Configuration Hub | 615

• The ODBC collector

• The OPC Classic DA collector

• The OPC Classic HDA collector

• The OPC UA DA collector

• The OSI PI collector

• The Python Collector

• The Server-to-Server collector

• The Simulation collector

• The Windows Performance collector

• The Wonderware collector

1. Access Google Cloud Platform.

2. Create a project. Note down the project ID.

3. Create a registry.

When you create the registry:

◦ Use the MQTT protocol.

◦ You can choose to provide a CA certificate.

Note down the registry ID and the region values.

4. Add a device to the registry.

When you add the device:

◦ Allow device communication.

◦ Upload the public key or enter the details manually.

Note down the device ID.

5. Access Configuration Hub (on page 336).

6. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors in the default system appears.

7. If needed, select the system in which you want to add a collector instance.

8. If needed, select the system in which you want to add a collector instance.

9. In the upper-right corner of the main section, select .

https://cloud.google.com/resource-manager/docs/creating-managing-projects#creating_a_project
https://cloud.google.com/iot/docs/how-tos/devices#creating_a_device_registry
https://cloud.google.com/iot/docs/quickstart#add_a_device_to_the_registry

Historian | 3 - Configuration Hub | 616

The Add Collector Instance: <system name> window appears, displaying the Collector Selection

section. The MACHINE NAME field contains a list of machines on which you have installed

collectors.

10. In the COLLECTOR TYPE field, select a collector type, and then select Get Details.

The INSTALLATION DRIVE and DATA DIRECTORY fields are disabled and populated.

11. Select Next.

The Source Configuration section appears.

12. As needed, enter values in the available fields.

13. Select Next.

The Destination Configuration section appears.

Historian | 3 - Configuration Hub | 617

14. Select MQTT, and provide values as described in the following table.

Field Description

HOST ADDRESS Enter mqtt.googleapis.com. A value is required.

PORT Enter 8883 or 443.

CLIENT ID Enter the ID of the device that you created

in the following format: projects/<project

ID>/locations/<cloud region>/reg

istries/<registry ID>/devices/<device ID>.

For example: projects/mygcpproject/loca

tions/asia-east1/registries/testmqttgcpi

ot/devices/gcptesting

A value is required and must be unique for an

MQTT broker.

TOPIC Enter devices/<device ID>/events.

AUTO REFRESH Indicates whether you want to automatically re

fresh the authentication token when it expires.

If you switch the toggle off, you must manually

Historian | 3 - Configuration Hub | 618

Field Description

provide the token as soon as it expires. Google

Cloud accepts only those tokens that expire in

24 hours or less; therefore, we recommend that

you switch the toggle on.

USERNAME Enter any value. This value is not used, but only

if you enter a value, you can proceed.

PASSWORD If you have switched the AUTO REFRESH toggle

on, leave this field blank. Historian generates a

JSON Web Token (JWT) and uses it automati

cally.

CA SERVER ROOT FILE Enter the path of the Google root CA certificate

that you have downloaded.

CLIENT CERTIFICATE Enter the path to the client certificate.

PRIVATE KEY FILE Enter the complete path to the private key file. A

value is required.

PUBLIC KEY FILE Enter the path to the public key file. A value is

required.

CHOOSE CONFIGURATION The type of the configuration to specify the

tags whose data you want to collect. Select one

of the following options:

◦ Historian Configuration: Select this op

tion if you want to add the tags manually

(on page 357). If you select this option,

the CONFIGURATION HISTORIAN SERV

ER field appears.

◦ Offline Configuration: Select this option

if you want to provide the tag names us

ing the offline configuration (on page

2039) file instead of adding tags man

ually. By default, this file is located in

the following location: <installation

folder of Historian>\GE Digi

tal\<collector name>

Historian | 3 - Configuration Hub | 619

Field Description

CONFIGURATION HISTORIAN SERVER The host name of the machine from which you

want to access Historian Administrator to add

the tags manually for the collector. This field

appears only if you have selected Historian

Configuration in the CHOOSE CONFIGURATION

field.

15. Select Next.

The Collector Initiation section appears.

16. Enter a collector name.

The value that you enter:

◦ Must be unique.

◦ Must not exceed 15 characters.

◦ Must not contain a space.

◦ Must not contain special characters except a hyphen, period, and an underscore.

17. In the RUNNING MODE field, select one of the following options.

Historian | 3 - Configuration Hub | 620

◦ Service - Local System Account: Select this option if you want to run the collector as a

Windows service using the credentials of the local user (that is, the currently logged-in user).

If you select this option, the USERNAME and PASSWORD fields are disabled.

◦ Service Under Specific User Account: Select this option if you want to run the collector as

a Windows service using a specific user account. If you select this option, you must enter

values in the USERNAME and PASSWORD fields. If you have enabled the Enforce Strict

Collector Authentication option in Historian Administrator, you must provide the credentials

of a user who is added to at least one of the following security groups:

▪ iH Security Admins

▪ iH Collector Admins

▪ iH Tag Admins

If you choose the first option, you can also configure the collector to start automatically when you

start the computer, or, in the case of iFIX collectors, whenever you start iFIX.

18. Select Add.

The collector instance is created.

19. Access Google Cloud Platform, and select Pub/Sub > Topics.

Historian | 3 - Configuration Hub | 621

20. Select Messages > PULL.

Messages published to the topic that you have created appear. These messages contain the data

sent by the collector instance. You can verify that the message content is correct by selecting

Message body.

Send Data to Predix Cloud

To send data to Predix Cloud, you can choose any of the following collectors:

• The iFIX collector

• The MQTT collector

• The ODBC collector

• The OPC Classic DA collector

• The OPC Classic HDA collector

Historian | 3 - Configuration Hub | 622

• The OPC UA DA collector

• The OSI PI collector

• The Python Collector

• The Server-to-Server collector

• The Simulation collector

• The Windows Performance collector

• The Wonderware collector

1. Register with the Timeseries service or any UAA service that you want to use. Note down the

destination address, URI, client ID, client secret, and the zone ID that you have provided.

2. Access Configuration Hub (on page 336).

3. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors in the system appears.

4. If needed, select the system in which you want to add a collector instance.

5. In the upper-right corner of the main section, select .

https://www.ge.com/digital/documentation/predix-platforms/tss-setup-configure.html

Historian | 3 - Configuration Hub | 623

The Add Collector Instance: <system name> window appears, displaying the Collector Selection

section. The MACHINE NAME field contains a list of machines on which you have installed

collectors.

6. In the COLLECTOR TYPE field, select a collector type (except the File collector and the Server-to-

Server collector), and then select Get Details.

The INSTALLATION DRIVE and DATA DIRECTORY fields are disabled and populated.

7. Select Next.

The Source Configuration section appears, populating the hostname of the collector machine.

8. As needed, enter values in the available fields, and then select Next.

The Destination Configuration section appears.

9. In the CHOOSE DESTINATION field, select Predix Timeseries, and then provide values as described

in the following table.

Field Description

CLOUD DESTINATION AD

DRESS

The URL of a data streaming endpoint exposed by the Predix

Time Series instance to which you want to send data. Typically,

it starts with “wss://”. This value is used as part of the interface

name and default tag prefix of the collector. Your Predix Time

Series administrator can provide this URL.

Historian | 3 - Configuration Hub | 624

Field Description

IDENTITY ISSUER The URL of an authentication endpoint for the collector to au

thenticate itself and acquire necessary credentials to stream to

the Predix Time Series. In other words, this is the issuer ID of

the Proficy Authentication instance that you want to use to con

nect to Predix Time Series. Typically, it starts with https:// and

ends with “/oauth/token”.

CLIENT ID Identifies the collector when interacting with Predix Time Series.

This is equivalent to the username in many authentication

schemes. The client must exist in the Proficy Authentication

instance identified by the identity issuer, and the system re

quires that the timeseries.zones. {ZoneId}.ingest and time

series.zones.{ZoneId}.query authorities are granted access

to the client for the Predix Zone ID specified. Your Predix Time

Series administrator can provide this information.

CLIENT SECRET The secret to authenticate the collector. This is equivalent to the

password in many authentication schemes.

ZONE ID Unique identifier of the instance to which the collector will send

data.

PROXY Identifies the URL of the proxy server to be used for both the au

thentication process and for sending data. If the collector is run

ning on a network where proxy servers are used to access web

resources outside of the network, then you must provide the

proxy server settings. However, it does not affect the proxy serv

er used by Windows when establishing secure connections. As

a result, you must still configure the proxy settings for the Win

dows user account under which the collector service runs.

PROXY USERNAME The username to connect to the proxy server.

PROXY PASSWORD The password to connect to the proxy server.

DATAPOINT ATTRIBUTES The attributes or parameters related to a datapoint that you

want the collector to collect. Select Add Attributes to specify

the attributes. You can add maximum five attributes for each

collector instance.

Historian | 3 - Configuration Hub | 625

Field Description

CHOOSE CONFIGURATION The type of the configuration to specify the tags whose data you

want to collect. Select one of the following options:

◦ Historian Configuration: Select this option if you want to

add the tags manually (on page 357). If you select this

option, the CONFIGURATION HISTORIAN SERVER field

appears.

◦ Offline Configuration: Select this option if you want to

provide the tag names using the offline configuration (on

page 2039) file instead of adding tags manually. By de

fault, this file is located in the following location: <in

stallation folder of Historian>\GE Digi

tal\<collector name>

CONFIGURATION HISTORIAN

SERVER

The host name of the machine from which you want to access

Historian Administrator to add the tags manually for the collec

tor. This field appears only if you have selected Historian Con

figuration in the CHOOSE CONFIGURATION field.

10. Select Next.

The Collector Initiation section appears.

Historian | 3 - Configuration Hub | 626

11. Enter a collector name.

The value that you enter:

◦ Must be unique.

◦ Must not exceed 15 characters.

◦ Must not contain a space.

◦ Must not contain special characters except a hyphen, period, and an underscore.

12. In the RUNNING MODE field, select one of the following options.

◦ Service - Local System Account: Select this option if you want to run the collector as a

Windows service using the credentials of the local user (that is, the currently logged-in user).

If you select this option, the USERNAME and PASSWORD fields are disabled.

◦ Service Under Specific User Account: Select this option if you want to run the collector as

a Windows service using a specific user account. If you select this option, you must enter

values in the USERNAME and PASSWORD fields. If you have enabled the Enforce Strict

Collector Authentication option in Historian Administrator, you must provide the credentials

of a user who is added to at least one of the following security groups:

▪ iH Security Admins

▪ iH Collector Admins

▪ iH Tag Admins

If you choose the first option, you can also configure the collector to start automatically when you

start the computer, or, in the case of iFIX collectors, whenever you start iFIX.

13. Select Add.

The collector instance is created.

14. Specify the tags for which you want to collect data.

◦ If you have selected Historian Configuration in the CHOOSE CONFIGURATION field, specify

the tags manually (on page 357).

◦ If you have selected Offline Configuration in the CHOOSE CONFIGURATION field, specify the

tags using the offline configuration file (on page 2039).

The collector begins sending Historian data to Predix Timeseries.

Protocols and Port Numbers

The following table provides a list of protocols that are available to send data to Azure IoT Hub, guidelines

on which protocol to choose, and the port number that each protocol uses.

Historian | 3 - Configuration Hub | 627

Protocol When to Use Port Number

HTTP Use this protocol if the data that you want to send

is not large and/or the default ports for the other

protocols are not available.

80

MQTT MQTT is lightweight compared to AMQP, and is

widely used. Use this protocol if you want to send

data using low bandwidth and/or you do not want

to connect to multiple devices using the same con

nection.

8883

AMQP AMQP is more reliable compared to other proto

cols. It sends data in batches, and hence, the net

work traffic is less compared to that of MQTT. Use

this protocol if you want to send a large amount of

data from multiple collectors frequently.

5671

MQTT over web sockets MQTT is lightweight compared to AMQP, and is

widely used. In addition, communication using web

sockets is more reliable and secure. Use this pro

tocol if you want to send data using low bandwidth

and securely.

443

AMQP over web sockets AMQP is more reliable compared to other proto

cols. It sends data in batches, and hence, the net

work traffic is less compared to that of MQTT. In

addition, communication using web sockets is

more reliable and secure. Use this protocol if you

want to send a large amount of data from multiple

collectors frequently and securely.

443

Managing Collector Instances

About Managing Collectors Using Configuration Hub

Collectors are used to collect data from various sources and send it to Historian. For a list of collectors

and their usage, refer to About Historian Data Collectors (on page 1990).

After you install collectors and Remote Management Agent, the following artefacts will be available:

Historian | 3 - Configuration Hub | 628

• Executable files: These files are required to add a collector instance.

• Instances of the following collectors:

◦ The iFIX collector

◦ The iFIX Alarms & Events collector

◦ The OPC Classic Data Access collector for CIMPLICITY

◦ The OPC Classic Alarms and Events collector for CIMPLICITY

These instances will be created only if iFIX and/or CIMPLICITY are installed on the same machine

as the collectors.

• The Remote Collector Management agent: Provides the ability to manage collectors remotely.

You can then add a collector instance. This section describes how to add a collector instance

using Configuration Hub (on page 357). You can also add a collector instance using the

RemoteCollectorConfigurator utility (on page 797), which does not require you to install Web-based

Clients.

Access a Collector Instance

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors appears, displaying the following columns:

Column Description

COLLECTOR NAME The name of the collector instance. If you select the link in this

column, the details of the collector instance appears.

STATUS The status of the collector. Contains one of the following val

ues:

◦ Started

◦ Stopped

◦ Running

◦ Paused

CONFIGURATION The source of the tag configuration for the collector. Contains

one of the following values:

◦ HISTORIAN: Indicates that tags are configured using His

torian Administrator.

◦ OFFLINE: Indicates that tags are configured using an of

fline configuration (on page 2039) file.

Historian | 3 - Configuration Hub | 629

Column Description

MACHINE The name of the machine on which the collector is installed.

VERSION The version number of the collector.

REPORT RATE The average rate at which the collector is sending data. This is a

general indicator of load on the collector.

OVERRUNS The total number of data events not collected. In normal oper

ation and under normal conditions, this value should always be

zero. If the value is not zero, which indicates that data is being

lost, you must take steps to reduce peak load on the system by

increasing the collection interval.

COMPRESSION The effectiveness of collector compression. If the value is low,

you can increase the compression deadbands to pass fewer val

ues and thus increase the effect of compression.

OUT OF ORDER The total number of out-of-order samples for the collector.

REDUNDANCY Indicates whether collector redundancy is enabled, which de

creases the likelihood of lost data due to soft- ware or hardware

failures. For information, refer to About Collector Redundancy

(on page 975).

TAG COUNT The number of tags for which the collector collects data.

COMMENTS The comments that you have entered for the collector.

Tip:

You can also add, reorder, and remove columns from the table. For instructions, refer to

Common Tasks in Configuration Hub (on page 353).

3. Select the row containing the collector whose details you want to access.

The details of the collector appear in the DETAILS section.

Note:

If the DETAILS section does not appear, in the upper-right corner of the page, select ,

and then select Details.

Historian | 3 - Configuration Hub | 630

4. If you want to access the collector performance, right-click the collector (or select), and then

select View Collector Performance.

The Collector Performance section appears, displaying the following graphs:

◦ REPORT RATE: The rate at which the collector collects data.

◦ TOTAL EVENTS REPORTED: The total number of events reported to the Historian archive

from the collector. This number may not match the total events collected due to collector

compression.

◦ STATUS: The status of the collector plotted at regular intervals.

◦ COLLECTOR COMPRESSION: The collector compression (in percentage) applied to tag

values plotted at regular intervals.

◦ OUT OF ORDER: The number of samples that have been received out of sequence. Even

though data is still stored, a steadily increasing number of out-of-order events indicates

a problem with data transmission that you should investigate. For example, a steadily

increasing number of out-of-order events when you are using the OPC Collector means that

there is an out-of-order between the OPC server and the OPC collector. This may also cause

an out-of-order between the OPC collector and the data archiver but that is not what this

graph indicates.

◦ OVERRUNS: The number of overruns in relation to the total events collected. Overruns are

a count of the total number of data events not collected on their scheduled polling cycle.

An overrun occurs when the data source is changing tag values faster than the collector

collecting values, which causes it to consistently remain behind the archiver updates. It

implies that the collector is running against the hardware and/or network limits and you may

consider partitioning the tags into two or more sets, each with separate collector instances.

Historian | 3 - Configuration Hub | 631

In a normal operation, this value should be zero. You may be able to reduce the number of

overruns on the collector by increasing the tag collection intervals (per tag).

◦ MINIMUM EVENT RATE: Specifies the minimum number of data samples per minute sent to

the archiver from all the collector instance.

◦ TOTAL EVENTS COLLECTED: The total number of events collected from the data source by

the collector instance.

◦ MAXIMUM EVENT RATE: Specifies the maximum number of data samples per minute sent

to the archiver from all the collector instance.

Access the Tags in a Collector Instance

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors appears.

3. Right-click the collector instance whose tags you want to access (or select), and then select

Browse Tags.

A list of tags for which the collector instance collects data appears.

4. To narrow down your search results, select Search, enter the search criteria, and then enter Search.

You can add more search criteria by selecting Add Attribute.

You can enter a name or a value partially or use the wildcard character asterisk (*).

The list of tags are filtered based on the search criteria.

Historian | 3 - Configuration Hub | 632

Add a Collector Instance

Before you begin using a collector, you must add an instance of the collector. You can add multiple

instances of the same collector or instances of multiple collectors. To add multiple instances of a

collector, perform the steps once again.

You can add and configure the following types of collector instances:

• The Calculation collector (on page 479)

• The CygNet collector (on page 482)

• The File collector (on page 486)

• The HAB collector (on page 489)

• The iFIX collector (on page 505)

• The MQTT collector (on page 510)

• The MQTT Sparkplug B collector (on page 519)

• The ODBC collector (on page 527)

• The OPC Classic Alarms and Events collector (on page 532)

• The OPC Classic DA collector (on page 534)

• The OPC Classic HDA collector (on page 540)

• The OPC UA DA collector (on page 544)

• The OSI PI collector (on page 549)

• The OSI PI distributor (on page 553)

• The Server-to-Server collector (on page 559)

• The Server-to-Server distributor (on page 563)

• The Simulation collector (on page 567)

• The Windows Performance collector (on page 571)

• The Wonderware collector (on page 575)

Enable MTLS Security for Collectors
Mutual TLS (MTLS) protocol is a secure and strong authentication mechanism. Using this protocol, you

can also encrypt the data between Historian Server and Collectors.

Ensure that you have configured certificate-based security.

This topic describes how to enable MTLS security and encrypt data for collectors.

Note:

MTLS Security and MTLS Data Encryption are not applicable to the File collector.

Historian | 3 - Configuration Hub | 633

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors in the default system appears.

3. Select the row containing the collector for which you want to enable MTLS Security and MTLS

Data Encryption.

The details of the collector appear in the DETAILS section.

Note:

If the DETAILS section does not appear, in the upper-right corner of the page, select ,

and then select Details.

4. In the COLLECTOR SPECIFIC CONFIGURATION section, enable MTLS Security.

Note:

You can enable MTLS Security and MTLS Data Encryption only if the collector is running.

5. After you enable MTLS Security, enable MTLS Data Encryption.

6. In the upper-right corner, select Save.

You will be prompted to restart the collector.

Historian | 3 - Configuration Hub | 634

7. To apply the changes, select Restart Now.

If you select Restart Later, a notification appears in the DETAILS section, stating that the selected

collector instance needs a restart.

Modify a Collector Instance

This topic describes how to modify a collector instance using Configuration Hub. You can also modify a

collector instance using the RemoteCollectorConfigurator utility (on page 799), which does not require

you to install Web-based Clients.

Note:

• If the status of a collector instance in unknown, you cannot modify it.

• You cannot modify the instance of an offline collector.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors appears.

Tip:

You can filter the collectors by the system name.

3. Select the collector instance that you want to modify.

The details of the collector appear in the DETAILS section.

Tip:

If the DETAILS section does not appear, in the upper-right corner of the page, select ,

and then select Details.

4. As needed, modify values in the available fields (on page 579).

Historian | 3 - Configuration Hub | 635

Note:

◦ You cannot modify the destination of a collector.

◦ For collectors earlier than version 9.0:

▪ You cannot modify the details in the INSTANCE CONFIGURATION section.

▪ Some of the details, such as the collector type, do not appear.

5. After you modify the values, in the upper-left corner of the page, select Save.

Based on the values that you modified, you might be prompted to restart the collector. For the

modifications to take effect, you must restart the collector.

6. Select Restart Now.

The collector instance restarts and the modifications take effect.

If you select Restart Later, a notification appears in the DETAILS section, stating that the selected

collector instance needs a restart.

Add a Comment to a Collector Instance

This topic describes how to add a comment to a collector instance.

Note:

• You cannot modify or delete comments.

• You cannot add comments to offline collectors.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors appears.

Historian | 3 - Configuration Hub | 636

Tip:

You can filter the collectors by the system name.

3. Select the collector instance to which you want to add a comment.

The details of the collector appear in the DETAILS section, along with a list of comments at the

end.

Tip:

If the DETAILS section does not appear, in the upper-right corner of the page, select ,

and then select Details.

4. In the DETAILS section, in the text box below Comments, enter your comment, and then select Add

Comment.

The comment is added to the collector instance.

Access a Comment on a Collector Instance

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors appears.

Tip:

You can filter the collectors by the system name.

3. Select the collector instance whose comments you want to access.

Historian | 3 - Configuration Hub | 637

The details of the collector appear in the DETAILS section, along with a list of comments at the

end.

Tip:

If the DETAILS section does not appear, in the upper-right corner of the page, select ,

and then select Details.

4. To access comments in full screen, select . If you want to search for a comment, enter the

search criteria in the Search field. You can also filter the comments based on a date and time range

by selecting the values in the FROM and TO fields.

The comments are filtered based on the search criteria.

Start a Collector

You can start a collector using one of the following options:

• Service: Select this option if you want to start the collector as a Windows service using the

credentials of the local user (that is, the currently logged-in user). If you select this option, the

USERNAME and PASSWORD fields are disabled.

• Command Line: Select this option if you want to start the collector at a command prompt using

a specific user account. If you select this option, you must enter values in the USERNAME and

PASSWORD fields.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors appears.

Tip:

You can filter the collectors by the system name.

3. Right-click the collector instance that you want to start (or select), and then select Start.

Historian | 3 - Configuration Hub | 638

The Start: <collector name> window appears.

4. Under RUNNING MODE, select one of the following options:

◦ Service: Select this option if you want to start the collector as a Windows service using the

credentials of the local user (that is, the currently logged-in user). If you select this option,

the USERNAME and PASSWORD fields are disabled.

◦ Command Line: Select this option if you want to start the collector at a command prompt

using a specific user account. If you select this option, you must enter values in the

USERNAME and PASSWORD fields.

5. Select Start.

The collector is started, and the data collection begins. The status of the collector in the Collectors

section changes to Starting and then to Running. If, however, the connection fails, the status

changes to Unknown.

Note:

If auto-refresh is not enabled, refresh the collector manually.

Stop a Collector

When you stop a collector, the collector stops collecting data, and it is disconnected from the destination.

If, however, you want the collector to remain connected to the destination, you can instead pause data

collection (on page 641).

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

Historian | 3 - Configuration Hub | 639

A list of collectors appears.

Tip:

You can filter the collectors by the system name.

3. Right-click the collector instance that you want to stop (or select), and then select Stop.

The Stop: <collector name> window appears. The COLLECTOR MACHINE and CURRENT RUNNING

MODE fields are populated and disabled.

4. If the collector is running in the command-line mode, enter values in the USERNAME and

PASSWORD fields.

5. Select Stop.

The collector is stopped, and the data collection is paused. The status of the collector in the

Collectors section changes to Stopped.

Restart a Collector

You can restart a collector to stop and start it again. You can restart a collector only if it is running.

However, when you modify a collector instance, based on the values you modify, you will be prompted

Historian | 3 - Configuration Hub | 640

and given the option to restart the collector before you save the modifications. Without restarting, the

modifications will not take effect.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors appears.

Tip:

You can filter the collectors by the system name.

3. Right-click the collector instance that you want to restart (or select), and then select Restart.

The Restart: <collector name> window appears. The COLLECTOR MACHINE and CURRENT

RUNNING MODE fields are populated and disabled.

4. If the collector is running in the command-line mode, enter values in the USERNAME and

PASSWORD fields.

5. Select Restart.

The collector is restarted, and the data collection is resumed.

Historian | 3 - Configuration Hub | 641

Pause the Data Collection of a Collector

When you pause data collection, the collector stops collecting the data. However, the collector is still

connected to the destination. If you want to disconnect the collector from the destination, stop the

collector (on page 638).

Note:

You cannot pause the data collection of an offline collector.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors appears.

Tip:

You can filter the collectors by the system name.

3. Right-click the collector instance for which you want to pause data collection (or select), and

then select Pause Data Collection.

Historian | 3 - Configuration Hub | 642

A message appears, asking you to confirm whether you want to pause data collection.

4. Select Pause.

The data collection is paused, and the collector is stopped.

Resume the Data Collection of a Collector

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors appears.

Tip:

You can filter the collectors by the system name.

3. Right-click the collector instance for which you want to resume data collection (or select), and

then select Resume Data Collection.

A message appears, asking you to confirm whether you want to resume data collection.

4. Select Resume.

The collector is started, and the data collection is resumed.

Historian | 3 - Configuration Hub | 643

Delete the Buffer Files of a Collector

When you delete buffer files, the collector is stopped, and after the buffer files are deleted, it is restarted.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors appears.

Tip:

You can filter the collectors by the system name.

3. Right-click the collector instance whose buffer files you want to delete (or select), and then

select Clear Buffer.

A message appears, asking you to confirm that you want to clear the buffer files.

4. Select Clear.

The Clear Buffer: <collector name> window appears.

5. If the collector is running in the command-line mode with a specific user account, enter values in

the USERNAME and PASSWORD fields.

Historian | 3 - Configuration Hub | 644

6. Select Clear.

The buffer files of the collector are deleted.

Move the Buffer Files of the Collector

We recommend that you move the buffer files to a new folder within the same drive. You cannot move

files to a folder on a network shared drive.

When you move buffer files, the collector is stopped, and after the buffer files are moved, it is restarted.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors appears.

Tip:

You can filter the collectors by the system name.

3. Right-click the collector instance whose buffer files you want to move (or select), and then

select Move Buffer.

Historian | 3 - Configuration Hub | 645

The Move Buffer: <collector name> window appears. The CURRENT LOCATION, COLLECTOR

MACHINE, and RUNNING MODE fields are populated and disabled.

4. In the TARGET LOCATION field, enter the path of the folder to which you want to move the buffer

files.

5. If the collector is running in the Windows service mode, select Move Buffer. If the collector is

running in the command-line mode, enter values in the USERNAME and PASSWORD fields, and

then select Move Buffer.

The buffer files are moved, and the collector is started.

Change the Destination Server of a Collector

1. Ensure that Historian is installed on the new destination server to which you want the collector to

send data.

2. Ensure that the collector whose destination server you want to change is running.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors appears.

Tip:

You can filter the collectors by the system name.

3. Right-click the collector instance whose destination server you want to change (or select), and

then select Change Destination Server.

Historian | 3 - Configuration Hub | 646

The Change Destination Server: <collector name> window appears. The COLLECTOR MACHINE,

CURRENT RUNNING MODE, and CURRENT DESTINATION SERVER fields are populated and

disabled.

4. In the NEW RUNNING MODE field, select one of the following options:

◦ Service: Select this option if you want to start the collector as a Windows service using the

credentials of the local user (that is, the currently logged-in user). If you select this option,

the USERNAME and PASSWORD fields are disabled.

◦ Command Line: Select this option if you want to start the collector in the command-line

mode. If you select this option, you must enter values in the USERNAME and PASSWORD

fields.

5. In the NEW DESTINATION SERVER field, enter the host name or IP address of the new destination

server to which you want the collector to send data.

6. In the USERNAME and PASSWORD fields, enter the credentials to access the new destination

server.

7. Select Change Server.

The destination server of the collector is changed, and the collector is stopped.

1. Update the network message compression of the collector by modifying the collector instance

using Configuration Hub.

2. Reconfigure the collector properties using Historian Administrator.

3. Restart the collector (on page 639).

Reset Performance Counters

Historian | 3 - Configuration Hub | 647

This topic describes how to reset performance counters for a collector. Performance counters are used

to monitor the performance of Historian components. You can reset it to zero if you want to reset the

performance counters.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors appears, displaying the details.

3. Select the row containing the collector whose details you want to access.

4. Right-click the collector (or select), and then select Reset Performance Counters.

A confirmation window appears, prompting you whether or not to reset the performance counters

to zero.

5. Select Reset.

All the performance counters are reset, including overruns.

Reset Overruns

This topic describes how to reset overruns count. Overruns are a count of the total number of data events

not collected on their scheduled polling cycle. In normal operation, this value should be zero, if not, you

can reset it to zero.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors appears, displaying the details.

3. Select the row containing the collector whose details you want to access.

Historian | 3 - Configuration Hub | 648

4. Right-click the collector (or select), and then select Reset Overruns.

A confirmation window appears, prompting you whether or not to reset the performance counter to

zero.

5. Select Reset.

The Overruns are reset.

Update Collector Credentials

Whenever there are some changes in the credentials of the destination Historian server, you can update

the credentials for the collectors using that server. This topic describes how to update the collector

credentials.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors appears, displaying the details.

3. Select the row containing the collector whose details you want to access.

4. Right-click the collector (or select), and then select Update Collector Credentials.

Historian | 3 - Configuration Hub | 649

The Update Collector Credentials: <Collector name> window appears.

Historian | 3 - Configuration Hub | 650

5. Update the USERNAME and PASSWORD, and select Test Connection.

Testing connection will help you to validate if the destination server credentials that you entered

are valid or not.

6. Select Update.

The updated credentials are saved.

7. Restart the Remote Collector Manager in the collector machine.

Apply Configuration Template to a Collector
You can apply the created template to collectors as needed. You will be prompted to confirm whether you

want to overwrite few of the configuration values with the values in the template.

• Ensure that you have a collector instance added (on page 357).

• Ensure that you created a configuration template for collectors (on page 757).

This topic describes how to apply a configuration template to a collector.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors appears.

3. Right-click the collector (or select), and then select Apply Configuration Template.

Historian | 3 - Configuration Hub | 651

The Apply Configuration Template window appears, listing the available templates.

4. Select Apply.

A confirmation window appears, prompting you to confirm whether you want to overwrite few of

the configuration values with the values in the template.

5. Select Ok.

6. In the upper-left corner, select Save.

The configurations in the template are applied to the collector.

Configure Collector Redundancy

1. Create the collector instances (on page 357) that you want to use for collector redundancy. All

these collectors must be of the same type.

Note:

Collector redundancy is not available and supported for the following collectors:

◦ File Collector.

◦ Calculation Collector.

Historian | 3 - Configuration Hub | 652

◦ Python Collector.

◦ Server-to-Server Collector.

◦ Server-to-Server Distributor.

◦ OSI PI Collector.

◦ OSI PI Distributor.

2. Create tags (on page 909) in the primary collector.

3. If you want to use the values of a watchdog tag as a failover trigger, create the watchdog tag (on

page 909) in the primary collector.

Collector redundancy ensures that collection of your data remains uninterrupted. It uses two or

more collectors that gather data from a single source. For more information, refer to About Collector

Redundancy (on page 975).

This topic describes how to set up redundancy between two collectors - one primary and the other

secondary. You can, however, set up multiple secondary collectors.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors appears.

3. For the primary collector, in the DETAILS section, under REDUNDANCY, switch the Redundant

Collector toggle. And then, in the upper-left corner of the page, select Save.

Redundancy is enabled for the primary collector.

4. Repeat the previous step for the secondary collector.

Redundancy is enabled for the secondary collector.

Historian | 3 - Configuration Hub | 653

5. For the secondary collector, in the DETAILS section, under REDUNDANCY, in the Backup For field,

select the primary collector, and then select Save.

The secondary collector is configured as a backup for the primary collector.

Note:

If you want to add another collector in the redundancy group, in the Backup For field, select

the secondary collector.

6. If you want to manually trigger a failover, perform the following steps. Or, if you want to configure

automatic triggers, skip to the next step.

a. Select the collector that you want to make active.

b. In the DETAILS section, under REDUNDANCY, in the Make Active Collector field, select

Active Collector.

7. For the secondary collector, in the DETAILS section, under REDUNDANCY FAILOVER TRIGGERS,

enter values as described in the following table, and then select Save.

Field Description

Collector Status Switch the toggle if you want to trigger failover when the prima

ry collector stops collecting data.

Watchdog Tag
Select , and then select the tag whose values you want to

use as a trigger.

Note:

The watchdog tag must be in the primary collector.

Failover on Bad Quality Switch the toggle if you want to trigger failover when bad data is

collected for the watchdog tag.

Failover on value Specify whether you want to trigger a failover if the value of the

watchdog tag is non-zero. You can use this option only if you

have not used the No Value change interval field.

No Value change interval Enter the duration in seconds after which you want to trigger a

failover if the values of the watchdog tag do not change for the

Historian | 3 - Configuration Hub | 654

Field Description

specified duration. You can use this option only if you have not

used the Failover on value field.

The failover triggers are configured. As soon as any of these conditions are satisfied, the

secondary collector becomes active and collects data.

Delete a Collector Instance

If you no longer want to use a collector instance to collect data, you can delete it. When you delete a

collector instance, the Windows service for the collector, the Registry folder, and the buffer files are

deleted as well.

This topic describes how to delete a collector instance using Configuration Hub. You can also delete a

collector instance using the RemoteCollectorConfigurator utility (on page 817), which does not require

you to install Web-based Clients.

Note:

When you delete an offline collector instance, the corresponding configuration file is not deleted.

However, if another collector instance of the same interface name is created, the existing

configuration file is replaced by a template configuration file.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors appears.

Tip:

You can filter the collectors by the system name.

3. Right-click the collector instance that you want to delete (or select), and then select Delete.

Historian | 3 - Configuration Hub | 655

A message appears, asking you to confirm that you want to delete the collector instance.

4. If you want to delete the tags as well, select the Delete associated tags check box.

5. Select Delete.

The collector instance is deleted.

Managing Offline Configuration Collector Instances

Access Offline Configuration Collectors

Offline Configuration Collectors are the instances of collectors whose destination is the cloud and display

the configuration details as Offline Configuration.

Historian | 3 - Configuration Hub | 656

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, expand Systems, and

then select the system whose collectors you want to access.

The system appears in the main section.

3. Right-click the system whose collectors you want to access (or select), and then select

Browse Collectors.

This displays the list of Historian collectors and Offline configuration collectors. By default, the

Historian collector instances added to the system appear, displaying the following information.

Tip:

◦ To access the details of a collector, select the row containing the collector instance.

The details appear in the DETAILS section.

◦ You can show/hide/reorder columns in the table. For instructions, refer to Common

Tasks in Configuration Hub (on page 353).

The Details panel for the Offline Configuration Collector Interface contains information

regarding the instance configuration provided for the destination while installing software

Historian | 3 - Configuration Hub | 657

like Predix, MQTT, or Azure. For example, here is an example of the Details panel for the

Offline Configuration Collector:

Manage Offline Configuration Collectors

Like other Historian collectors, Offline Configuration collectors can also be managed by selecting different

options:

Historian | 3 - Configuration Hub | 658

Refer to the following sections on how to use these options:

• Start a Collector (on page 637)

• Stop a Collector (on page 638)

• Restart a Collector (on page 639)

• Delete the Buffer Files of a Collector (on page 643)

• Move the Buffer Files of the Collector (on page 644)

• Delete a Collector Instance (on page 654)

Access the Tags in the Offline Configuration Collector Instance

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors appears.

Historian | 3 - Configuration Hub | 659

3. Right-click the Offline Configuration collectors you want to access (or select), and then select

Browse Tags.

A list of tags for which the Offline Configuration collector instance collects data appears.

4. To narrow down your search results, select Search, enter the search criteria, and then enter Search.

You can add more search criteria by selecting Add Attribute.

You can enter a name or a value partially or use the wildcard character asterisk (*).

The list of tags are filtered based on the search criteria.

Managing Tags

About Tags

A Historian tag is used to store data related to a property.

For example, if you want to store the pressure, temperature, and other operating conditions of a boiler, a

tag will be created for each one in Historian.

When you collect data using a collector, tags are created automatically in Historian to store these values.

These tags are mapped with the corresponding properties in the source.

For example, suppose you want to store OSI PI data in Historian. You will specify the OSI PI tags for which

you want to collect data. The OSI PI collector creates the corresponding tags in Historian, and it stores the

values in those tags.

You can also choose to create tags manually (for example, to store the result of a calculation performed

by the Calculation collector).

Historian | 3 - Configuration Hub | 660

About Array Tags

You can store a set of values with a single timestamp and single quality and then read the elements

individually or as an array.

The following conditions apply when using an array tag:

• You need not specify the size of an array tag. Data Archiver will store the number of elements that

were written.

• You can change a tag to an array tag later as well. However, when you do so, only the latest data is

retrieved. If you want to get the old data, you must change the tag back to its previous type.

• The maximum number of elements that an array tag can store is 10,000.

• You cannot associate an enumerated set or a user-defined data type (UDT) with an array tag.

• Fixed String and Scaled data types are not supported.

• Scaling, collector compression, and archive compression do not apply to an array tag.

• You cannot use an array element as a calculation trigger.

• You cannot plot a trend chart for an array tag.

• TagStats calculation mode is not supported.

About Collector and Archive Compression

Collector Compression

Collector compression applies a smoothing filter to data retrieved from the data source. By ignoring small

changes in values that fall within a deadband centered around the last reported value, only significant

changes are reported to the archiver. Fewer samples reported yields less work for the archiver and less

archive storage space used.

You can specify the deadband value. For convenience, if you enter a deadband percentage, Historian

Administrator shows the deadband in engineering units. For example, if you specify a 20% deadband on 0

to 500 EGU span, it is calculated and shown as 100 engineering units. If you later change the limits to 100

and 200, the 20% deadband is now calculated as 20 engineering units.

The deadband is centered around the last reported sample, not simply added to it or subtracted. If

your intent is to have a deadband of 1 unit between reported samples, you must enter a compression

deadband of 2 so that it is one to each side of the last reported sample. In the previous example of 0

to 500 EGU range, with a deadband of 20%, the deadband is 100 units; This means that only if the value

changes by more than 50 units, it is reported.

Historian | 3 - Configuration Hub | 661

Changes in data quality from good to bad, or bad to good, automatically exceed collector compression

and are reported to the archiver. Any data that comes to the collector out of time order will also

automatically exceed collector compression.

It is possible for collected tags with no compression to appear in Historian as if the collector or archive

compression options are enabled. If collector compression occurs, you will notice an increase in the

percentage of the compression value in the Collectors section of the System Statistics page in Historian

Administrator. When archive compression occurs, you will notice the archive compression value and

status bar change on the System Statistics page.

For instructions on setting collector compression, refer to Access/Modify a Tag (on page 894).

Even if collector compression is not enabled, you may notice it in the following scenarios:

• When a succession of bad data quality samples appears, Historian collects only the first sample

in the series. No new samples are collected until the data quality changes. Historian does not

collect the redundant bad data quality samples, and this is reflected in the collector compression

percentage.

• For a Calculation or Server-to-Server collector, when calculations fail, producing no results or bad

quality data, collector compression is used. The effect of Collector Compression Timeout is to

behave, for one poll cycle, as if the collector compression feature is not being used. The sample

collected from the data source is sent to the archiver. Then the compression is turned back on,

as configured, for the next poll cycle with new samples being compared to the value sent to the

archiver.

Note:

Array tags do not support archive and collector compression. If the tag is an array tag, then the

Compression tab is disabled.

Handling Value Step Changes with Collector Data Compression

If you enable collector compression, the collector does not send values to the archiver any new input

values if the value remains within its compression deadband. Occasionally, after several sample intervals

inside the deadband, an input makes a rapid step change in value during a single sample interval. Since

there have been no new data points recorded for several intervals, an additional sample is stored one

interval before the step change with the last reported value to prevent this step change from being viewed

as a slow ramp in value. This value marks the end of the steady-state, non-changing value period, and

provides a data point from which to begin the step change in value.

Historian | 3 - Configuration Hub | 662

Note:

You can configure individual tags can be configured to retrieve step value changes.

The collector uses an algorithm that views the size of the step change and the number of intervals since

the last reported value to determine if a marker value is needed. The following is an example of the

algorithm:

BigDiff=abs(HI_EGU-LO_EGU)*(CompressionDeadbandPercent/(100.0*2.0))*4.0

If (Collector Compression is Enabled)

If (Elapsed time since LastReportedValue>=(SampleInterval * 5))

If (abs(CurrentValue-LastReportedValue) > BigDiff)

Write LastReportedValue,Timestamp=(CurrentTime-SampleInterval)

In the example above, if a new value was not reported for at least the last 4 sample intervals, and the

new input value is at least 4 deltas away from the old value (where a single delta is equal to half of the

compression deadband), then a marker value is written.

Note:

These settings are also adjustable from the Registry. Please contact technical support for more

information.

Value Spike with Collector Compression

For example, a collector reads a value X once per second, with a compression deadband of 1.0. If the

value of X is 10.0 for a number of seconds starting at 0:00:00 and jumps to 20.0 at 0:00:10, the data

samples read would be:

Time X Value

0:00:00 10.0 (steady state value)

0:00:01 10.0

0:00:02 10.0

0:00:03 10.0

0:00:04 10.0

0:00:05 10.0

0:00:06 10.0

https://digitalsupport.ge.com/

Historian | 3 - Configuration Hub | 663

Time X Value

0:00:07 10.0

0:00:08 10.0

0:00:09 10.0

0:00:10 20.0 (new value after step change)

To increase efficiency, the straightforward compression would store only 2 of these 11 samples.

Time X Value

0:00:00 10.0 (steady state value)

0:00:10 20.0 (new value after step change)

However, without the marker value, if this data were to be put into a chart, it would look like the data value

ramped over 10 seconds from a value of 10.0 to 20.0, as shown in the following chart.

The addition of a marker value to the data being stored results in the following data values:

Historian | 3 - Configuration Hub | 664

Time X Value

0:00:00 10.0 (steady state value)

0:00:09 10.0 (inserted Marker value)

0:00:10 20.0 (new value after step change)

If you chart this data, the resulting trend accurately reflects the raw data and likely real world values

during the time period as shown in the following chart.

Evaluating and Controlling Data Compression

You can achieve optimum performance in Historian by carefully controlling the volume of dynamic data it

collects and archives. You need enough information to tell you how the process is running, but you do not

need to collect and store redundant or non-varying data values that provide no useful information.

Control Data Flow

You can control the amount of online or dynamic data the system handles at a given time by adjusting

certain system parameters. The general principle is to control the flow of data into the archive either by

adjusting the rate at which the collectors gather data or by adjusting the degree of filtering (compression)

the system applies to the data collected.

Historian | 3 - Configuration Hub | 665

Adjust the following parameters to reduce the rate of data flow into the server.

• Reduce the polling rate by increasing the collection interval for unsolicited and polled collection.

• Enable collector compression and optionally use compression timeout.

• Set the compression deadband on the collectors to a wider value.

• Use the collector compression timeout.

Adjust the following parameters to increase the filtering applied by the archiver in the server.

• Enable archive (trend) compression.

• Set the archive compression deadband to a wider value.

• Where possible, use the scaled data type and enable input scaling on selected tags.

• Where possible, select milliseconds or microseconds rather than seconds for time resolution.

Seconds is optimum for most common devices. This affects disk space.

Evaluate Data Compression Performance

You can determine how effectively data compression is functioning at any given time by examining the

system statistics displayed on the System Statistics page of Historian Administrator.

The compression field at the top of the page shows the current effect of archive compression. Values for

this parameter should typically range from 0 to 9%. If the value is zero, it indicates that compression is

either ineffective or turned off. If it shows a value other than zero, it indicates that archive compression is

operating and effective. The value itself indicates how well it is functioning. To increase the effect of data

compression, increase the value of archive compression deadband so that compression becomes more

active.

Archive Compression

Archive compression is used to reduce the number of samples stored when data values for a tag form a

straight line in any direction. For a horizontal line (non-changing value), the behavior is similar to collector

compression. But, in archive compression, it is not the values that are being compared to a deadband,

but the slope of line those values produce when plotted value against time. Archive compression logic

is executed in the data archiver and, therefore, can be applied to tags populated by methods other than

collectors.

You can use archive compression on tags where data is being added to a tag by migration, or by the File

collector, or by an SDK program for instance. Each time the archiver receives a new value for a tag, the

archiver computes a line between this incoming data point and the last archived value.

Historian | 3 - Configuration Hub | 666

The deadband is calculated as a tolerance centered about the slope of this line. The slope is tested to

see if it falls within the deadband tolerance calculated for the previous point. If the new point does not

exceed the tolerance, it is not stored in the archive. This process repeats with subsequent points. When

an incoming value exceeds the tolerance, the value held by the archiver is written to disk and the incoming

sample is withheld.

The effect of the archive compression timeout is that the incoming sample is automatically considered to

have exceeded compression. The withheld sample is archived to disk and the incoming sample becomes

the new withheld sample. If the Archive Compression value on the System Statistics page indicates that

archive compression is occurring, and you did not enable archive compression for the tags, the reason

could be because of internal statistics tags with archive compression enabled.

For instructions on setting archive compression, refer to Access/Modify a Tag (on page 894).

About Scaling

Scaling converts a data value from a raw value expressed in an arbitrary range of units, such as a number

of counts, to one in engineering units, such as gallons per minute or pounds per square inch. The scaled

data type can serve as a third form of data compression, in addition to collector compression and archive

compression, if it converts a data value from a data type that uses a large number of bytes to one that

uses fewer bytes.

About Condition-Based Collection

Condition based collection is a method to control the storage of data for data tags by assigning a

condition. Data is always collected but it is only written to the Data Archiver if the condition is true;

otherwise, the collected data is discarded.

This condition is driven by a trigger tag; a tag collected by the collector evaluating the condition. Ideally,

Condition based Collection should be used only with tags that are updating faster than the trigger tag.

Condition based collection can be used to archive only the specific data which is required for analysis,

rather than archiving data at all times, as the collector is running.

For example, if a collector has tags for multiple pieces of equipment, you can stop collection of tags for

one piece of equipment during its maintenance. It is typically used on tags that use fast polled collection

but you don't want to use collector compression. While the equipment is running, you want all the data but

when the equipment is stopped, you don't want any data stored. The trigger tag would also typically use

polled collection. But, either tag could use unsolicited collection.

The condition is evaluated every time data is collected for the data tag. When a data sample is collected,

the condition is evaluated and data is either queued for sending to archiver, or discarded. If the condition

Historian | 3 - Configuration Hub | 667

cannot be evaluated as true or false, like if the trigger tag contains a bad data quality or the collector is

not collecting the trigger tag, the condition is considered true and the data is queued for sending.

No specific processing occurs when the condition becomes true or false. If the condition becomes true,

no sample is stored to the data tag using that condition, but the data tag will store a sample next time it

collects. When the condition becomes false, no end of the collection marker is stored until the data tag is

collected.

For example, if the condition becomes false at 1:15 and the data tag gets collected at 1:20, the end of

collection marker will be created at 1:20 and have a timestamp of 1:20, not 1:15.

Condition based collection is supported by only archiver and collectors of Historian version 4.5 and

above. Condition based collection does not apply to alarm collectors. This condition based collection is

applicable to the following collectors only:

• Simulation Collector

• OPC Collector

• iFIX Collector

• PI Collector

For instructions on setting the condition-based collection, refer to Access/Modify a Tag (on page 894).

Add Tags for the Data Store Using Configuration Hub

• Add the collector instance (on page 357) using which you want to collect data. Ensure that the

collector is running.

• By default, the tag data is stored in the user data store, which is created automatically when you

set up Configuration Hub. If, however, you want to store the data in a different data store, create it

(on page 370).

This topic describes how to specify the tags for which you want to collect data by browsing through the

tags in the data source. For example, for an iFIX collector, if there are 1,00,000 tags in the iFIX server, you

must specify the ones for which you want to collect data. Only then data is collected for those tags.

In addition to adding tags from the data source, you can create tags manually (on page 473).

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

3. Select .

Historian | 3 - Configuration Hub | 668

The Add Tag-<system name> page appears. The Add Tags from Collector option is selected by

default.

4. Enter values as described in the following table.

Field Description

COLLECTOR NAME Select the collector instance that you want to use to collect da

ta. A value is required.

COLLECTED TYPE Specify whether you want to browse through all the tags in the

data source or only from the tags that you have not added yet. A

value is required.

SOURCE TAG NAME Enter the name of the tag (either completely or partially) to nar

row down the search results.

SOURCE TAG DESCRIPTION Enter the description of the tag (either completely or partially) to

narrow down the search results.

5. Select Search Tags.

A list of tags that match all the criteria that you have specified appears. If a tag is already added, it

is disabled.

6. Select the check box corresponding to each tag for which you want to collect data.

Historian | 3 - Configuration Hub | 669

7. In the DATA STORE field, if you want to store the data in a different data store than the user data

store, select the same.

8. Select Add Tag.

Data collection begins for the selected tags.

As needed, configure each tag by providing values for the tag properties. For information on the delta

query modes, refer to Counter Delta Queries.

Add a Tag Manually

• Add the collector instance (on page 357) using which you want to collect data.

• By default, the tag data is stored in the user data store, which is created automatically when you

set up Configuration Hub. If, however, you want to store the data in a different data store, create it

(on page 370).

After you create a collector instance, you specify which tags from the source must be used for data

collection (on page 357). In addition, if you want to use the same tag twice (say, with a different

collection interval or collector compression settings), you can add the tag manually. You can also create a

calculation tag or a tag to store the values imported using the Excel Add-in.

Historian | 3 - Configuration Hub | 670

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

3. Select .

The Add Tag-<system name> page appears. The Add Tags from Collector option is selected by

default.

4. Select Add Manually.

5. Enter values as described in the following table.

Field Description

COLLECTOR NAME Select the collector instance that you want to use to collect da

ta. If, however, this tag is not associated with a collector, you

Historian | 3 - Configuration Hub | 671

Field Description

can leave the field blank (for example, you want to ingest this

data manually instead of using a collector).

SOURCE ADDRESS Specify the source tag to which you want to map the one you

are creating. This field is enabled only if you select a value in

the COLLECTOR NAME field. When you select , the Browse

Source Tag: <collector name> window appears. Provide the

search criteria to find the tag that you want to map.

TAG NAME Enter a name for the tag. A value is required and must be unique

for the Historian server.

The value that you enter:

◦ Must begin with a letter or a number.

◦ Can contain up to 256 characters.

◦ Can include any of the following special characters: /!|

#{}%$-_

◦ Must not include a space or any of the following charac

ters: ~`+^:;.,?"*=@

DATA TYPE Select the data type of the tag data. To find out the data types

supported by a collector, refer to the documentation on the col

lector that you have created.

Important:

If you select an unsupported data type, you may receive

incorrect data or even lose data.

If you select Multi-Field, the USER-DEFINED TYPE NAME field

appears, and the ENUMERATED SET and ARRAY TAG fields are

disabled.

If you select Fixed String, the STRING LENGTH field appears.

STRING LENGTH Enter the maximum character length allowed for the tag data.

This field appears only if the value in the DATA TYPE field is

Fixed String. A value is required.

You can enter a value between 1 and 255. The default value is 8.

Historian | 3 - Configuration Hub | 672

Field Description

USER-DEFINED TYPE NAME Select the user-defined data type (UDT) (on page 719) that you

want to assign to the tag. This field appears only if the value in

the DATA TYPE field is Multi-Field. A value is required.

ENUMERATED SET Select the enumerated set (on page 707) that you want to as

sign to the tag. This field is not applicable for string and mul

ti-field data types (enumerated sets) and for array tags.

ARRAY TAG Switch the toggle to indicate whether the tag stores an array of

data. This field is disabled if you select a value in the ENUMER

ATED SET field or if the value in the DATA TYPE field is Mul

ti-Field.

For information on array tags, refer to About Array Tags (on

page 660).

TIME RESOLUTION Select the time resolution for the tag. A value is required.

For example, if you select Seconds, when you plot the data on a

trend chart, the timestamp of the data points will be one second

apart.

DATA STORE If you want to store the data in a different data store that the

user data store, select the same.

6. Select Add Tag.

Data collection begins for the selected tags.

As needed, configure each tag by providing values for the tag properties. For information on the delta

query modes, refer to Counter Delta Queries.

Access a Tag

To search for a tag, you can choose from the following options:

• Access all the tags in all the systems available in the Historian server.

• Access the tags added to a specific collector instance.

• Access the tags added to all the collector instances in a specific Historian system.

You can narrow down the search results further by performing a search.

Historian | 3 - Configuration Hub | 673

Note:

By default, maximum one million tags are retrieved. If the Historian clients are configured to

retrieve more than a million tags, to retrieve all of them, add the MaxTagsToRetrieve registry key

under HKEY_LOCAL_MACHINE\SOFTWARE\Intellution, Inc.\iHistorian\Services

\DataArchiver\, and then set the maximum number of tags that you want to retrieve. Restart

the Historian Data Archiver service for the change to reflect.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

A list of all the tags appears, displaying the following information.

Column Description

TAG NAME The name of the tag.

DESCRIPTION The description of the tag.

COLLECTOR NAME The name of the collector instance to which you have added the

tag.

LAST 10 VALUES The last 10 values collected for the tag, plotted as a trend chart.

If you pause over the chart, the minimum, maximum, first, and

last values among the 10 values appear.

TAG ALIAS Indicates whether the tag contains aliases, which are created

when you rename the tag using an alias (on page 698).

Tip:

You can show/hide/reorder columns in the table. For instructions, refer to Common Tasks

in Configuration Hub (on page 353).

3. If you want to access the tags specific to a Historian system, in the drop-down list box in the upper-

left corner of the main section, select the system.

Historian | 3 - Configuration Hub | 674

Alternatively, you can access the system from the NAVIGATION section, right-click the system (or

select), and then select Browse Tags.

The list of tags is filtered to display only the tags specific to the system.

4. If you want to narrow down the search results, select Search.

Enter the search criteria, and then select Search. You can add more attributes by selecting Add

Attribute. You can enter a name or a value partially or use the wildcard character asterisk (*).

The tags are filtered based on the search criteria.

5. Select the row containing the tag that you want to access.

The tag details appear in the DETAILS section.

Table 35. The General Section

Field Description

Tag Name The name of the tag. This field is disabled and populated.

Description The description of the tag.

Comment Comments that apply to the tag.

Historian | 3 - Configuration Hub | 675

Field Description

StepValue Indicates that the actual measured value changes in a sharp step in

stead of a smooth linear interpolation. This option is applicable only for

numeric data. Enabling this option only affects data retrieval; it has no

effect on data collection or storage.

Last Modified Time The date the last tag parameter modification was made. This field is dis

abled and populated.

Last Modified User The name of the person who last modified the tag configuration para

meters. This field is disabled and populated.

Table 36. The Collection Section

Field Description

Collector The name of the collector that collects data for the selected tag.

Source Address The address for the tag in the data source. Leave this field blank for tags

associated with the Calculation or Server-to-Server collector.

For Python Expression tags, this field contains the full applicable JSON

configuration, which includes an indication of the source address.

Note:

When exporting or importing tags using the Excel Add-in for His

torian, the Calculation column, not the SourceAddress column,

holds the formulas for tags associated with the Calculation or

Server-to-Server collector.

Data Type The data type of the tag.

The main use of the scaled data type is to save space, but this results in

a loss of precision. Instead of using 4 bytes of data, it only uses 2 bytes

by storing the data as a percentage of the EGU limit. Changing the EGU

limits will result in a change in the values that are displayed. For exam

ple, if the original EGU values were 0 to 100 and a value of 20 was stored

using the scaled data type and if the EGUs are changed to 0 to 200, the

original value of 20 will be represented as 40.

Historian | 3 - Configuration Hub | 676

Field Description

Note:

If you change the data type of an existing tag between a nu

meric and a string or binary data type (and vice versa), the tag's

compression and scaling settings will be lost.

Value The number of bytes for a fixed string data type. This field is enabled on

ly for fixed string data types.

Enumerated Set Name The name of the enumerated set (on page 707) that you want to as

sign to the tag.

Array Tag Indicates that the tag is an array tag (on page 660).

Location The distributed location of the system in which the tag data is stored

(applicable only for a horizontally scalable system).

Data Store The data store in which the tag data is stored.

Collection Indicates whether data collection is enabled or disabled for the tag. If

you disable collection for the tag, Historian stops collecting data for the

tag, but does not delete the tag or its data.

Collection Type The type of data collection used for this tag, which can be polled or

unsolicited. Polled means that the data collector requests data from

the data source at the collection interval specified in the polling sched

ule. Unsolicited means that the data source sends data to the collector

whenever necessary (independent of the data collector polling sched

ule).

Collection Interval The time interval between readings of data from this tag. With Unsolicit

ed Collection Type, this field defines the minimum interval at which un

solicited data should be sent by the data source.

Collection Offset Used with the collection interval to schedule collection of data from a

tag. For example, to collect a value for a tag every hour at thirty minutes

past the hour (12:30, 1:30, 2:30, and so on), enter a collection interval of

1 hour and an offset of 30 minutes. Similarly, to collect a value each day

at 8am, enter a collection interval of 1 day and an offset of 8 hours.

Historian | 3 - Configuration Hub | 677

Field Description

Note:

If you enter a value in milliseconds, the value must be in inter

vals of 1000 ms. For example, 1000, 2000, and 3000 ms are

valid values, but 500 and 1500 ms are invalid. The minimum val

ue is 1000 ms.

Time Resolution The precision for timestamps, which can be either seconds, millisec

onds or microseconds.

Condition-Based Indicates whether condition-based data collection (on page 666) is en

abled.

Trigger Tag The name of the trigger tag used in the condition.

Comparison The comparison operator that you want to use in the condition. Select

one of the following options:

◦ Undefined: Collection will resume only when the value of the trig

gered tag changes. This is considered an incomplete configura

tion, so condition-based collection is turned off and all the col

lected data is sent to archiver.

◦ < =: Setting condition as trigger tag value less than or equal to the

compare value.

◦ > = Setting condition as trigger tag value greater than or equal to

the compare value.

◦ <: Setting condition as trigger tag value less than the compare

value.

◦ >: Setting condition as trigger tag value greater than the compare

value.

◦ =: Setting condition as trigger tag value equals compare value.

◦ !=: Setting condition as trigger tag value not the same as com

pare value.

Compare Value A target value that you want to compare with the value of the trigger

tag. If using = and != comparison parameters, ensure that the format of

the compared value and triggered tag are the same. For example, for

a float type trigger tag, the compare value must be a float value; other

wise, the condition result is an invalid configuration. When the config

Historian | 3 - Configuration Hub | 678

Field Description

uration is invalid, condition-based collection is disabled and all data is

sent to archiver.

End of Collection

Markers

Indicates whether end-of-collection markers are enabled. This will mark

all the tag's values as bad, and sub-quality as ConditionCollectionHalted

when the condition becomes false. Trending and reporting applications

can use this information to indicate that the real-world value was un

known after this time until the condition becomes true and a new sam

ple is collected. If disabled, a bad data marker is not inserted when the

condition becomes false.

Table 37. The Collection Options Section

Field Description

Data Collection Indicates whether data collection is enabled or disabled for the tag. If

you disable collection for the tag, Historian stops collecting data for the

tag, but does not delete the tag or its data.

Collection Type The type of data collection used for this tag:

◦ Polled: The data collector requests data from the data source at

the collection interval specified in the polling schedule.

◦ Unsolicited: The data source sends data to the collector whenev

er necessary (independent of the data collector polling schedule).

Collection Interval The time interval between readings of data from this tag. For unsolicit

ed collection type, this field defines the minimum interval at which unso

licited data should be sent by the data source.

Collection Offset Val

ue and Collection Off

set

Used with the collection interval to schedule collection of data from a

tag. For example, to collect a value for a tag every hour at thirty minutes

past the hour (12:30, 1:30, 2:30, and so on), enter a collection interval of

1 hour and an offset of 30 minutes. Similarly, to collect a value each day

at 8am, enter a collection interval of 1 day and an offset of 8 hours.

Note:

If you enter a value in milliseconds, the value must be in inter

vals of 1000 ms. For example, 1000, 2000, and 3000 ms are

Historian | 3 - Configuration Hub | 679

Field Description

valid values, but 500 and 1500 ms are invalid. The minimum val

ue is 1000 ms.

Time Resolution The precision for timestamps, which can be either seconds, millisec

onds or microseconds.

Condition based col

lection

Indicates whether condition-based data collection (on page 666) is en

abled.

Trigger Tag The name of the trigger tag used in the condition.

Comparison The comparison operator that you want to use in the condition. This

field is enabled only if you have enabled condition-based collection.

Select one of the following options:

◦ Undefined: Collection will resume only when the value of the trig

gered tag changes. This is considered an incomplete configura

tion, so condition-based collection is turned off and all the col

lected data is sent to archiver.

◦ < =: Setting condition as trigger tag value less than or equal to the

compare value.

◦ > = Setting condition as trigger tag value greater than or equal to

the compare value.

◦ <: Setting condition as trigger tag value less than the compare

value.

◦ >: Setting condition as trigger tag value greater than the compare

value.

◦ =: Setting condition as trigger tag value equals compare value.

◦ !=: Setting condition as trigger tag value not the same as com

pare value.

Compare Value A target value that you want to compare with the value of the trigger

tag. If using = and != comparison parameters, ensure that the format of

the compared value and triggered tag are the same. For example, for

a float type trigger tag, the compare value must be a float value; other

wise, the condition result is an invalid configuration. When the config

uration is invalid, condition-based collection is disabled and all data is

sent to archiver.

Historian | 3 - Configuration Hub | 680

Field Description

End of Collection

Markers

Indicates whether end-of-collection markers are enabled. This will mark

all the tag's values as bad, and sub-quality as ConditionCollectionHalted

when the condition becomes false. Trending and reporting applications

can use this information to indicate that the real-world value was un

known after this time until the condition becomes true and a new sam

ple is collected. If disabled, a bad data marker is not inserted when the

condition becomes false.

Table 38. The Scaling Section

Field Description

EGU Description The Engineering Units (EGU) provide context to a tag's value by

providing an accurate representation of the tag values through

their corresponding units. This will help you to know the units of

data that you pull.

For example, you can enter "Temperature" or "degree Celsius"

in EGU Description for a single tag or multiple tags associated

with temperature values.

When you view the last 10 values of the tag (on page 690),

or when you generate a query (on page 734)/write (on page

738) report in the Data page, EGU you enter will be displayed

under the Engineering Units column in the table view and as a

tool tip in the trend view.

Hi Engineering Units The current value of the upper range limit of the span for this

tag.

Engineering Hi and Lo are retrieved automatically for F_CV fields

for iFIX tags; all others are left at default settings. When adding

tags from the server using an OPC Collector, the OPC Collector

queries the server for the EGU units and EGU Hi/Lo limits. How

ever, not all OPC Servers make this information available. There

fore, if the server does not provide the limits when requested to

do so, the collector automatically assigns an EGU range of 0 to

10,000.

Historian | 3 - Configuration Hub | 681

Field Description

Lo Engineering Units The current value of the lower range limit of the span for this

tag.

Input Scaling Indicates whether input scaling is enabled, which converts an in

put data point to an engineering units value.

For example, to rescale and save a 0 - 4096 input value to a

scaled range of 0 - 100, enter 0 and 4096 as the low and high in

put scale values and 0 and 100 as the low and high engineering

units values, respectively.

If a data point exceeds the high or low end of the input scaling

range, Historian logs a bad data quality point with a ScaledOut

OfRange subquality. In the previous example, if your input data

is less than 0, or greater than 4096, Historian records a bad data

quality for the data point.

OPC Servers and TRUE Values: Some OPC servers return a

TRUE value as -1. If your OPC server is returning TRUE values as

-1, modify the following scaling settings:

◦ Hi Engineering Units: Enter 0.

◦ Lo Engineering Units: Enter 1.

◦ Hi Scaling Value: Enter 0.

◦ Lo Scaling Value: Enter -1.

◦ Input Scaling: Enable this option.

Hi Scaling Value The upper limit of the span of the input value.

Lo Scaling Value The lower limit of the span of the input value.

Table 39. The Collector Compression Section

Field Description

Collector Compres

sion

Indicates whether collector compression (on page 660) is enabled.

Collector Deadband

and Deadband value

The current value of the compression deadband. This value can be com

puted as a percent of the span, centered around the data value or given

as an absolute range around the data value.

Historian | 3 - Configuration Hub | 682

Field Description

Note:

Some OPC servers add and subtract the whole deadband value

from the last data value. This effectively doubles the magnitude

of the deadband compared to other OPC servers. To determine

how your specific server handles deadband, refer to the docu

mentation of your OPC server.

Example:

Suppose the engineering units are 0 to 200. Suppose the deadband val

ue is 10%, which is 20 units. If the deadband value is 10% and the last re

ported value is 50, the value will be reported when the current value ex

ceeds 50 + 10 = 60 or is less than 50 - 10 = 40. Note that the deadband

(20 units) is split around the last data value (10 on either side.)

Alternatively, you could specify an absolute deadband of 5. In this case,

if the last value was 50, a new data sample will be reported when the

current value exceeds 55 or drops below 45.

If compression is enabled and the deadband is set to zero, the collector

ignores data values that do not change and records any that do change.

If you set the deadband to a non-zero value, the collector records any

value that lies outside the deadband. If the value changes drastically, a

pre-spike point may be inserted. For information, refer to Enable Spike

Logic (on page 970).

Engineering Unit Converts the deadband percentage into engineering units and displays

the result. This value establishes the deadband range that is centered

around the new value.

This field represents a calculated number created to give an idea of how

large a deadband you are creating in engineering units. The deadband is

entered in percentage and Historian converts the percentage in to engi

neering units.

Compression Time

out and Compression

Timeout Interval

Indicates the maximum amount of time the collector will wait between

sending samples for a tag to the archiver. This time is maintained per

tag, as different tags report to the archiver at different times.

Historian | 3 - Configuration Hub | 683

Field Description

For polled tags, this value should be in multiples of your collection in

terval. After the timeout value is exceeded, the tag stores a value at the

next scheduled collection interval, and not when the timeout occurred.

For example, if you have a 10-second collection interval, a 1-minute

compression timeout, and a collection that started at 2:14:00, if the val

ue has not changed, the value is logged at 2:15:10 and not at 2:15:00.

For unsolicited tags, a value is guaranteed in, at most, twice the com

pression timeout interval.

A non-changing value is logged on each compression timeout. For ex

ample, an unsolicited tag with a 1-second collection interval and a 30-

second compression timeout is stored every 30 seconds.

A changing value for the same tag may have up to 60 seconds between

raw samples. In this case, if the value changes after 10 seconds, then

that value is stored, but the value at 30 seconds (if unchanged) will not

be stored. The value at 60 seconds will be stored. This leaves a gap of

50 seconds between raw samples which is less than 60 seconds.

Compression timeout is supported in all collectors except the PI collec

tor.

Table 40. The Archive Compression Section

Field Description

Archive Compression Indicates whether archive compression (on page 660) is enabled. If

enabled, Historian applies the archive deadband settings against all re

ported data from the collector.

Archive Deadband and

Deadband value

The current value of the archive deadband, expressed as a percent of

span or an absolute number.

Engineering Unit Converts the deadband percentage into engineering units and displays

the result. This value establishes the deadband range that is centered

around the new value.

Historian | 3 - Configuration Hub | 684

Field Description

Compression Time

out and Compression

Timeout Interval

The maximum amount of time from the last stored point before anoth

er point is stored, if the value does not exceed the archive compression

deadband.

The data archiver treats the incoming sample after the timeout occurs

as if it exceeded compression. It then stores the pending sample.

Table 41. The Advanced Section

Field Description

Time Assigned By The source of the timestamp for a data value is either the collector or

the data source.

All tags, by default, have their time assigned by the collector. When you

configure a tag for a polled collection rate, the tag is updated based on

the collection interval. For example, if you set the collection interval to

5 seconds with no compression, then the archive will be updated with a

new data point and timestamp every 5 seconds, even if the value is not

changing.

However, if you set the Time Assigned By field to Source for the same

tag, the archive only updates when the device timestamp changes. For

example, if the poll time is still 5 seconds, but if the timestamp on the

device does not change for 10 minutes, no new data will be added to the

archive for 10 minutes.

Note:

This field is disabled for Calculation and Server-to-Server tags.

Time Zone Bias The number of minutes from GMT that should be used to translate time

stamps when retrieving data from this tag. For example, the time zone

bias for Eastern Standard time is -300 minutes (GMT-5).

This field is not used during collection. Use this option if a particular tag

requires a time zone adjustment during retrieval other than the client

or server time zone. For example, you could retrieve data for two tags

with different time zones by using the tag time zone selection in the iFIX

chart.

Historian | 3 - Configuration Hub | 685

Field Description

Time Adjustment If the Server-to-Server collector is not running on the source computer,

select the Adjust for Source Time Difference option to compensate for

the time difference between the source archiver computer and the col

lector computer.

Note:

This field only applies to tags associated with the Server-to-

Server collector that use a polled collection type.

Table 42. The Security Section

Field Description

Read Group The Windows security group that can retrieve the tag data and plot it in a

trend chart.

For example, if you select a group with power users, in addition to mem

bers of the iH Security Admins group, only a member of the power users

group will be able to read data for that tag. Even a member of the iH

Readers group will not be able to access data for that tag, unless they

are also defined as a member of the power users group.

Write Group The Windows security group that can write tag data (for example, using

the Excel Add-in for Historian).

Administer Group The Windows security group that can create, modify, and delete the tag.

For more information, refer to implementing tag-level security (on page 291).

Note:

When it comes to the group security, the security settings applied at the tag level, if any,

take the precedence over those at the data store level.

Note:

If you are using domain groups (instead of local groups), the Read Group, Write Group,

and Administer Group fields contain only the groups whose names begin with iH<space>

(case-sensitive). Therefore, ensure that the group that you want to use begins with

iH<space>.

Historian | 3 - Configuration Hub | 686

Table 43. The Delta Query Section

Field Description

Delta Max Value The maximum value that a tag can have. It also called the

rollover point of the counter or totalizer. If the tag values exceed

MaxValue, the counter is reset to the minimum value. If you do

not provide MaxValue, the delta query cannot check for a posi

tive counter wrap.

Delta Min Value The minimum value that a tag can have. If the tag values are

less than MinValue (and the counter is going in the negative di

rection), the tag values are reset to MaxValue. If you do not pro

vide MinValue, 0 is considered.

Delta Max Positive RPH The maximum rate per hour between two consecutive data

points in the positive direction. If two consecutive data points

exceed this value, they are not considered in a delta query.

Delta Max Negative RPH The maximum rate per hour between two consecutive data

points in the negative direction. If two consecutive data points

exceed this value, they are not considered in a delta query.

The Delta Max Positive RPH and Delta Max Negative RPH val

ues are used to determine if a counter wrap has occurred or

if the counter has been manually reset. They help ignore data

points whose values increase or decrease drastically.

For information on how these values are calculated, refer to Counter Delta Queries (on page 1113).

The Spare Fields section

Spare configuration enables you to add additional configuration to the tag using the Spare Field 1

to Spare Field 5 fields in all the collectors except in a Server-to-Server collector, Server-to-Server

distributor, and an OSI PI distributor.

Historian | 3 - Configuration Hub | 687

◦ In case of an OSI PI distributor, data is read from the Historian tag displayed in the Source

Address field and sent to the OSI PI tag name displayed in the Spare Field 1 field. To control

the source and destination tags, change the Source Address and Spare Field 1 values. You

can add or update values in the remaining spare fields.

◦ In case of Server-to-Server collector and Server-to-Server distributor, you can update the

Spare Field 1 to Spare Field 4 values, but the Spare Field 5 field is used only for internal

purposes. Therefore, do not update the Spare Field 5 field.

The TAG ALIAS Section

Contains a list of the old names of the tag that you have renamed using an alias. For more

information, refer to Rename a Tag (on page 698).

Configure Multiple Tags

This topic describes how to select multiple tags and configure their properties. This allows you to select

two or more tags and configure their relevant properties at once. By default, 100 tags are listed at once

in the grid. If you need to configure more than 100 tags simultaneously, you can use the page numbers

at the bottom-right corner of the grid to navigate to the next available tags and select them as needed.

Depending on the data types of the tags you select, all the properties that are relevant to the selected tags

will be available in the DETAILS section for configuration.

Before you begin the configuration of multiple tags, know the following:

• When you select multiple tags, only the common properties will be displayed in the DETAILS

section.

• The configuration values displayed in the DETAILS section will be of the last tag that is selected.

However, the properties you update will be applied to all the other selected tags.

• When you configure multiple tags, only the configured properties are updated, and all the other

properties remain unchanged.

• When you select multiple tags, aliases are disabled.

The table below provides the properties that will be disabled based on the selection of different tag data

types.

Tag Data Type/ Tag Type Properties Disabled

Array, Blob, Multifield Compression, Scaling, Calculation, and Delta

mode.

Historian | 3 - Configuration Hub | 688

Tag Data Type/ Tag Type Properties Disabled

Fixed string, Variable string Compression, Scaling, Calculation, and Delta

mode.

Calculation None.

Calculation combined with other tag data types Condition based collection, Time assigned by, and

other relevant properties.

For example, if you select Calculation, Array, and

Blob, Condition based collection, Time assigned by,

Compression, Scaling, Calculation, and Delta mode

are disabled.

Non-calculation, Array, Multifield All the properties other than General, Collection,

Scaling, Compression, Advanced, Security, Delta,

and Spare.

Multifield Array tag.

UDT, Enum tags Enumerated set.

Array, Blob, Scaled, Fixed string, Variable string Enumerated set.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

3. To select multiple tags, select the check boxes corresponding to the tags as needed.

Alternatively, to select all the available tags, select the check box in the upper-left corner in the grid

header.

Historian | 3 - Configuration Hub | 689

4. In the DETAILS section, edit the available properties as needed.

5. After you edit, in the top-left corner of the main ribbon bar, select Save.

Access the Trend Chart of Tag Values

This topic describes how to access the values of a tag in a trend chart. The difference in the timestamp

of consecutive values depends on the time resolution of the tag. For example, if the time resolution is

seconds, the timestamp of consecutive values of the tag will be one second apart.

You can plot the trend chart for up to 10 tags at a time.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

A list of all the tags appears.

3. If you want to narrow down the search results, select Search.

Enter the search criteria, and then select Search. You can add more attributes by selecting Add

Attribute. You can enter a name or a value partially or use the wildcard character asterisk (*).

Historian | 3 - Configuration Hub | 690

The list of tags are filtered based on the search criteria.

4. If you want to access the trend chart of a single tag, right-click the tag (or select), and then

select Trend.

If you want to access the trend chart for multiple tags, select the check boxes corresponding to the

tags, right-click (or select), and then select Trend. You can select up to 10 tags.

The tag values are plotted on a trend chart. You can switch between the trend view and the table

view.

Tip:

You can also filter the chart by changing the duration, sampling type, time interval, and so

on by selecting .

Access the Last 10 Values of a Tag

This topic describes how to access the last 10 values of a tag up to the current time. The difference in

the timestamp of consecutive values depends on the time resolution of the tag. For example, if the time

resolution is seconds, the timestamp of consecutive values of the tag will be one second apart.

Historian | 3 - Configuration Hub | 691

Note:

If a tag name contains a comma or a semicolon, you cannot view the last 10 values of the tag.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

A list of all the tags appears.

3. If you want to narrow down the search results, select Search.

Enter the search criteria, and then select Search. You can add more attributes by selecting Add

Attribute. You can enter a name or a value partially or use the wildcard character asterisk (*).

The list of tags are filtered based on the search criteria.

4. If you want to access the last 10 values of a single tag, right-click the tag (or select), and then

select View Last 10 Values.

Historian | 3 - Configuration Hub | 692

The last 10 values of the tag appear, along with the timestamp and quality of each value. You can

switch between the trend view and the table view.

5. If you want to access the last 10 values of multiple tags, select the check boxes corresponding to

the tags, right-click (or select), and then select Trend. You can select up to 10 tags.

In table view you can view data attributes which are introduced to store the 128-bit subquality for

every sample.

Note:

SCADA applications such as Habitat support data samples with several quality types. To

support such SCADA applications, Historian is now enhanced to store up to 128-bit quality

types, which are stored in the data attributes. These attributes are extended qualities that

you can store more than the regular qualities and subqualities (such as good and bad). In

addition to regular qualities, the HAB collector collects extends qualities such as replaced,

suspect, garbage, old, and so on.

The Data Attributes are displayed in the table view along with Timestamp, Value, and Quality. Data

Attributes are supported for Current Value, Raw by Number, Raw by Time, Lab, and Lab to Raw. In

addition:

Historian | 3 - Configuration Hub | 693

◦ For an array tag, all the values in the array appear for each timestamp.

◦ For a tag using an enumerated set, values of all the states appear for each timestamp.

◦ For a tag using a user-defined data type (UDT), values for all the fields appear for each

timestamp.

6. For the selected tag, to view the results in a table, select Table.

Tip:

You can also filter the values by changing the duration, sampling type, time interval,

engineering units, and so on by selecting .

Historian | 3 - Configuration Hub | 694

7. For the selected tag, to view the results in a trend chart, select Trend.

Access a Tag Alias

After you rename a tag, the old name is called the tag alias. You can retrieve tag data using the tag alias

as well. When you copy a tag, the tag alias is also captured to aid in an audit trail.

Note:

If a tag name contains a comma or a semicolon, you cannot view the tag alias.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

A list of all the tags appears.

3. If you want to narrow down the search results, select Search.

Historian | 3 - Configuration Hub | 695

Enter the search criteria, and then select Search. You can add more attributes by selecting Add

Attribute. You can enter a name or a value partially or use the wildcard character asterisk (*).

The list of tags are filtered based on the search criteria.

4. Right-click the tag whose alias you want to access (or select), and then select View Aliases.

Alternatively, you can select in the TAG ALIAS column.

All the tag aliases of the selected tag appear.

Export Tags as a CSV File

Historian | 3 - Configuration Hub | 696

This topic describes how to export tags as a CSV file. You can export tags from Configuration Hub as a

CSV file and add/modify tags in bulk and then import them. You can also import the CSV file that was

exported using Excel Add-in.

Note:

Similarly, you can also export enumerated sets, and user-defined types from the Manage

Enumerated Sets and Manage User-Defined Types windows.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

A list of all the tags appears, displaying the corresponding details.

3. Select and then select any one of the following options:

Option Description

Download CSV of this View Select this option if you want to download the

selected tags and their corresponding details

as listed in the tags grid.

Download CSV with Tag Details Select this option if you want to download the

selected tags and all their details, including

configurations, from the DETAILS section.

Note:

Irrespective of the number of tags you select, all the available tags will be exported.

4. Enter a name for the file and save it in a location as needed.

Historian | 3 - Configuration Hub | 697

Import Tags from a CSV File

This topic describes how to import tags into Configuration Hub from a CSV file. You can either export tags

and their details as a CSV file and edit them, and then import them back, or you can import tags and their

details from another CSV file that you created externally, like Excel Add-in.

Note:

Similarly, you can also import enumerated sets, and user-defined types from the Manage

Enumerated Sets and Manage User-Defined Types windows.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

A list of all the tags appears, displaying the corresponding details.

3. In upper-right corner of the grid, select .

The Import Tags page appears.

Historian | 3 - Configuration Hub | 698

4. Select Choose File, and then select the CSV file as needed.

Note:

If you import any irrelevant CSV file, the import will fail and you will be notified.

5. Select Import.

The tags and their details are imported.

Rename a Tag

To rename a tag, you must be a member of the administrator's group with tag-level security.

When you rename a tag, you can choose between the following options:

• Rename using an alias: In this case, the old name is called the tag alias. You can retrieve tag data

using the tag alias as well. When you copy a tag, the tag alias is captured as well to aid in an audit

trail.

Note:

If a tag name contains a comma or a semicolon, you cannot view the tag alias.

• Rename permanently: In this case, the old name is no longer captured. Therefore, you can create

another tag with this old name. You cannot store and forward data using the old name. This

implies that data for the tag is collected separately for the new name.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

A list of all the tags appears.

Historian | 3 - Configuration Hub | 699

3. If you want to narrow down the search results, select Search.

Enter the search criteria, and then select Search. You can add more attributes by selecting Add

Attribute. You can enter a name or a value partially or use the wildcard character asterisk (*).

The list of tags are filtered based on the search criteria.

4. Right-click the tag that you want to rename (or select).

5. If you want to rename the tag using an alias, select Rename.

If you want to rename the tag permanently, select Permanent Rename.

Historian | 3 - Configuration Hub | 700

The Rename Tag: <tag name> window or the Permanent Rename Tag: <tag name> window

appears.

6. Enter the new name of the tag, and then select Rename. The tag name must be unique in the

Historian server.

The tag is renamed. If you have renamed using an alias, the TAG ALIAS column displays ,

indicating that the tag now has an alias.

If you have renamed the tag permanently:

• If the tag is used as a trigger, reassign the trigger.

• Restart the collector instance (on page 639).

Copy a Tag

If you want to create a tag with the same properties as another one, you can copy it, and then modify the

properties as needed. When you copy a tag, the tag alias is captured as well to aid in an audit trail.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

A list of all the tags appears.

Historian | 3 - Configuration Hub | 701

3. If you want to narrow down the search results, select Search.

Enter the search criteria, and then select Search. You can add more attributes by selecting Add

Attribute. You can enter a name or a value partially or use the wildcard character asterisk (*).

The list of tags are filtered based on the search criteria.

4. Right-click the tag that you want to copy (or select), and then select Copy.

The Copy Tag: <tag name> window appears.

5. In the NEW TAG NAME field, provide a name for the tag. A value is required and must be unique for

the Historian system.

Historian | 3 - Configuration Hub | 702

6. Select Copy.

The tag is copied, inheriting the properties of the original tag. In addition, data collection begins for

the tag.

Stop the Data Collection of a Tag

If you want to stop using a tag for a while, you can stop the data collection of the tag, which allows you to

resume the data collection later. If, however, you no longer want to use the tag or its data, you can remove

it from the system (on page 704) or delete it (on page 705).

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

A list of all the tags appears.

3. If you want to narrow down the search results, select Search.

Enter the search criteria, and then select Search. You can add more attributes by selecting Add

Attribute. You can enter a name or a value partially or use the wildcard character asterisk (*).

The list of tags are filtered based on the search criteria.

4. Right-click the tag for which you want to stop data collection (or select), and then select Stop

Data Collection.

Historian | 3 - Configuration Hub | 703

A message appears, asking you to confirm that you want to stop the data collection for the tag.

5. Select Stop.

Data collection is stopped for the tag.

Start the Data Collection of a Tag

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

A list of all the tags appears.

3. If you want to narrow down the search results, select Search.

Historian | 3 - Configuration Hub | 704

Enter the search criteria, and then select Search. You can add more attributes by selecting Add

Attribute. You can enter a name or a value partially or use the wildcard character asterisk (*).

The list of tags are filtered based on the search criteria.

4. Right-click the tag for which you want to start data collection (or select), and then select Start

Data Collection.

A message appears, asking you to confirm that you want to start the data collection for the tag.

5. Select Start.

Data collection is started for the tag.

Remove a Tag from a System

When you remove a tag from a system, the tag and its data will still be available. Therefore, you cannot

create a tag with the same name. If, however, you no longer need the tag or its data, you can delete it (on

page 705). Or, you can choose to stop the data collection (on page 702) for the tag, which allows you

to resume the data collection (on page 703) later.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

A list of all the tags appears.

3. If you want to narrow down the search results, select Search.

Enter the search criteria, and then select Search. You can add more attributes by selecting Add

Attribute. You can enter a name or a value partially or use the wildcard character asterisk (*).

The list of tags are filtered based on the search criteria.

4. Right-click the tag that you want to remove (or select), and then select Remove Tag From

System.

Historian | 3 - Configuration Hub | 705

A message appears, asking you to confirm that you want to remove the tag from the system.

5. Select Remove.

The tag is removed from the system.

Delete a Tag

If the tag that you want to delete is associated with a variable in a Historian model, remove the mapping

between the variable and the tag.

When you delete a tag, it is deleted from Historian, and the tag data will no longer be available. If, however,

you want the tag data to be available, instead of deleting the tag, remove it from the system (on page

704). Or, you can choose to stop the data collection (on page 702) for the tag, which allows you to

resume the data collection (on page 703) later.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

A list of all the tags appears.

3. If you want to narrow down the search results, select Search.

Historian | 3 - Configuration Hub | 706

Enter the search criteria, and then select Search. You can add more attributes by selecting Add

Attribute. You can enter a name or a value partially or use the wildcard character asterisk (*).

The list of tags are filtered based on the search criteria.

4. Right-click the tag that you want to delete (or select), and then select Delete.

A message appears, asking you to confirm that you want to delete the tag.

5. Select Delete.

The tag is deleted.

Historian | 3 - Configuration Hub | 707

Managing Enumerated Sets

About Enumerated Sets

An enumerated data set provides an enhanced way of displaying data. It enables you to retrieve numeric

data as string state values. You can use the string values in reports, charts, etc.

An enumerated set contains several states. A state is the number-string value pair in a set. It contains

a set of numeric values and their corresponding string values. You can define an enumerated set for a

single value or a range of values. These state values are defined for data states stored in Data Archiver.

Data is retrieved using the value of the state. You have to define state values within a set to assign

enumerated values.

Table 44. Example of a Single-Value Enumerated Set

State Name State Value

Manual 0

Automatic 1

Table 45. Example of a Range-of-Values Enumerated Set:

State Name State Value

ON 0 to 100

OFF 101 to 200

State names can be duplicated. If duplicated states exist, take precautions to avoid unpredictable results.

For example, a tag is associated with an enumerated set defined as follows.

State Name State Value

0 Open

1 Close

2 Close

2 Open

The server will return unpredictable results due to the State Name duplication for an input of 2.

Historian | 3 - Configuration Hub | 708

Note:

You cannot assign an enumerated set to an array tag.

Create an Enumerated Set

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

3. Select , and then select Manage Enumerated Sets.

The Manage Enumerated Sets: <system name> window appears.

4. Select New Set, and enter values as described in the following table.

The fields to create enumerated sets appear.

Field Description

SET NAME Enter a name for the set.

DESCRIPTION Enter a description for the set.

DATA ATTRIBUTE ENUMER

ATED SET

This is not applicable if you are creating an enumerated set. Set

this to False.

Historian | 3 - Configuration Hub | 709

Field Description

ENUMERATE BY Specify whether you want to define a single value or a range of

values.

A single value is best used with integer values because they

match exactly. A range of values can be used with floating point

values because they may not match exactly due to rounding.

NAME Enter a name for the state.

VALUE Enter a numeric value for the state; string values such as on/off

are not supported. This field appears only if you select Single

Value in the ENUMERATE BY field.

START RANGE and END

RANGE

Enter the start and end values of the range. Enter only numeric

values; string values are not supported. These fields appear only

if you select Range in the ENUMERATE BY field.

If you want to assign ON for values 0-100, enter ON in the NAME

field, and enter 0 and 100 in the START RANGE and END RANGE

fields.

DESCRIPTION (under STATES) Enter a description for the state.

5. For each state that you want to create, select Add State, and repeat the previous steps.

6. Select Save Set.

7. If needed, add more sets, and then select Done.

The enumerated set is created.

Assign the enumerated set to a tag (on page 710).

Historian | 3 - Configuration Hub | 710

Assign an Enumerated Set to a Tag

• Create the tag (on page 357) for which you want to use an enumerated set.

• Create the enumerated set (on page 708) that you want to assign to a tag.

If you assign an enumerated set to a tag, when you retrieve the tag data, instead of the actual values, the

corresponding state names appear.

Example of an Enumerated Set

Suppose you have created the following states in an enumerated set:

State Name State Range

ON 0 to 100

OFF 101 to 200

Suppose you assign the enumerated set to a tag. If the tag values are, say, 50, 100, 75, and 104, when you

retrieve the tag values, ON, ON, ON, and OFF, respectively, are retrieved instead of the actual tag values.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

3. Select the tag to which you want to assign an enumerated set.

The details of the tag appear in the DETAILS section.

4. Under Collection, select Enumerated Set.

5. In the upper-left corner of the page, select Save.

The selected enumerated set is assigned to the tag.

Export an Enumerated Set

Historian | 3 - Configuration Hub | 711

This topics describes how to export enumerated sets as a CSV file. You can export enumerated sets from

Configuration Hub as a CSV file add/modify sets in bulk and then import them. You can also import the

CSV file that was exported using Excel Add-in.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

3. Select , and then select Manage Enumerated Sets.

The Manage Enumerated Sets: <system name> window appears.

4. In Saved Sets, select .

5. Enter a name for the file and save it in a location as needed.

Import an Enumerated Set

This topic describes how to import enumerated sets into Configuration Hub from a CSV file. You can

either export enumerated sets and their details as a CSV file and edit them, and then import them back,

or you can import enumerated sets and their details from another CSV file that you created externally, like

excel add-in.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

3. Select , and then select Manage Enumerated Sets.

The Manage Enumerated Sets: <system name> window appears.

4. In Saved Sets, select .

The Import Saved Sets page appears.

5. Select Choose File, and then select the CSV file as need.

Note:

If you import any irrelevant CSV file, the import will fail and you will be notified.

6. Select Import.

The enumerated sets and their details are imported.

7. In the Manage Enumerated Sets: <system name>, select Done.

Rename Enumerated Set
You can rename an enumerated set if needed.

Historian | 3 - Configuration Hub | 712

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

3. Select , and then select Manage Enumerated Sets.

The Manage Enumerated Sets: <system name> window appears.

4. Select the enumerated set that you want to rename.

Details corresponding to the selected data set are displayed.

5. In SET NAME, rename the name of the set.

6. Select Save Set.

The set name is renamed.

7. Click Done.

The changes are saved.

Delete an Enumerated Set

This topic describes how to delete an enumerated set.

Note:

You cannot delete an enumerated set if it is assigned to a tag.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

3. Select , and then select Manage Enumerated Sets.

The Manage Enumerated Sets: <system name> window appears.

4. Select the enumerated set that you want to delete, or select , and then select Delete Set. Or,

select next to the Set name.

A message appears, asking you to confirm that you want to delete the set.

5. Select Delete.

The enumerated set is deleted.

Managing Data Attribute Enumerated Set

About Data Attribute Enumerated Set

A data attribute enumerated set enables you to specify whether you want to define a custom text for the

sub-quality status and view it in the Attributes column instead of the value when you retrieve the tag data.

For example, if your tag is receiving bit positions indicating the sub-quality status (that are, 1 for Old data,

2 for Bad data, and 30 for Good data), you can map the bit position to a custom text and assign it to a

Historian | 3 - Configuration Hub | 713

set. So, when you view the actual values of the tag, the Attributes column will display the mapped custom

text instead of the integer (the bit positions). For example, if you mapped a custom text name "good-16"

to a value of 16, and the bit position of an incoming value is 16, it will display "good-16" in the Attributes

column instead of 16.

Table 46. Example of an Attribute Enumerated Set

State Name State Value

Uninitiated 0

Old 1

Bad 2

Not in Service 10

Good 30

Create a Data Attribute Enumerated Set

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

3. Select , and then select Manage Enumerated Sets.

The Manage Enumerated Sets: <system name> window appears.

4. Select New Set, and enter values as described in the following table.

The fields to create enumerated sets appear.

Historian | 3 - Configuration Hub | 714

Field Description

SET NAME Enter a name for the set.

DESCRIPTION Enter a description for the set.

DATA ATTRIBUTE ENUMER

ATED SET

Specify whether you want to define a custom text for the sub-

quality status and view it in the Attributes column instead of the

value when you retrieve the tag data. For example, if your tag is

receiving bit positions indicating the sub-quality status (that are,

1 for Old data, 2 for Bad data, and 30 for Good data), you can

map the bit position to a custom text and assign it to a set. So,

when you view the actual values of the tag, the Attributes col

umn will display the mapped custom text instead of the integer

(the bit positions). For example, if you mapped a custom text

name "good-16" to a value of 16, and the bit position of an in

coming value is 16, it will display "good-16" in the Attributes col

umn instead of 16.

To create an attribute enumerated set, you must set DATA AT

TRIBUTES ENUMERATED SET to True. If you choose this op

tion, the ENUMERATED BY field is set to Single Value and be

comes read-only.

Note:

It is not recommended to modify the created Data At

tribute Enumerated set in Historian Administrator. If you

modify it using Historian Administrator, the DATA AT

TRIBUTE ENUMERATED SET field will be changed to

False in Configuration Hub.

Historian | 3 - Configuration Hub | 715

Field Description

Example- Before applying the Data Attribute Enumerated Set

Example- After applying the Data Attribute Enumerated Set

ENUMERATE BY Specify whether you want to define a single value or a range of

values.

For data attribute enumerated set, single value is selected by

default and disabled.

NAME Enter a name for the state.

VALUE Enter a numeric value for the state; string values such as on/off

are not supported. This field appears only if you select Single

Value in the ENUMERATE BY field.

DESCRIPTION (under STATES) Enter a description for the state.

5. For each state that you want to create, select Add State, and repeat the previous steps.

Historian | 3 - Configuration Hub | 716

6. Select Save Set.

7. If needed, add more sets, and then select Done.

The data attribute enumerated set is created.

Assign a Data Attribute Enumerated Set to a Tag

• Create the tag (on page 357) for which you want to use an enumerated set.

• Create a data attribute enumerated set that you want to assign to a tag.

If you assign a data attribute enumerated set to a tag, when you retrieve the tag data, the corresponding

custom text that was mapped appears.

Example of a Data Attribute Enumerated Set

Suppose you have created the following states in a data attribute enumerated set:

State Name State Value

Old 1

Bad 2

Good 30

Suppose you assign the data attribute enumerated set to a tag. If the tag's quality status are, say, 30, 30, 1,

and 2, when you retrieve the tag values, Good, Good, Old, and Bad, respectively, are retrieved instead of the

actual quality status values in the Attributes column.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

3. Select the tag to which you want to assign an enumerated set.

The details of the tag appear in the DETAILS section.

4. Under Collection, select Data Attribute Enumerated Set.

Historian | 3 - Configuration Hub | 717

5. In the upper-left corner of the page, select Save.

The selected data attribute enumerated set is assigned to the tag.

Export Data Attribute Enumerated Sets

This topics describes how to export data attribute enumerated sets as a CSV file. You can export data

attribute enumerated sets from Configuration Hub as a CSV file add/modify sets in bulk and then import

them. You can also import the CSV file that was exported using Excel Add-in.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

3. Select , and then select Manage Enumerated Sets.

The Manage Enumerated Sets: <system name> window appears.

4. In Saved Sets, select .

5. Enter a name for the file and save it in a location as needed.

Import Data Attribute Enumerated Sets

This topic describes how to import data attribute enumerated sets into Configuration Hub from a CSV file.

You can either export data attribute enumerated sets and their details as a CSV file and edit them, and

then import them back, or you can import data attribute enumerated sets and their details from another

CSV file that you created externally, like Excel Add-in.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

3. Select , and then select Manage Enumerated Sets.

The Manage Enumerated Sets: <system name> window appears.

Historian | 3 - Configuration Hub | 718

4. In Saved Sets, select .

The Import Saved Sets page appears.

5. Select Choose File, and then select the CSV file as need.

Note:

If you import any irrelevant CSV file, the import will fail and you will be notified.

6. Select Import.

The data attribute enumerated sets and their details are imported.

7. In the Manage Enumerated Sets: <system name>, select Done.

Rename a Data Attribute Enumerated Set
You can rename a data attribute enumerated set if needed.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

3. Select , and then select Manage Enumerated Sets.

The Manage Enumerated Sets: <system name> window appears.

4. Select the data attribute enumerated set that you need to rename.

Details corresponding to the selected data set are displayed.

5. In SET NAME, rename the name of the set.

6. Select Save Set.

The set name is updated.

7. Click Done.

The changes are saved.

Delete a Data Attribute Enumerated Set

This topic describes how to delete a data attribute enumerated set.

Note:

You cannot delete a data attribute enumerated set if it is assigned to a tag.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

3. Select , and then select Manage Enumerated Sets.

The Manage Enumerated Sets: <system name> window appears.

Historian | 3 - Configuration Hub | 719

4. Select the data attribute enumerated set that you want to delete, or select , and then select

Delete Set. Or, select next to the Set name.

A message appears, asking you to confirm that you want to delete the set.

5. Select Delete.

The data attribute enumerated set is deleted.

Managing User-Defined Data Types

About User-Defined Data Types

Sometimes, a single tag cannot store all the required details of a parameter. For example, if you want to

store the name, address, and phone number of the manufacturer of a machine, it may not be feasible to

store all these details in a single tag, which uses a single data type. In such cases, you can create a user-

defined data type (UDT), which includes one or more fields, and then apply that type to Historian tags.

Each of these fields in a UDT can contain a different data type based on your requirement.

The following conditions apply when working with a UDT:

• You must have appropriate security permissions to create, modify, and delete a UDT. The type can

have its own Administrator security group.

• You cannot create an array tag that uses a UDT.

• UDTs cannot have fields of Scaled or FixedString data types.

• Scaling, collector compression, and archive compression do not apply to UDT tags.

• You cannot associate an enumerated set with a UDT tag.

• A UDT supports maximum 100 fields.

Create User-Defined Data Types

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

3. Select , and then select Manage User-Defined Types.

The Manage User-Defined Types: <system name> window appears.

4. Select New Type, and enter values as described in the following table.

Field Description

TYPE NAME Enter a name for the user-defined data type (UDT).

DESCRIPTION Enter a description for the UDT.

Historian | 3 - Configuration Hub | 720

Field Description

ADMINISTER GROUP Specify the Windows Security Group that you want to assign to

the UDT.

DATA QUALITY Select one of the following options:

◦ Store Individual Quality: Select this option to store field-

level quality. Storing individual qualities consumes more

disk space.

◦ Store Master Field Quality: Select this option if you want

to assign the same quality as the master field to all the

other fields in the UDT. If you select this option, the data

sample will have a single quality similar to how an array

tag works.

MASTER Select the radio button corresponding to the field that you want

to set as master. When you do so, the data type of this field is

used for all the remaining fields in the UDT as well. Only one

field can be the master in a UDT. The MASTER column ap

pears only if you select Store Master Field Quality under DATA

QUALITY.

NAME Enter a name for the field.

DESCRIPTION (under FIELD) Enter a description for the field.

DATA TYPE Select the data type for the field. If you select Store Master Field

under DATA QUALITY, and if you set this field as master, the da

ta type of this field will be applied to the remaining fields in the

UDT as well.

5. For each field that you want to create, select Add Field, and provide the required details.

6. Select Save Type.

7. If needed, add more UDTs, and then select Done.

The UDT is created.

Assign the UDT to a tag (on page 720).

Assign a User-Defined Data Type to a Tag

• Create the tag (on page 357) for which you want to assign a user-defined data type (UDT).

• Create the UDT (on page 719) that you want to assign to the tag.

Historian | 3 - Configuration Hub | 721

When you assign a UDT to a tag, the tag can collect data of various data types.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

3. Select the tag for which you want to assign a UDT.

The details of the tag appear in the DETAILS section.

4. Under Collection, in the User Defined Type Name field, select the UDT that you want to assign.

5. In the upper-left corner of the page, select Save.

The UDT is assigned to the tag.

Export User-defined Types

This topics describes how to export user-defined types as a CSV file. You can add/modify them in bulk,

and then import them. You can also import the CSV file that was exported using Excel Add-in.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

3. Select , and then select Manage User-Defined Types.

The Manage User-Defined Types: <system name> window appears.

4. In Saved Types, select .

5. Enter a name for the file and save it in a location as needed.

Import User-defined Types

This topic describes how to import user-defined types into Configuration Hub from a CSV file. You can

either export user-defined types and their details as a CSV file and edit them, and then import them back,

or you can import user-defined types and their details from another CSV file that you created externally,

like excel add-in.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

Historian | 3 - Configuration Hub | 722

3. Select , and then select Manage User-Defined Types.

The Manage User-Defined Types: <system name> window appears.

4. In Saved Types, select .

The Import Saved Types window appears.

5. Select Choose File, and then select the CSV file as need.

Note:

If you import any irrelevant CSV file, the import will fail and you will be notified.

6. Select Import.

The user-defined types and their details are imported.

7. In the Manage User-Defined Types: <system name>, select Done.

Rename User-defined Types
You can rename a user-defined type as needed.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

3. Select , and then select Manage User-Defined Types.

The Manage User-Defined Types: <system name> window appears.

4. In Saved Types, select the saved type as needed.

Details corresponding to the selected user-defined type are displayed.

5. Change the user-defined type name as needed.

6. Select Save Type.

The user-defined type name is renamed.

7. Click Done.

The changes are saved.

Delete a User-Defined Data Type

You cannot delete a user-defined data type (UDT) if it is assigned to a tag.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

3. Select , and then select Manage User-Defined Types.

The Manage User-Defined Types: <system name> window appears.

Historian | 3 - Configuration Hub | 723

4. Select the UDT that you want to delete, select , and then select Delete. Or, select next to

the UDT name.

A message appears, asking you to confirm that you want to delete the UDT.

5. Select Delete.

The UDT is deleted.

Managing Archives

About Archives

Historian archives are data files, each of which contains data gathered from all data sources during a

specific period of time.

Types of Archive Files:

• machine name_Config.ihc: Contains information about the archiver, tag configuration, and collector

configuration.

• machine name_ArchiveXXX.iha: Contains tag data, where x is a number indicating the place of the

file in a time-based sequence.

Creation of Archive Files Automatically

Archive files grow to a user-configured maximum size as data is recorded by the server. When data starts

loading into an archive file, Historian will automatically create a new blank archive file. When the current

archive file becomes full, Historian will immediately serve data to the newly created archive file. This

significantly reduces archive creation and transition time.

If, however, the option to automatically create archive files is not enabled, you must create an archive file

manually (on page 868).

Note:

If the option to automatically create an archive is not enabled and you do not create a new archive

manually, or if the available disk space is less than the required amount of free disk space, a new

archive file will not be created.

Overriding Old Archive Files

If you enable the Overwrite Old Archives option, the system replaces the oldest archived data with new

data when the latest archive default size has been reached. Since this action deletes historical data,

Historian | 3 - Configuration Hub | 724

exercise caution in using this feature. Be sure that you have a backup of the archive so that you can

restore it later. Best practice is to create an additional archive to prevent premature loss of data due to

overwriting. For example, if you want to save 12 months of data into 12 archives, create 13 archives.

During archiver startup and every 60 seconds while the server is running, Historian verifies that you have

configured enough free disk space to save the archives, buffer files, and log files. If there is insufficient

disk space, the Data Archiver shuts down and a message is logged into the log file. By default, you can

view the Historian archiver log file in C:\Historian Data\LogFiles.

[03/03/10 15:28:41.398] Insufficient space available in [d:\Historian\Archives\]

 [03/03/10 15:28:41.399] The server requires a minimum of [5000 MB] to continue

 [03/03/10 15:28:41.679] USER: DataArchiver TOPIC: ServiceControl MSG: DataArchiver(DataArchiver)

 Archiver shutdown at 03/03/10 15:28:41.653

 [03/03/10 15:28:41.807] DataArchiver Service Stopped.

 [03/03/10 15:28:41.809] [d:\Historian\LogFiles\DataArchiver-34.log] Closed.

Guidelines for Setting Archive Size

Since archived data files can become quite large, you must adjust system parameters carefully to limit

data collection to meaningful data only and thus minimize the required size of system storage. You can

allocate up to 256 GB per archive.

For each archive, you need approximately 1MB of archive space for every 1000 tags to store tag

information. Archive size is a function of the rate at which you archive data and the time period you want

the archive to cover. A typical user wants the archive to cover a time period of, say, 30 days.

The following factors affect the rate at which you archive data:

• Number of tags

• Polling frequency of each tag

• Compression settings

• Data types

Based on these parameters, the archive size is calculated as follows:

Historian | 3 - Configuration Hub | 725

Calculating Archive Size
Suppose you want to store data, and you have the following parameters:

• Number of tags: 5000

• Polling rate: 1 value/5 seconds

• Pass compression: 5%.

Pass compression is the number of data values archived relative to the number of values read.

• Bytes/value: 4

• Duration: 30 days

Based on the preceding formula, for the given parameters, the archive size is calculated as follows:

The calculation shows that a file size of 500 MB is adequate for archiving one month of data for this

application.

Therefore, we recommend that you set the default archive size to 500 MB for systems with 1000 tags or

more. If you believe the computed size is too large for your application, you can modify parameters as

follows:

• Decrease the polling frequency.

• Increase compression deadband, reducing the pass percentage.

• Reduce the number of tags.

• Add more disk capacity to your computer.

Archive Size Calculator

An archive size calculator tool is available to estimate archive size and collector compression based on

a tag that has already been configured or based on your inputs. Log on to http://digitalsupport.ge.com to

download this tool and other GE Intelligent Platforms freeware product solutions.

Access an Archive

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Archives.

The Archives section appears. By default, only the archives of the default data store appear. If you

want to access archives from another data store, select it in the DATA STORE field.

http://digitalsupport.ge.com

Historian | 3 - Configuration Hub | 726

3. Select the archive whose details you want to access.

The DETAILS section displays the following information of the archive.

Field Description

Status Identifies the status of the archive. Contains one of the follow

ing values:

◦ Current: The archive is actively accepting data.

◦ Active: The archive contains data but is not currently ac

cepting data.

◦ Empty: The archive was created but has never accepted

data.

Start Time The time at which writing data to the archive has begun.

End Time The time at which writing data to the archive has ended.

Last Backup The time at which the archive has been backed up last.

Backup User The user who created the last backup of the archive.

File Name The name and folder path of the archive file.

File Size (MB) The size of the archive file.

File Attribute Indicates whether the archive file is read-only or read/write.

4. If needed, change the values in the Filename and File Attribute fields. You cannot, however, change

the file attribute for the current archive.

5. In the upper-left corner of the page, select Save.

The archive is modified.

Historian | 3 - Configuration Hub | 727

Create Archives Automatically

Historian can automatically create archives for you if the current archive reaches a specific size or after

a specific duration. This topic describes how to set these options. You can, however, choose to create

archives manually (on page 728).

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Archives.

The Data Stores section appears.

3. Select the data store in which you want to create archives automatically.

The DETAILS section displays the details of the data store.

4. Under Archive Creation, enter values as described in the following table.

Field Description

Automatically Create Archives Switch the toggle on to indicate that you want

Historian to create archive files automatically

when the current one is full.

Create Archive By Select whether you want to create a new

archive automatically after the current one

reaches a specific size or after a specific dura

tion. This field is enabled only if you switch the

Automatically Create Archives toggle on.

Select one of the following options:

◦ Size: Select this option if you want to

create a new archive when the current

one reaches a specific size. Specify the

size in the Default Size (MB) field (which

appears only if you select Size).

◦ Days or Hours: Select one of these op

tions if you want to create a new archive

after a specific duration. Specify the

duration in the Archive Duration field

(which appears only if you select Days or

Hours).

Default Size (MB) The default size of an archive after which a new

one will be automatically created. This field

Historian | 3 - Configuration Hub | 728

Field Description

appears only if you select Size in the Create

Archive By field.

Archive Duration The duration after which a new archive will be

automatically created. This field appears only if

you select Days or Hours in the Create Archive

By field.

If needed, you can switch the Overwrite Old Archives toggle on. If you enable this option, the oldest

archived data is replaced with the latest one when the latest archive default size is reached. Since

this action deletes historical data, exercise caution in using this feature. Be sure that you have a

backup of the archive so that you can restore it later. Best practice is to create an additional archive

to prevent premature loss of data due to overwriting. For example, if you want to save 12 months of

data into 12 archives, create 13 archives.

5. In the upper-left corner of the page, select Save.

Archives will now be created automatically based on the criteria you specified.

Create Archives Manually

This topic describes how to create an archive file manually. You can create multiple archives at the same

time. You can, however, choose to create archives automatically (on page 727).

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Archives.

The Archives section appears.

3. In the upper-right corner of the section, select .

The Add Archives window appears.

4. Enter values as described in the following table.

Historian | 3 - Configuration Hub | 729

Field Description

ARCHIVE NAME Identifies the name of the archive. A value is

required. By default, it is in the following for

mat: <data store name>_<system name>_

Archive<number>. The number is used to name

the archives sequentially. You can only add a

suffix to the archive name.

DATA STORE Select the data store in which you want to cre

ate the archives. A value is required.

FILE LOCATION Enter the folder path in which you want to store

the archives. A value is required. By default, it is

C:\Proficy Historian Data\Archives

EACH ARCHIVE SIZE Enter the size, in MB, that you want to allocate

to each archive. A value is required. This field

is populated with the value in the Default Size

(MB) field in the data store (if applicable).

NUMBER OF ARCHIVES Enter the number of archives that you want to

create. A value is required. The default value is

1.

ALLOCATE SPACE Specify the disk space that you want to allocate

for archives. A value is required.

Important:

If there is insufficient disk space, Data

Archiver is shut down and a message

is logged into the log file. By default,

you can view the log file in C:\Histo

rian Data\LogFiles.

5. Select Add.

The archives are created.

Historian | 3 - Configuration Hub | 730

Back up an Archive

Ensure you have enough disk space.

You must back up archive files periodically to ensure that your data is protected. These backup files

contain tag data as well as alarms and events data. You can send these files to a shared network location

or to physical media.

Always back up archives before a planned Historian software product upgrade. Use Microsoft® Volume

Shadow Copy Service when backing up archive files that are more than 2 GB in size or when backing up

more than the last two archives. For more information, refer to Back Up Archives with Volume Shadow

Copy Service (on page 731).

This topic describes how to back up an archive manually. You can also back up an archive automatically

(on page 874).

Important points to remember:

• The .IHC file is automatically backed up when, and only when, you back up the current archive .IHA

file. By default, the .IHC backup path is the same as the archives path.

• The .IHC backup file uses the following naming convention: <system name>_Config-

Backup.ihc. If the default backup path is different from the archives counterpart,

the .IHC file is copied to the backup folder with the standard .IHC naming convention:

ComputerName_Config.ihc.

• In the mirroring system, Client Manager sends a backup message to Data Archiver located on

the Client Manager node to which you are connected. The back up, then, happens in the specified

location on that node. If that Data Archiver is not running, a NOT_CONNECTED error message

appears, and the backup will not happen.

• If you back up an archive more than once, the backup tool will (by default) attempt to use the

same name for the backup file and will detect that an archive with the same name already exists.

Rename the backup archive file or move the original backup archive file to a different folder.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Archives.

The Archives section appears.

3. Right-click the archive that you want to back up (or select), and then select Backup Archive.

The Backup Archives window appears. The ARCHIVE NAME field is disabled and populated. The

BACKUP FILE PATH field is disabled and populated with the value in the DEFAULT BACKUP PATH

field of the data store.

Historian | 3 - Configuration Hub | 731

4. Select OK.

The archive file is backed up.

Back up Archives with Volume Shadow Copy Service

Use the Microsoft® Volume Shadow Copy Service to back up large archive files, or if you want to back

up more than the last two archives, as it allows you to backup and restore archives reliably and in a short

period of time without affecting the data collection.

The Volume Shadow Copy feature is provided by Windows Operating System, and the instructions to

use backup and restore vary depending on the backup application that is used in the Windows operating

system.

VSS provides fast volume capture of the state of a disk which is called a snapshot or shadow copy.

When the snapshot is taken, disk writes are suspended for a brief period of time, typically on the order of

milliseconds. After the snapshot, disk writes can resume, but the original state of the files are maintained

by a difference file. The difference file allows the state of the original file at the time of the snapshot to be

reconstructed. This behavior allows files to be backed up while new data is being written to files.

If you are using ihArchiveBackup.exe before the upgrade, your backup will continue to work in the

same or similar manner as it did before the upgrade. There is no change in the backup procedure and the

Auto Recovery Backup Files option remains unchanged.

Note:

Though you could use either ihArchiveBackup.exe or VSS for backup, VSS is a better choice for

both larger archives or if you are backing up more than the last two archives to reduce the load on

the Data Archiver service.

Microsoft uses a backup format called Virtual Hard Disk (VHD) to back up files.

When you create archives backup using Microsoft® Volume Shadow Copy Service, you must first restore

the archives files (that is, .bkf or .vhd into .iha) using the Windows Restore wizard, and then restore the

archives (.iha) into Historian. For more information on restoring an archive (.iha) into Historian, refer to the

Restoring an Archive topic.

Note:

It is recommended that you:

Historian | 3 - Configuration Hub | 732

• Use Microsoft® Volume Shadow Copy Service when you want to back up archive files that

are more than 2 GB in size, or if you are backing up more than your last two archives.

• Ensure you have enough hard drive space on your default backup location before backing

up your archives.

Important:

For optimum performance, it is recommended you to save paging file of the operating system,

Historian archives, and scheduled backup directory on separate drives.

Historian | 3 - Configuration Hub | 733

Restore an Archive

• Before restoring an archive from a removable disk, copy the archive file to the normal archive path

and then restore the archive from that location. Leave the original backup file in the backup file

folder.

• Ensure that the current archive is online.

Under certain circumstances, you may want to restore tag and alarms and events data to Historian. This

may be after an unplanned shutdown, or you may need to retrieve data from an old, inactive archive.

Important:

Restoring an archive is a resource-intensive operation and should be scheduled for non-peak

usage times.

Archives that have been previously removed from Historian can be found in the \Archives\Offline

directory.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Archives.

The Archives section appears.

3. In the upper-right corner of the section, select .

The Restore Archives window appears.

4. Enter values as described in the following table.

Field Description

FILE LOCATION This field is populated with the value in the DE

FAULT BACKUP PATH field of the data store.

Append the name of the .zip file of the archive

that you want to restore. The ARCHIVE NAME

field is populated with the .zip file name that

you enter.

DATA STORE Select the data store in which you want to re

store the archive.

5. Select Restore.

The archive is restored; it is moved to the Archive folder and is made available for querying.

Historian | 3 - Configuration Hub | 734

Close an Archive

By default, an archive is closed when it is full. However, you can manually close an archive before it is full.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Archives.

The Archives section appears.

3. Right-click the archive that you want to back up (or select), and then select Close Archive.

A message appears, asking you to confirm that you want to close the archive.

4. Select Yes.

The archive file is closed, and another one is used for writing data.

Remove an Archive

When you remove an archive, it no longer appears in Configuration Hub. However, it exists in the Archives

folder (by default, C:\Proficy Historian Data\Archives).

You cannot remove the current archive. If you want to remove it, you must first close it. When you do so,

another archive is used for writing data.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Archives.

The Archives section appears.

3. Right-click the archive that you want to remove (or select), and then select Remove Archive.

A message appears, asking you to confirm that you want to remove the archive.

4. Select Yes.

The archive file is removed.

Reading/Writing Data

Query Data

Using Configuration Hub, you can query the data of selected tags. This data is then plotted in a trend

chart. You can also export this data into a PDF, SVG, PNG, or a JPEG file, or save it as favorites.

Querying data involves the following steps:

Historian | 3 - Configuration Hub | 735

1. Selecting the tags: You can select tags from all the tags in the system. While selecting tags, you

can view them in a hierarchical object model view or in a flat list.

2. Applying conditions and filters: You can select the sampling mode, size, query modifiers, and so

on. You can also select the calculation modes for the calculated sampling mode.

3. Generating the report: You can plot the query results in a trend chart or view them in a table. You

can also export the data.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Data.

The Data section appears, displaying a list of object instances and the underlying variables and

contained types hierarchically. If you want to view a flat list of all the tags, select .

3. Select the tags for which you want to query data, select Read data operation, and then select Next.

You can select up to 10 tags.

4. Enter values as described in the following table.

Field Description

START DATE/TIME Enter the start date and time for the query.

END DATE/TIME Enter the end date and time for the query.

SAMPLING MODES Select the sampling mode for the query:

◦ Calculated (on page 1073): Returns the result of a cal

culation on tag values (for example, count, maximum,

delta).

◦ Current Value (on page 1045): Returns a single sam

ple containing the current value of the tag. Retrieves the

timestamp, value, and quality.

◦ Interpolated (on page 1048): Returns the interpolated

tag values.

◦ Interpolated to Raw

◦ Lab (on page 1047): Returns only collected values. Each

collected value is repeated until the next collected value,

resulting in a jagged step plot instead of a smooth curve.

◦ Lab to Raw

◦ Raw By Number (on page 1057): Returns the specified

number of raw samples of all qualities beginning with the

start time and moving in the specified direction.

Historian | 3 - Configuration Hub | 736

Field Description

◦ Raw By Time (on page 1057): Returns all raw samples of

all qualities with a timestamp greater than the start time

and less than or equal to the end time. It will not return a

raw sample with same time stamp as the start time.

◦ Trend (on page 1065): Returns significant points, which

are raw samples. These points are determined by finding

the raw minimum and raw maximum values within each

interval.

◦ Trend to Raw

◦ Trend to Raw2

◦ Trend2 (on page 1069): Splits up a given time period in

to a number of intervals (using either a specified number

of samples or specified interval length), and returns the

minimum and maximum data values that occur within

the range of each interval, together with the timestamps

of the raw values. This sampling mode is suitable for

analysis of minimum and maximum values and for plot

ting programs that can handle unevenly spaced data.

CALCULATION MODE Select the calculation mode that you want to use. This field ap

pears only if you select Calculated in the SAMPLING MODES

field. For information on calculation modes, refer to Calculation

Modes (on page 1073).

SAMPLING DIRECTION The direction in which you want to retrieve the query results:

◦ Forward: Returns query results starting from the start da

ta to the end date.

◦ Backward: Returns query results starting from the end

date to the start data.

SAMPLE INCREMENT Identifies the amount of data samples in each sample:

◦ By Size: Select this option if you want each sample to

contain a specific number of data points, and then enter

the number of data points.

◦ By Time: Select this option if you want each sample to

contain data points collected for a specified duration,

and then enter the duration.

Historian | 3 - Configuration Hub | 737

Field Description

QUERY MODIFIERS Used for retrieving a specific set of data. For information, refer

to Query Modifiers (on page 1159).

Filters You can enter your filter conditions using the Filter tag, the Filter

Condition, and the Filter Comparison Value.

In the Filter Tag Name field, select the tag you want to enable fil

tering with.

In the Condition field, select your comparison condition.

In the Value field, enter your filter condition value.

5. Select Generate Report.

The query results for the selected tags are plotted on a trend chart.

You can narrow down the start and end dates by dragging the timeline below the trend chart.

Query_Results.mp4

The Tags and query criteria appear in the Summary section; you can edit them if needed.

Query_Results.mp4

Historian | 3 - Configuration Hub | 738

Select the Edit beside Tag Selection and Query Builder to modify tags and query criteria.

If you want to view the results in a table, select Table.

You can save the query if you may frequently use to read specific tags data with a specific query

criteria. For more information, refer to Save a query (on page 741).

If you want to export the results into a .csv file, select . The results are exported.

If you want to print the trend, select , and then select Print.

To export into other formats (such as a .pdf, .svg, .png, or .jpeg), select , and then select the

format.

Write Data

Using Configuration Hub, you can write data for selected tags. This helps you verify that data is being sent

to Data Archiver.

Writing data involves the following steps:

Historian | 3 - Configuration Hub | 739

1. Selecting the tags: You can select tags from all the tags in the system. While selecting tags, you

can view them in a hierarchical object model view or in a flat list.

2. Entering the data: You can enter data for each selected tag, along with the data type and quality.

3. Generating the report: You can plot the query results in a trend chart or view them in a table. You

can also export the data.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Data.

The Data section appears, displaying a list of object instances and the underlying variables and

contained types hierarchically. If you want to view a flat list of all the tags, select .

3. Under DATA OPERATION, select Write Data.

4. Select the tags for which you want to write data, and then select Next.

5. For each tag that you have selected, enter values as described in the following table.

Column Description

VALUE Enter the value of the tag. A value is required.

DATA TYPE If Hierarchical tags are selected, select the data type of the tag

value. A value is required.

If normal tags are selected, the data type will be automatically

populated.

DATA QUALITY Select the data quality of the tag value from Good or Bad from

the list. A value is required.

6. Select Write Data, and then select Next.

7. Select Generate Report.

The query results for the selected tags are plotted on a trend chart.

Historian | 3 - Configuration Hub | 740

You can narrow down the start and end dates by dragging the timeline below the trend chart.

Query_Results.mp4

The query criteria appear in the Summary section; you can edit them if needed.

Query_Results.mp4

Historian | 3 - Configuration Hub | 741

If you want to view the results in a table, select Table.

About Saved Query

About Saved Query

You can save queries that you use to read tags data. You can use this option to save queries that you may

frequently use to read specific tags data with a specific query criteria. This will help you in the following:

• Quickly gather insights of specific tags.

• Create and save a predefined query only once and use it as needed.

• You can use the Shared option to make the query visible to the other users in the same network.

Note:

Once you share a query, all the other users will also be able to edit, and delete it. Be

mindful about making a query as a shared query.

• Automate a monotonous query process through the saved queries.

What to do Next: You can Save a query (on page 741).

Save a Query
This topic describes how to save a Query to read tags data.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Data.

The Data section appears, displaying a list of object instances and the underlying variables and

contained types hierarchically. If you want to view a flat list of all the tags, select .

Historian | 3 - Configuration Hub | 742

3. Select the tags for which you want to query data, select Read Data operation, and then select Next.

4. Enter the values as needed. For more information on the values, refer to Query Data (on page

738).

5. Select Generate Report.

The query results are plotted on a trend chart.

6. Select Save Query.

The Save Query window appears.

7. Enter values as described in the following table.

Historian | 3 - Configuration Hub | 743

Field Description

NAME Enter a meaningful name for your query. You

can enter alphanumeric values and also use

special characters.

DESCRIPTION This is optional. You can enter a description

about the query you are creating. The de

scription can help other users to get a quick

overview of what this query is about.

Shared Select this check box to share this query with

others.

Note:

Once you share a query, all the oth

er users will also be able to edit, and

delete it. Be mindful about making a

query as a shared query.

8. Select Save.

The query is saved.

9. Select the Saved Queries tab.

The query you saved will be listed.

You can run or edit (on page 744) the query.

Run a Saved Query
After you create and save a query, you can run the query and see the query results.

This topic describes how to run a saved query.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Data.

The Data section appears, displaying a list of object instances and the underlying variables and

contained types hierarchically.

3. Select the Saved Queries tab.

The list of all the saved queries appears.

4. Select a query as needed.

Historian | 3 - Configuration Hub | 744

5. Select , and then select Run.

The query results are plotted on a trend chart.

Update a Saved Query
There can be changes in a process and so in the values. To update your saved queries, you can use the

update option.

This topic describes how to edit and update a saved query.

Note:

If you are accessing a shared query, and if you did not create it, be mindful before you edit it. If

possible, avoid editing the query.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Data.

The Data section appears, displaying a list of object instances and the underlying variables and

contained types hierarchically.

3. Select the Saved Queries tab.

The list of all the saved queries appears.

4. Select a query as needed.

5. Select , and then select Run.

Historian | 3 - Configuration Hub | 745

The query results are plotted on a trend chart.

6. Select the Edit beside Tag Selection and Query Builder to edit tags and query criteria.

a. Edit the tag selections or query criteria as needed.

b. SelectGenerate Report.

The Query Builder Summary appears.

7. Select Update.

Historian | 3 - Configuration Hub | 746

The Update Query:<Query Name> window appears.

Historian | 3 - Configuration Hub | 747

8. Update the description if needed

9. Select Update.

The query is updated.

10. To go back to the saved queries tab, in the top-left corner, select <Back

Update a Saved Query and Save it as a New Query

This topic describes how to update a saved query and save it as a new query.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Data.

The Data section appears, displaying a list of object instances and the underlying variables and

contained types hierarchically.

3. Select the Saved Queries tab.

The list of all the saved queries appears.

4. Select a query as needed.

5. Select , and then select Run.

Historian | 3 - Configuration Hub | 748

The query results are plotted on a trend chart.

6. Select the Edit beside Tag Selection and Query Builder to edit tags and query criteria.

a. Edit the tag selections or query criteria as needed.

b. SelectGenerate Report.

The Query Builder Summary appears.

7. Select Save as new Query.

The Save Query window appears.

Historian | 3 - Configuration Hub | 749

8. Enter a new name and description for the query.

9. Select Save.

The updated query is saves as a new query.

10. To go back to the saved queries tab, in the top-left corner, select <Back

Delete a Saved Query

This topic describes how to delete a saved query.

Note:

If you are accessing a shared query, and if you did not create it, be mindful before you delete it.

Instead, kindly try to create a new query as needed.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Data.

The Data section appears, displaying a list of object instances and the underlying variables and

contained types hierarchically.

3. Select the Saved Queries tab.

The list of all the saved queries appears.

4. Select a query as needed.

Historian | 3 - Configuration Hub | 750

5. Select , and then select Delete.

The Delete Query window appears, prompting you whether to delete the saved query or not.

6. Select Yes.

The saved query is deleted.

Managing Alarms and Events

About Alarms and Events

Using Configuration Hub, you can manage alarms and events data from any OPC-compliant alarms and

events server.

Note:

The Alarm Archiver must be available and running to access this feature.

Alarms: Alarms are generally defined as tags going into an abnormal condition. For example, you can set

an alarm on a boiler when it reaches a specified temperature. Alarms usually have a well-defined life cycle,

which is defined by the individual data sources from which the alarms data is collected. They enter an

alarm state, are generally acknowledged, then return to normal.

To collect alarms and events data, you can use any of the following collectors:

• iFIX Alarms and Events collector

• OPC Classic Alarms and Events collector

Historian handles alarm data in two ways. You can view the entire Alarm as a single record that contains

all information about the alarm, or you can view the Alarm History, which shows the transitions of the

alarm as individual records.

Events: Events are generally defined as activities in a system that occur once only. For example, a user

logging on to a device is an event. When viewing this data in Historian, each event is returned as a record.

Alarms and Events Requirements

To generate alarms and events data, you can use any OPC-compliant alarms and events server such as:

• CIMPLICITY

• iFIX

Historian | 3 - Configuration Hub | 751

To collect alarms and events data, install collectors (on page 142), and then add any of the following

collector instances:

• iFIX Alarms and Events collector (on page 505)

• OPC Classic Alarms and Events collector (on page 532)

To store alarms and events data, install Historian Alarms and Events (on page 140). During the

installation, provide the credentials of Microsoft SQL server 2012 or later.

To view and analyze alarms and events data, you can use any of the following applications:

• Configuration Hub

• Historian Administrator

• Crystal Reports 11 or later

• The OLEDB Provider

• REST APIs

Note:

Before starting the Alarm Archive service, ensure that "NT AUTHORITY/SYSTEM" has "SysAdmin"

privileges.

Create an Alarm

This topic describes how to create an alarm manually. You can use it to verify that Historian is collecting

alarm data. You can then use the iFIX Alarms and Events collector or the OPC Classic Alarms and Events

collector to collect alarm data and store it in Historian.

1. Access Configuration Hub (on page 336)

2. In the NAVIGATION section, under the Configuration Hub for Historian, select Alarms.

The Alarms section appears.

3. In the upper-right corner of the page, select .

Note:

To select hierarchical model tags you must need to have the valid license.

The Add Alarm window appears, displaying a list of tags in a hierarchical view. If you want to view a

flat list of all the tags, select .

Historian | 3 - Configuration Hub | 752

4. Select the check boxes corresponding to the tags for which you want to create an alarm, and then

select Next.

The Alarm Attributes section appears, displaying the selected tags. The TAG NAME and

TIMESTAMP columns are automatically populated.

5. For each tag, enter values as described in the following table.

Column Description

SEVERITY Specify whether you want to record high or low severity for the

alarm.

DATA QUALITY Specify whether you want to record good or bad quality for the

alarm.

MESSAGE Enter a message for the alarm.

6. Select Write Alarm.

The alarm is created.

Access/Filter Alarms

1. Access Configuration Hub (on page 336)

2. In the NAVIGATION section, under the Configuration Hub for Historian, select Alarms.

The Alarms section appears.

3. To filter for alarms, enter values as described in the following table.

Field Description

GENERATED FROM Enter the start date and time for which you want to filter alarms.

By default, ten minutes earlier than the current time is consid

ered. A value is required.

GENERATED TO Enter the end date and time for which you want to filter alarms.

By default, the current time is considered. A value is required.

COLLETOR NAME Select the collector that collects the alarms and events data.

4. Select Apply.

Historian | 3 - Configuration Hub | 753

The alarms and events data is filtered based on the criteria. To access the events data, select

Events. The list of events is also filtered based on the criteria.

Tip:

You can show/hide/reorder columns in the table. For instructions, refer to Common Tasks

in Configuration Hub (on page 353).

Back up Alarms Using Configuration Hub

1. Access Configuration Hub (on page 336)

2. In the NAVIGATION section, under the Configuration Hub for Historian, select Alarms.

The Alarms section appears.

3. Select , and then select Backup Alarms.

The Backup Alarms window appears.

4. Enter values as described in the following table.

Field Description

GENERATED FROM Enter the start time for which you want to back up alarms.

GENERATED TO Enter the end time for which you want to back up alarms.

PROVIDE FILE NAME Enter the file name and location of the back up file that you want

to create. By default, the backup location of the default data

store is considered. And, the file name is in the following format:

mm_dd_yyyy_hh_mm_ss. For example: 11_25_2022_11_23_26.zip.

The time format followed is the 24-hour time notation.

Note:

This file naming convention for alarm backup is stan

dard to Historian. Even if you use other date settings

such as dd-mm, the file name will still be saved in the

mm-dd format.

The end time stamp in the file name indicates the time at which

the alarms have been backed up but not the time till when the

alarms are backed up. For example, suppose, at 8.00 am, you

back up alarms for the past two hours, the backup will contain

alarms from 6:00 am to 8:00 am but may not contain an alarm

Historian | 3 - Configuration Hub | 754

Field Description

generated at 8:00 am. The last alarm may have been at 7:50 am.

But the backup file name will have the time stamp of 8:00:00

along with the date.

5. Select Backup.

The alarms data is backed up.

Restore Alarms Using Configuration Hub

Restoring alarms to a running system makes them available for query and analysis. You can restore

alarms that have been backed up or deleted previously.

1. Access Configuration Hub (on page 336)

2. In the NAVIGATION section, under the Configuration Hub for Historian, select Alarms.

The Alarms section appears.

3. Select , and then select Restore Alarms.

The Restore Alarms window appears.

4. In the PROVIDE FILE NAME field, provide the backup file in the .zip format that you want to restore.

Note:

Remember to include .zip at the end of the file name.

5. Select Restore.

The alarm data is restored.

About Purging Alarms

Purging alarm data involves deleting the data from the database.

Note:

• Even after purging, the data is not lost; a backup is created to maintain an audit trail. You

can restore the data if needed.

• When using circular archives (that is, archives that roll over), alarms are purged

automatically.

Historian | 3 - Configuration Hub | 755

You can choose to purge alarm data for any of the following reasons:

• To maintain alarm data efficiently

• The data is outdated or redundant

• The disk space is limited

Data in the following tables is purged:

• Alarm Attribute Values

• Alarm Attribute Value History

• Delete from Alarm History

• Delete from Alarm Table esignatures

• comments

You can purge data using one of the following methods:

• Purge data within a specified duration. You can do this using Configuration Hub (on page 756),

using the Proficy Historian Alarm and Event Data Migration utility (on page 1221) or at a command

prompt (on page 1223).

• Purge data related to a specific alarm ID. You can do this using Alarms.PurgeAlarmsById (on page

1604) to develop an SDK program.

Purging is performed in batches. You can check the log data in the

Proficy.Historian.AandE.Migration.log file. By default, this file is located in the C:\Program

Files(x86)\Proficy folder.

In the case of a failure:

• The batch size is changed to 10. That is, the collector receives an acknowledgement after sending

10 messages, thus reducing the load on the server.

• The waiting time for receiving an acknowledgement is automatically incremented after each

failure per batch, starting from 90 seconds to 270 seconds. This gives more time for the server to

respond.

Note:

After the acknowledgement is received, the batch size and the waiting time are reset for the

subsequent batches.

Historian | 3 - Configuration Hub | 756

If the time taken to purge exceeds the timeout limit, instead of reverting the entire purging operation, only

the current batch, which is still under processing, is purged.

Best Practices:

• Restart the Alarms and Events services before purging data.

Purge Alarms Using Configuration Hub

1. Access Configuration Hub (on page 336)

2. In the NAVIGATION section, under the Configuration Hub for Historian, select Alarms.

The Alarms section appears.

3. Select , and then select Purge Alarms.

The Purge Alarms window appears.

4. In the PROVIDE FILE NAME field, pro

5. Enter values as described in the following table.

Field Description

GENERATED FROM Enter the start time for which you want to purge alarms.

GENERATED TO Enter the end time for which you want to purge alarms.

PROVIDE FILE NAME Enter the file name and location of the back up file that you want

to create. This field is enabled only if you select the BACKUP

ALARMS BEFORE PURGE? check box. By default, the backup lo

cation of the default data store is considered. And, the file name

is in the following format: mm_dd_yyyy_hh_mm_ss. For example:

11_25_2022_11_23_26.zip. The time format followed is the 24-

hour time notation.

Note:

This file naming convention for alarm backup is stan

dard to Historian. Even if you use other date settings

such as dd-mm, the file name will still be saved in the

mm-dd format.

The end time stamp in the file name indicates the time at which

the alarms have been backed up but not the time till when the

alarms are backed up. For example, suppose, at 8.00 am, you

Historian | 3 - Configuration Hub | 757

Field Description

back up alarms for the past two hours, the backup will contain

alarms from 6:00 am to 8:00 am but may not contain an alarm

generated at 8:00 am. The last alarm may have been at 7:50 am.

But the backup file name will have the time stamp of 8:00:00

along with the date.

BACKUP ALARMS BEFORE

PURGE?

Select the check box if you want to back up alarms before purg

ing.

6. Select Purge.

The alarms data is purged. A backup file is created if you have selected the BACKUP ALARMS

BEFORE PURGE? check box.

Managing Configuration Templates

About Configuration Templates

A configuration template is a predefined set of common configuration options. You can create a

configuration template for data stores and collectors separately and apply it to data stores and collectors

as needed. This will help you save time by eliminating the need to configure common parameters

manually and reduce monotonous tasks.

Note:

You can apply a data store configuration template to a user-created data store, provided they are

not set as the default data store.

The following are some of the advantages of creating a configuration template:

• Update some common configurations of a data store or collector.

• Save time from configuring common parameters.

Create a Configuration Template for Collectors

This topic describes how to create a configuration template for collectors.

Historian | 3 - Configuration Hub | 758

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, selectConfiguration

Templates.

The Collectors tab appears, providing you to option to create template.

3. Select .

The Collectors:Configuration Template window appears.

4. In TEMPLATE NAME, enter a name for the template. You can enter any alphanumeric names and

also use special characters.

5. In DESCRIPTION, enter a description for your template.

Historian | 3 - Configuration Hub | 759

6. Select Add.

The configuration template is created.

7. Select the row that contains the created template.

The configuration details appear in the DETAILS section.

Table 47. The Template Section

Field Description

Template Name The name of the template. This field is read-on

ly.

Description The description of the template. You can edit

the description if needed.

Table 48. The General Section

Field Description

Memory Buffer Size (MB) The size of the memory buffer currently as

signed to the store-and-forward function. The

memory buffer stores data during short-term

or momentary interruptions of the server con

nection; the disk buffer handles long duration

Historian | 3 - Configuration Hub | 760

Field Description

outages. To estimate the size you need for this

buffer, you need to know how fast the collec

tor is trying to send data to the server and how

long the server connection is likely to be down.

With those values and a safety margin, you can

compute the required size of the buffer.

The default value is 20.

Minimum Free Space (MB) The minimum free disk space that must be

available on the computer. If the minimum

space required is not available when the collec

tor starts, the collector will shut down.

Table 49. The Tags section

Field Description

Tag Prefix The prefix that will be added to each tag that

you configure for the collector instance. This

field is disabled and populated with the name

of the collector instance.

This field applies to all collectors except File

and Calculation collectors.

Collection Interval Value The interval at which the collector collects da

ta for all the tags configured in the collector in

stance.

◦ For polled data collection, this value rep

resents the time required to complete a

poll of tags in the collector.

◦ For unsolicited data collection, it repre

sents the frequency at which data is re

trieved from tags in the collector. The

collection interval can be individually

configured for each tag.

You can set this value for each tag as well.

Historian | 3 - Configuration Hub | 761

Field Description

Important:

For an OPC collector, to avoid collect

ing redundant values when using de

vice timestamps, specify a collection

interval that is greater than the OPC

server update rate.

Collection Interval The units of measure for the collection interval

value.

Collection Type The type of the data collection:

◦ Polled: Data is collected based on a

scheduled time interval. This type of da

ta collection is supported only for:

▪ The Calculation collector

▪ The HAB collector

▪ The iFIX collector

▪ The OPC Classic DA collector

▪ The OPC UA DA collector

▪ The Python collector

▪ The Simulation collector

▪ The Windows Performance col

lector

◦ Unsolicited: Data is collected based on

an event. This type of data collection is

supported only for:

▪ The Calculation collector

▪ The HAB collector

▪ The MQTT collector

▪ The MQTT Sparkplug B collector

▪ The ODBC collector

▪ The OPC Classic DA collector

▪ The OPC Classic HDA collector

▪ The OPC UA DA collector

▪ The OSI PI collector

▪ The OSI PI distributor

Historian | 3 - Configuration Hub | 762

Field Description

▪ The Python collector

▪ The Server-to-Server collector

▪ The Server-to-Server distributor

▪ The Wonderware Collector

Table 50. The Collector Compression Section

Field Description

Collector Compression Indicates whether you want to apply collector

compression, which is a smoothing filter to da

ta retrieved from the data source. By ignoring

small changes in values that fall within a dead

band centered around the last reported value,

only significant changes are stored in Historian,

thus consuming less archive storage space.

For more information, refer to About Collector

and Archive Compression (on page 660).

Deadband Indicates whether you want to apply a dead

band based on the percentage of values or on

absolute values.

For example, if you set the deadband to 20%

for a range of 0 to 500 engineering units, the

deadband value is 100 units, which is 50 units

on each side. Therefore, only if the difference

between two values is greater than 50, they are

stored in Historian.

Note:

If the data quality changes from good

to bad or vice versa, the values are

stored in Historian regardless of the

deadband value.

Deadband Value The deadband value that you want to use for

values collected by the collector. Depending on

Historian | 3 - Configuration Hub | 763

Field Description

whether you have selected percent or absolute,

the deadband value is determined.

For example, if you want to set a deadband of 5

units on either side of a value (that is, value +/-

5), enter 10 in the Deadband Value field, and se

lect Absolute in the Deadband field. Similarly, if

you want to set a deadband of 5% on either side

of a value, enter 10 in the Deadband Value field,

and select Percent in the Deadband field.

For more information, refer to About Collector

and Archive Compression (on page 660).

Compression Timeout The time for one poll cycle for which collector

compression is not used, thus sending all the

samples to Historian.

This is used for a Calculation collector or Serv

er-to-Server collector, when calculations fail,

you may possibly observe collector compres

sion (even if it is not enabled), thus producing

no results or bad quality data. In such cases,

you can use compression timeout, thus sending

all the samples to Historian.

For more information, refer to About Collector

and Archive Compression (on page 660).

Compression Timeout Interval The units of measure for compression timeout.

Table 51. The Collector Options Section

Field Description

Online Tag Configuration Changes Indicates whether you want tag configuration

changes to reflect immediately. If you disable

this option, any tag configuration changes will

reflect only after you restart the collector in

stance.

Historian | 3 - Configuration Hub | 764

Field Description

Browse Source Address Space Indicates whether you want to allow brows

ing for tags in the source. You may sometimes

want to disable this option to reduce process

ing load on the collector.

Synchronize Timestamps to Server Indicates whether you want to adjust the time

stamp of data to align with the time setting in

the Historian server. Note that this does not

change the time setting in the collector ma

chine; it only calculates the timestamp based

on the difference between the time settings in

the server machine and the collector machine,

independent of time zone or daylight saving dif

ferences.

Note:

◦ This option is applicable only if

the timestamp of the collector

is considered (instead of that of

the data source - as specified in

the Time Assigned By field).

◦ If this option is disabled, and

if the time in the collector ma

chine is more than 15 minutes

ahead of the time in the server

machine, data will not be stored

in Historian.

Delay Collection at Startup (sec) The duration, in seconds, after which you want

the data collection to begin post tag configura

tion.

Historian | 3 - Configuration Hub | 765

8. After you edit the details as needed, in the upper-left corner, select Save.

The configuration details are saved.

You can select and duplicate this template, edit, or delete it.

You can apply the configuration template to a collector instance (on page 650).

Apply Configuration Template to a Collector
You can apply the created template to collectors as needed. You will be prompted to confirm whether you

want to overwrite few of the configuration values with the values in the template.

• Ensure that you have a collector instance added (on page 357).

• Ensure that you created a configuration template for collectors (on page 757).

This topic describes how to apply a configuration template to a collector.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors appears.

3. Right-click the collector (or select), and then select Apply Configuration Template.

Historian | 3 - Configuration Hub | 766

The Apply Configuration Template window appears, listing the available templates.

Historian | 3 - Configuration Hub | 767

4. Select Apply.

A confirmation window appears, prompting you to confirm whether you want to overwrite few of

the configuration values with the values in the template.

5. Select Ok.

6. In the upper-left corner, select Save.

The configurations in the template are applied to the collector.

Create a Configuration Template for Data Stores

This topic describes how to create a configuration template for data stores.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Configuration

Templates.

3. Select the Data Stores tab.

Historian | 3 - Configuration Hub | 768

4. Select .

The Data Stores:Configuration Template window appears.

5. In TEMPLATE NAME, enter a name for the template. You can enter any alphanumeric names and

also use special characters.

6. In DESCRIPTION, enter a description for your template. The description box can do a spell check

while you enter the description.

7. Select Add.

The configuration template is created.

Historian | 3 - Configuration Hub | 769

8. Select the row that contains the created template.

The data store details appear in the DETAILS section.

Table 52. The Template Section

Field Description

Template Name The name of the template. This field is read-on

ly.

Description The description of the template. You can edit

the description if needed.

Table 53. Maintenance

Field Description

Default Archive Path The default folder in which you want to create archives.

Default Backup Path The default folder in which you want to place the backup

archives.

Free Space Required (MB) Indicates the remaining disk space required after a new archive

is created. If the available space is less than the requirement, a

new archive is not created. The default value is 5000 MB.

This field is not applicable to alarms and events archives. The

alarms and events archiver will continue writing to the alarms

and events archive until the drive is full. If this occurs, the

alarms and events archiver will buffer incoming alarms and

Historian | 3 - Configuration Hub | 770

Field Description

events data until the drive has free space. An error message is

logged in the Historian message log.

Store OPC Quality Indicates whether OPC data quality is stored.

Use Caching Indicates whether caching is enabled. When reading data from

the archiver, some data is saved in the system memory and re

trieved using caching. This results in faster retrieval as the data

is already stored in the buffer.

Table 54. Archive Creation

Field Description

Create Archive by Indicates whether you want to create a new archive automatical

ly after the current one reaches a specific size or after a specif

ic duration. This field is enabled only if you switch the Automati

cally Create Archives toggle on.

Select one of the following options:

◦ Size: Select this option if you want to create a new

archive when the current one reaches a specific size.

Specify the size in the Default Size (MB) field (which ap

pears only if you select Size).

◦ Days or Hours: Select one of these options if you want to

create a new archive after a specific duration. Specify the

duration in the Archive Duration field (which appears only

if you select Days or Hours).

Default Size (MB) The default size of an archive after which a new one will be

automatically created if you switch the Automatically Create

Archives toggle on. The Default Size (MB) field appears only if

you select Size in the Create Archive By field.

Automatically Create Archives Indicates whether you want to create an archive automatical

ly (on page 727) after the current one is full. An archive file

is considered full based on the size or duration you specify in

the Create Archive By and the Archive Duration or Default Size

fields.

Historian | 3 - Configuration Hub | 771

Field Description

Overwrite Old Archives Indicates whether you want to overwrite an old archive file when

a new one is created.

If you enable this option, the oldest archived data is replaced

with the latest one when the latest archive default size is

reached. Since this action deletes historical data, exercise cau

tion in using this feature. Be sure that you have a backup of the

archive so that you can restore it later. Best practice is to create

an additional archive to prevent premature loss of data due to

overwriting. For example, if you want to save 12 months of data

into 12 archives, create 13 archives.

Table 55. Security

Field Description

Data is Read-Only After

(Hours)

The number of hours for data to be stored in a read/write

archive. After the time lapses, that portion of the archive file is

automatically made read-only. Incoming data values with time

stamps prior to this time are rejected. A single archive file, there

fore, may have a portion made read-only, another portion that is

read/write containing recently written data, and another that is

unused free space.

Generate Message on Data

Update

Indicates whether an audit log entry will be made any time the

value of a previously archived data point is overwritten. This log

entry will contain both the original and new values.

9. After you edit the details as needed, in the upper-left corner, select Save.

The configuration details are saved.

You can select and duplicate this template, edit, or delete it.

Historian | 3 - Configuration Hub | 772

You can apply the configuration template to a data store (on page 463).

Apply the Configuration Template to a Data Store
You can apply the created template to user-created data store as needed. You will be prompted to confirm

whether you want to overwrite few of the configuration values with the values in the template.

• Ensure that you have a data store created (on page 370).

• Ensure that you have a configuration template for data stores (on page 767).

This topic describes how to apply a data store configuration template to a data store. You can apply a

data store configuration template to a user-created data store, provided they are not the default data

store.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Data Stores.

The Data Stores section appears.

3. Right-click the data store (or select), and then select Apply Configuration Template.

The Apply Configuration Template window appears, listing the available templates.

Historian | 3 - Configuration Hub | 773

Note:

You can apply a data store configuration template to a user-created data store, provided

they are not the default data store.

4. Select Apply.

A confirmation window appears, prompting you to confirm whether you want to overwrite few of

the configuration values with the values in the template.

5. Select Ok.

6. In the upper-left corner, select Save.

The configurations in the template are applied to the data store.

Managing Reports

About Reports
Reports provide you with a concise summary of tag-specific data of a specific collector.

Historian | 3 - Configuration Hub | 774

You can select a report from the available predefined templates and generate a report to view categorized

data. For example, you can generate a report that lists tags with aliases and view the needed information.

You can also export the generated report as a CSV file or save it as a PDF file.

Note:

The reports are applicable only to the Historian destination collectors.

For more information on generating reports, refer to generate reports (on page 774).

Generate Reports
This topic describes how to generate report using a predefined template. You can select template from

the available template options and generate a report.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Reports.

A list of predefined templates appear.

3. Select a template as needed.

The corresponding input options appear, enabling you to select the collector and other options as

needed. Based on your selections, you can generate the report.

4. Select the collector and other corresponding options.

Note:

To generate a report, you must select a collector.

The below table lists different reports and their corresponding input options.

Historian | 3 - Configuration Hub | 775

Report Description Input Options Data Available

in the Report

Tag Aliases This report displays

tags that have aliases,

along with the list of

aliases for the select

ed collector instance.

◦ COLLECTOR NAME-

Name of the collec

tor instance based

on which the report

must be generated.

◦ TAG NAME

Invalid Source Tags This report displays

tags with a collector

name but no config

ured source address

for the selected col

lector instance.

Note:

This report is

not applicable

for a File col

lector.

◦ COLLECTOR NAME-

Name of the collec

tor instance based

on which the report

must be generated.

◦ TAG NAME

◦ DESCRIP

TION

Continuous Bad Value

Tags

This report displays

tags that are contin

uously returning bad

data for the select

ed Time Interval for

the collector instance.

You can carefully an

alyze those tags and

make decisions.

◦ COLLECTOR NAME-

Name of the collec

tor instance based

on which the report

must be generated.

◦ TIME INTERVAL-

The duration based

on which the report

must be generated.

The available op

tions are,

▪ 1 hour

▪ 8 hours

▪ 1 day

▪ 1 week

▪ 1 month

◦ TAG NAME

◦ DESCRIP

TION

Historian | 3 - Configuration Hub | 776

Report Description Input Options Data Available

in the Report

▪ Custom-

Selecting this

option en

ables a cus

tom start and

end date/time

selector. You

can select or

enter a cus

tom start and

end date/

time based

on which the

report must

be generated.

No Data Tags This report displays

tags that are not writ

ing any data for the

selected collector in

stance.

◦ COLLECTOR NAME-

Name of the collec

tor instance based

on which the report

must be generated.

◦ TIME INTERVAL-

The duration based

on which the report

must be generated.

The available op

tions are,

▪ 1 hour

▪ 8 hours

▪ 1 day

▪ 1 week

▪ 1 month

▪ Custom-

Selecting this

option en

ables a cus

◦ TAG NAME

◦ DESCRIP

TION

◦ VALUE

◦ TIME

STAMP

◦ DATA COL

LECTION

Historian | 3 - Configuration Hub | 777

Report Description Input Options Data Available

in the Report

tom start and

end date/time

selector. You

can select or

enter a cus

tom start and

end date/

time based

on which the

report must

be generated.

Soft Deleted Tags This report displays

tags that were re

moved from the sys

tem but still exist in

Historian and are not

being used for the se

lected collector in

stance.

◦ COLLECTOR NAME-

Name of the collec

tor instance based

on which the report

must be generated.

◦ TIME INTERVAL-

The duration based

on which the report

must be generated.

The available op

tions are,

▪ 1 hour

▪ 8 hours

▪ 1 day

▪ 1 week

▪ 1 month

▪ Custom-

Selecting this

option en

ables a cus

tom start and

end date/time

selector. You

can select or

◦ TAG NAME

◦ DESCRIP

TION

◦ DELETION

TIME

◦ USER NAME

Historian | 3 - Configuration Hub | 778

Report Description Input Options Data Available

in the Report

enter a cus

tom start and

end date/

time based

on which the

report must

be generated.

◦ USERNAME- The

name of the user

based on which the

report must be gen

erated.

Current Values This report displays

the current values of

tags for the selected

collector instance.

◦ COLLECTOR NAME-

Name of the collec

tor instance based

on which the report

must be generated.

◦ TAG

◦ EN

GINEERING

UNITS

(DESCRIP

TION)

◦ QUALITY

◦ VALUE

◦ TIME

STAMP

Stale Tags This report displays

all the stale tags for

the selected collector

instance.

◦ COLLECTOR NAME-

Name of the collec

tor instance based

on which the report

must be generated.

◦ TAG NAME

◦ DESCRIP

TION

Data Collection Status This report displays

the data collection

status of tags for the

selected collector in

stance.

◦ COLLECTOR NAME-

Name of the collec

tor instance based

on which the report

must be generated.

◦ DATA COLLECTION-

The status of da

◦ TAG NAME

◦ DESCRIP

TION

◦ DATA COL

LECTION

Historian | 3 - Configuration Hub | 779

Report Description Input Options Data Available

in the Report

ta collection based

on which the report

must be generated.

The available op

tions are,

▪ On

▪ Paused.

Tag Creation Audit

Trail

This report displays

information about tag

creation time and cre

ated user.

◦ COLLECTOR NAME-

Name of the collec

tor instance based

on which the report

must be generated.

◦ TIME INTERVAL-

The duration based

on which the report

must be generated.

The available op

tions are,

▪ 1 hour

▪ 8 hours

▪ 1 day

▪ 1 week

▪ 1 month

▪ Custom-

Selecting this

option en

ables a cus

tom start and

end date/time

selector. You

can select or

enter a cus

tom start and

end date/

time based

◦ TAG NAME

◦ DESCRIP

TION

◦ CREATION

TIME

◦ CREATED

BY

Historian | 3 - Configuration Hub | 780

Report Description Input Options Data Available

in the Report

on which the

report must

be generated.

◦ CREATION TIME-

The time of creation

based on which the

report must be gen

erated.

◦ CREATED USER- The

name of the user

based on which the

report must be gen

erated.

Collector Data Quality This report displays

the data quality of

tags for the selected

collector instance.

◦ COLLECTOR NAME-

Name of the collec

tor instance based

on which the report

must be generated.

◦ COLLEC

TOR NAME

◦ DESCRIP

TION

◦ TOTAL TAG

COUNT

◦ BAD TAGS

COUNT

◦ BAD TAGS

PERCENT

◦ GOOD TAGS

COUNT

◦ GOOD TAGS

PERCENT

No Data From Start

Tags

This report displays

tags that do not have

data from the time

they were created for

the selected collector

instance.

◦ COLLECTOR NAME-

Name of the collec

tor instance based

on which the report

must be generated.

◦ TAG NAME

◦ DESCRIP

TION

Historian | 3 - Configuration Hub | 781

5. Click Generate Report.

The data corresponding to the selected report appears.

You can export the generated report as a CSV file (on page 781), or save the generated report as a PDF

file (on page 781).

Export the Generated Report as a CSV File
This topic describes how to export and save a report as CSV file.

Ensure that you have the following:

• Microsoft Excel or any text editor is needed to view the exported CSV file.

1. Generate the report (on page 774) as needed.

2. To export the report as a CSV file, in the upper-right corner of the grid, select .

The report is exported as a CSV file.

The file will be saved in the <System Name>_Reports_Export_Details_with_<ReportName> format.

For example, SYSTEMADMIN_Reports_Export_Details_with_CurrentValues.

Save the Generated Report as a PDF File
This topic describes how to save the report as a PDF file.

Ensure that you have the following:

Historian | 3 - Configuration Hub | 782

• A PDF reader is required to open and view the report saved as a PDF file.

1. Generate the report (on page 774) as needed.

2. To save the report as a PDF file, in the upper-right corner of the grid, select .

The report is saved as a PDF file.

The file will be saved in the Reports_<System Name>_<ReportName>_<MM_DD_YYYY, hh_mm_ss

AM/PM> format. For example, Reports_SYSTEMADMIN_CurrentValues_10_17_2023, 1_30_20

AM.

Access Activity Logs
Activity logs are generated when activities are performed in the Historian system.

Examples:

• When a tag is created, modified, or deleted

• When a collector instance is created, modified, or deleted

• When data collection for a tag or a collector begins or ends

• When an archive is created or will be closed soon

You can access these logs for each tag/collector or for all the tags and collectors in a system. You can

filter these logs based on the start and end dates, priority, topics, and the content in the logs. You can also

export all the logs or selected ones.

Historian | 3 - Configuration Hub | 783

1. Access Configuration Hub (on page 336).

2. If you want to access activity logs for all the tags and collectors in a system, in the NAVIGATION

section, under the Configuration Hub plugin for Historian, select Activity Logs.

A list of activity logs appears.

3. If you want to access the activity logs of a collector instance:

a. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select

Collectors.

A list of collectors in the system appears.

b. Right-click the collector whose activity log you want to access (or select), and then

select Browse Activity Log.

A list of activity logs for the collector appears.

4. If you want to access the activity logs of a tag:

a. In the NAVIGATION section, select Historian_<system_name> > Tags.

A list of tags in the system appears.

b. Right-click the tag whose activity log you want to access (or select), and then select

Browse Activity Log.

A list of activity logs for the tag appears.

5. If you want to filter the list of activity logs:

a. In the upper-right corner of the main section, select .

b. Enter values as described in the following table.

Field Description

START DATE/TIME Select the start date and time for the activity logs.

END DATE/TIME Select the end date and time for the activity logs.

PRIORITY Specify whether you want to see only alerts or messages or

both.

TOPIC Select the topic based on which you want to filter the logs:

▪ Configuration: Includes modifying a collector in

stance or a tag configuration.

▪ Connections: Includes system connections and cre

ating a collector interface.

Historian | 3 - Configuration Hub | 784

Field Description

▪ General: Includes pausing or resuming data collec

tion.

▪ Performance: Includes creating or closing an archive

and moving buffer files.

▪ ServiceControl: Includes starting or stopping a col

lector interface.

This list is not comprehensive.

ACTIVITY CONTAINS Enter the content of the logs based on which you want to

filter them.

c. Select Apply.

The logs are filtered based on the criteria.

If you want to export the logs, select . The logs are exported into a CSV file.

Troubleshooting Configuration Hub
This topic contains solutions/workarounds to some of the common issues encountered with

Configuration Hub. This list is not comprehensive. If the issue you are facing is not listed on this page,

refer to Troubleshooting Web-based Clients (on page 300) and Troubleshooting the Historian Server (on

page 298).

Unable to Access Configuration Hub After Upgrading Web-based Clients

Workaround: Clear your browser cache.

Even after installing Web-based Clients, you cannot access Configuration Hub.

Workaround: Start the Proficy Operations Hub Httpd Reverse Proxy and the Data Archiver services.

Unable to Access External Configuration Hub if Public Https Port is Different

Issue: During Web-based Clients installation, if you provide an existing Proficy Authentication and

Configuration Hub details, and if the public https port numbers of these two machines do not match, you

cannot access the external Configuration Hub from the current machine.

For example, suppose you have installed Web-based Clients on machine A, which points to the Proficy

Authentication and Configuration Hub installed on machine B. If the public https port numbers of

Historian | 3 - Configuration Hub | 785

machines A and B do not match, you cannot access Configuration Hub of machine B from machine A

(although you can access it locally from machine B).

Workaround: Perform the following steps on the machine on which you have installed Configuration Hub

(machine B):

1. Access the following folder: C:\Program Files (x86)\GE\ConfigurationHub\Web\conf

\confighub

2. Access the file that contains the details of the machine from which you want to access external

Configuration Hub (machine A). The file name begins with the host name of machine A.

3. In the line that contains the details of the Proficy Authentication server (for example, proxy_pass

https://machine_B.Domain.com:Port/uaa/), change the port number to match the public https port

number of machine B.

4. Save and close the file.

5. Restart the following services:

◦ ConfigHubContainerService

◦ ConfigHubNGINXService

◦ ConfigHubStorageService

Error Occurs When Historian Plugin is Registered with an External Configuration Hub

Description: If you install Configuration Hub using iFIX, then install Web-based Clients on another

machine with local Proficy Authentication, and then register the Historian plugin with Configuration

Hub, testing the connection to Configuration Hub fails. Even after you add the IP addresses of both the

machines to the hosts file, the issue is not resolved.

Error Message: Error while getting token in ConfigAuth App

Workaround: Register the Historian plugin (on page 186) on the machine on which you have installed Web-

based Clients, install the Proficy Authentication certificate (on page 97), and then restart the browser.

Cannot Access the Collectors Section or Add a Collector Instance

Possible Cause: User credentials not provided while installing collectors or Remote Collector Manager:

If installing collectors and the Historian server on the same machine, the collectors installer does not

mandate the entry of username and password because it not required for Remote Collector Management

Agent to connect to a local Historian server. But if Historian security or strict authentication is enabled, it

is mandatory to enter the username and password.

Workaround:

Historian | 3 - Configuration Hub | 786

• Option 1: Disable the strict collector authentication using Historian Administrator, and then restart

the Historian Remote Collector Management Agent service.

• Option 2: Reinstall Remote Management Agents, providing the user credentials.

Cannot Access or Add a System in Configuration Hub

Possible Causes:

• User does not have security privileges: During installation of the Historian server, if you have

allowed the installer to create security groups, you must create a user with the name in the

following format: <Proficy Authentication host name>.admin. Verify that this user has been created

and added to the ihSecurityAdmins group.

If the Proficy Authentication server hostname is long, resulting in a username longer than

20 characters, Windows does not allow you to create the user. In that case, you can create a

Proficy Authentication user, and then create the corresponding Windows user, using the Proficy

Authentication Configuration utility:

1. Access the Proficy Authentication Configuration utility. By default, it is located at C:

\Program Files\GE Digital\Historian Config\uaa_config_tool.

2. Run the following command: uaa_config_tool add_user -u <username> -p <password> -s

<the client secret you provided while installing the Historian server> -c

Example: uaa_config_tool add_user -u adminuser -p Password123 -s pwd@123 -c

• Incorrect Proficy Authentication details: You must provide the host name of the

Proficy Authentication server while installing the Historian server. In the Computer

\HKEY_LOCAL_MACHINE\SOFTWARE\Intellution, Inc.\iHistorian

\SecurityProviders\OAuth2 registry path, verify that the URI value is in the following format:

https://<Proficy Authentication host name>:<port number>/uaa/check_token.

If needed, modify the value, and then restart the Data Archiver service.

Error Appears When Creating a Collector Instance

Description: When you add a collector instance, the following error message appears: The server

encountered an error processing the request. Please try again. The collector instance is added

successfully, but it does not appear in the Collectors section.

Possible causes: When you add a collector instance, the collector service is started and stopped so that

it is connected to the Historian server. The collector then appears in the table in the Collectors section.

Sometimes, however, the collector service does not respond to these commands on time, resulting in the

Historian | 3 - Configuration Hub | 787

error message. If you attempt to add the same collector instance again, a message appears, stating that it

exists.

Workaround: Select Cancel, and refresh the Collectors section. If the collector instance still does not

appear, access the collector machine, and start the collector manually.

Data Archiver is Shut Down

Possible causes: If there is insufficient disk space, the Data Archiver shuts down and a message is

logged into the log file. By default, you can view the Historian archiver log file in C:\Historian Data

\LogFiles.

Workaround: Allocate more disk space for archives, or remove old archives. You can also configure

Historian to overwrite old archives automatically by switching the Overwrite Old Archives toggle on. If

you enable this option, the oldest archived data is replaced with the latest one when the latest archive

default size is reached. Since this action deletes historical data, exercise caution in using this feature. Be

sure that you have a backup of the archive so that you can restore it later. Best practice is to create an

additional archive to prevent premature loss of data due to overwriting. For example, if you want to save

12 months of data into 12 archives, create 13 archives.

For instructions, refer to Access a Data Store (on page 453).

Proficy Authentication and other Configuration Hub Plugins are not Visible in
Configuration Hub, but Historian Plugin is Visible

Description:Consider that you used the Proficy Installer and installed common components such as

Proficy Authentication and Configuration Hub. Then, you installed Historian Web components and

registered Historian Plugin during the installation process. When you try to access Configuration Hub, the

Historian Plugin is visible. However, the Plugins like Proficy Authentication, Administrator, and others are

not visible. To resolve this issue, perform the below workaround.

Workaround:

1. From your desktop, select Setup Authentication.

The Configuration Hub Login window appears.

2. In the bottom-right corner, select Configure Confighub Authentication.

The Configuration Hub Administrator Credentials window appears.

3. Enter the Configuration Hub Client ID and Secret that were created while installing Configuration

Hub.

Historian | 3 - Configuration Hub | 788

4. Select Verify.

On a successful verification, the Register with Proficy Authentication window appears.

5. In SERVER NAME (FULLY QUALIFIED NAME), enter the server name in a Fully Qualified Domain

(FQDN) format.

6. In SERVER PORT, enter the Proficy Authentication Server port, by default, it is 443.

7. Enter the Configuration Hub Client ID and Secret that were created while installing Configuration

Hub.

8. Select Register.

9. Log in to Configuration Hub and see if the other Plugins are also displayed.

On a successful registration, you will see all the other Plugins that were registered.

Chapter 4. Remote Collector Management

Overview of Remote Collector Management
Many Historian users use collectors to collect data from data sources or servers. Typically, these

collectors are distributed geographically, and so, accessing them can be challenging and not cost-

effective. To overcome this challenge, Historian provides the Remote Collector Management agent, using

which you can manage collectors remotely.

Advantages of using the Remote Collector Management agent:

• Accessing a collector machine physically to manage the collector is no longer required.

• Security is enabled. That is, only members of the iH Security Admins, iH Tag Admins, and the iH

Collector Admins security groups can manage the collectors remotely.

• Works with the older versions of collectors as well (V5.5 and later).

Features

• Add (on page 797), modify (on page 799), or delete (on page 817) a collector instance.

• Start (on page 637), stop (on page 638), or restart (on page 639) a collector.

• Pause (on page 641) or resume (on page 642) the data collection of a collector.

• Delete (on page 643) or move (on page 644) the buffer files of a collector.

• Change the destination server of a collector (on page 645).

Workflow

The following diagram provides the workflow of Remote Collector Management when creating a collector

instance. After the collector instance is created, the collector sends data to the configured destination.

The green lines indicate the initial, one-time steps. The red lines indicate the steps performed every time

you want to manage the collector remotely.

Historian | 4 - Remote Collector Management | 790

Limitations

• After installing Remote Management Agent, if you install a new collector, you must manually start it

for the first time. This is to establish a connection between the collector and the Remote Collector

Management agent. From the next time, you can manage the collector remotely.

Installing Remote Management Agents

Install Remote Management Agent Using the Installer

Ensure that all the collectors that you want to manage remotely are in the running state.

If the collectors that you have installed are earlier than version 9.0, you must install Remote Management

Agent on each machine on which the collectors that you want to manage are installed. For collectors

version 9.0 or later, Remote Management Agent are automatically installed when you install collectors.

This topic describes how to install Remote Management Agent using the installer. You can also install

them at a command prompt (on page 190).

1. Run the InstallLauncher.exe file.

2. Select Install Remote Management Agents.

Historian | 4 - Remote Collector Management | 791

The welcome page appears.

3. Select Next.

The license agreement appears.

4. Select the Accept check box, and then select Next.

The default installation drive appears.

5. If needed, modify the installation drive, and then select Next.

The destination Historian server page appears.

Historian | 4 - Remote Collector Management | 792

6. Enter the details of the Historian server to which Remote Management Agent will connect, and then

select Next.

The Data Directory page appears.

Historian | 4 - Remote Collector Management | 793

7. As needed, modify the location of the data directory, or leave the default value, and then select

Next.

The You are ready to install page appears.

8. Select Install.

• Remote Collector Management is installed on your machine.

• A folder named Historian Remote Management Agents is created in the GE Digital

folder in the installation location that you specified.

• Remote Collector Management is running, and a .shw file is created in the log folder. This file

contains the details of the collectors that are running on the machine.

• For each collector that you manage using Remote Collector Management, a new entry named

ServiceName is created in the collector registry. If the ServiceName key is not created or updated

incorrectly, refer to Troubleshooting Remote Collector Management Issues (on page 820).

Install Remote Management Agent at a Command Prompt

Ensure that all the collectors that you want to manage remotely are in the running state.

Historian | 4 - Remote Collector Management | 794

If the collectors that you have installed are earlier than version 9.0, you must install Remote Management

Agent on each machine on which the collectors that you want to manage are installed. For collectors

version 9.0 or later, Remote Management Agent are automatically installed when you install collectors.

This topic describes how to install Remote Management Agent at a command prompt. You can also

install them using the installer (on page 187).

1. Access the command prompt, and navigate to the RMA folder in the install media.

2. Run the following command, replacing the values in angular brackets with the appropriate values:

HistorianRMA_Install.exe -s RootDrive=<installation drive> DestinationServerName=<Destination Historian server

 name> UserName1=<Windows username> Password=<Windows password> DataPath="C:\Proficy Historian Data\LogFiles"

HistorianRMA_Install.exe -s RootDrive=C:\ UserName1=Administrator Password=AdminPassword

 DestinationServerName=VMHISTWEBAUTO DataPath="C:\Proficy Historian Data\LogFiles"

• Remote Collector Management is installed on your machine.

• A folder named Historian Remote Management Agents is created in the GE Digital

folder in the installation location that you specified.

• Remote Collector Management is running, and a .shw file is created in the log folder. This file

contains the details of the collectors that are running on the machine.

• For each collector that you manage using Remote Collector Management, a new entry named

ServiceName is created in the collector registry. If the ServiceName key is not created or updated

incorrectly, refer to Troubleshooting Remote Collector Management Issues (on page 820).

About Managing Collector Instances Using the
RemoteCollectorConfigurator Utility
After you install Historian, you must install the collectors. These collectors are used to collect data from

various sources and send it to Historian. For a list of collectors and their usage, refer to About Historian

Data Collectors (on page 1990).

After you install collectors and Remote Management Agent, the following artefacts will be available:

• Executable files: These files are required to add a collector instance.

• Instances of the following collectors:

◦ The iFIX collector

◦ The iFIX Alarms & Events collector

◦ The OPC Classic Data Access collector for CIMPLICITY

◦ The OPC Classic Alarms and Events collector for CIMPLICITY

Historian | 4 - Remote Collector Management | 795

These instances will be created only if iFIX and/or CIMPLICITY are installed on the same machine

as the collectors.

• The Remote Collector Management agent: Provides the ability to manage collectors remotely.

You can then add a collector instance. This section describes how to add, modify, or delete a collector

instance using the RemoteCollectorConfigurator utility. It is a System-API-based tool, which connects to

the destination Historian server, and allows you to add, modify, and delete a collector instance without the

need to install Web-based Clients. You can also perform these tasks using Configuration Hub (on page

627).

You can use the RemoteCollectorConfigurator utility in one of the following ways:

• Using Command Prompt: In this method, you will enter a single command at a command prompt

to run the RemoteCollectorConfigurator utility and provide values to all the required parameters.

• Using the interactive UI of the RemoteCollectorConfigurator utility: In this method, you will run the

RemoteCollectorConfigurator utility, and use the on-screen instructions to manually provide values

to all the required parameters. Interactive UI mode does not apply when Strict Authentication is

enabled for Historian. Use the RemoteCollectorConfigurator.exe from the command-line in such

cases. See the following example.

In both these methods, you can either enter the installation parameters and their values manually or

provide a JSON file that contains them. The RemoteCollectorConfigurator utility can also create sample

JSON files (on page 796), which you can use to create or modify collector instances. In addition, you

can run the RemoteCollectorConfigurator utility without connecting to Historian or a data archiver. This

section describes how to use each of these methods.

Tip:

You can access the Help for the RemoteCollectorConfigurator utility by running the following

command:

RemoteCollectorConfigurator.exe --help

Example: RemoteCollectorConfigurator.exe from the Command line

RemoteCollectorConfigurator.exe "HistorianServerName" "Userid" "Password" InterfaceCreateViaCmd

"{\"CollectorDestination\":\"Historian\",\"CollectorSystemName\":\"HistorianServerName\",

\"DestinationHistorian\":\"Historianservername\",\"DestinationHistorianUserName\":\"userid\",

\"DestinationHistorianPassword\":\"Gei321itc\",\"DataPathDirectory\":\"<datadrive>:\\Proficy\",

\"InterfaceName\": \"collector_name\",\"Type\":\"2\",\"mode\":\"1\"}"

Historian | 4 - Remote Collector Management | 796

Or:

<installation drive>:\Program Files\GE Digital

\NonWebCollectorInstantiationTool>RemoteCollectorConfigurator.exe "<<Historian Server>>"

"<<Userid>>" "<<Userpassword>>" InterfaceCreateViaFile "Inputjsonfile.json"

Create a Sample JSON File

To add or modify a collector instance, you can provide a JSON file with the required details. Instead of

manually creating the file, you can use the RemoteCollectorConfigurator utility to generate a sample JSON

file. You can then modify the file as needed, and then use it to add or modify the collector instance.

1. Run the RemoteCollectorConfigurator.exe file. By default, it is located in the following

folder: C:\Program Files\GE Digital\NonWebCollectorInstantiationTool

\RemoteCollectorConfigurator.exe.

A list of options to manage collector instances appears.

2. Enter 7.

A list of collector types appears, along with a number assigned to each of them. You are prompted

to enter the collector type.

3. Specify the collector type by entering the corresponding number. For example, if you want to add

an instance of the Calculation collector, enter 1.

A list of destinations appears, along with a number assigned to each of them.

4. Specify the destination by entering the corresponding number. For example, if the destination is a

Historian server, enter 1.

5. If needed, enter the folder path where you want the sample JSON file to be created. By default, the

file will be created in the same folder in which the RemoteCollectorConfigurator utility is located.

A sample JSON file is created.

6. As needed, update the sample JSON file with the required collector instance parameters (on page

801). You can also specify values for the general parameters (on page 814).

Add (on page 797) or modify (on page 799) the collector instance using the sample JSON file that you

have created.

Historian | 4 - Remote Collector Management | 797

Add a Collector Instance

• Install collectors (on page 142).

• For an iFIX collector, if iFIX is not running in a Windows-service mode, an error occurs when you

add the collector instance. Refer to About Adding an iFIX Collector Instance (on page 501) for

expected behaviour and configuration recommendations.

• If the destination of a collector is an Azure IoT Hub device, ensure that the device is running.

Before you begin using a collector, you must add an instance of the collector. You can add multiple

instances of the same collector or instances of multiple collectors where you have installed the

collectors.

For an ODBC collector, a single mapping file is used by multiple instances.

Note:

When you install collectors, if iFIX and/or CIMPLICITY is installed on the same machine as the

collectors, instances of the following collectors are created automatically:

• The iFIX collector

• The iFIX Alarms & Events collector

• The OPC Classic Data Access collector for CIMPLICITY

• The OPC Classic Alarms and Events collector for CIMPLICITY

You can begin using these collectors, or create more instances as needed.

This topic describes how to add a collector instance using the RemoteCollectorConfigurator utility. You

can also add a collector instance using Configuration Hub (on page 357). If you want to add an offline

collector instance, refer to Add an Offline Collector Instance (on page 819).

1. If you want to use an interactive UI:

a. Run the RemoteCollectorConfigurator.exe file. By default, it is

located in the following folder: C:\Program Files\GE Digital

\NonWebCollectorInstantiationTool.

A list of options to manage collector instances appears.

b. Connect to the collector machine by entering 1 or 2, depending on whether collectors are

installed locally or on a remote machine.

c. Enter 4.

Historian | 4 - Remote Collector Management | 798

You are prompted to choose between entering the installation parameters manually and

providing a JSON file.

d. If you want to manually enter the parameters and values, enter 1, and then run the following

command:

{"<parameter>":"<value>","<parameter>":"<value>"}

If you want to use a JSON file containing the installation parameters and values, enter 2, and

then enter the path to the JSON file that you have created. Instead of manually creating the

JSON file, you can use the RemoteCollectorConfigurator utility to generate it automatically

(on page 796).

You can leave the Historian username and password blank if there are no Historian security

user groups.

For information on the parameters, refer to Collector Instance Parameters (on page 801).

2. If you want to use the Command Prompt window:

a. Access the installation folder of the RemoteCollectorConfigurator utility. By default, it is C:

\Program Files\GE Digital\NonWebCollectorInstantiationTool.

b. Run Command Prompt in this location.

c. If you want to manually enter the installation parameters and values, run the following

command:

RemoteCollectorConfigurator.exe "<Destination Historian>" "<Destination Historian username>"

"<Destination Historian password>" InterfaceCreateViaCmd "{\"<parameter>\":\"<value>\",

\"<parameter>\":\"<value>\"}"

If you want to use a JSON file containing the installation parameters and values, run the

following command:

RemoteCollectorConfigurator.exe "<Destination Historian>" "<Destination Historian username>"

"<Destination Historian password>" InterfaceCreateViaFile "<path to the JSON file>"

Instead of manually creating the JSON file, you can use the RemoteCollectorConfigurator

utility to generate it automatically (on page 796).

If ih security groups are available, you must enter the Windows username and password of

the destination Historian. If you have enabled the Enforce Strict Collector Authentication

Historian | 4 - Remote Collector Management | 799

option in Historian Administrator, you must provide the credentials of a user who is added to

at least one of the following security groups:

▪ iH Security Admins

▪ iH Collector Admins

▪ iH Tag Admins

For information on the parameters, refer to Collector Instance Parameters (on page 801).

The collector instance is added.

Specify the tags whose data you want to collect using the collector. For the CollectorDestination

parameter:

• If you have entered Historian, access Historian Administrator, and manage the tag configuration.

For information, refer to About Tags (on page 659).

• If you not entered a value, modify the offline configuration file of the collector. By default, this file

is available in the following location: <installation folder of Historian>\GE Digital

\<collector name>. For information, refer to Creating Offline Configuration XML file (on page

2040).

Modify a Collector Instance

Stop the collector (on page 1340) whose instance you want to modify.

This topic describes how to modify the destination details of a collector instance using the

RemoteCollectorConfigurator utility. You can also modify a collector instance using Configuration Hub (on

page 634).

1. If you want to use the Command Prompt window:

a. Run the RemoteCollectorConfigurator.exe file. By default, it is

located in the following folder: C:\Program Files\GE Digital

\NonWebCollectorInstantiationTool.

b. If you want to manually enter the installation parameters and values, run the following

command:

RemoteCollectorConfigurator.exe "<Destination Historian>" "<Destination Historian username>"

"<Destination Historian password>" InterfaceEditDestinationViaCmd "{\"<parameter>\":\"<value>\",

\"<parameter>\":\"<value>\"}"

Historian | 4 - Remote Collector Management | 800

If you want to use a JSON file containing the installation parameters and values, run the

following command:

RemoteCollectorConfigurator.exe "<Destination Historian>" "<Destination Historian username>"

"<Destination Historian password>" InterfaceEditDestinationViaFile "<path to the JSON file>"

Instead of manually creating the JSON file, you can use the RemoteCollectorConfigurator

utility to generate it automatically (on page 796).

You can leave the Historian username and password blank if there are no Historian security

user groups.

For information on the parameters, refer to Collector Instance Parameters (on page 801).

2. If you want to use an interactive UI:

a. Run the RemoteCollectorConfigurator.exe file. By default, it is

located in the following folder: C:\Program Files\GE Digital

\NonWebCollectorInstantiationTool.

A list of options to manage collector instances appears.

b. Connect to the collector machine by entering 1 or 2, depending on whether collectors are

installed locally or on a remote machine.

c. Enter 6.

You are prompted to choose between entering the installation parameters manually and

providing a JSON file.

d. If you want to manually enter the parameters and values, enter 1, and then run the following

command:

{"<parameter>":"<value>","<parameter>":"<value>"}

If you want to use a JSON file containing the installation parameters and values, enter 2, and

then enter the path to the JSON file that you have created. Instead of manually creating the

JSON file, you can use the RemoteCollectorConfigurator utility to generate it automatically

(on page 796).

You can leave the Historian username and password blank if there are no Historian security

user groups.

For information on the parameters, refer to Collector Instance Parameters (on page 801).

Historian | 4 - Remote Collector Management | 801

The destination of the collector instance is modified.

Collector Instance Parameters

This topic provides a list of the parameters that you must provide when you add or modify a collector

instance.

Table 56. Destination: Historian

Parameter Description

CollectorDestination The type of the configuration to specify the tags

whose data you want to collect.

• If you want to use Historian Administrator

to specify the tags for data collection, enter

Historian. For information, refer to About

Tags (on page 659).

• If you want to specify the tags using an

offline tag configuration file, do not enter

a value. By default, this file is available in

the following location: <installation

folder of Historian>\GE Digi

tal\<collector name>. For information,

refer to Creating Offline Configuration XML

file (on page 2040).

winUserName The username to connect to the machine on which

Historian Administrator is installed. A value is re

quired only if:

• You want to use Historian Administrator to

specify the tags for data collection.

• Historian security groups are used.

• The mode is set to 2.

winPassword The password to connect to the machine on which

Historian Administrator is installed. A value is re

quired only if:

Historian | 4 - Remote Collector Management | 802

Table 56. Destination: Historian (continued)

Parameter Description

• You want to use Historian Administrator to

specify the tags for data collection.

• Historian security groups are used.

• The mode is set to 2.

CollectorSystemName The name of the machine on which you have in

stalled the collectors. A value is required.

InterfaceName The interface name of the collector instance. A val

ue is required and must be unique per destination.

The following characters are not allowed in the in

terface name:

• < (less than)

• > (greater than)

• : (colon)

• " (double quote)

• / (forward slash)

• \ (backslash)

• | (vertical bar or pipe)

• ? (question mark)

• * (asterisk)

InterfaceDescription The description of the collector instance.

InterfaceSubType The subtype of the collector. For information, refer

to Collector Type and Subtype (on page 1339).

Type The type of the collector. For information, refer to

Collector Type and Subtype (on page 1339). A val

ue is required.

DataPathDirectory The folder in which you want to store the collector

log files. If you do not enter a value, by default, C:\

\Proficy Historian Data is considered.

mode Identifies whether creating the collector instance

requires a specific user account credentials. Enter

one of the following values:

Historian | 4 - Remote Collector Management | 803

Table 56. Destination: Historian (continued)

Parameter Description

• 1: Creates the collector instance with the

credentials of the local user.

• 2: Creates the collector instance with the

credentials of a specific user. If you choose

this mode, you must enter values for the wi

nUserName and winPassword parameters.

Installation parameters for an iFIX collector to send data to Historian

{

 "mode": 2,

 "CollectorSystemName": "<host name>",

 "InterfaceDescription": "iFIX collector for unit 1",

 "DataPathDirectory": "C:\\Proficy Historian Data",

 "CollectorDestination": "Historian",

 "winUserName": "<host name>\\<user name>",

 "winPassword": "<password>",

 "InterfaceSubType": "",

 "DestinationHistorianUserName": "<user name>",

 "DestinationHistorianPassword": "<password>",

 "DestinationHistorian": "<host name>",

 "General1": "",

 "General2": "",

 "General3": "FIX",

 "General4": "",

 "General5": "",

 "Type": 1,

 "InterfaceName": "collector_unique_name"

}

Table 57. Destination: Predix TimeSeries

Parameter Description

ClientID The collector when interacting with Predix Time

Series. This is equivalent to the username in many

authentication schemes. The client must exist in

Historian | 4 - Remote Collector Management | 804

Table 57. Destination: Predix TimeSeries (continued)

Parameter Description

the Proficy Authentication instance identified by

the identity issuer, and the system requires that

the timeseries.zones. {ZoneId}.ingest and time

series.zones.{ZoneId}.query authorities are grant

ed access to the client for the Predix Zone ID spec

ified. Your Predix Time Series administrator can

provide this information.

ClientSecret The secret to authenticate the collector. This is

equivalent to the password in many authentication

schemes.

CloudDestinationAddress The URL of a data streaming endpoint exposed by

the Predix Time Series instance to which you want

to send data. Typically, it starts with “wss://”. This

value is used as part of the interface name and de

fault tag prefix of the collector. Your Predix Time

Series administrator can provide this URL.

CollectorDestination The type of the cloud destination. For Predix

TimeSeries, enter Predix.

CollectorSystemName The name of the machine on which you have in

stalled the collectors. A value is required.

DataPathDirectory The folder in which you want to store the collector

log files. If you do not enter a value, by default, C:\

\Proficy Historian Data is considered.

DatapointAttribute<number> The attributes for each data point whose values

you want the collector to collect. You can specify

maximum five attributes.

IdentityIssuer The URL of an authentication endpoint for the col

lector to authenticate itself and acquire necessary

credentials to stream to the Predix Time Series. In

other words, this is the issuer ID of the Proficy Au

thentication instance that you want to use to con

Historian | 4 - Remote Collector Management | 805

Table 57. Destination: Predix TimeSeries (continued)

Parameter Description

nect to Predix Time Series. Typically, it starts with

https:// and ends with “/oauth/token”.

InterfaceName The interface name of the collector instance. A val

ue is required and must be unique per destination.

The following characters are not allowed in the in

terface name:

• < (less than)

• > (greater than)

• : (colon)

• " (double quote)

• / (forward slash)

• \ (backslash)

• | (vertical bar or pipe)

• ? (question mark)

• * (asterisk)

InterfaceDescription The description of the collector instance.

InterfaceSubType The subtype of the collector. For information, refer

to Collector Type and Subtype (on page 1339).

Proxy Identifies the URL of the proxy server to be used

for both the authentication process and for send

ing data. If the collector is running on a network

where proxy servers are used to access web re

sources outside of the network, then you must pro

vide the proxy server settings. However, it does

not affect the proxy server used by Windows when

establishing secure connections. As a result, you

must still configure the proxy settings for the Win

dows user account under which the collector ser

vice runs.

ProxyUserName The username to connect to the proxy server.

ProxyPassword The password to connect to the proxy server.

Historian | 4 - Remote Collector Management | 806

Table 57. Destination: Predix TimeSeries (continued)

Parameter Description

Type The type of the collector. For information, refer to

Collector Type and Subtype (on page 1339). A val

ue is required.

ZoneID Unique identifier of the instance to which the col

lector will send data.

winUserName The username to connect to the machine on which

Historian Administrator is installed. A value is re

quired only if:

• You want to use Historian Administrator to

specify the tags for data collection.

• Historian security groups are used.

• The mode is set to 2.

winPassword The password to connect to the machine on which

Historian Administrator is installed. A value is re

quired only if:

• You want to use Historian Administrator to

specify the tags for data collection.

• Historian security groups are used.

• The mode is set to 2.

mode Identifies whether creating the collector instance

requires a specific user account credentials. Enter

one of the following values:

• 1: Creates the collector instance with the

credentials of the local user.

• 2: Creates the collector instance with the

credentials of a specific user. If you choose

this mode, you must enter values for the wi

nUserName and winPassword parameters.

Historian | 4 - Remote Collector Management | 807

Installation parameters for an iFIX collector to send data to Predix TimeSeries

{

 "ClientID": "HistQA",

 "ClientSecret": "1234",

 "CloudDestinationAddress": "wss://abcd.run.123.predix.io/v1/stream/messages",

 "CollectorDestination": "Predix",

 "CollectorSystemName": "<host name>",

 "DataPathDirectory": "C:\\Proficy Historian Data",

 "DatapointAttribute1":"\"site\":\"site_1\"",

 "DatapointAttribute2": "",

 "DatapointAttribute3": "",

 "DatapointAttribute4": "",

 "DatapointAttribute5": "",

 "DestinationHistorian": "<host name>",

 "General1": "",

 "General2": "",

 "General3": "abc",

 "General4": "",

 "General5": "",

 "IdentityIssuer": "https://1234567.predix-uaa.run.aws-usw02-pr.ice.predix.io/oauth/token",

 "InterfaceDescription": "1234",

 "InterfaceName": "123",

 "InterfaceSubType": "",

 "Proxy": "http://<host name>:<port number>",

 "ProxyPassword": "",

 "ProxyUserName": "",

 "Type": 1,

 "ZoneID": "123-456-789de-rft",

 "winPassword": "",

 "winUserName": "",

 "mode": 1

}

Historian | 4 - Remote Collector Management | 808

Table 58. Destination: MQTT

Parameter Description

ClientID The name of the MQTT client. A value is required

and must be unique for an MQTT broker.

CollectorDestination The type of the cloud destination. For MQTT, enter

MQTT.

CollectorSystemName The name of the machine on which you have in

stalled the collectors. A value is required.

DataPathDirectory The folder in which you want to store the collector

log files. If you do not enter a value, by default, C:\

\Proficy Historian Data is considered.

DeviceSharedKey The device shared key of the MQTT broker.

HostAddress The host name of the MQTT broker to which you

want the collector to send data. A value is required.

HostPort The port number to connect to the MQTT broker to

which you want the collector to send data.

InterfaceName The interface name of the collector instance. A val

ue is required and must be unique per destination.

The following characters are not allowed in the in

terface name:

• < (less than)

• > (greater than)

• : (colon)

• " (double quote)

• / (forward slash)

• \ (backslash)

• | (vertical bar or pipe)

• ? (question mark)

• * (asterisk)

InterfaceDescription The description of the collector instance.

InterfaceSubType The subtype of the collector. For information, refer

to Collector Type and Subtype (on page 1339).

Historian | 4 - Remote Collector Management | 809

Table 58. Destination: MQTT (continued)

Parameter Description

MQTTAutoRefresh Indicates that the password is automatically gener

ated on expiry; you are not required to provide the

password.

MQTTCloudSubtype The subtype of the MQTT broker.

MQTTUserName Enter the username to connect to the MQTT bro

ker.

MQTTPassword Enter the password to connect to the MQTT broker.

Topic The MQTT topic to which you want the collector to

publish data.

Type The type of the collector. For information, refer to

Collector Type and Subtype (on page 1339). A val

ue is required.

winUserName The username to connect to the machine on which

Historian Administrator is installed. A value is re

quired only if:

• You want to use Historian Administrator to

specify the tags for data collection.

• Historian security groups are used.

• The mode is set to 2.

winPassword The password to connect to the machine on which

Historian Administrator is installed. A value is re

quired only if:

• You want to use Historian Administrator to

specify the tags for data collection.

• Historian security groups are used.

• The mode is set to 2.

mode Identifies whether creating the collector instance

requires a specific user account credentials. Enter

one of the following values:

Historian | 4 - Remote Collector Management | 810

Table 58. Destination: MQTT (continued)

Parameter Description

• 1: Creates the collector instance with the

credentials of the local user.

• 2: Creates the collector instance with the

credentials of a specific user. If you choose

this mode, you must enter values for the wi

nUserName and winPassword parameters.

Tip:

To establish an MQTT connection with Alibaba Cloud, refer to https://www.alibabacloud.com/

help/doc-detail/73742.htm. To generate a password to connect to Alibaba Cloud, use the utility

located here.

Installation parameters for an iFIX collector to send data to Google Cloud

{

 "InterfaceName": "<unique collector name>",

 "InterfaceDescription": "collector for unit 3",

 "Type": 1,

 "mode": 2,

 "CollectorSystemName": "<host name>",

 "DataPathDirectory": "C:\\Proficy Historian Data",

 "CollectorDestination": "MQTT",

 "HostAddress": "mqtt.googleapis.com",

 "HostPort": "8883",

 "ClientID": "projects/mygcpproject/locations/asia-east1/registries/testmqttgcpiot/devices/testdevice",

 "Topic": "/devices/gcptesting/events",

 "DeviceSharedKey": "",

 "MQTTCloudSubtype": "GOOGLE",

 "MQTTUserName": "testusername",

 "MQTTPassword": "testGoogleConnectiionstringPassword",

 "MQTTAutoRefresh": "NO",

 "MQTTCAFile": "",

 "MQTTCertificateFile": "",

 "MQTTPrivateKeyFile": "",

 "MQTTPublicKeyFile": "",

https://www.alibabacloud.com/help/doc-detail/73742.htm
https://www.alibabacloud.com/help/doc-detail/73742.htm
http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/189223/cn_zh/1605168543507/MQTT_Password.7z

Historian | 4 - Remote Collector Management | 811

 "winUserName": "<host name>\\Admin",

 "winPassword": "<password>",

 "InterfaceSubType": "",

 "DestinationHistorianUserName": "<Windows user name of the destination>",

 "DestinationHistorianPassword": "<Windows password of the destination>",

 "DestinationHistorian": "<host name>",

 "General1": "",

 "General2": "",

 "General3": "FIX",

 "General4": "",

 "General5": ""

}

Table 59. Destination: Azure IoT Hub

Parameter Description

CollectorDestination The type of the cloud destination. For Azure IoT

Hub, enter Azure.

CollectorSystemName The name of the machine on which you have in

stalled the collectors. A value is required.

DataPathDirectory The folder in which you want to store the collector

log files. If you do not enter a value, by default, C:\

\Proficy Historian Data is considered.

DeviceConnectionString Identifies the Azure IoT device to which you want

to send data. Enter a value in the following format:

HostName=<value>;DeviceId=<value>;SharedAccess

Key=<value>

DeviceId The ID of the Azure IoT device.

SharedAccessKey The shared access key of the device.

InterfaceName The interface name of the collector instance. A val

ue is required and must be unique per destination.

The following characters are not allowed in the in

terface name:

• < (less than)

• > (greater than)

Historian | 4 - Remote Collector Management | 812

Table 59. Destination: Azure IoT Hub (continued)

Parameter Description

• : (colon)

• " (double quote)

• / (forward slash)

• \ (backslash)

• | (vertical bar or pipe)

• ? (question mark)

• * (asterisk)

InterfaceDescription The description of the interface.

InterfaceSubType The subtype of the collector. For information, refer

to Collector Type and Subtype (on page 1339).

Proxy Identifies the URL of the proxy server to be used

for both the authentication process and for send

ing data. If the collector is running on a network

where proxy servers are used to access web re

sources outside of the network, then you must pro

vide the proxy server settings. However, it does

not affect the proxy server used by Windows when

establishing secure connections. As a result, you

must still configure the proxy settings for the Win

dows user account under which the collector ser

vice runs.

ProxyUserName The username to connect to the proxy server.

ProxyPassword The password to connect to the proxy server.

TrasportProtocol The protocol that you want to use to send data to

Azure IoT Hub. Enter one of the following values:

• HTTP

• MQTT

• AMQP

• MQTT_OVER_WEBSOCKETS

• AMQP_OVER_WEBSOCKETS

Historian | 4 - Remote Collector Management | 813

Table 59. Destination: Azure IoT Hub (continued)

Parameter Description

For information on which protocol to use, refer to

Protocols and Port Numbers (on page 626).

Type The type of the collector. For information, refer to

Collector Type and Subtype (on page 1339). A val

ue is required.

winUserName The username to connect to the machine on which

Historian Administrator is installed. A value is re

quired only if:

• You want to use Historian Administrator to

specify the tags for data collection.

• Historian security groups are used.

• The mode is set to 2.

winPassword The password to connect to the machine on which

Historian Administrator is installed. A value is re

quired only if:

• You want to use Historian Administrator to

specify the tags for data collection.

• Historian security groups are used.

• The mode is set to 2.

mode Identifies whether creating the collector instance

requires a specific user account credentials. Enter

one of the following values:

• 1: Creates the collector instance with the

credentials of the local user.

• 2: Creates the collector instance with the

credentials of a specific user. If you choose

this mode, you must enter values for the wi

nUserName and winPassword parameters.

Historian | 4 - Remote Collector Management | 814

Installation parameters for an iFIX collector to send data to Azure IoT Hub

{

 "InterfaceName": "collector_unique_name",

 "InterfaceDescription": "iFIX collector for unit 2",

 "Type": 1,

 "mode": 2,

 "CollectorSystemName": "<host name>",

 "DataPathDirectory": "C:\\Proficy Historian Data",

 "CollectorDestination": "Azure",

 "DeviceConnectionString": "HostName=abc.azure-devices.net;DeviceId=Device1;SharedAccessKey=xxxxxxxxxx",

 "TransportProtocol": "AMQP_OVER_WEBSOCKETS",

 "Proxy": "<host name>:<port number>",

 "ProxyUserName": "",

 "ProxyPassword": "",

 "winUserName": "<host name>\\<user name>",

 "winPassword": "<password>",

 "InterfaceSubType": "",

 "DestinationHistorianUserName": "<user name>",

 "DestinationHistorianPassword": "<password>",

 "DestinationHistorian": "<host name>",

 "General1": "",

 "General2": "",

 "General3": "FIX",

 "General4": "",

 "General5": ""

}

General Parameters of a Collector

This topic provides a list of general parameters that are applicable to each type of collector.

Collector Type Applicable General Parameters

The Calculation collector • General1 - optional. Used for calculation

timeout (sec). Default value: 10.

• General2 - optional. Used for Max Recovery

Time (hr). Default value: 4

Historian | 4 - Remote Collector Management | 815

Collector Type Applicable General Parameters

The CygNet collector • General2 - optional. Used for recovery time

(hr). Default value: 0

• General3 - optional. Used for thread count.

Default value: 5

• General4 - optional. Used for the Cygnet de

bug mode. Default value: 0

• General5 - optional. Used for optimization.

Default value: 1

The iFIX Alarms and Events collector General1 - optional. Used for ProgId. Default value:

Proficy.OPCiFIXAE.1

The iFIX collector • General3 - optional

• General4 - optional. Used for blocks and

fields for blocks. Default value: AI:F_CV,B_

CUALM

The MQTT collector • General1 - required. Used for the source

host name.

General2 - required. Used for the source top

ic.

General3 - required. Used for the source

port.

The ODBC collector • General1 - required. Used for the ODBC serv

er.

• General2 - required. Used for the ODBC user

name.

• General3 - required. Used for the ODBC

password.

• General4 - optional. Used for recovery time

(hr). Default value: 0.

• General5 - optional. Used for throttle (mil

liseconds). Default value: 100

The OPC Classic Alarms and Events collector General1 - required. Used for the OPC source serv

er progID.

Historian | 4 - Remote Collector Management | 816

Collector Type Applicable General Parameters

The OPC Classic DA collector General1 - required. Used for the OPC source serv

er progID.

The OPC Classic HDA collector • General1 - required. Used for the OPC HDA

server.

• General2 - optional. Used for recovery time

(hr). Default value: 24

The OPC UA DA collector • General1 - required. Used for the OPC UA

server URI.

• General2 - optional. Used for secured con

nectivity. Default value: false

• General3 - optional. Used to enable user se

curity. Default value: false

• General4 - optional. Used for username

when security is enabled.

General5 - optional. Used for password

when security is enabled.

The OSI PI collector • General1 - required. Used for the OSI PI

server name.

• General2 - optional. Used for the OSI PI

username. Default value: piadmin

• General3 - optional. Used for the OSI PI

password.

• General4 - optional. Used for max recovery

time (hr). Default value: 4

• General5 - optional. Used for the OSI PI

source (archive or snapshot). Default value:

Archive.

The OSI PI distributor • General1 - optional. Used for the OSI PI serv

er.

General2 - optional. Used for the OSI PI

username. Default value: piadmin

• General3 - optional. Used for the OSI PI

password.

Historian | 4 - Remote Collector Management | 817

Collector Type Applicable General Parameters

• General4 - optional. Used for max recovery

time (hr). Default value: 4

• General5 - optional. Used for the OSI PI

source (archive or snapshot). Default value:

Archive.

The Python Collector • General1 - optional. Used for calculation

timeout (sec). Default value: 10

• General2 - optional. Used for max recovery

time (hr). Default value: 4

The Server-to-Server distributor • General1 - optional. Used for calculation

timeout (sec). Default value: 10

• General2 - optional. Used for max recovery

time (hr). Default value: 4

• General3 - required. Used for the source

server name

• General4 - optional. Used for message repli

cation (0 or 1) and alarm replication (0 or 1).

Enter 0 or 1 only for alarm replication.

• General5 - optional. Used for prefix to mes

sages.

The Windows Performance collector None

The Wonderware collector • General1 - required. Used for the Wonder

ware server.

• General2 - required. Used for the Wonder

ware username.

• General3 - required. Used for the Wonder

ware password.

• General4 - optional. Used for the recovery

time (hr). Default value: 0

• General5 - optional. Used for Throttle (mil

liseconds). Default value: 100

Delete a Collector Instance

Stop the collector (on page 1340) whose instance you want to delete.

Historian | 4 - Remote Collector Management | 818

If you no longer want to use a collector instance to collect data, you can delete it. When you delete a

collector instance, the Windows service for the collector, the Registry folder, and the buffer files are

deleted as well.

This topic describes how to delete a collector instance using the RemoteCollectorConfigurator utility. You

can also delete a collector instance using Configuration Hub (on page 654). If you want to delete an offline

collector, refer to Delete an Offline Collector Instance (on page 819).

1. If you want to use the Command Prompt window:

a. Access the installation location of the RemoteCollectorConfigurator utility. By default, it is

C:\Program Files\GE Digital\NonWebCollectorInstantiationTool.

b. Run the following command:

RemoteCollectorConfigurator.exe "<Destination Historian>" "<Destination Historian username>"

"<Destination Historian password>" InterfaceDelete <interface name> ShouldDeleteTags[<0 or 1>]

You can leave the Historian username and password blank if there are no Historian security

user groups.

2. If you want to use an interactive UI:

a. Run the RemoteCollectorConfigurator.exe file. By default, it is

located in the following folder: C:\Program Files\GE Digital

\NonWebCollectorInstantiationTool.

A list of options to manage collector instances appears.

b. Connect to the collector machine by entering 1 or 2, depending on whether collectors are

installed locally or on a remote machine.

c. Enter 5.

You are prompted to enter the interface name of the collector whose instance you want to

delete.

d. Enter the interface name of the collector that you want to delete.

You are prompted to specify whether you want to delete the tag data as well.

e. Enter 1 if you want to delete the tag data as well, or enter 0.

The collector instance is deleted.

Historian | 4 - Remote Collector Management | 819

Add an Offline Collector Instance
You can use an offline collector to send data directly to a cloud destination (without using a Historian

server).

1. Access the installation folder of ihCollectorManager_x64.exe. By default, it is C:\Program Files

\GE Digital\Historian Remote Management Agents\Collector Manager.

2. If you want to manually enter the installation parameters and values, run the following command:

ihCollectorManager_x64.exe InterfaceCreateViaCmd "{\"<parameter>\":\"<value>\",

\"<parameter>\":\"<value>\"}"

If you want to use a JSON file containing the installation parameters and values, run the following

command:

ihCollectorManager_x64.exe InterfaceCreateViaFile "<path to the JSON file>"

Instead of manually creating the JSON file, you can use the RemoteCollectorConfigurator utility to

generate it automatically (on page 796).

For information on the parameters, refer to Collector Instance Parameters (on page 801).

Delete an Offline Collector Instance
This topic describes how to delete an offline collector instance using the RemoteCollectorConfigurator

utility.

Note:

When you delete an offline collector instance, the corresponding configuration file is not deleted.

However, if another collector instance of the same interface name is created, the existing

configuration file is replaced by a template configuration file.

1. Access the installation folder of ihCollectorManager_x64.exe. By default, it is C:\Program Files

\GE Digital\Historian Remote Management Agents\Collector Manager.

2. Run the ihCollectorManager_x64.exe file.

3. Run the following command:

ihCollectorManager_x64.exe InterfaceDelete <interface name>

Historian | 4 - Remote Collector Management | 820

Manage a Collector Remotely
1. Ensure that the Historian server connected to the collectors that you want to manage is upgraded

to Historian 8.1.

2. Install Remote Management Agents (on page 187).

Note:

Remote Collector Management will be installed as part of this installation.

3. Ensure that the Windows Task Scheduler service is running. This service is required to manage

collectors in the command line mode. You can check the status of this service in the Microsoft

Services Management console.

4. If you want to manage the iFIX collectors remotely, access the SCU - FIX window, and modify the

task configuration such that the value in the Command Line field is NOSERVICE.

Perform any of the following tasks using Configuration Hub:

• Start (on page 637), stop (on page 638), or restart (on page 639) a collector.

• Pause (on page 641) or resume (on page 642) the data collection of a collector.

• Delete (on page 643) or move (on page 644) the buffer files of a collector.

• Change the destination server of a collector (on page 645).

Note:

You can also perform these tasks using REST APIs (on page 1254).

Troubleshooting Remote Collector Management Issues
Remote Collector Management does not work

Issue: If an iFIX collector instance created in version 9.0 exists, after you upgrade collectors, another

instance of the iFIX collector is created. Because of this, the Remote Collector Manager (RCM) will not

work correctly. This is applicable to the iFIX Alarms and Events collector as well.

Workaround: If you want to use RCM, you must delete one of the instances. If needed, you can manually

create another instance of the iFIX collector using Configuration Hub or the RemoteCollectorConfigurator

utility.

Historian | 4 - Remote Collector Management | 821

The ServiceName Registry Key is not Updated

Issue: When you attempt to manage collectors, sometimes, an error message appears in the

CollectorManager.shw file.

Error message: Below are collectors in the registry without a service name. The String Registry value

'ServiceName' exists, but is blank. Collector Manager will not try to determine what the service name is.

This will need to be manually configured.

Cause: When Remote Collector Management is started for the first time, the collector that you want to

manage is not running. When this happens, the ServiceName registry key is not updated.

Workaround:

1. Stop the Remote Collector Management service.

2. Start the collector.

3. Start the Remote Collector Management service.

The ServiceName Registry key is Updated Incorrectly

Workaround:

1. Stop the Remote Collector Management service.

2. Access the registry folder of the collector.

3. Delete the ServiceName key.

4. Start the collector.

5. Start the Remote Collector Management service.

6. Access the .shw file to verify that the ServiceName key has been updated.

Chapter 5. Using Historian Administrator

Historian Administrator

Overview of Historian Administrator

Historian Administrator is a Windows-based application, which allows you to access administrative

functions. Using Historian Administrator, you can monitor, supervise, archive, retrieve, and control data

gathering functions from the server, a client, or one or more remote non-web-based nodes.

Note:

You can install multiple instances of Historian Administrator. Changes that you make to

parameters on one instance are not automatically updated in other instances.

Historian Administrator communicates with the Historian server using the Historian API. You can install

Historian Administrator on a local or a remote machine that has a TCP/IP connection to the Historian

server.

Intended Audience

This guide is intended for people who need to:

• Retrieve and analyze archived information.

• Monitor Historian system performance.

• Set up and maintain configuration and other parameters for tags, collectors, and archives.

• Perform specific supervisory and security tasks for Historian.

• Maintain and troubleshoot Historian.

About Historian Administrator

Using Historian Administrator, you can:

• Examine key operating statistics for archives and collectors, and display or search system alerts

and messages.

• Perform archive maintenance, including:

◦ Setting archive size.

◦ Selecting options and parameters.

◦ Accessing security parameters.

Historian | 5 - Using Historian Administrator | 823

◦ Adding and restoring archives.

◦ Performing backup and restoration tasks

• Perform tag maintenance, including:

◦ Adding, deleting, and copying tags.

◦ Searching for tags in a data source or in the Historian database.

◦ Starting and stopping data collection for a tag.

◦ Configuring, displaying, and editing tag parameters and options.

◦ Displaying trend data for selected tags.

• Perform collector maintenance, including:

◦ Adding or deleting collectors.

◦ Configuring, displaying, and editing parameters for all types of collectors.

◦ Creating calculation formulas.

◦ Displaying performance trends for selected collectors.

Limitations

If the number of archives is large (that is, more than 5,000), Historian Administrator takes a long time to

start.

Access Historian Administrator

• Install Historian Administrator (by installing Client Tools).

• Create a Windows user on the Historian server.

• Use a page with a resolution of 1024 x 768 or above.

From the Start menu, select Historian Administrator.

Note:

By default, The system attempts to connect to the default server using the username and

password of the currently logged-in user. If you want to use a different server or user account:

a. Select Main.

A login window appears.

b. Provide the server name, username, password, and domain information, and then select

OK.

The Proficy Historian Administrator window appears, displaying the following pages.

Historian | 5 - Using Historian Administrator | 824

• System Statistics: Contains system status indicators, data collector performance indicators,

system alerts and messages, with links to the data store maintenance, collector maintenance, tag

maintenance, message search, and help pages.

• Main: Allows yo to log in to a different Historian Server.

• Tags: Contains tag names, parameters, and controls.

• Collectors: Contains collector names, parameters, and controls.

• DataStores: Contains archive names, parameters, alarms, security, and controls.

• Messages: Contains alerts and messages selected by user-defined search parameters.

Historian in a Regulated Environment

Many FDA-regulated industries are required by the United States government to be compliant with

regulations such as the 21CFR Part 11 regulation. If your industry is one of them, you will need software

that allows you to build a compliant application or process. The flexibility and versatility of Historian lets

you create a compliant process by:

• Providing limited system access to authorized individuals.

• Adding a timestamp to annotations, and displaying timestamps from the Historian archive.

• Requiring electronic signatures on annotations.

Note:

This option is available if the Electronic Signatures/Records option is enabled in the

Historian Server.

• Supporting human-readable printouts and computer-readable format for audits (by exporting data

to a CSV file that can be imported to a Microsoft Excel document or an SQL database).

Disabling Guest Accounts for a 21 CFR Part 11-Compliant Environment

If you want to use Historian in a 21 CFR Part 11-compliant environment, make sure that you disable guest

accounts on your computer. This action applies whether or not you use Historian security.

Compliant Parameter Settings

You can set the following 21 CFR 11-compliant parameters in the Security section of the Data Store page.

Field Description

Require Point Verifica

tion

Indicates whether you must enter identifying information whenever you at

tempt a restricted action. Whenever you attempt to change the system con

https://www.gpo.gov/fdsys/pkg/CFR-2001-title21-vol1/content-detail.html

Historian | 5 - Using Historian Administrator | 825

Field Description

figuration (for the tag, archive, or collector), a tag value, or another record, you

must electronically sign the action with a username and password. If the user

is authorized to make this change, the identity of the person, the action per

formed, and the time it was performed, are all recorded in the audit trail.

Note:

• The audit features are not dependent on this feature being en

abled. Historian audits all user actions regardless of whether

this option is enabled.

• If you plan to create multiple archives at the same time, select

the Disabled option.

Enabling electronic signatures and electronic records also requires you to

reverify your identity when you use the Historian Excel Add-in, modify or cre

ate a tag, or import data or messages.

Note:

This feature is available only if you have purchased the Electronic

Signatures and Electronic Records option.

Verification Message When point verification is enabled, you are prompted to enter the username

and password whenever you attempt to perform an action specified as requir

ing point verification.

High Availability

About High Availability

Historian supports high availability of the Historian server, archive files and configuration files. To

facilitate this support, Historian uses Microsoft Cluster Server (MSCS) as well as an automated backup

strategy. High availability decreases the likelihood of archive file corruption due to software or hardware

failures. Implementing high availability ensures that collection of your data remains uninterrupted.

Historian | 5 - Using Historian Administrator | 826

How it Works

If the primary Historian server fails due to software or hardware issues, MSCS replaces it with another

Historian server. In addition, through the use of automated backups to a shared location, at least one

known good Historian archive is maintained at all times. Older archives are replaced once per hour only if

there is a more recent archive in place.

To provide high availability of Historian server for Client Manager, Configuration Manager, and Diagnostics

Manager components of the distributed Historian service using Microsoft Failover Cluster Service,

you must configure them as generic services in Failover Cluster. For information, refer to Microsoft

documentation.

High availability is achieved by following these steps:

1. Every 5 seconds, MSCS monitors the health of all services and applications it is managing by

performing a quick check of whether each service is in a running state.

2. Every 60 seconds, MSCS performs a more thorough test of the applications' health.

3. Server high availability logs are added to the server and queried.

4. If these steps fail, Historian assumes the server is no longer running, which causes the cluster to

initiate failover of the application.

Note:

By default, MSCS monitors the health of all the services and applications every 5 seconds and 60

seconds. You can change this frequency using the cluster administrator.

For most failures, the cluster will detect a problem within 5 seconds of an application or service becoming

unresponsive. In the case of a server hang, where the server process is still running but is otherwise

unresponsive, it may take as many as 60 seconds to detect. The time to switch to another Historian

server includes the time required for the cluster to re-start the Historian server. Server start-up time

depends on the size and number of online archives.

Limitations

• Only a single Historian resource instance is supported per cluster.

• The Historian installation automatically registers Historian and AlarmArchiver resources with

MSCS.

• Configuring an AlarmArchiver resource on MSCS requires a dependency on a Historian resource.

Historian | 5 - Using Historian Administrator | 827

• Running collectors on a cluster is not recommended, as they are not supported on the cluster

server. Therefore, failover cannot be performed if a cluster node goes offline. Historian offers a

separate collector high availability feature.

• Historian local security with local users is not supported in cluster nodes.

High Availability of Archive and Configuration Files

Historian supports high availability of the latest archive (.iha) and configuration (.ihc) files. A copy

of the latest .iha and .ihc file is created once every hour. If the latest archive files become corrupt,

Historian will restore the files.

The following conditions apply when using this feature:

• Archive files are backed up only for tag data, not for alarms and events data.

• When using a cluster, this feature is automatically enabled; you cannot disable it.

• By default, this feature is disabled on a 64-bit Windows operating system.

• When you enable this feature, backup of all the current archive files is created. This will increase

your storage overhead to twice that of the current archive. Therefore, for better performance, we

recommend that you do not use this feature for a large-scale system.

Enable High Availability of Archive and Configuration Files

1. Install Historian on each node of the cluster. A hardware license key is required for each node of

the cluster.

2. Configure a Historian resource on MSCS as follows:

◦ Allow client access to the IP address and network name of the Historian server.

◦ Ensure that a shared storage device or location is available to all the Historian cluster nodes

in order to store the Historian archive files.

3. After you configure the components of the failover cluster, when configuring Client Manager,

Configuration Manager and Diagnostics Manager, enable the Use Network Name for Computer

Name option on the General section of the resource's properties.

1. Access Historian Administrator.

2. Select Archives > Global Options.

3. In the Archive Maintenance field, select the Maintain Auto Recovery Backup Files option.

Register Historian with a Windows 2012 Cluster

Before using later versions of Historian on Windows 2012 Cluster, you must register the Historian.dll

file using PowerShell.

Historian | 5 - Using Historian Administrator | 828

1. Open PowerShell in a Command prompt.

2. Enter the following command to register Data Archiver with the Cluster:

Add-clusterresourcetype Historian "C:\ProgramFiles\Proficy\Historian\x64\Server

\Historian.dll" -DisplayName

3. Enter the following command to register AlarmArchiver with the Cluster:

Add-clusterresourcetype AlarmArchiver "C:\Program Files\Proficy\Historian\x64\Server

\Historian.dll" -DisplayName

Historian Administrator - Pages

The Main Page

The Main page of Historian Administrator displays the system statistics, which contains the current

system status and performance statistics. It provides an overall view of the system health. The page has

the following sections:

• The System Statistics section (on page 829)

• The Collectors section (on page 833)

• The Alerts section (on page 835)

Historian | 5 - Using Historian Administrator | 829

The System Statistics Section

The following table describes the fields in the System Statistics section.

Note:

The statistics displayed in this section are calculated independently on various time scales and

schedules. As a result, they may be updated at different times.

Field Description

Receive Rate (a time-based chart

in events/minute)

Displays how busy the server is at a given instance and the rate at

which the server is receiving data from collectors.

Archive Compression (% com

pression)

Displays the current effect of archive data compression. If the value

is zero, it indicates that archive compression is either ineffective or

turned off. To increase the effect of data compression, increase the

value of archive compression deadbands on individual tags in the

Tag Maintenance section to activate compression.

Historian | 5 - Using Historian Administrator | 830

Field Description

In calculating the effect of archive compression, Historian counts

internal system tags as well as data source tags. Therefore, when

working with a very small number of tags and with compression dis

abled on data source tags, this field may indicate a value other than

zero. If you use a realistic number of tags, however, system tags will

constitute a very small percentage of total tags and will therefore

not cause a significant error in calculating the effect of archive com

pression on the total system.

Write Cache Hit Displays the hit ratio of the write cache in percentage of total writes.

It is a measure of how efficiently the system is collecting data. Typi

cally, this value should range from 95 to 99.99%. If the data is chang

ing rapidly over a wide range, however, the hit percentage drops sig

nificantly because current values differ from recently cached values.

More regular sampling may increase the hit percentage. Out-of-order

data also reduces the hit ratio.

Failed Writes Displays the number of samples that failed to be written. Since failed

writes are a measure of system malfunctions or an indication of of

fline archive problems, this value should be zero. If you observe a

non-zero value, investigate the cause of the problem and take cor

rective action.

Historian also generates a message if a write fails. Note that the

message only appears once per tag, for a succession of failed writes

associated with that tag. For example, if the number displayed in this

field is 20, but they all pertain to one Historian tag, you will only re

ceive one message until that Historian tag is functional again.

Messages Since Startup Displays a count of system messages generated since the last start

up. The system resets the value to zero on restart. The message

database, however, may contain more messages than this value.

Alerts Since Startup Displays a count of system warnings or alerts generated since the

last startup. A high value here may indicate a problem of some kind.

You should review the alerts and determine the probable cause. The

count resets to zero on restart. The message database, however,

may contain more alerts than this value.

Historian | 5 - Using Historian Administrator | 831

Field Description

Calculations Displays the value Enabled if the Calculation collector is licensed on

the software key.

Server-to-Server Displays the value Enabled if the Server-to-Server collector is li

censed on the software key.

Alarms since Startup Displays a count of alarms received by the data archiver since start

ing up.

Server Memory Displays how much of the server memory the data archiver con

sumes.

Free Space (MB) Displays how much disk space (in MB) is left in the current archive.

Consumption Rate (MB/day) Displays how fast the archive disk space is consumed. If the value is

too high, you can reduce it by slowing the poll rate on selected tags

or data points or by increasing the filtering on the data (widening the

compression deadband to increase compression).

Est. Days to Full (Days) Displays how much time is left before the archive is full, based on

the current consumption rate. This value is dynamically calculated

by the server and becomes more accurate as an archive file gets

closer to completion. This value is only an estimate and will vary

based on a number of factors, including the current compression ef

fectiveness. The System sends messages notifying you at 5, 3, and 1

days until full. After the archive is full, a new archive must be created

(could be automatic).

To increase this value, you must reduce the consumption rate. To en

sure that collection is not interrupted, make sure that the Automat

ically Create Archives option is enabled in the Data Store Mainte

nance section (under Global Options). You may also want to enable

the Overwrite Old Archives option if you have limited disk capacity.

Enabling overwrite, however, means that some old data will be lost

when new data overwrites the data in the oldest online archive. Use

this feature only when necessary.

Active Tags Displays number of tags in your configuration.

Licensed Tags Displays the number of tags authorized for this Historian installation

by the software key and license.

Historian | 5 - Using Historian Administrator | 832

Field Description

Note:

If this field displays 100 tags and the licensed users field

displays 1 client, you are likely running in demonstration

mode and may have incorrectly installed your hardware key.

Active Users Displays the number of users currently accessing the Historian sys

tem.

Licensed Users Displays the number of users authorized to access Historian using

the software key and license.

The number of users that are authorized to access Historian is strict

ly based on the software key and license. However, if you have uti

lized your available Client Access Licenses (CAL) and need an ad

ditional one to administer the system in an emergency, you have an

option to reserve a CAL. This reserved CAL allows you to access the

server. To do so, provide the reserved CAL to the system administra

tors and add them to the ih Security Admins group. A system

administrator can then connect to Historian in an emergency.

This facility is optional and does not provide a guaranteed connec

tion. It only eliminates the emergency situations when a CAL is pre

venting you from accessing the system and may not work if there

are other conditions. For example, if the Historian server is busy, you

will not be able to connect using this feature.

Note:

If this field displays 1 client and the Licensed Tags field

displays 100 tags, you are likely running in demonstration

mode and you may have incorrectly installed your hardware

key.

Alarm Rate Displays the rate at which Historian is receiving alarms and events

data.

SCADA Tags Displays the number of CIMPLICITY or iFIX tags.

Tags Consumed by Arrays Indicates the total number of Array tags consumed by Historian.

Historian | 5 - Using Historian Administrator | 833

The Collectors Section

The Collectors section shows current statistics on the operation of all the connected collectors in the

system. In this section, you can:

• Access the Collector Maintenance page of a collector by selecting the collector name. You can

also access the Collector Maintenance page by selecting the collector link at the beginning of the

System Statistics section.

• Automatically refresh the data every 45 seconds by selecting the Auto check box.

• Manually refresh the data by selecting Refresh.

The following table describes the fields in the Collectors section.

Field Description

Collector Displays the collector ID, which is used to identify the collector in Historian.

Status Displays the current status of collection. This field contains one of the follow

ing values:

• Running: Indicates that the collector is running.

• Stopped: Indicates that the collector is not collecting data.

• Unknown: Indicates that status information about the collector is un

available, perhaps as a result of a lost connection between the collec

tor and the server.

Computer Displays the name of the computer on which the collector is running.

Report Rate Displays the number of samples per minute that the server is receiving data

from the collector. It is a measure of the collection rate and data compres

sion. If the collector compression percent is zero, and if the value in this field

is equal to the data acquisition rate, it indicates that every data point received

from the collector is being reported to the server. This means that the collec

tor is not performing any data compression. You can lower the report rate,

and make the system more efficient, by increasing the data compression at

the collector. To do this, widen the collection compression deadbands for se

lected tags.

Overruns Displays the overruns in relation to the total events collected since startup.

This value is calculated by using the following equation: OVERRUN_PCT = OVER

RUNS / (OVERRUNS + TOTAL_EVENTS_COLLECTED) Overruns are a count of the

Historian | 5 - Using Historian Administrator | 834

Field Description

total number of data events not collected on their scheduled polling cycle. In

normal operation, this value should be zero.

You may be able to reduce the number of overruns on the collector by in

creasing the tag collection intervals (per tag).

Compression % Displays the percentage of how effective compression is at present for the

specific collector since collector startup. A value of zero indicates that com

pression is either turned off or not effective. To increase the value, enable

compression on the collector's associated tags and increase the width of the

compression deadband on selected tags.

The collector keeps track of how many samples it collected from the data

source (for example, the OPC server) and keeps track of how many samples

it reported to the Data Archiver (after collector compression is complete).

A low number or zero means almost everything coming from the data source

is being sent to the data archiver. The reason for the low number or zero is

that too many samples are exceeding compression or you are not using col

lector compression.

A high number or 100 means you are collecting a lot of samples, but they are

not exceeding collector compression and therefore are not being sent to serv

er.

Out of Order Displays the number of samples within a series of timestamped data values

normally transmitted in sequence that have been received out of sequence

since collector startup. This field applies to all collectors. Even though events

are still stored, a steadily increasing number of out-of-order events indicates

a problem with data transmission that you must investigate.

For instance, a steadily increasing number of out-of-order events when you

are using the OPC collector means that there is an out-of-order connection

between OPC Server and the OPC collector. This may also cause out-of-order

connection between the OPC collector and the data archiver although that is

not what this statistic indicates.

Redundancy Displays the current redundancy status of the collector. This field contains

one of the following values:

Historian | 5 - Using Historian Administrator | 835

Field Description

• Active: Indicates that the collector is currently collecting data.

• Standby: Indicates that the collector is in the standby mode. This val

ue appears only if the Collector Redundancy property of the collector is

enabled.

The Alerts Section

The Alerts section displays all the alerts and warnings received or generated by the system. A total of up

to 250 of the most recent messages appear in this section. In this section, you can:

• Stop automatic updating of the data by clearing the Show Alerts check box. However, the check

box will be selected automatically when you restart Historian Administrator.

• Automatically refresh the data every 25 seconds by selecting the Auto check box.

• Manually refresh the data by selecting Refresh.

The following table describes the fields in the Alerts section.

Field Description

Timestamp The timestamp associated with the message or alert.

Topic The type of alert message. Only the services and performance alerts appear

in this field.

Message The content of the message or alert.

The Data Store Page

Using the Data Store page, you can read and modify the parameters of archives, data stores, global

options, security, and alarms.

The Archive Details Section

In the Archive Details section, a list of all the archives in your system appears. To access an archive,

select it. In this section, you can:

• Close an archive by selecting Close Archive.

• Back up an archive by selecting Backup, and then providing the file name and path for the backup.

• Remove an archive by selecting Remove. The archive is then placed in the \Archives\Offline

folder. However, the archive is not deleted.

Historian | 5 - Using Historian Administrator | 836

This topic describes the fields in each subsection in the Archive Details section.

The Status Subsection

Field Description

Status The current operating state of the archive. This field contains one of the fol

lowing values:

• Current: Indicates that the archive is actively accepting data.

• Active: Indicates that the archive contains data but is not currently ac

cepting data.

• Empty: Indicates that the archive has never accepted data.

Start Time The time of the oldest sample in the archive.

End Time The time the archive is closed (automatically or manually).

Table 60. The Backup Subsection

Field Description

Last Backup The date and time the last backup was performed on the archive.

Backup User The username of the user who performed the last backup of the archive.

Table 61. Resources

Field Description

File Location The path and name of the archive file.

File Size The size (in MB) of the archive file.

Note:

Historian supports a maximum archive size of 256 GB per archive.

File Attribute The attribute to set a closed archive to read-only or read/write.

Note:

To create multiple archives at the same time, set the value of this

field to Read/Write.

Historian | 5 - Using Historian Administrator | 837

The Data Store Details Section

This topic describes the fields in each subsection in the Data Store Details section.

The Statistics Subsection

Field Description

Archive Compression (% com

pression)

Displays the current effect of archive data compression. If the value

is zero, it indicates that archive compression is either ineffective or

turned off. To increase the effect of data compression, increase the

value of archive compression deadbands on individual tags in the

Tag Maintenance section to activate compression.

In calculating the effect of archive compression, Historian counts

internal system tags as well as data source tags. Therefore, when

working with a very small number of tags and with compression dis

Historian | 5 - Using Historian Administrator | 838

Field Description

abled on data source tags, this field may indicate a value other than

zero. If you use a realistic number of tags, however, system tags will

constitute a very small percentage of total tags and will therefore

not cause a significant error in calculating the effect of archive com

pression on the total system.

Write Cache Hit Displays the hit ratio of the write cache in percentage of total writes.

It is a measure of how efficiently the system is collecting data. Typi

cally, this value should range from 95 to 99.99%. If the data is chang

ing rapidly over a wide range, however, the hit percentage drops sig

nificantly because current values differ from recently cached values.

More regular sampling may increase the hit percentage. Out-of-order

data also reduces the hit ratio.

Receive Rate Displays how busy the server is at a given instance and the rate at

which the server is receiving data from collectors.

Free Space (MB) Displays how much disk space (in MB) is left in the current archive.

Consumption Rate (MB/day) Displays how fast the archive disk space is consumed. If the value is

too high, you can reduce it by slowing the poll rate on selected tags

or data points or by increasing the filtering on the data (widening the

compression deadband to increase compression).

Messages Since Startup Displays a count of system messages generated since the last start

up. The system resets the value to zero on restart. The message

database, however, may contain more messages than this value.

Failed Writes Displays the number of samples that failed to be written. Since failed

writes are a measure of system malfunctions or an indication of of

fline archive problems, this value should be zero. If you observe a

non-zero value, investigate the cause of the problem and take cor

rective action.

Historian also generates a message if a write fails. Note that the

message only appears once per tag, for a succession of failed writes

associated with that tag. For example, if the number displayed in this

field is 20, but they all pertain to one Historian tag, you will only re

ceive one message until that Historian tag is functional again.

Historian | 5 - Using Historian Administrator | 839

Field Description

Est Days to Full (Days) Displays how much time is left before the archive is full, based on

the current consumption rate. This value is dynamically calculated

by the server and becomes more accurate as an archive file gets

closer to completion. This value is only an estimate and will vary

based on a number of factors, including the current compression ef

fectiveness. The System sends messages notifying you at 5, 3, and 1

days until full. After the archive is full, a new archive must be created

(could be automatic).

To increase this value, you must reduce the consumption rate. To en

sure that collection is not interrupted, make sure that the Automat

ically Create Archives option is enabled in the Data Store Mainte

nance section (under Global Options). You may also want to enable

the Overwrite Old Archives option if you have limited disk capacity.

Enabling overwrite, however, means that some old data will be lost

when new data overwrites the data in the oldest online archive. Use

this feature only when necessary.

Alerts Since Startup Displays a count of system warnings or alerts generated since the

last startup. A high value here may indicate a problem of some kind.

You should review the alerts and determine the probable cause. The

count resets to zero on restart. The message database, however,

may contain more alerts than this value.

The User Settings Subsection

Field Description

Data Store State The current state of the data store. The value in this field is Running

until you delete the data store.

Is System Indicates whether this data store is the system data store.

Note:

By default, the Is System value of the system data store is

set to yes. You cannot set the Is System value of any histori

cal data store to yes.

Historian | 5 - Using Historian Administrator | 840

Field Description

Number of Tags Displays the number of tags the data store contains.

Is Default (Yes/No) Indicates whether the data store is the default store. Select Yes to

set this data store as default one.

Storage Type Indicates whether the storage type is historical or SCADA buffer.

Description The description of the data store.

The Data Store Options Section

This topic describes the fields in each subsection in the Data Store Options section.

The Archive Creation or the SCADA BufferSubsection

The Archive Creation subsection appears only if the data store type is historical. The SCADA Buffer

subsection appears only if the data store type is SCADA buffer.

Historian | 5 - Using Historian Administrator | 841

Field Description

Automatically Create

Archives

Identifies whether the server must automatically create an archive file when

ever the current archive file is full. The archive files are created in the default

path directory.

Note:

If you plan to create multiple archives at the same time, select the

Disabled option.

Overwrite Old Archives When enabled, the system replaces the oldest archived data with new data

when the default size has been reached. Since this action deletes historical

data, exercise caution in using this feature. We recommend that you back up

the archive so that you can restore it later.

Note:

To create multiple archives at the same time, select the Disabled op

tion. If both the Automatically Create Archives and Overwrite Old

Archives are enabled, set the ihArchiveFreeSpaceHardLimit parame

ter to TRUE using the Historian APIs.

Default Size (MB) The default size of a newly created archive or the duration of a newly created

archive in days or hours. Select one of the following options:

• BySize: A new archive file is created after the current archive reaches

the default size. The recommended default archive size is at least 500

MB for systems with 1000 tags or more.

• Days: A new archive file is created after the number of days that you

specify in the Archive Duration field that will appear.

• Hours: A new archive file is created after the number of hours that you

specify in the Archive Duration field that will appear.

SCADA Buffer Duration

(Days)

Indicates the maximum number of days you want to store the trend data. The

maximum number of days is equal to the value of the Rotational Buffer Dura

tion shown in the GE Licence Client.

Archive Duration (Days/

Hours)

Indicates the days or hours for which the duration of the archive is set.

Historian | 5 - Using Historian Administrator | 842

The Maintenance Subsection

Field Description

Default Archive Path The folder path to store newly created archives.

Note:

We recommend not to use a period in the default archive path field. If

you do so, you will not be able to specify a default archive name.

Default Backup Path The location to which the backup file will be saved.

Base Archive Name A prefix that you want to add to all the archive files.

Free Space Required

(MB)

Indicates the remaining disk space required after a new archive is created. If

the available space is less than the requirement, a new archive is not created.

The default value is 5000 MB.

This field is not applicable to alarms and events archives. The alarms and

events archiver will continue writing to the alarms and events archive until the

drive is full. If this occurs, the alarms and events archiver will buffer incom

ing alarms and events data until the drive has free space. An error message

is logged in the Historian message log.

Store OPC Quality Indicates whether to store the OPC data quality.

Note:

To create multiple archives at the same time, select the Disabled op

tion.

Use Caching Indicates whether caching must be enabled. When reading data from the

archiver, some data is saved in the system memory and retrieved using

caching. This results in faster retrieval as the data is already stored in the

buffer.

Note:

This option is not available for SCADA Buffer data stores.

Historian | 5 - Using Historian Administrator | 843

The Security Subsection

Field Description

Data is Read-only After

(Hours)

The number of hours for data to be stored in a read/write archive. After the

time lapses, that portion of the archive file is automatically made read-only.

Incoming data values with timestamps prior to this time are rejected. A sin

gle archive file, therefore, may have a portion made read-only, another portion

that is read/write containing recently written data, and another that is unused

free space.

Note:

If an archive file is read-only, you cannot move the file in Windows

File Explorer. To be able to move a read-only archive file, you must

first remove the archive by selecting the file and selecting Remove in

the Archive Maintenance page.

Generate Message on

Data Update

Indicates whether an audit log entry will be made any time the value of a pre

viously archived data point is overwritten. This log entry will contain both the

original and new values.

Note:

To create multiple archives at the same time, select the Disabled op

tion. This option is not available for SCADA Buffer data store.

The Global Options Section

This topic describes the fields in each subsection in the Global Options section.

Historian | 5 - Using Historian Administrator | 844

The Data Queries Subsection

Field Description

Maximum

Query Time

(seconds)

Specifies the maximum time that a data point or message query can take before it is termi

nated. Use this setting to limit query time and provide balanced read access to the archiv

er. This is applicable to all query types.

Maximum

Query In

tervals

Specifies the maximum number of samples per tag that Historian can return from a non-

raw data query. Use this setting to throttle query results for non-raw data queries. This set

ting is not applicable to filtered data queries or raw data queries.

If the number of returned samples exceeds the value in this field, the query fails and no da

ta is returned.

The Memory/Recovery Subsection

Field Description

Buffer Memory Max (MB) The maximum memory buffer size that an archiver

queue will use before starting to use disk buffering.

The default value is 100 MB.

Historian | 5 - Using Historian Administrator | 845

Field Description

Note:

• You can monitor your collector da

ta write queue using the Perftag_

CollectorDataWriteQueueSize tag. If

you find that the queue is exceeding

10,000 items, such as during a store

and forward flush, change the value

of this field to 500 or more to main

tain Historian performance.

• If you are upgrading from a previ

ous version of Historian, the value

in this field remains the same. You

can change the value as needed.

Archiver Memory Size (MB) The target memory usage of the archive. The de

fault value is 0, which indicates the system will

manage the memory usage. If the archiver is run

ning on a 32-bit operating system and you want to

keep more data in memory, you can enter a value

up to 1800 MB. If the archiver is running on a 64-bit

operating system, we recommend that you use the

default value.

Maintain Auto Recovery Files Indicates whether high availability of the latest

archive (.iha) and Historian configuration (.ihc)

files must be enabled. When enabled, a copy of the

latest .iha and .ihc file is made once every hour.

These recovery files do not include alarms and

events data.

Note:

These files are managed internally by His

torian, and should not be used as back

up files. To create multiple archives at the

same time, select the Disabled option. By

Historian | 5 - Using Historian Administrator | 846

Field Description

default, this field is set to Disabled on a

64-bit operating system. On a large-scale

system, we recommend that you disable

this option for better performance.

The Data Store Subsection

Field Description

Default Data Store For

Tag Add

The name of the default data store to which you want to add tags.

The Security Section

This topic describes the fields in each subsection in the Security section

.

Historian | 5 - Using Historian Administrator | 847

The Global Security Subsection

Field Description

Security Groups Indicates whether to use the local security groups or the domain security

groups.

Note:

To ensure a secure environment when using Historian, do not create

any local user accounts unless Historian is set up on a standalone

computer and the guest account is disabled.

Enforce Strict Client Au

thentication

Indicates whether to use strict client authentication. If you enable this option,

only clients using the security-token-based authentication protocol can con

nect. Clients using Historian versions prior to 6.0 and other Proficy software

they connect to may not be able to connect unless they have the latest up

dates for that version. If you disable this option, clients of any version can

connect if they use a valid user name and password.

Enforce Strict Collector

Authentication

Indicates whether to use strict collector authentication. If you enable this op

tion, only collectors using the security-token-based authentication protocol

can connect. Collectors using Historian versions prior to 6.0 and the other

Proficy software they connect to may not be able to connect unless they have

the latest updates for that version. If you disable this option, collectors of any

version can connect.

The Electronic Signatures / Records Subsection

The electronic signatures/records option assists users with government regulations such as the United

States Food and Drug Administration's (FDA) 21 CFR Part 11 regulation or any site interested in added

security by providing the ability to require a signature and password every time a change in data or

configuration is requested. If you did not purchase the Electronic Signatures and Electronic Records

option, the Electronic Signatures/Records field is disabled. For more information on Electronic Signatures

and Records, refer to the Using Historian in a Regulated Environment (on page 824) section.

Field Description

Require Point Verifica

tion

Indicates whether you must enter identifying information whenever you at

tempt a restricted action. Whenever you attempt to change the system con

figuration (for the tag, archive, or collector), a tag value, or another record, you

Historian | 5 - Using Historian Administrator | 848

Field Description

must electronically sign the action with a username and password. If the user

is authorized to make this change, the identity of the person, the action per

formed, and the time it was performed, are all recorded in the audit trail.

Note:

• The audit features are not dependent on this feature being en

abled. Historian audits all user actions regardless of whether

this option is enabled.

• If you plan to create multiple archives at the same time, select

the Disabled option.

Enabling electronic signatures and electronic records also requires you to

reverify your identity when you use the Historian Excel Add-in, modify or cre

ate a tag, or import data or messages.

Note:

This feature is available only if you have purchased the Electronic

Signatures and Electronic Records option.

Verification Message When point verification is enabled, you are prompted to enter the username

and password whenever you attempt to perform an action specified as requir

ing point verification.

The Alarms Section

In the Alarms section, you can back up, purge, and restore alarms. This topic describes the fields in each

subsection in the Alarms section.

Historian | 5 - Using Historian Administrator | 849

The Alarms tab contains the following action buttons. Select a button to perform the action indicated by

the name.

In the Alarms, you can set the following parameters:

The Backup / Purge Alarms Subsection

Table 62. Alarm Parameters

Field Description

Start Time The start time for backing up, purging, or restoring alarms. Enter a value in

the following format: mm-dd-yyyy hh:mm:ss

End Time The end time for backing up, purging, or restoring alarms. Enter a value in the

following format: mm-dd-yyyy hh:mm:ss

Historian | 5 - Using Historian Administrator | 850

The Restore Alarms Subsection

Field Description

Select File The backup file that you want to restore.

Searching in Message Panel

The Message Search page, shown in the following figure, lets you enter search parameters, such as start

and end times, and to limit the search to alerts only or messages only. It further refines the search by

topic and a text mask.

1. Enter a start time and end time (required).

If your start date and end date are identical, you must enter a timestamp with the date.

2. Select All/ Alerts/Messages.

3. Select a Topic (optional).

4. Enter a text mask in the Message Contains field. (Optional).

If you do not specify a text mask, all items for the associated alert or message are returned. Use a

text substring for a mask. The Message Contains field does not accept wildcard characters.

5. Select Search.

The search results are displayed in the Search Results panel.

Searching for Tags

1. Select the Search Historian Tag Database link in the Tag Maintenance page

The Search Historian Tag Database window in the following figure appears.

Historian | 5 - Using Historian Administrator | 851

2. Enter a tag mask or a description mask in the appropriate fields, using standard Windows wildcard

characters.

3. To limit the search to a specific collector, select a collector from the drop-down list in the Collector

field.

4. Enter the maximum number of tags the search should return.

Entering 0 (zero) will return ALL tags available in the Historian Tag Database.

5. Select OK to execute the search.

Managing Data Stores

About Data Stores

A data store is a logical collection of tags. It is used to store, organize, and manage tags according to the

data source and storage requirements. A data store can have multiple archive files (*.IHA), and includes

both logical and physical storage definitions.

Tags can be segregated into separate archives through the use of data stores. The primary use of data

stores is to segregate tags by data collection intervals. For example, you can put a name plate or static

tags where the value rarely changes into one data store, and your process tags into another data store.

This can improve query performance.

Historian data stores are stored as archive files that contain data gathered from all data sources during a

specific period of time. You can write and read data from the archive files.

You can define two types of data stores:

Historian | 5 - Using Historian Administrator | 852

• Historical Data Store: Tags stored under historical data store will store data as long as the disk

space is available. Depending on your license, you may be able to create multiple historical data

stores. The maximum number of historical data stores supported depends on the license.

• SCADA Buffer Data Store: Tags stored under the SCADA buffer data store will store data for a

specific duration of time based on license.

When you install the Historian server, two historical data stores are installed by default.

• System: Stores Historian messages and performance tags. This is only for internal usage within

Historian, and you cannot add tags to this data store. You cannot rename or delete the system data

store.

• User: Stores tag data. This is a default data store. You can rename and delete a user data store as

long as there is another default data store set for tag addition.

Based on your license, a SCADA Buffer data store may also be installed. It stores short-term tags and

data.

Create a Data Store

Depending on your license, you can create or add multiple data stores.

1. Access Historian Administrator (on page 823).

2. Select DataStores.

Historian | 5 - Using Historian Administrator | 853

3. Select Add Data Store.

Historian | 5 - Using Historian Administrator | 854

The Add New Data Store window appears.

4. Enter values as described in the following table.

Field Description

Data Store Name Enter a unique name for the data store. The following charac

ters are not allowed: /\ \ * ? < > |

Default Data Store Select this check box to set this data store as the default one

for adding tags. A default data store is the one that is consid

ered if you do not specify a data store while adding a tag. You

can set only one data store as default.

Description Enter a description for the data store.

5. Select OK.

Historian | 5 - Using Historian Administrator | 855

The data store is created.

When you add tags to the data store, it will have its own set of .IHA (iHistorian Archive) files.

Ensure that you back up the new data store archives periodically.

Rename a Data Store

1. Access Historian Administrator (on page 823).

2. Select DataStores.

3. In the Data Stores field, select the data store that you want to rename.

Historian | 5 - Using Historian Administrator | 856

4. Select Rename Data Store.

Historian | 5 - Using Historian Administrator | 857

The Rename New Data Store window appears.

5. In the New Data Store Name field, enter the new name. The following special characters cannot be

used in data store names: /\ \ * ? < > |

6. Select Rename.

The data store is renamed.

Move a Tag to Another Data Store

You can move tags from one data store to another. However, moving a tag does not automatically move

the data associated with it. If you want to retrieve the data stored before the tag was moved, you have to

move the data manually using the migration utility tool.

1. Access Historian Administrator (on page 823).

2. Select Tags.

Historian | 5 - Using Historian Administrator | 858

3. Select the tag that you want to move to a different data store.

Historian | 5 - Using Historian Administrator | 859

4. Select Advanced.

Historian | 5 - Using Historian Administrator | 860

5. In the Data Store field, select the data store to which you want to move the tag.

A message appears, asking you to confirm that the you want to move the tag.

6. Select Yes, and then select Update.

The tag has been moved. The new data for the tag will be stored in the new data store. However,

if you want to store the old data as well in the new data store, you must manually migrate the tag

data.

Delete a Data Store

You can delete a data store when it is no longer needed.

Note:

• You can only delete user data stores. You cannot delete the system data store.

• If you have only one user data store, you cannot delete it.

Historian | 5 - Using Historian Administrator | 861

If there are any tags assigned to the data store, reassign them and manually move the data to another

data store.

1. Access Historian Administrator (on page 823).

2. Select DataStores.

3. In the Data Stores field, select the data store that you want to delete.

Historian | 5 - Using Historian Administrator | 862

4. Select Delete.

Historian | 5 - Using Historian Administrator | 863

A message appears, asking you to confirm that you want to delete the data store.

5. Select Yes.

The data store is deleted.

Managing Archives

About Archives

Historian archives are data files, each of which contains data gathered from all data sources during a

specific period of time.

Types of Archive Files:

• machine name_Config.ihc: Contains information about the archiver, tag configuration, and collector

configuration.

• machine name_ArchiveXXX.iha: Contains tag data, where x is a number indicating the place of the

file in a time-based sequence.

Historian | 5 - Using Historian Administrator | 864

Creation of Archive Files Automatically

Archive files grow to a user-configured maximum size as data is recorded by the server. When data starts

loading into an archive file, Historian will automatically create a new blank archive file. When the current

archive file becomes full, Historian will immediately serve data to the newly created archive file. This

significantly reduces archive creation and transition time.

If, however, the option to automatically create archive files is not enabled, you must create an archive file

manually (on page 868).

Note:

If the option to automatically create an archive is not enabled and you do not create a new archive

manually, or if the available disk space is less than the required amount of free disk space, a new

archive file will not be created.

Overriding Old Archive Files

If you enable the Overwrite Old Archives option, the system replaces the oldest archived data with new

data when the latest archive default size has been reached. Since this action deletes historical data,

exercise caution in using this feature. Be sure that you have a backup of the archive so that you can

restore it later. Best practice is to create an additional archive to prevent premature loss of data due to

overwriting. For example, if you want to save 12 months of data into 12 archives, create 13 archives.

During archiver startup and every 60 seconds while the server is running, Historian verifies that you have

configured enough free disk space to save the archives, buffer files, and log files. If there is insufficient

disk space, the Data Archiver shuts down and a message is logged into the log file. By default, you can

view the Historian archiver log file in C:\Historian Data\LogFiles.

[03/03/10 15:28:41.398] Insufficient space available in [d:\Historian\Archives\]

 [03/03/10 15:28:41.399] The server requires a minimum of [5000 MB] to continue

 [03/03/10 15:28:41.679] USER: DataArchiver TOPIC: ServiceControl MSG: DataArchiver(DataArchiver)

 Archiver shutdown at 03/03/10 15:28:41.653

 [03/03/10 15:28:41.807] DataArchiver Service Stopped.

 [03/03/10 15:28:41.809] [d:\Historian\LogFiles\DataArchiver-34.log] Closed.

About Remote Storage of Archives

Historian can store current and backup archive files on remote storage devices. These remote storage

devices can consist of network shares, Storage Area Networks (SAN), or Network Attached Storage (NAS)

Historian | 5 - Using Historian Administrator | 865

devices. You can also employ a hybrid approach, by storing your current archive on the local disk and

writing a script using the Historian SDK to migrate older archives to a remote storage device.

A SAN is a dedicated network apart from a LAN, specifically configured to allow servers to communicate

with large storage arrays, usually over fibre-optic cables. The SAN is directly accessible as a disk device

to Windows and does not operate through the slower network layer. NAS devices are similar to a SAN, but

are directly attached to the LAN, appearing as a server.

Note:

Though NAS devices mapped to drives in Windows appear in Historian's Browse windows, they

are not supported by the Data Archiver service. In order to access NAS devices in Historian, you

must enter their UNC path (\\iHbackup\archive, for example).

If the Data Archiver service is not working, view the messages. Messages like these indicate that

Historian is trying to use mapped drives: "Path N:\ not found." "Mapped drives unsupported as archive

or backup file location" "UNC paths inaccessible when running as LocalSystem, configure other

logon account for DataArchiver service". If these messages appear, find and change mapped drives to

UNC paths.

Example: Migrating Non-Current Archives to a Remote Location

The following sample VBScript code will migrate non-current archive to a remote location by accessing

the Historian SDK. This script could be run at specific intervals to migrate data from a local disk to a

network share.

The Data Archiver service must have permission to write to the remote storage device. If you have

configured alarms and events to use an SQL server, the SQL server must also have permissions to write to

the remote storage device.

Dim FileSystem

set FileSystem = CreateObject("Scripting.FileSystemObject") Dim remoteLocation

remoteLocation = "\\StorageServer\Historian\Archives"

If InStrRev(remoteLocation, "\") Len(remoteLocation) Then remoteLocation = remoteLocation & "\"

' make sure we can access the remote storage before proceeding

Dim TestFile

set TestFile = FileSystem.OpenTextFile(remoteLocation & "Test.txt", 2, True, 0) If TestFile is Nothing Then

err.Raise 1, , "Unable to access remote storage location" End If

TestFile.Close

FileSystem.DeleteFile remoteLocation & "Test.txt" Dim Server

Historian | 5 - Using Historian Administrator | 866

set Server = CreateObject("iHistorian_SDK.Server") If Server is Nothing Then

err.Raise 1, , "Unable to create iHistorian_SDK.Server object" End If

Dim archivesToMigrate(), i

If Server.Connect() Then

With Server.Archives

Dim backupPath

backupPath = .ArchivingOptions("ArchiveBackupPath")

If InStrRev(backupPath, "\") Len(backupPath) Then backupPath = backupPath & "\" ReDim archivesToMigrate(.Item.Count, 2)

For Each archive in .Item

If Not archive.IsCurrent Then

If UCase(Left(archive.FileName, InStrRev(archive.Filename, "\"))) UCase(remoteLocation) Then i = i + 1

archivesToMigrate(i, 0) = archive.Name

archivesToMigrate(i, 1) = backupPath & "Offline\" & cstr(archive.Name) & ".zip" archivesToMigrate(i, 2) =

 archive.FileSizeTarget

End If

End If

Next

Dim j

For j = 1 To i

If .Delete(cstr(archivesToMigrate(j, 0))) Then FileSystem.MoveFile archivesToMigrate(j, 1), remoteLocation Dim archive

set archive = .Add(cstr(archivesToMigrate(j, 0)), cstr("%%inplace%%" & remoteLocation & archivesToMigrat

If Not (archive Is Nothing) Then

FileSystem.DeleteFile remoteLocation & archivesToMigrate(j, 0) & ".zip" End If

End If

Next End With Server.Disconnect

Else

err.Raise 1, , "Failed connecting to server"

End If

Guidelines for Setting Archive Size

Since archived data files can become quite large, you must adjust system parameters carefully to limit

data collection to meaningful data only and thus minimize the required size of system storage. You can

allocate up to 256 GB per archive.

For each archive, you need approximately 1MB of archive space for every 1000 tags to store tag

information. Archive size is a function of the rate at which you archive data and the time period you want

the archive to cover. A typical user wants the archive to cover a time period of, say, 30 days.

Historian | 5 - Using Historian Administrator | 867

The following factors affect the rate at which you archive data:

• Number of tags

• Polling frequency of each tag

• Compression settings

• Data types

Based on these parameters, the archive size is calculated as follows:

Calculating Archive Size
Suppose you want to store data, and you have the following parameters:

• Number of tags: 5000

• Polling rate: 1 value/5 seconds

• Pass compression: 5%.

Pass compression is the number of data values archived relative to the number of values read.

• Bytes/value: 4

• Duration: 30 days

Based on the preceding formula, for the given parameters, the archive size is calculated as follows:

The calculation shows that a file size of 500 MB is adequate for archiving one month of data for this

application.

Therefore, we recommend that you set the default archive size to 500 MB for systems with 1000 tags or

more. If you believe the computed size is too large for your application, you can modify parameters as

follows:

• Decrease the polling frequency.

• Increase compression deadband, reducing the pass percentage.

Historian | 5 - Using Historian Administrator | 868

• Reduce the number of tags.

• Add more disk capacity to your computer.

Archive Size Calculator

An archive size calculator tool is available to estimate archive size and collector compression based on

a tag that has already been configured or based on your inputs. Log on to http://digitalsupport.ge.com to

download this tool and other GE Intelligent Platforms freeware product solutions.

Create an Archive Automatically

When the current archive reaches a specified size or duration, you can configure Historian to create a new

archive automatically. You can also create an archive manually (on page 870). When the current archive

is full, the new one is used.

You can allocate maximum 256 GB for an archive.

1. Access Historian Administrator (on page 823).

2. Select DataStores.

http://digitalsupport.ge.com

Historian | 5 - Using Historian Administrator | 869

3. Select Data Store Options.

4. Enter values as described in the following table.

Field Description

Automatically Create Archives Select Enabled.

Overwrite Old Archives Specify whether you want to overwrite old archives with new

ones. Exercise caution in enabling this option. We recommend

that you backup archives if you want to enable this option.

Default Size Enter the size of the current archive after which you want to cre

ate a new archive. This field is available only if you have select

ed By Size in the adjacent drop-down list box.

If, however, you want to create archives after a duration, select

Days or Hours, and then enter the value in the Archive Duration

field.

Historian | 5 - Using Historian Administrator | 870

Field Description

Archive Duration Enter the duration after which you want to create a new archive.

This field is available only if you select Days or Hours in the ad

jacent drop-down list box.

If, however, you want to create an archive when the current one

reaches a particular size, select By Size, and then enter the val

ue in the Default Size field.

Default Archive Path Enter the path to the folder in which you want to store the

archive files.

Default Backup Path Enter the path to the folder in which you want to store the back

up files.

Base Archive Name Enter the base name for the archive. This name will be append

ed with a number to identify the sequence of the archive.

Free Space Required Enter the free space that is required to create the archives.

Store OPC Quality Specify whether you want to store OPC quality in the archive.

Use Caching Specify whether you want to use caching in the archive.

Data is Read-Only After

(Hours)

Specify the duration, in hours, after which you want to archive to

be read-only.

Generate Message on Data

Update

Specify whether you want to generate a message when data is

updated in the archive.

5. Select Update.

Archives will be created automatically when the current one reaches the size (or after the duration)

that you have specified.

Create Archives Manually

If you want to create multiple archives at the same time, access Historian Administrator, and set values

for the following fields:

Field Value

The Details Section

File Attribute Read/Write

Historian | 5 - Using Historian Administrator | 871

Field Value

The Global Options Section

Maximum Query Time (seconds) 60

Maximum Query Intervals 100000

Automatically Create Archives Disabled

Overwrite Old Archives Enabled

Maintain Auto Recovery Files Enabled

Store OPC Quality Disabled

The Security section

Data is Readonly After (Hours) 1 month

Security Groups Use local

Generate Message on Data Update Disabled

Require Point Verification Disabled

This topic describes how to create archives manually. You can also create them automatically (on page

868). When the current archive is full, a new archive is used (in a sequential order).

You can create multiple archives at the same time.

CAUTION:

If you want to creating multiple archives on a remote machine, you must ensure that you have

enough hard disk space on that machine. The Allocate Space field does not display a remote

machine's hard disk space; if you are creating multiple archives on a remote machine, you must

ignore the ”r;percentage of available disk space will be used” message displayed by the Allocate

Space slider.

If you receive the error message ”r;Runtime error 330 Invalid Property Value" while creating

multiple archives on a remote machine, it is probably because you do not have enough hard disk

space on that machine. When you select OK on the error message, Historian Administrator may

disappear. You must now clean up the remote machine's hard disk space and restart Historian

Administrator.

Historian | 5 - Using Historian Administrator | 872

1. Access Historian Administrator (on page 823).

2. Select DataStores.

3. Select Add New Archive(s).

Historian | 5 - Using Historian Administrator | 873

The Add New Archive(s) window appears.

4. Enter values as described in the following table.

Field Description

Archive Name Enter a unique name for the archives. The value must be the

same as the file name. When multiple archives are created, a

number is appended to the name to make each name unique

(and to maintain a sequence).

Data Store Select the data store in which you want to create the archives.

File Location Enter the path to the folder in which you want to store the

archives, or specify a UNC path.

EachArchive Size (MB) Enter the size, in MB, that you want to allocate to the archives.

Number of Archives Enter the number of archives you want to create.

Historian | 5 - Using Historian Administrator | 874

Field Description

Allocate Space Specify the percentage of the disk space that you want to al

locate for archives. As you increase the space, the number of

archives increases accordingly.

Note:

The Allocate Space field does not display a remote

machine's hard disk space; if you are creating multi

ple archives on a remote machine, you must ignore the

”r;percentage of available disk space will be used” mes

sage displayed by the Allocate Space slider.

5. Select OK.

The archives are created.

Back up Archives Automatically

You must back up archive files periodically to ensure that your data is protected. These backup files

contain tag data as well as alarms and events data. You can send these files to a shared network location

or to physical media.

Planning for data recovery means always having up-to-date backup files for important information that

you can call up and restore quickly when the need arises.

The .IHC file, which contains all configuration information, is an important file to back up. The .IHC file is

automatically backed up when, and only when, you back up the current archive .IHA file. With the .IHC file,

you can always restore the system configuration to the state it was in before the event occurred.

It is also important to backup the current online archive files *.IHA. If you restore the archive files, along

with the configuration, you can quickly pick up where you left off when the event occurred with a minimum

loss of data.

By default, the .IHC backup path is the same as the archives path. The .IHC uses the following naming

convention: ComputerName_Config-Backup.ihc. If the default backup path is different than the

archives path, the .IHC file is copied to the backup folder with the standard .IHC naming convention:

ComputerName_Config.ihc.

Important points to remember:

Historian | 5 - Using Historian Administrator | 875

• The .IHC file is automatically backed up when, and only when, you back up the current archive .IHA

file. By default, the .IHC backup path is the same as the archives path.

• The .IHC backup file uses the following naming convention: <system name>_Config-

Backup.ihc. If the default backup path is different from the archives counterpart,

the .IHC file is copied to the backup folder with the standard .IHC naming convention:

ComputerName_Config.ihc.

• In the mirroring system, Client Manager sends a backup message to Data Archiver located on

the Client Manager node to which you are connected. The back up then happens in the specified

location on that node. If that Data Archiver is not running, a NOT_CONNECTED error message

appears, and the backup will not happen.

• If you back up an archive more than once, by default, the backup tool will attempt to use the

same name for the backup file and will detect that an archive with the same name already exists.

Rename the backup archive file or move the original backup archive file to a different folder.

1. Access the ihArchiveBackup.exe file. By default, it is located at C:\Program Files

\Proficy\Historian\Server.

2. Run the following command if you want to back up multiple archives at the same time:

AT <time> /EVERY:<days of the week> "ihArchiveBackup.exe [-s <Historian server name>] [-u

<Username>] [-p <Password>][-t <Timeout seconds>][-n <Number of archives>]

Run the following command if you want to back up a single archive file:

AT <time> /EVERY:<days of the week> "ihArchiveBackup.exe [-s <Historian server name>] [-u

<username>] [-p <password>][-t <timeout seconds>] [-a <archive name>]"

The following table describes the parameters.

Switch Parameter Description

AT Time The time at which you want to back up the archives.

EVERY Days of the week The days of the week on which you want to back up

the archives (for example, EVERY:M,T,W,Th,F).

-s Historian server name The IP address or the host name of the Historian serv

er on which the archive is available.

-u Username The user name required to connect to the Historian

server.

Historian | 5 - Using Historian Administrator | 876

Switch Parameter Description

-p Password The password required to connect to the Historian

server.

-t Timeout seconds The time, in seconds, to wait before the process times

out.

-n Number of archives The number of archives to back up, counting back

wards from the current archive.

-a Archive name The name of a specific archive to back up.

-c Backs up only the Historian configuration (.ihc) file.

-d Data store name The name of the data store that stores the archive da

ta.

Note:

Using one instance of ihArchiveBackup.exe

you can point to one data store, and by using

multiple instances you can point to multiple

data stores.

If you do not provide any parameters, only the current archive file is backed up.

AT 23:59 /EVERY:M,T,W,Th,F "ihArchiveBackup.exe [-s MyHistorianServer] [-u User1] [-p

password123][-t 10] [-a MyHistorianServer_DS1_Archive004]"

Back up an Archive Manually

• Ensure you have enough hard drive space on your default backup location before backing up your

archives.

• Always back up archives before a planned Historian software product upgrade.

• Use Microsoft® Volume Shadow Copy Service when backing up archive files that are more than 2

GB in size or when backing up more than the last two archives. For more information, refer to Back

Up Archives with Volume Shadow Copy Service (on page 731).

You must back up archive files periodically to ensure that your data is protected. These backup files

contain tag data as well as alarms and events data. You can send these files to a shared network location

or to physical media.

Historian | 5 - Using Historian Administrator | 877

Planning for data recovery means always having up-to-date backup files for important information that

you can call up and restore quickly when the need arises.

The .IHC file, which contains all configuration information, is an important file to back up. The .IHC file is

automatically backed up when, and only when, you back up the current archive .IHA file. With the .IHC file,

you can always restore the system configuration to the state it was in before the event occurred.

It is also important to backup the current online archive files *.IHA. If you restore the archive files, along

with the configuration, you can quickly pick up where you left off when the event occurred with a minimum

loss of data.

By default, the .IHC backup path is the same as the archives path. The .IHC uses the following naming

convention: ComputerName_Config-Backup.ihc. If the default backup path is different than the

archives path, the .IHC file is copied to the backup folder with the standard .IHC naming convention:

ComputerName_Config.ihc.

Important points to remember:

• The .IHC file is automatically backed up when, and only when, you back up the current archive .IHA

file. By default, the .IHC backup path is the same as the archives path.

• The .IHC backup file uses the following naming convention: <system name>_Config-

Backup.ihc. If the default backup path is different from the archives counterpart,

the .IHC file is copied to the backup folder with the standard .IHC naming convention:

ComputerName_Config.ihc.

• In the mirroring system, Client Manager sends a backup message to Data Archiver located on

the Client Manager node to which you are connected. The back up then happens in the specified

location on that node. If that Data Archiver is not running, a NOT_CONNECTED error message

appears, and the backup will not happen.

• If you back up an archive more than once, by default, the backup tool will attempt to use the

same name for the backup file and will detect that an archive with the same name already exists.

Rename the backup archive file or move the original backup archive file to a different folder.

1. Access Historian Administrator (on page 823).

2. Select DataStores.

Historian | 5 - Using Historian Administrator | 878

3. Select the archive that you want to back up.

Historian | 5 - Using Historian Administrator | 879

4. Select Archive Details, and then select Backup.

Historian | 5 - Using Historian Administrator | 880

Historian | 5 - Using Historian Administrator | 881

The Backing up Archive window appears. The Backup File field is populated with the default folder

path that you have specified while creating the data store and a default name.

5. If needed, change the folder path and name of the backup file.

The archive is backed up. If needed, you can close and remove it from the list of archives (but it will

still remain in the disk).

Restore an Archive

• Before restoring an archive from a removable disk, copy the archive file to the normal archive path

and then restore the archive from that location. Leave the original backup file in the backup file

folder.

• Copy the backup archive file to the default archive path.

Under certain circumstances, you may want to restore tag data to Historian. This may be after an

unplanned shutdown, or you may need to retrieve data from an old, inactive archive.

Historian | 5 - Using Historian Administrator | 882

CAUTION:

• Restoring an archive is a resource-intensive operation and should be scheduled for non-

peak usage times.

• Never restore an archive to a production Historian server without a current archive already

online.

1. Access Historian Administrator (on page 823).

2. Select DataStores.

3. Select Restore An Archive From Backup.

Historian | 5 - Using Historian Administrator | 883

The Restore Archive window appears.

4. Enter values as described in the following table.

Field Description

Archive Name Enter the name of the archive you want to restore.

File Location Specify the location of the archive file.

Data Store Select the data store to which you want to restore the archive. If

the data store is not available, it is restored to the default data

store.

5. Select OK.

The restored archive is moved to the \Archive directory and is made available for querying.

Configure System File Cache Memory

You can specify the maximum disk cache memory that an archiver can use. By default, Historian

consumes 25% of system memory. If your computer has extra memory, you can increase the disk cache.

Historian | 5 - Using Historian Administrator | 884

Increasing the disk cache memory optimizes the Historian performance. You should not increase system

file caching cache memory if you do not have the necessary system resources.

1. Access Registry Editor.

2. Open the following key folder.HKEY_LOCAL_MACHINE\SOFTWARE\Intellution, Inc.\iHistorian

\Services\DataArchiver\

3. Create a new DWORD called FileSystemMaxCacheMB

4. Set the decimal value to a number. The value that you enter represents the maximum disk cache

memory that an archiver can use.

5. Select OK, and then close the Registry Editor.

6. Restart the Data Archiver service.

Configure the Data Archiver Account for Remote Storage

By default, the Data Archiver service is installed under the LocalSystem account, which has no credentials

to access network resources. In order to use Remote Storage, you must first configure the Data Archiver

service to run under a user account that has read/write access to the network location.

1. Stop the Data Archiver service.

2. Open the Services Control Panel.

3. Right-click the Historian Data Archiver service, and select Properties

4. Select Log On.

5. In the Log on as field, select This Account .

6. Enter the user account using which you want to run the Data Archiver service. This account must

have write privileges to your Storage Area Network.

7. Enter the password for the user account.

8. Restart the Data Archiver service.

Reuse an Archive Configuration File

You may want to reuse an existing archive configuration file (*.ihc) when a Historian installation uses the

same archive configuration as another Historian installation or when renaming a machine and reusing the

original .ihc file.

1. Retrieve a copy of the <oldmachinename>_CentralConfig.ihc file from the old machine. By

default, this is located at C:\Proficy Historian Data\Archives

2. On the new machine, select and stop the following services:

◦ Historian Client Manager

◦ Historian Configuration Manager

Historian | 5 - Using Historian Administrator | 885

◦ Data Archiver

◦ Historian Diagnostics Manager

3. Copy the <oldmachinename>_CentralConfig.ihc file into the local folder on the new

machine where the .ihc files are available.

4. Look for a file in that folder on the new machine named

<newmachinename>_CentralConfig.ihc. If there is a file with that name, delete it.

5. Rename the copied .ihc file on the new machine to <newmachinename>_CentralConfig.ihc.

6. Run a command prompt as an administrator.

7. Go to C:\Program Files\Proficy\Proficy Historian\x64\Server, and run the

following command: ihConfigManager_x64.exe RenameDHSNode <old machine name> <new machine

name>

Note:

RenameDHSNode modifies only the local node name. The logical node name (service

name) does not change.

RenameDHSNode will not alter service name configmanager_<nodename>

Reusing a Configuration File

Suppose you have a production Historian with a machine name "WaterSite" and want to load that

configuration on a testbed Historian called "LabSite1". The testbed Historian is already running and

already has a config file called "LabSite1_CentralConfig.ihc."

In this case:

1. Stop the services and delete LabSite1_CentralConfig.ihc.

2. Rename WaterSite_CentralConfig.ihc to LabSite1_CentralConfig.ihc.

3. At the command line, run the following:

ihConfigManager_x64.exe RenameDHSNode WaterSite LabSite1

Managing Tags

About Tags

A Historian tag is used to store data related to a property.

For example, if you want to store the pressure, temperature, and other operating conditions of a boiler, a

tag will be created for each one in Historian.

Historian | 5 - Using Historian Administrator | 886

When you collect data using a collector, tags are created automatically in Historian to store these values.

These tags are mapped with the corresponding properties in the source.

For example, suppose you want to store OSI PI data in Historian. You will specify the OSI PI tags for which

you want to collect data. The OSI PI collector creates the corresponding tags in Historian, and it stores the

values in those tags.

You can also choose to create tags manually (for example, to store the result of a calculation performed

by the Calculation collector).

About Array Tags

You can store a set of values with a single timestamp and single quality and then read the elements

individually or as an array.

The following conditions apply when using an array tag:

• You need not specify the size of an array tag. Data Archiver will store the number of elements that

were written.

• You can change a tag to an array tag later as well. However, when you do so, only the latest data is

retrieved. If you want to get the old data, you must change the tag back to its previous type.

• The maximum number of elements that an array tag can store is 10,000.

• You cannot associate an enumerated set or a user-defined data type (UDT) with an array tag.

• Fixed String and Scaled data types are not supported.

• Scaling, collector compression, and archive compression do not apply to an array tag.

• You cannot use an array element as a calculation trigger.

• You cannot plot a trend chart for an array tag.

• TagStats calculation mode is not supported.

About Collector and Archive Compression

Collector Compression

Collector compression applies a smoothing filter to data retrieved from the data source. By ignoring small

changes in values that fall within a deadband centered around the last reported value, only significant

changes are reported to the archiver. Fewer samples reported yields less work for the archiver and less

archive storage space used.

You can specify the deadband value. For convenience, if you enter a deadband percentage, Historian

Administrator shows the deadband in engineering units. For example, if you specify a 20% deadband on 0

Historian | 5 - Using Historian Administrator | 887

to 500 EGU span, it is calculated and shown as 100 engineering units. If you later change the limits to 100

and 200, the 20% deadband is now calculated as 20 engineering units.

The deadband is centered around the last reported sample, not simply added to it or subtracted. If

your intent is to have a deadband of 1 unit between reported samples, you must enter a compression

deadband of 2 so that it is one to each side of the last reported sample. In the previous example of 0

to 500 EGU range, with a deadband of 20%, the deadband is 100 units; This means that only if the value

changes by more than 50 units, it is reported.

Changes in data quality from good to bad, or bad to good, automatically exceed collector compression

and are reported to the archiver. Any data that comes to the collector out of time order will also

automatically exceed collector compression.

It is possible for collected tags with no compression to appear in Historian as if the collector or archive

compression options are enabled. If collector compression occurs, you will notice an increase in the

percentage of the compression value in the Collectors section of the System Statistics page in Historian

Administrator. When archive compression occurs, you will notice the archive compression value and

status bar change on the System Statistics page.

For instructions on setting collector compression, refer to Access/Modify a Tag (on page 894).

Even if collector compression is not enabled, you may notice it in the following scenarios:

• When a succession of bad data quality samples appears, Historian collects only the first sample

in the series. No new samples are collected until the data quality changes. Historian does not

collect the redundant bad data quality samples, and this is reflected in the collector compression

percentage.

• For a Calculation or Server-to-Server collector, when calculations fail, producing no results or bad

quality data, collector compression is used. The effect of Collector Compression Timeout is to

behave, for one poll cycle, as if the collector compression feature is not being used. The sample

collected from the data source is sent to the archiver. Then the compression is turned back on,

as configured, for the next poll cycle with new samples being compared to the value sent to the

archiver.

Note:

Array tags do not support archive and collector compression. If the tag is an array tag, then the

Compression tab is disabled.

Historian | 5 - Using Historian Administrator | 888

Handling Value Step Changes with Collector Data Compression

If you enable collector compression, the collector does not send values to the archiver any new input

values if the value remains within its compression deadband. Occasionally, after several sample intervals

inside the deadband, an input makes a rapid step change in value during a single sample interval. Since

there have been no new data points recorded for several intervals, an additional sample is stored one

interval before the step change with the last reported value to prevent this step change from being viewed

as a slow ramp in value. This value marks the end of the steady-state, non-changing value period, and

provides a data point from which to begin the step change in value.

Note:

You can configure individual tags can be configured to retrieve step value changes.

The collector uses an algorithm that views the size of the step change and the number of intervals since

the last reported value to determine if a marker value is needed. The following is an example of the

algorithm:

BigDiff=abs(HI_EGU-LO_EGU)*(CompressionDeadbandPercent/(100.0*2.0))*4.0

If (Collector Compression is Enabled)

If (Elapsed time since LastReportedValue>=(SampleInterval * 5))

If (abs(CurrentValue-LastReportedValue) > BigDiff)

Write LastReportedValue,Timestamp=(CurrentTime-SampleInterval)

In the example above, if a new value was not reported for at least the last 4 sample intervals, and the

new input value is at least 4 deltas away from the old value (where a single delta is equal to half of the

compression deadband), then a marker value is written.

Note:

These settings are also adjustable from the Registry. Please contact technical support for more

information.

Value Spike with Collector Compression

For example, a collector reads a value X once per second, with a compression deadband of 1.0. If the

value of X is 10.0 for a number of seconds starting at 0:00:00 and jumps to 20.0 at 0:00:10, the data

samples read would be:

Time X Value

0:00:00 10.0 (steady state value)

https://digitalsupport.ge.com/

Historian | 5 - Using Historian Administrator | 889

Time X Value

0:00:01 10.0

0:00:02 10.0

0:00:03 10.0

0:00:04 10.0

0:00:05 10.0

0:00:06 10.0

0:00:07 10.0

0:00:08 10.0

0:00:09 10.0

0:00:10 20.0 (new value after step change)

To increase efficiency, the straightforward compression would store only 2 of these 11 samples.

Time X Value

0:00:00 10.0 (steady state value)

0:00:10 20.0 (new value after step change)

However, without the marker value, if this data were to be put into a chart, it would look like the data value

ramped over 10 seconds from a value of 10.0 to 20.0, as shown in the following chart.

Historian | 5 - Using Historian Administrator | 890

The addition of a marker value to the data being stored results in the following data values:

Time X Value

0:00:00 10.0 (steady state value)

0:00:09 10.0 (inserted Marker value)

0:00:10 20.0 (new value after step change)

If you chart this data, the resulting trend accurately reflects the raw data and likely real world values

during the time period as shown in the following chart.

Historian | 5 - Using Historian Administrator | 891

Evaluating and Controlling Data Compression

You can achieve optimum performance in Historian by carefully controlling the volume of dynamic data it

collects and archives. You need enough information to tell you how the process is running, but you do not

need to collect and store redundant or non-varying data values that provide no useful information.

Control Data Flow

You can control the amount of online or dynamic data the system handles at a given time by adjusting

certain system parameters. The general principle is to control the flow of data into the archive either by

adjusting the rate at which the collectors gather data or by adjusting the degree of filtering (compression)

the system applies to the data collected.

Adjust the following parameters to reduce the rate of data flow into the server.

• Reduce the polling rate by increasing the collection interval for unsolicited and polled collection.

• Enable collector compression and optionally use compression timeout.

• Set the compression deadband on the collectors to a wider value.

• Use the collector compression timeout.

Adjust the following parameters to increase the filtering applied by the archiver in the server.

Historian | 5 - Using Historian Administrator | 892

• Enable archive (trend) compression.

• Set the archive compression deadband to a wider value.

• Where possible, use the scaled data type and enable input scaling on selected tags.

• Where possible, select milliseconds or microseconds rather than seconds for time resolution.

Seconds is optimum for most common devices. This affects disk space.

Evaluate Data Compression Performance

You can determine how effectively data compression is functioning at any given time by examining the

system statistics displayed on the System Statistics page of Historian Administrator.

The compression field at the top of the page shows the current effect of archive compression. Values for

this parameter should typically range from 0 to 9%. If the value is zero, it indicates that compression is

either ineffective or turned off. If it shows a value other than zero, it indicates that archive compression is

operating and effective. The value itself indicates how well it is functioning. To increase the effect of data

compression, increase the value of archive compression deadband so that compression becomes more

active.

Archive Compression

Archive compression is used to reduce the number of samples stored when data values for a tag form a

straight line in any direction. For a horizontal line (non-changing value), the behavior is similar to collector

compression. But, in archive compression, it is not the values that are being compared to a deadband,

but the slope of line those values produce when plotted value against time. Archive compression logic

is executed in the data archiver and, therefore, can be applied to tags populated by methods other than

collectors.

You can use archive compression on tags where data is being added to a tag by migration, or by the File

collector, or by an SDK program for instance. Each time the archiver receives a new value for a tag, the

archiver computes a line between this incoming data point and the last archived value.

The deadband is calculated as a tolerance centered about the slope of this line. The slope is tested to

see if it falls within the deadband tolerance calculated for the previous point. If the new point does not

exceed the tolerance, it is not stored in the archive. This process repeats with subsequent points. When

an incoming value exceeds the tolerance, the value held by the archiver is written to disk and the incoming

sample is withheld.

The effect of the archive compression timeout is that the incoming sample is automatically considered to

have exceeded compression. The withheld sample is archived to disk and the incoming sample becomes

the new withheld sample. If the Archive Compression value on the System Statistics page indicates that

Historian | 5 - Using Historian Administrator | 893

archive compression is occurring, and you did not enable archive compression for the tags, the reason

could be because of internal statistics tags with archive compression enabled.

For instructions on setting archive compression, refer to Access/Modify a Tag (on page 894).

About Scaling

Scaling converts a data value from a raw value expressed in an arbitrary range of units, such as a number

of counts, to one in engineering units, such as gallons per minute or pounds per square inch. The scaled

data type can serve as a third form of data compression, in addition to collector compression and archive

compression, if it converts a data value from a data type that uses a large number of bytes to one that

uses fewer bytes.

About Condition-Based Collection

Condition based collection is a method to control the storage of data for data tags by assigning a

condition. Data is always collected but it is only written to the Data Archiver if the condition is true;

otherwise, the collected data is discarded.

This condition is driven by a trigger tag; a tag collected by the collector evaluating the condition. Ideally,

Condition based Collection should be used only with tags that are updating faster than the trigger tag.

Condition based collection can be used to archive only the specific data which is required for analysis,

rather than archiving data at all times, as the collector is running.

For example, if a collector has tags for multiple pieces of equipment, you can stop collection of tags for

one piece of equipment during its maintenance. It is typically used on tags that use fast polled collection

but you don't want to use collector compression. While the equipment is running, you want all the data but

when the equipment is stopped, you don't want any data stored. The trigger tag would also typically use

polled collection. But, either tag could use unsolicited collection.

The condition is evaluated every time data is collected for the data tag. When a data sample is collected,

the condition is evaluated and data is either queued for sending to archiver, or discarded. If the condition

cannot be evaluated as true or false, like if the trigger tag contains a bad data quality or the collector is

not collecting the trigger tag, the condition is considered true and the data is queued for sending.

No specific processing occurs when the condition becomes true or false. If the condition becomes true,

no sample is stored to the data tag using that condition, but the data tag will store a sample next time it

collects. When the condition becomes false, no end of the collection marker is stored until the data tag is

collected.

Historian | 5 - Using Historian Administrator | 894

For example, if the condition becomes false at 1:15 and the data tag gets collected at 1:20, the end of

collection marker will be created at 1:20 and have a timestamp of 1:20, not 1:15.

Condition based collection is supported by only archiver and collectors of Historian version 4.5 and

above. Condition based collection does not apply to alarm collectors. This condition based collection is

applicable to the following collectors only:

• Simulation Collector

• OPC Collector

• iFIX Collector

• PI Collector

For instructions on setting the condition-based collection, refer to Access/Modify a Tag (on page 894).

Access/Modify a Tag

Using Historian Administrator, you can access a list of tags in the Historian database by their name,

description, or both.

Note:

By default, maximum one million tags are retrieved. If the Historian clients are configured to

retrieve more than a million tags, to retrieve all of them, add the MaxTagsToRetrieve registry key

under HKEY_LOCAL_MACHINE\SOFTWARE\Intellution, Inc.\iHistorian\Services

\DataArchiver\, and then set the maximum number of tags that you want to retrieve. Restart

the Historian Data Archiver service for the change to reflect.

1. Access Historian Administrator (on page 823).

2. Select Tags.

Historian | 5 - Using Historian Administrator | 895

3. Select Search Historian Tag Database.

Historian | 5 - Using Historian Administrator | 896

The Search Historian Tag Database window appears.

4. Enter values in the available fields to search for the tag, and then select OK. You can use the

wildcard character asterisk (*).

A list of tags that meet the search criteria appear in the Tags section.

5. Right-click the Tags section, and then select one of the following values:

◦ View By TagName: Select this option to view only the names of the tags.

◦ View By Description: Select this option to view only the descriptions of the tags.

◦ View Tagname and Description: Select this option to view both the names and descriptions

of the tags.

Historian | 5 - Using Historian Administrator | 897

6. As needed, modify values as described in the following tables, and then select Update.

Table 63. The General Section

Field Description

Description The description of the tag.

EGU Description The engineering units assigned to the tag.

Comment Comments that apply to the tag.

StepValue Indicates that the actual measured value changes in a sharp step in

stead of a smooth linear interpolation. This option is applicable only for

numeric data. Enabling this option only affects data retrieval; it has no

effect on data collection or storage.

Spare Configuration The Spare 1 through Spare 5 fields list any configuration information

stored in these fields.

Historian | 5 - Using Historian Administrator | 898

Field Description

Note:

Do not add or update the following spare configurations as data

may get corrupted or overwritten:

◦ The Spare 1 field for OSI PI Distributor reads data from

the Historian tag displayed in the Tag Source Address

field and sends it to the OSI PI tag name displayed in the

Spare 1 field.

◦ The Spare 5 field is used for a Server-to-Server collector

and a Server-to-Server distributor for internal purposes.

Table 64. The Collection Section

Field Description

Collector The name of the collector that collects data for the selected tag.

Source Address The address for the tag in the data source. Leave this field blank for tags

associated with the Calculation or Server-to-Server collector.

For Python Expression tags, this field contains the full applicable JSON

configuration, which includes an indication of the source address.

Note:

When exporting or importing tags using the EXCEL Add-In, the

Calculation column, not the SourceAddress column, holds the

formulas for tags associated with the Calculation or Server-to-

Server collector.

Data Type The data type of the tag.

The main use of the scaled data type is to save space, but this results in

a loss of precision. Instead of using 4 bytes of data, it only uses 2 bytes

by storing the data as a percentage of the EGU limit. Changing the EGU

limits will result in a change in the values that are displayed. For exam

ple, if the original EGU values were 0 to 100 and a value of 20 was stored

using the scaled data type and if the EGUs are changed to 0 to 200, the

original value of 20 will be represented as 40.

Historian | 5 - Using Historian Administrator | 899

Field Description

Note:

If you change the data type of an existing tag between a nu

meric and a string or binary data type (and vice versa), the tag's

compression and scaling settings will be lost.

Enumerated Set Name The name of the enumerated set that you want to assign to the tag.

Data Length The number of bytes for a fixed string data type. This field is enabled on

ly for fixed string data types.

Is Array Tag Indicates that the tag is an array tag.

Collection Indicates whether data collection is enabled or disabled for the tag. If

you disable collection for the tag, Historian stops collecting data for the

tag, but does not delete the tag or its data.

Collection Type The type of data collection used for this tag:

◦ Polled: The data collector requests data from the data source at

the collection interval specified in the polling schedule.

◦ Unsolicited: The data source sends data to the collector whenev

er necessary (independent of the data collector polling schedule).

Collection Interval The time interval between readings of data from this tag. For unsolicit

ed collection type, this field defines the minimum interval at which unso

licited data should be sent by the data source.

Collection Offset Used with the collection interval to schedule collection of data from a

tag. For example, to collect a value for a tag every hour at thirty minutes

past the hour (12:30, 1:30, 2:30, and so on), enter a collection interval of

1 hour and an offset of 30 minutes. Similarly, to collect a value each day

at 8am, enter a collection interval of 1 day and an offset of 8 hours.

Note:

If you enter a value in milliseconds, the value must be in inter

vals of 1000 ms. For example, 1000, 2000, and 3000 ms are

valid values, but 500 and 1500 ms are invalid. The minimum val

ue is 1000 ms.

Historian | 5 - Using Historian Administrator | 900

Field Description

Time Resolution The precision for timestamps, which can be either seconds, millisec

onds or microseconds.

Condition-Based Indicates whether condition-based data collection (on page 666) is en

abled.

Trigger Tag The name of the trigger tag used in the condition.

Comparison The comparison operator that you want to use in the condition. This

field is enabled only if you have enabled condition-based collection.

Select one of the following options:

◦ Undefined: Collection will resume only when the value of the trig

gered tag changes. This is considered an incomplete configura

tion, so condition-based collection is turned off and all the col

lected data is sent to archiver.

◦ < =: Setting condition as trigger tag value less than or equal to the

compare value.

◦ > = Setting condition as trigger tag value greater than or equal to

the compare value.

◦ <: Setting condition as trigger tag value less than the compare

value.

◦ >: Setting condition as trigger tag value greater than the compare

value.

◦ =: Setting condition as trigger tag value equals compare value.

◦ !=: Setting condition as trigger tag value not the same as com

pare value.

Compare Value A target value that you want to compare with the value of the trigger

tag. If using = and != comparison parameters, ensure that the format of

the compared value and triggered tag are the same. For example, for

a float type trigger tag, the compare value must be a float value; other

wise, the condition result is an invalid configuration. When the config

uration is invalid, condition-based collection is disabled and all data is

sent to archiver.

End of Collection

Markers

Indicates whether end-of-collection markers are enabled. This will mark

all the tag's values as bad, and sub-quality as ConditionCollectionHalted

when the condition becomes false. Trending and reporting applications

can use this information to indicate that the real-world value was un

Historian | 5 - Using Historian Administrator | 901

Field Description

known after this time until the condition becomes true and a new sam

ple is collected. If disabled, a bad data marker is not inserted when the

condition becomes false.

Table 65. The Scaling Section

Field Description

Hi Engineering Units The current value of the upper range limit of the span for this

tag.

Engineering Hi and Lo are retrieved automatically for F_CV fields

for iFIX tags; all others are left at default settings. When adding

tags from the server using an OPC Collector, the OPC Collec

tor queries the server for the EGU units and EGU Hi/Lo limits.

Not all OPC Servers make this information available, howev

er. Therefore, if the server does not provide the limits when re

quested to do so, the collector automatically assigns an EGU

range of 0 to 10,000.

Lo Engineering Units The current value of the lower range limit of the span for this

tag.

Input Scaling Indicates whether input scaling is enabled, which converts an in

put data point to an engineering units value.

For example, to rescale and save a 0 - 4096 input value to a

scaled range of 0 - 100, enter 0 and 4096 as the low and high in

put scale values and 0 and 100 as the low and high engineering

units values, respectively.

If a data point exceeds the high or low end of the input scaling

range, Historian logs a bad data quality point with a ScaledOut

OfRange subquality. In the previous example, if your input data

is less than 0, or greater than 4096, Historian records a bad data

quality for the data point.

OPC Servers and TRUE Values: Some OPC servers return a

TRUE value as -1. If your OPC server is returning TRUE values as

Historian | 5 - Using Historian Administrator | 902

Field Description

-1, modify the following scaling settings in the Tag Maintenance

page of Historian Administrator:

Hi Engineering Units = 0

Lo Engineering Units = 1

Hi Scale Value = 0

Lo Scale Value = - 1

Input Scaling = Enabled

Hi Scale Value The upper limit of the span of the input value.

Lo Scale Value The lower limit of the span of the input value.

Table 66. The Compression Section

Field Description

Collector Compres

sion

Indicates whether collector compression (on page 660) is enabled.

Collector Deadband The current value of the compression deadband. This value can be com

puted as a percent of the span, centered around the data value or given

as an absolute range around the data value.

Note:

Some OPC servers add and subtract the whole deadband value

from the last data value. This effectively doubles the magnitude

of the deadband compared to other OPC servers. To determine

how your specific server handles deadband, refer to the docu

mentation of your OPC server.

Example:

Suppose the engineering units are 0 to 200. Suppose the deadband val

ue is 10%, which is 20 units. If the deadband value is 10% and the last re

ported value is 50, the value will be reported when the current value ex

ceeds 50 + 10 = 60 or is less than 50 - 10 = 40. Note that the deadband

(20 units) is split around the last data value (10 on either side.)

Historian | 5 - Using Historian Administrator | 903

Field Description

Alternatively, you could specify an absolute deadband of 5. In this in

stance, if the last value was 50, a new data sample will be reported when

the current value exceeds 55 or drops below 45.

If compression is enabled and the deadband is set to zero, the collector

ignores data values that do not change and records any that do change.

If you set the deadband to a non-zero value, the collector records any

value that lies outside the deadband. If the value changes drastically, a

pre-spike point may be inserted. For information, refer to Enable Spike

Logic (on page 970).

Engineering Unit Converts the deadband percentage into engineering units and displays

the result. This value establishes the deadband range that is centered

around the new value.

This field represents a calculated number created to give an idea of how

large a deadband you are creating in engineering units. The deadband is

entered in percentage and Historian converts the percentage in to engi

neering units.

Collector Compres

sion Timeout

Indicates the maximum amount of time the collector will wait between

sending samples for a tag to the archiver. This time is maintained per

tag, as different tags report to the archiver at different times.

For polled tags, this value should be in multiples of your collection in

terval. After the timeout value is exceeded, the tag stores a value at the

next scheduled collection interval, and not when the timeout occurred.

For example, if you have a 10-second collection interval, a 1-minute

compression timeout, and a collection that started at 2:14:00, if the val

ue has not changed, the value is logged at 2:15:10 and not at 2:15:00.

For unsolicited tags, a value is guaranteed in, at most, twice the com

pression timeout interval.

A non-changing value is logged on each compression timeout. For ex

ample, an unsolicited tag with a 1-second collection interval and a 30-

second compression timeout is stored every 30 seconds.

Historian | 5 - Using Historian Administrator | 904

Field Description

A changing value for the same tag may have up to 60 seconds between

raw samples. In this case, if the value changes after 10 seconds, then

that value is stored, but the value at 30 seconds (if unchanged) will not

be stored. The value at 60 seconds will be stored. This leaves a gap of

50 seconds between raw samples which is less than 60 seconds.

Compression timeout is supported in all collectors except the PI collec

tor.

Archive Compression Indicates whether archive compression (on page 660) is enabled. If en

abled, Historian applies the archive deadband settings against all report

ed data from the collector.

Archive Deadband The current value of the archive deadband, expressed as a percent of

span or an absolute number.

Engineering Unit Converts the deadband percentage into engineering units and displays

the result. This value establishes the deadband range that is centered

around the new value.

Archive Compression

Timeout

The maximum amount of time from the last stored point before anoth

er point is stored, if the value does not exceed the archive compression

deadband.

The data archiver treats the incoming sample after the timeout occurs

as if it exceeded compression. It then stores the pending sample.

Table 67. The Advanced Section

Field Description

Time Assigned By The source of the timestamp for a data value is either the collector or

the data source.

All tags, by default, have their time assigned by the collector. When you

configure a tag for a polled collection rate, the tag is updated based on

the collection interval. For example, if you set the collection interval to

5 seconds with no compression, then the archive will be updated with a

new data point and timestamp every 5 seconds, even if the value is not

changing.

Historian | 5 - Using Historian Administrator | 905

Field Description

However, if you set the Time Assigned By field to Source for the same

tag, the archive only updates when the device timestamp changes. For

example, if the poll time is still 5 seconds, but if the timestamp on the

device does not change for 10 minutes, no new data will be added to the

archive for 10 minutes.

Note:

This field is disabled for Calculation and Server-to-Server tags.

Time Zone Bias The number of minutes from GMT that should be used to translate time

stamps when retrieving data from this tag. For example, the time zone

bias for Eastern Standard time is -300 minutes (GMT-5).

This field is not used during collection. Use this option if a particular tag

requires a time zone adjustment during retrieval other than the client

or server time zone. For example, you could retrieve data for two tags

with different time zones by using the tag time zone selection in the iFIX

chart.

Time Adjustment If the Server-to-Server collector is not running on the source computer,

select the Adjust for Source Time Difference option to compensate for

the time difference between the source archiver computer and the col

lector computer.

Note:

This field only applies to tags associated with the Server-to-

Server collector that use a polled collection type.

Data Store Displays the data store to which the tag belongs.

Read Group The Windows security group assigned to the selected tag.

Write Group The Windows security group assigned to the selected tag.

Administer Group The Windows security group assigned to the selected tag.

Historian | 5 - Using Historian Administrator | 906

Field Description

Last Modified The date the last tag parameter modification was made.

Modified By The name of the person who last modified the tag configuration para

meters.

Add Tags from Source

Create a collector instance (on page 357) using which you want to browse the source for tags.

This topic describes how to browse for source tags and add them to Historian. These tags are then

created automatically in the Historian database. You can also create tags manually (on page 909).

1. Access Historian Administrator (on page 823).

2. Select Tags.

3. Select Add Tags from Collector.

Historian | 5 - Using Historian Administrator | 907

The Add Multiple Tags from Collector window appears.

Historian | 5 - Using Historian Administrator | 908

4. Enter values as described in the following table.

Field Description

Collector Select the collector instance using which you want to browse

the source for tags.

Show Only Specify whether you want to see all tags or only the ones that

have not been added yet.

Source Tag Name Enter the string to narrow down the search results based on the

tag name. You can use wildcard characters.

Description Enter the string to narrow down the search results based on the

tag description. You can use wildcard characters.

5. Select Browse.

A list of tags based on the search criteria appear.

6. Select the tags that you want to add to Historian.

◦ Select a single tag by selecting the name of the tag.

◦ Select multiple tags by pressing the Control key and selecting the tags.

Historian | 5 - Using Historian Administrator | 909

◦ Select a contiguous group by pressing the Shift key and selecting the first and last tag of the

group.

◦ Select all tags by selecting Select All.

7. Select Add Selected Tags.

The selected tags are added to the Historian database.

Create a Tag Manually

This topic describes how to create a tag manually. You can also add tags from source (on page 906);

these tags are then automatically created in the Historian database.

Whenever you add tags, delete tags, or modify certain tag properties, the following collectors reload only

the modified tags without restarting the collectors.

• OPC Collector

• iFIX Collector

• Calculation Collector

• Simulation Collector

• Server to Server Collector

• PI Collector

• PI Distributor

The dynamic collector update feature ensures that any modifications to the tag configuration do not

affect all the tags in a collector. Tags that stop data collection may record zero data and bad quality

without restarting the collector. Tags that do not stop data collection do not record bad data samples to

the collection.

By default, the On-line Tag Configuration Changes option is enabled, which allows a tag to stop and restart

data collection without restarting the collector. If you disable the On-line Tag Configuration Changes

option, any changes you make to the tags do not affect collection until after you restart the collector.

To enable or disable the On-line Tag Configuration Changes option, select Advanced on the Collector

Maintenance page.

To restart the collector you must stop and start the collector service or executable. Restarting the

collector stops and restarts the tag(s) collection and may record bad data samples to the collection.

All the collector configuration changes done within a 30 second time frame are batched up together. To

collect the modified data faster, update/modify a small set of tags at a time.

Historian | 5 - Using Historian Administrator | 910

Note:

When updating large sets of tags at the same time, best practice is to disable the On-line Tag

Configuration Changes option and restart the collector after modification.

1. Access Historian Administrator (on page 823).

2. Select Tags.

3. Select Add Tag Manually.

Historian | 5 - Using Historian Administrator | 911

The Add Tag Manually window appears.

4. Enter values as described in the following table.

Field Description

Collector Name Select the collector using which you want to collect data for the

tag.

Source Address Enter the source address for the tag.

Tag Name Enter a unique name for the tag.

Data Store Select the data store in which you want to store the tag data.

Data Type Select the data type of the tag data.

Is Array Tag Select this check box if the tag is an array tag. For fixed string

data types only, enter a value in the field adjacent to the Data

Type field.

Historian | 5 - Using Historian Administrator | 912

Field Description

You can change a tag to an array tag later as well. However,

when you do so, only the latest data is retrieved. If you want to

get the old data, you must change the tag back to its previous

type.

Time Resolution Select the duration at which you want to collect data for the tag.

For example, if you select Seconds, data is collected every sec

ond.

Note:

If you add a tag for a Server-to-Server collector, set the Time Adjustment field for the tag to

Adjust for Source Time Difference after you add the tag. This field is available under Tags

> Advanced. This is applicable only for polled data collection.

5. Select OK.

The tag is created.

Copy a Tag

1. Access Historian Administrator (on page 823).

2. Select Tags.

Historian | 5 - Using Historian Administrator | 913

3. Select the tag that you want to copy.

Historian | 5 - Using Historian Administrator | 914

4. Select Copy/Rename Tag.

Historian | 5 - Using Historian Administrator | 915

The Copy/RenameTag window appears.

5. Select Copy.

6. Enter a new tag name.

7. Select OK.

The tag is copied.

Rename a Tag

• You must be a member of the administrator's group with tag level security.

• If you want to rename a tag permanently, to avoid loss of data, stop the collector instance.

When you rename a tag, you can choose between the following options:

Historian | 5 - Using Historian Administrator | 916

• Rename using an alias: In this case, the old name is called the tag alias. You can retrieve tag data

using the tag alias as well. When you copy a tag, the tag alias is captured as well to aid in an audit

trail.

• Rename permanently: In this case, the old name is no longer captured. Therefore, you can create

another tag with this old name. You cannot store and forward data using the old name. This

implies that data for the tag is collected separately for the new name.

1. Access Historian Administrator (on page 823).

2. Select Tags.

3. Select the tag that you want to rename.

Historian | 5 - Using Historian Administrator | 917

4. Select Copy/Rename Tag .

Historian | 5 - Using Historian Administrator | 918

The Copy/RenameTag window appears.

5. If you want to rename the tag using an alias, select Rename (Alias). If you want to rename the tag

permanently, select Permanent Rename.

6. Select OK.

If you have renamed the tag permanently:

• If the tag is used as a trigger, reassign the trigger.

• Restart the collector instance.

View Tag Trends and Raw Data

This topic describes how to access the trend chart of tag data. Note that the tag trend should not be used

for detailed data. And, trend data is not supported for array tags.

1. Access Historian Administrator (on page 823).

2. Select Tags.

Historian | 5 - Using Historian Administrator | 919

3. Right-click the tag whose trend chart you want to access, and then select Trend.

Historian | 5 - Using Historian Administrator | 920

The trend chart of the tag values appears.

Historian | 5 - Using Historian Administrator | 921

Note:

To change the criteria, select Criteria, and then enter values as described in the following

table.

Field Description

Start Time Select the start time of the trend chart.

End Time Select the end time of the trend chart.

Sampling Select the data type that you want to use.

Interval Enter the interval at which you want to plot the tag data.

Criteria Strings Enter the sampling mode, calculation mode, and/or query

modifiers. Query modifiers are used to specify various

ways of retrieving data from Historian. For example, you

can request raw data with good quality only by specifying

the criteria string as: RAWBYTIME#ONLYGOOD. The sampling

mode specified with criteria strings takes precedence over

the mode specified in the Sampling field.

You can also scroll back and forth on the x-axis time scale by selecting on the single and

double left and right arrows at the bottom of the page.

View the Last 10 Raw Values of a Tag

1. Access Historian Administrator (on page 823).

2. Select Tags.

Historian | 5 - Using Historian Administrator | 922

3. Right-click the tag whose last 10 values you want to access, and then select Last 10 Values.

Historian | 5 - Using Historian Administrator | 923

The last 10 values of the tag appear.

Historian | 5 - Using Historian Administrator | 924

For an array tag, each element is displayed as a separate row with the tag name and the index.

Stop Data Collection

1. Access Historian Administrator (on page 823).

2. Select Tags.

Historian | 5 - Using Historian Administrator | 925

3. Select the tag whose data collection you want to stop.

Historian | 5 - Using Historian Administrator | 926

4. Select Collection.

Historian | 5 - Using Historian Administrator | 927

5. For the Collection field, select Disabled.

Historian | 5 - Using Historian Administrator | 928

6. Select Update.

7. To stop data collection on a tag:

a. From the list in the left-hand window of the page, select a tag.

b. In the window on the right side of the page, select Collection.

c. For the Collection field, select the Disabled option.

Historian | 5 - Using Historian Administrator | 929

d. Select Update.

The data collection for the tag is stopped.

Resume Data Collection

1. Access Historian Administrator (on page 823).

2. Select Tags.

Historian | 5 - Using Historian Administrator | 930

3. Select the tag whose data collection you want to resume.

Historian | 5 - Using Historian Administrator | 931

4. Select Collection.

Historian | 5 - Using Historian Administrator | 932

5. For the Collection field, select Enabled.

Historian | 5 - Using Historian Administrator | 933

6. Select Update.

Historian | 5 - Using Historian Administrator | 934

The data collection for the tag is resumed.

Get all the Fields Related to a Tag

1. Access Registry Editor.

2. Create a DWORD (32-bit) registry entry named GetAllTagProps for the collector in

the following registry path: HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node

\Intellution, Inc.\iHistorian\Services\OPCCollector

*_OPC_Intellution_IntellutionGatewayOPCServer

3. Provide the value 1 for the registry entry.

Remove A Tag

When you remove a tag, it is removed from the tag database, but all data for that tag is retained in the

archive and the tag name cannot be reused. Since the tag data is still available from the archive, you can

still reference that tag from within a calculation formula, for example, or by using the Excel Add-In.

Historian | 5 - Using Historian Administrator | 935

If, however, you want to remove the tag data as well from the archive, you can delete it permanently (on

page 938).

Whenever you delete/remove tags, the following collectors reload only the modified tag(s) without

restarting the collectors.

• OPC Collector

• iFIX Collector

• Calculation Collector

• Simulation Collector

• Server to Server Collector

• PI Collector

• PI Distributor

By default, the On-line Tag Configuration Changes option is enabled, which allows a tag to stop and restart

data collection without restarting the collector. If you disable the On-line Tag Configuration Changes

option, any changes you make to the tags do not affect collection until you restart the collector. To enable

or disable the On-line Tag Configuration Changes option, access Historian Administrator, and then select

Collectors > Advanced.

Restarting the collector stops and restarts the tag(s) collection and may record bad data samples to the

collection. All the collector configuration changes done within a 30-second time frame are batched up

together. To collect the modified data faster, update/modify a small set of tags at a time. If the modified

tags get zero bad markers and available runtime values at the same time, then precedence is given to

available runtime values instead of zero bad markers.

Tip:

• To collect the modified data faster, update/modify a small set of tags at a time.

• When updating large sets of tags at the same time, the best practice is to disable the On-

line Tag Configuration Changes option and restart the collector after modification.

1. Access Historian Administrator (on page 823).

2. Select Tags.

Historian | 5 - Using Historian Administrator | 936

3. Select the tag that you want to remove.

Historian | 5 - Using Historian Administrator | 937

4. Select Delete.

Historian | 5 - Using Historian Administrator | 938

The Delete Tags window appears.

5. Select Remove Tag from System, and then select OK.

A message box appears, asking you to confirm that you want to remove the tag.

6. Select Yes.

The tag is removed.

Deleting Tags Permanently

When you delete a tag, the tag as well as all the data for that tag is removed from the archive and the tag

name is available for reuse. You can no longer query the data for that tag. If, however, you want to just

remove the tag, but retain the tag data, refer to Remove A Tag (on page 934).

1. Access Historian Administrator (on page 823).

2. Select Tags.

Historian | 5 - Using Historian Administrator | 939

3. Select the tag that you want to delete.

Historian | 5 - Using Historian Administrator | 940

4. Select Delete.

Historian | 5 - Using Historian Administrator | 941

The Delete Tags window appears.

5. Select Permanently Remove Tags From System, and then select OK.

A message box appears, asking you to confirm that you want to delete the tag.

6. Select Yes.

The tag is deleted.

About User-Defined Data Types

Sometimes, a single tag cannot store all the required details of a parameter. For example, if you want to

store the name, address, and phone number of the manufacturer of a machine, it may not be feasible to

store all these details in a single tag, which uses a single data type. In such cases, you can create a user-

defined data type (UDT), which includes one or more fields, and then apply that type to Historian tags.

Each of these fields in a UDT can contain a different data type based on your requirement.

The following conditions apply when working with a UDT:

Historian | 5 - Using Historian Administrator | 942

• You must have appropriate security permissions to create, modify, and delete a UDT. The type can

have its own Administrator security group.

• You cannot create an array tag that uses a UDT.

• UDTs cannot have fields of Scaled or FixedString data types.

• Scaling, collector compression, and archive compression do not apply to UDT tags.

• You cannot associate an enumerated set with a UDT tag.

• A UDT supports maximum 100 fields.

Manage User-Defined Data Types

You can create a user-defined data type (UDT) (on page 719) and assign it to multiple tags. A UDT can

have up to 100 fields and must have at least one field.

1. Access Historian Administrator (on page 823).

2. Select Tags.

3. Select Define User-Defined Types.

Historian | 5 - Using Historian Administrator | 943

The Define User-Defined Types window appears.

4. To create a UDT:

a. Select Create New Type.

b. Enter values as described in the following table.

Field Description

Type Name Enter a unique name for the UDT.

Description Enter a description for the UDT.

Store Individual Quality Select the check box to store field-level quality. If this check

box is cleared, the data sample will have a single quality

similar to how an array tag works. Storing individual quali

ties consumes more disk space.

Historian | 5 - Using Historian Administrator | 944

Field Description

Administer Group Specify the Windows Security Group that you want to as

sign to the UDT.

c. Add at least one Field to the UDT.

d. Select Save Type.

The UDT is created.

5. To add a field to a UDT:

a. Select New Field.

b. Enter values as described in the following table.

Field Description

Field Name Enter a name for the field.

Master Field Select this check box if this field is a master field. Only one

field can be the Master Field in a UDT.

Field Description Enter a description for the field.

Field Data Type Specify the data type of the field.

c. Select Save Field.

The field is added to the UDT.

6. To delete a field from a UDT:

a. Select the field that you want to delete.

b. Select Delete Field.

7. To delete a UDT, right-click the UDT that you want to delete, and then select Delete Selected Type.

Note:

You cannot delete a UDT if there are tags still using it.

8. To set a source address for a field:

Historian | 5 - Using Historian Administrator | 945

a. Select the field for which you want to set the source address.

b. Browse and select the tag that you want to assign, and then select Save Source Address >

OK.

The source address for the multifield tag is set.

9. To view the last 10 values of a tag:

a. Right-click the tag (a tag indicated with *), and select Last 10 values.

The List of Fields window appears.

Historian | 5 - Using Historian Administrator | 946

b. Select the field from the list, and then select OK.

The last ten values of the field appear.

10. To view the trend chart of a tag:

a. Right-click the tag, and then select Trend.

The trend chart of the tag values appears.

b. If needed, modify the time period and other parameters by selecting Criteria. In the criteria

string field, you can enter the sampling mode, calculation mode, and/or query modifiers.

Query modifiers are used to specify various ways of retrieving data from Historian. Sampling

modes specified with criteria strings takes precedence over any mode specified in the

Sampling field.

Request raw data with only good quality by specifying the criteria string: RAWBYTIME#ONLYGOOD

c. Select OK.

The trend chart is plotted again with the new criteria. You can scroll back and forth on the x-

axis time scale by selecting on the single and double left and right arrows at the bottom of

the page.

Historian | 5 - Using Historian Administrator | 947

Assign/Remove Tags from a User-Defined Data Type

There are two ways to assign tags to a user-defined types. This topic describes both these ways. User

Defined tags are indicated with ‘*’ in the Tags section. If the desired type is not already created, you can

create it while assigning it. You can select multiple tags from the Tags list and assign the same UDT to all

of them at once.

1. Access Historian Administrator (on page 823).

2. Select Tags.

3. To assign a UDT to a tag from the Collection section:

Historian | 5 - Using Historian Administrator | 948

a. Select Collection.

b. Select the tag for which you want to assign a UDT.

Historian | 5 - Using Historian Administrator | 949

c. In the Data Type field, select MultiField.

The User Defined Type field appears.

d. In the User Defined Type field, browse and select the UDT that you want to associate with

the tag, and then select OK.

If the type has not already been created, create a type now and then continue associating it

with the tag. For more information, refer to Create a User Defined Type (on page 942).

e. Select Update.

The UDT is assigned to the tag.

4. To assign a UDT to a tag from the Add Tag Manually window:

a. Select Add Tag Manually.

The Add Tag Manually window appears.

b. Enter values as described in the following table.

Historian | 5 - Using Historian Administrator | 950

Field Description

Collector Name Select the collector instance in which the tag has been

added.

Source Address Browse and select the source address of the tag.

Data Type Select MultiField.

User Defined Type Browse and select the UDT that you want to assign the tag.

Time Resolution Select the time resolution.

c. Select OK.

The UDT is assigned to the tag.

5. To remove a UDT from a tag:

a. Select the tag from which you want to remove the UDT.

b. Clear the value in the User Defined Type field.

Historian | 5 - Using Historian Administrator | 951

c. In the Data Type field, select a data type.

d. Select Update.

The UDT is removed from the tag, and the new data type is assigned.

Managing Enumerated Data Sets

An enumerated data set provides an enhanced way of displaying data. It enables you to retrieve numeric

data as string state values. You can use the string values in reports, charts, etc.

An enumerated set contains several states. A state is the number-string value pair in a set. It contains

a set of numeric values and their corresponding string values. You can define an enumerated set for a

single value or a range of values. These state values are defined for data states stored in Data Archiver.

Data is retrieved using the value of the state. You have to define state values within a set to assign

enumerated values.

Table 68. Example of a Single-Value Enumerated Set

State Name State Value

Manual 0

Automatic 1

Table 69. Example of a Range-of-Values Enumerated Set:

State Name State Value

ON 0 to 100

OFF 101 to 200

State names can be duplicated. If duplicated states exist, take precautions to avoid unpredictable results.

For example, a tag is associated with an enumerated set defined as follows.

State Name State Value

0 Open

1 Close

2 Close

2 Open

Historian | 5 - Using Historian Administrator | 952

The server will return unpredictable results due to the State Name duplication for an input of 2.

Note:

You cannot assign an enumerated set to an array tag.

1. Access Historian Administrator (on page 823).

2. Select Tags.

3. Select Define Enumerated Set.

Historian | 5 - Using Historian Administrator | 953

The Define Enumerated Set window appears.

4. To create a set:

a. Select Create New Set.

b. Enter values as described in the following table.

Field Description

Set Name Enter a name for the set.

Description Enter a description for the set.

Enumerate By Specify whether you want to define a single

value or a range of values.

A single value is best used with integer val

ues because they match exactly. A range of

values can be used with floating point val

Historian | 5 - Using Historian Administrator | 954

Field Description

ues because they may not match exactly

due to rounding.

c. Add a state.

d. Select Save Set.

The enumerated set is created.

5. To create a state:

a. In the State section, select New State.

b. In the Enumerate by field, specify whether you want to use a single value or a range of

values.

If you select Single Value, the State Name, State Value, and Description fields appear. If you

select Range, the State Name, Start Range, End Range, and Description fields appear.

c. Enter values in the respective fields.

Enter only numeric values in the State Values field; string values such as ON/OFF are not

supported.

d. Select Save to List.

The state is created and added to the enumerated set.

6. To delete a state:

a. To delete a single state, select the state and select Delete State. To delete all the states,

select Select All , then select Delete State.

A message appears, asking you to confirm that you want to delete the state.

b. Select Yes.

The state is deleted.

7. To delete a set:

a. Right-click the set that you want to delete, and then select Delete Selected Set.

A message appears, asking you to confirm that you want to delete the set.

b. Select Yes.

The enumerated set is deleted.

Historian | 5 - Using Historian Administrator | 955

Assign/Remove Tags from Enumerated Sets

To view data for a tag in an enumerated state value format, assign a set to the tag. You can remove an

assigned set from a tag to assign a new tag or not assign any tag at all.

Note:

You cannot assign enumerated sets to array tags.

1. Access Historian Administrator (on page 823).

2. Select Tags.

3. Select Collection.

Historian | 5 - Using Historian Administrator | 956

4. Select the tag that you want to assign/remove.

Historian | 5 - Using Historian Administrator | 957

5. To assign a set to a tag:

Historian | 5 - Using Historian Administrator | 958

a. In the Enumerated Set Name field, select .

The Define Enumerated Set window appears.

b. From the List of Enumerated Sets section, select the enumerated set that you want to

assign, select Set, and then select OK.

The Enumerated Set field is populated with the enumerated set that you have selected.

c. Select Update.

The set is now assigned to the tag and you can view the data in the enumerated state value

format.

6. To remove an assigned set from a tag:

Historian | 5 - Using Historian Administrator | 959

a. Clear the value in the Enumerated Set Name field.

b. Select Update.

The enumerated set is no longer assigned to the tag.

Managing Collectors

About Collectors

Collectors are used to collect data from various data sources and send it to Historian. For a list of

collectors and their usage, refer to About Historian Data Collectors (on page 1990).

After you install collectors and Remote Management Agent, the following artefacts will be available:

• Executable files: These files are required to add a collector instance.

• Instances of the following collectors:

◦ The iFIX collector

◦ The iFIX Alarms & Events collector

Historian | 5 - Using Historian Administrator | 960

◦ The OPC Classic Data Access collector for CIMPLICITY

◦ The OPC Classic Alarms and Events collector for CIMPLICITY

These instances will be created only if iFIX and/or CIMPLICITY are installed on the same machine

as the collectors.

• The Remote Collector Management agent: Provides the ability to manage collectors remotely.

To send data using a collector, you must:

1. Install collectors (on page 142).

You can install collectors on multiple Windows machines. These machines can be on-premises or

on a virtual private cloud (VPC).

2. Create a collector instance.

Access/Modify a Collector

1. Access Historian Administrator (on page 823).

2. Select Collectors.

Historian | 5 - Using Historian Administrator | 961

A list of collectors appears.

3. Select the collector whose details you want to access/modify.

4. As needed, modify values as described in the following tables, and then select Update.

Table 70. The General Section

Field Description

Collection Status Field The current operating status of the collector. Contains one of

the following values:

◦ Running: The collector is operating and collecting data.

◦ Stopped: The collector is in pause mode and not collect

ing data.

◦ Unknown: The status information about the collector is

unavailable at present, perhaps as a result of a lost con

nection between collector and server or because the col

lector was shut down improperly.

Historian | 5 - Using Historian Administrator | 962

Field Description

You can specify whether you want to pause or resume data col

lection.

Total Events Collected The total number of events collected from the data source by

the collector.

Total Events Reported The total number of events reported to the archive from the col

lector. This number may not match the Total Events Collected

value due to collector compression.

Description The name of the collector.

Collector Type The type of the collector.

Computer Name The machine name of the computer on which the collector is in

stalled.

Memory Buffer Size (MB) The size of the memory buffer currently assigned to the store-

and-forward function. The memory buffer stores data during

short-term or momentary interruptions of the server connection;

the disk buffer handles long duration outages. To estimate the

size you need for this buffer, you need to know how fast the col

lector is trying to send data to the server and how long the serv

er connection is likely to be down. With those values and a safe

ty margin, you can compute the required size of the buffer.

Note:

If you enter a new value for this parameter, the change

is effective the next time you restart the collector.

Minimum Free Space (MB) The minimum free disk space that must be available on the

computer. If the minimum space required is not available when

the collector starts, the collector will shut down.

Table 71. The Tags Section

Field Description

Add Prefix to Tag A prefix that is automatically added to all tag names when you add tags.

Naming Convention When digital sets are automatically added via the OSI PI Collector:

Historian | 5 - Using Historian Administrator | 963

Field Description

◦ The enumerated set added to Historian is prefixed using the val

ue configured here. For Example, if "IP- 4LJPD02." has been con

figured as the tag prefix value, then the digital set with name

"SYSTEMSET" in PI Historian will be added as an enumerated set

with name "IP-4LJPD02.SYSTEMSET" in Historian.

◦ If the value of the tag prefix is modified, then a new set of enu

merated sets prefixed with the updated value will be added to

Historian server. The enumerated sets prefixed with the old value

will not be deleted and will not receive any later updates.

Collection Interval The time required to complete a poll of a given tag on the collector. It is

also used in unsolicited collection. In effect, it specifies how frequently

data can be read from a tag. The collection interval can be individually

configured for each tag.

Note:

To avoid collecting repeat values with the OPC collector when

using device timestamps, specify a collection interval that is

greater than the OPC server update rate.

Collection Type Indicates whether this collector is configured for polled or unsolicited

data collection.

Time Assigned By Indicates whether the timestamp for the data value is provided by the

collector or the data source.

Collector Compres

sion

Indicates whether collector compression (on page 660) is enabled as a

default setting. This option is overridden by tag-level settings.

Deadband The default setting of the collector compression deadband in absolute

or percentage range values.

Compression Timeout The default setting for the collector compression time-out for tags

added through the Add Multiple Tags From Collector window. You must

enable collector compression to use this field.

Spike Logic Control Indicates whether incoming data samples for spikes are captured in tag

values. If spike logic is enabled, a sample of equal value to the previous

Historian | 5 - Using Historian Administrator | 964

Field Description

ly archived sample is inserted into the archive in front of the spike value.

For more information, refer to Enable Spike Logic (on page 970).

Table 72. The Advanced Section

Field Description

On-line Tag Configura

tion Changes

Indicates whether you can make changes to tags without having to

restart the collector. If you disable this option, any changes you make to

tags do not affect collection until you restart the collector.

Browse Source Ad

dress Space

Indicates whether you want the collector to respond to requests to

browse the tags in the source. You may sometimes want to disable this

feature to reduce processing load on the collector.

Synchronize Time

stamps to Server Time

Adjusts all outgoing data timestamps to match the server clock. This

option is not applicable when you configure timestamps to be provid

ed by the data source. Note that this does not change collector times to

match the server time; it adds or subtracts an increment of time to com

pensate for the relative difference between the clocks of the server and

collector, independent of time zone or day light savings time (DST) dif

ferences. If the collector system clock is greater than 15 minutes ahead

of the archiver system clock, and the Synchronize Timestamps to Serv

er option is disabled, data will not be written to the archive.

Source/Device Time

stamps

The time source for the timestamps. This field applies only if you are

using source timestamps. The collector uses this field to determine

whether the timestamps coming from the data source are in local ma

chine time or UTC.

Delay Collection at

Startup

The number of seconds to delay collection on startup (after loading its

tag configuration).

Rate Output Address Address in the source database into which the collector writes the cur

rent value of the events/minute output, letting an operator or the HMI/

SCADA application know the performance of the collector. This should

be connected to a writable analog field. The value is written once a

minute.

Historian | 5 - Using Historian Administrator | 965

Field Description

For an iFIX collector, use an iFIX tag for the output address. Enter the

address in the following format: NODE.TAG.FIELD (for example, MyN

ode.MySIM_AO.F_CV).

For an OPC collector, use a writable OPC address in the server. Refer to

your OPC documentation for more information.

Status Output Address Address in the source database into which the collector writes the cur

rent value of the collector status, letting an operator or the HMI/SCADA

application know the current status of the collector.

This address should be connected to a writable text field of at least 8

characters. This value is only updated upon a change in status of the

collector.

For an iFIX collector, use TX tag for the output address. Enter the ad

dress in the following format: NODE.TAG.FIELD (for example, MyN

ode.MyCollector_TX.A_CV).

For an OPC collector, use an OPC address in the server. Refer to your

OPC documentation for more information.

Heartbeat Output Ad

dress

Address in the source database into which the collector writes the heart

beat signal output. This address should be connected to a writable ana

log field.

For an iFIX collector, use an iFIX tag for the output address. Enter the

address in the following format: NODE.TAG.FIELD (for example, MyN

ode.MyCollector_AO.F_CV).

For an OPC collector, use the OPC address in the server. Refer to your

OPC documentation for more information.

The data collector writes the value of 1 to this location every 60 seconds

while it is running. You can program the iFIX database to generate an

alarm if the Heartbeat Output Address is not written once every 60 sec

onds, notifying you that the data collector has stopped.

Historian | 5 - Using Historian Administrator | 966

Table 73. The Performance Section

Section Description

Report Rate Displays the average rate at which data is coming into the serv

er from the collector. This is a general indicator of load on the

Historian collector. Since this chart displays a slow trend of

compressed data, it may not always match the instantaneous

value of report rate.

Compression Displays the effectiveness of collector compression. If the chart

displays a low current value, you can widen the compression

deadbands to pass fewer values and increase the effect of com

pression.

Overruns Displays the value at which data overruns are occurring. This

value is calculated by the following equation:

OVERRUN_PCT = OVERRUNS / (OVERRUNS + TOTAL_EVENTS_COLLECTED)

Overruns are a count of the total number of data events not col

lected. In normal operation and under normal conditions, the

current value should always be zero. If the current value is not

zero, which indicates that data is being lost, you should take

steps to reduce peak load on the system by increasing the col

lection interval.

Table 74. The Redundancy Section

Field Description

Redundant Collector Indicates that this is a redundant collector.

Backup For The primary collector.

Note:

This configuration will be preserved if you disable collector re

dundancy. This allows you to temporarily take a redundant col

lector offline without losing its configuration.

Backed Up By The name of the collector providing redundancy for the primary collec

tor.

Historian | 5 - Using Historian Administrator | 967

Field Description

Collector Status (Sta

tus)

The current status of the primary collector.

Redundancy Status The current redundancy status of the collector. If a secondary collector

has been activated, this field will appear.

Make Active Collector

Now

Select this button to bring the selected collector online immediately.

This is useful for testing, or in situations where the primary collector

must be brought offline quickly.

Collector Status

(Failover Triggers)

Indicates whether the collector will failover if the status changes to Un

known.

Watchdog Tag The tag to use to determine the status of the collector. If the watchdog

tag meets any of the conditions specified below, the secondary collector

will be brought online to replace it.

Failover on Bad Quali

ty

Indicates whether the secondary collector must be promoted when a da

ta sample from the watchdog tag is received with bad quality. Failover

happens on every write of a bad data sample to the watchdog, not just

on the transition from good to bad quality.

Failover When Value

Transitions from Zero

Indicates whether the secondary collector is promoted when a data

sample from the watchdog tag with a non-zero value is received from

the primary collector. Failure happens every time when a non-zero value

is received, not just when the value promotes from zero to non-zero val

ue.

Failover When No Val

ue Changes for X Se

conds

Indicates that the secondary collector is promoted when no data value

changes have been received within the time period specified. This could

be tied into a heartbeat status indicator. The value is checked every 5

seconds. To prevent failure, there must be a value change.

The Actions Buttons

All tabs in the Collector Maintenance screen contain action buttons. Click a button to perform the

action indicated by the name.

Historian | 5 - Using Historian Administrator | 968

Button Function

Recalculate Recalculate collector data for a specified peri

od.

Add Tags Browse and add tags from this collector to the

archiver.

Update Apply all parameter changes you have made on

any tabs in this screen. To cancel changes and

return to the original values or settings, open a

different screen and then return to the Collector

Maintenance screen.

Delete Delete the selected collector. You can choose

whether you want to delete only the collector or

the collector and its tags.

Delete a Collector

When you delete a collector, all of its tags are deleted from the Historian database.

1. Access Historian Administrator (on page 823).

2. Select Collectors.

Historian | 5 - Using Historian Administrator | 969

A list of collectors appears.

3. Select the collector whose details you want to delete.

Historian | 5 - Using Historian Administrator | 970

4. Select Delete.

A message appears, asking you to confirm that you want to delete the collector.

5. Select Yes.

The collector is deleted.

Enable Spike Logic

When compression is enabled in the Historian archive, only the first instance in a series of data falling

within a deadband range will be collected to the Historian archive. When that data is plotted using

interpolation, false values are inserted into the chart to create a smooth trend between intervals in a given

time period. In most cases, interpolation gives a reasonable portrayal of the actual data for a given time

period.

Unfortunately, in the event of a spike in data values, an unrealistic set of samples is created when the data

is plotted. Instead of showing the results of compression (the same values over a series of intervals),

a rising or falling slope is created in the chart. This gives the impression that values for a given time

stamp are higher or lower than they actually were. The figure below shows the difference between the raw

Historian | 5 - Using Historian Administrator | 971

data for a series of samples, and how the samples would be plotted if data compression were enabled,

assuming all values between 10 and 20 are in the deadband range.

Spike logic monitors incoming data samples for spikes in a tag's values. If spike logic is enabled, a

sample of equal value to the previously archived sample is inserted into the archive in front of the spike

value. The time stamp of the inserted value is determined by your polling interval. If samples are collected

at one-second intervals, the inserted sample's time stamp will be one second before the spike. This

helps identify the spike, and retains a more accurate picture of the data leading up to it, as shown in the

following image.

Historian | 5 - Using Historian Administrator | 972

1. Access Historian Administrator (on page 823).

2. Select Collectors.

Historian | 5 - Using Historian Administrator | 973

A list of collectors appears.

3. Select the collector to which you want to apply spike logic.

Historian | 5 - Using Historian Administrator | 974

4. Select Tags.

Historian | 5 - Using Historian Administrator | 975

5. Under Default Compression, in the Spike Logic Control field, select Enabled, and then select one of

the following options:

◦ Multiplier: Specifies how much larger a spike value must be than the deadband range before

spike logic will be invoked. For example, if you enter 3, and the deadband percentage was

set to 5%, spike logic will not be invoked until the difference between the spike value and the

previously archived data point is 15% of the EGU range.

◦ Interval: Specifies how many samples must have been compressed before the spike logic

will be invoked. For example, if you enter 4, and 6 values have been compressed since the

last archived data sample, spike logic will be invoked.

6. Select Update.

The spike logic is enabled.

About Collector Redundancy

Collector redundancy decreases the likelihood of lost data due to software or hardware failures. It ensures

that collection of your data remains uninterrupted. It uses two or more collectors that gather data from a

single source.

Historian | 5 - Using Historian Administrator | 976

Note:

Collector redundancy is not available and supported for the following collectors:

• File Collector.

• Calculation Collector.

• Python Collector.

• Server-to-Server Collector.

• Server-to-Server Distributor.

• OSI PI Collector.

• OSI PI Distributor.

All collectors in the group actively gather the same tags from a data source but only the active collector

forwards its samples to the Historian server. The non-active (standby) collectors buffer their data

against failover of the active collector. The Historian server actively monitors the health of the redundant

collectors and will automatically switch to a backup if certain trigger conditions are met.

Trigger conditions: You can configure the following triggers:

• The collector is stopped.

• The collector sends bad quality data for a specified tag (called the watchdog tag).

• The values of the watchdog tag do not change for a specified duration.

If any of these trigger conditions are met, the primary collector goes into the standby mode, and the

secondary collector becomes active. That means, data is then collected by the secondary collector.

Similarly, if the secondary collector satisfies the trigger conditions, it goes into the standby mode, and the

primary collector becomes active.

You can also manually trigger the failover.

For instructions on configuring collector redundancy, along with settings the triggers, refer to Configure

Collector Redundancy (on page 651).

Synchronized Configuration: The configuration for each redundant collector is managed by the Historian

server. If you change the configuration on one redundant collector, all other collectors will be updated

automatically with the new configuration.

Note:

Redundant collectors must be of the same collector type.

Historian | 5 - Using Historian Administrator | 977

Offline Collectors: To reduce the possibility of lost data, a collector will immediately send its buffered

data to the Historian archiver when brought online. The Historian server will ignore any data that is already

collected in the archive.

Adding Tags to a Redundant Collector: To add tags in a redundant collector system, you must add them

to the primary collector. If tags are added to a redundant collector, data for these tags will not be collected

until the redundant collector is taken out of the redundant system. If the primary collector is not available,

you must add the tag manually.

Note:

• Use polled tags only as watchdog tags.

• Historian redundant collector configuration does not force the active Historian collector

to run on the active iFIX SCADA, since both redundant collectors provide data. Also, when

both iFIX SCADAS become active, they lose connection with each other.

Important information about the failover of redundant collectors:

• In the Redundancy section of the Collectors page, you can use the Make Active Collector

Nowbutton to manually force a failover to a backup collector.

• In an Enterprise system, collector redundancy failover happens only after 5 minutes after a tag

change. You must select the Make Active Collector Now button after the first 5 minutes for the

failover to happen.

Also, when you shut down an active collector, it does failover. However, if there was a tag change

then shutting down the active collector does not cause failover immediately, it is just delayed by

5 minutes. There will not be any data loss since the backup collector sends data for the past 15

minutes when it becomes active.

• Failover precedent is cyclical; the last collector in a redundant group will automatically failover to

the first collector in the group.

• Configuration Manager must be running for failover to happen in a mirrored environment.

Historian | 5 - Using Historian Administrator | 978

Configure Redundant Collectors and Groups

1. Create the collector instances (on page 357) that you want to use for collector redundancy. All

these collectors must be of the same type.

Note:

Collector redundancy is not available and supported for the following collectors:

◦ File Collector.

◦ Calculation Collector.

◦ Python Collector.

◦ Server-to-Server Collector.

◦ Server-to-Server Distributor.

◦ OSI PI Collector.

◦ OSI PI Distributor.

2. Create tags (on page 909) in the primary collector.

3. If you want to use the values of a watchdog tag as a failover trigger, create the watchdog tag (on

page 909) in the primary collector.

Collector redundancy ensures that collection of your data remains uninterrupted. It uses two or

more collectors that gather data from a single source. For more information, refer to About Collector

Redundancy (on page 975)

This topic describes how to set up redundancy between two collectors - one primary and the other

secondary. You can, however, set up multiple secondary collectors.

1. Access Historian Administrator (on page 823).

2. Select Collectors.

Historian | 5 - Using Historian Administrator | 979

A list of collectors appears.

3. Select the collector that you want to set as the first collector in your redundant group.

Historian | 5 - Using Historian Administrator | 980

4. Select Redundancy.

Historian | 5 - Using Historian Administrator | 981

5. In the Redundant Collector field, select Enabled, and then select Update.

6. Select the collector that will be your second collector in your redundant group.

Historian | 5 - Using Historian Administrator | 982

7. Select Redundancy, and then enter values as described in the following table.

Field Description

Redundant Collector Select Enabled.

Backup For Select the collector that this collector will back up (in this case,

it is the first collector in your redundant group).

8. Select Update.

A message appears, asking you to confirm that tags configured for the backup collector will no

longer be collected.

9. Select Yes.

Redundancy is now configured for these two collectors. On the main page, the Redundancy Status

of the first collector will be Active and the backup collector, Standby.

To add more collectors to the redundant group: Repeat steps 6 through 9. In the Backup For field,

select the collector that backs up the last collector in the group. If you want to have collectors in

Historian | 5 - Using Historian Administrator | 983

the redundant group failover when the active collector’s status is unknown, select Enabled in the

Collector Status field. Make sure you are browsing and defining the watchdog tag in the principal

(or first) collector in your redundant group.

Maintaining, Operating, and Monitoring Historian

Maintain, Operate, and Monitor Historian

To ensure reliable, error-free operation over a long period of time, develop and execute a consistent

maintenance program for the Historian system and the data it collects. The subsequent topics provide

guidelines for setting up such a plan and for monitoring and interpreting system performance indicators.

Data Types

Historian uses the following data types.

Data Type Size Description Valid Values

Single Float 4 bytes Stores decimal values up to

6 places.

1.175494351e-38F to

3.402823466e+38F

Double Float 8 bytes Stores decimal values up to

15 places.

2.2250738585072014e-308

to 1.7976931348623158e

+308

Single Integer 2 bytes Stores whole numbers. -32767 to +32767

Double Integer 4 bytes Stores whole numbers. - 2147483648 to

+2147483648

Quad Integer 8 bytes Stores whole numbers. -9,223,372,036,854,775,808

(negative 9 quintillion) to

+9,223,372,036,854,775,807

(positive 9 quintillion)

Unsigned Single Integer 2 bytes Stores whole numbers. 0 to 65535

Unsigned Double Integer 4 bytes Stores whole numbers. 0 to 4,294,967, 295 (4.2 bil

lion)

Unsigned Quad Integer 8 bytes Stores whole numbers. 0 to

18,446,744,073,709,551,615

(19 quintillion)

Historian | 5 - Using Historian Administrator | 984

Data Type Size Description Valid Values

Byte 1 byte Stores integer values. -128 to +127

Boolean 1 byte Stores boolean values. 0=FALSE and 1=TRUE (any

value other than zero is

treated as one)

Fixed String Configured

by user

Stores string data of a fixed

size.

0 and 255 bytes

Variable String No fixed size Stores string values of

undetermined size. This

data type is useful if you

cannot rely on a constant

string length from your data

source.

Binary Object No fixed size Stores binary data. This is

useful for capturing data

that can not be classified by

any other data type.

Scaled 2 bytes Stores a 4 byte float as a 2

byte integer. The scaled da

ta type saves disk space but

sacrifices data precision as

a result.

Note:

Tags associated with Quad Integer, Unsigned Double Integer, or Unsigned Quad Integer data types

may suffer a loss of precision value due to a Visual Basic limitation.

Note:

The Calculation collector supports only calculations performed using the current value

calculation. It does not support other calculations due to a Visual Basic script limitation.

Historian | 5 - Using Historian Administrator | 985

Scaled Data Types

Historian uses the high and low EGU values to store and retrieve archived values for the scaled data type.

This allows you to store 4 byte floats as 2 byte integers in the archive. Though this saves disk space, it

sacrifices data precision. The smaller the span is between the high and low EGU limits, the more precise

the retrieved value will be. When calculating the value of a scaled data type, you can use this formula:

ArchivedValue = (((RealWorldValue - EngUnits->Low) /

 (EngUnits->High - EngUnits->Low) * (float) HR_SCALED_MAX_VALUE) + .5);

For example: A value of 12.345 was stored in a scaled tag whose high EGU was 200 and low EGU was 0.

When later retrieved from the Historian archive, a value of 12.34473 will be returned.

Important:

Values that are outside of the EGU range of a scaled data type tag are stored as bad,

scaledoutofrange in Historian. Changing either the High or Low EGU tags does not affect existing

data, but only affects the new data with new timestamps. You cannot correct values for scaled

data types that were inserted while EGUs were incorrect. If necessary, contact technical support

for additional information.

Quad Integer Data Types: The high and low EGU limits for Quad Integer, Unsigned Single Integer,

Unsigned Double Integer, Unsigned Quad Integer are between 2.2250738585072014e-308 to

1.7976931348623158e+308.

Set the Size of a Fixed String Data Type

Using the fixed string data type, you can store string data of a fixed size. This is useful when you know

exactly what data will be received by Historian. If a value is larger than the size specified in the Data

Length field, it will be truncated.

1. Access Historian Administrator (on page 823).

2. Select Tags.

Historian | 5 - Using Historian Administrator | 986

3. Select the tag for which you want to set a fixed string data type.

Historian | 5 - Using Historian Administrator | 987

4. Select Collection.

Historian | 5 - Using Historian Administrator | 988

5. In the Data Type box, select Fixed String.

6. Enter a value in bytes in the adjacent field.

The fixed string data type is set for the tag.

Plan for Data Recovery

Planning for data recovery means always having up-to-date backup files for important information that

you can call up and restore quickly when the need arises.

The .IHC file, which contains all configuration information, is an important file to back up. The .IHC file is

automatically backed up when, and only when, you back up the current archive .IHA file. With the .IHC file,

you can always restore the system configuration to the state it was in before the event occurred.

It is also important to backup the current online archive files *.IHA. If you restore the archive files, along

with the configuration, you can quickly pick up where you left off when the event occurred with a minimum

loss of data.

Historian | 5 - Using Historian Administrator | 989

By default, the .IHC backup path is the same as the archives path. The .IHC uses the following naming

convention: ComputerName_Config-Backup.ihc. If the default backup path is different than the

archives path, the .IHC file is copied to the backup folder with the standard .IHC naming convention:

ComputerName_Config.ihc.

Develop a Maintenance Plan

The primary goal of a maintenance plan is to maintain integrity of the data collected. If you are successful

in this regard, you will always be able to recover from a service interruption and continue operation with

minimal or no loss of data. Since you can never ensure 100% system uptime, you must frequently and

regularly back up current data and configuration files, and maintain non-current archive files in a read-only

state, following the guidelines for backup and routine maintenance.

Daily Maintenance

On a daily schedule, perform the following backup operations, unless you use ihArchiveBackup.exe to

back up archives automatically.

1. Use Historian Administrator to back up the current archive and most recent .IHA archived data file.

This preserves data collected up to this moment in time. You do not need to back up any read-only

archive files after they have been backed up once.

2. Use Windows Explorer to back up the .IHC file if it has been modified, unless it is backed up

automatically. This file contains all current configuration information (tag configuration, archive

configuration, and collector configuration). Using this file, you can restore the system configuration

after an unplanned shutdown.

Routine Maintenance: On a regular schedule, examine and analyze the system performance indicators

displayed on the System Statistics page of Historian Administrator as follows.

Table 75. System Statistics Performance Indicators

Field Recommended Action

Est. Days to Full If time is growing short, make sure that the server has sufficient unused stor

age capacity to open a new archive when the active one fills up. Verify that

the Create New Archives Automatically function is enabled. If it is disabled,

you must manually create a new archive before the active archive fills up.

Historian | 5 - Using Historian Administrator | 990

Table 75. System Statistics Performance Indicators (continued)

Field Recommended Action

Note:

If you do not have enough unused storage capacity, you may have

to enable the Overwrite Old Archives feature. Since this feature over

writes existing data, exercise caution in using it.

Consumption Rate of

Archive Storage

If the rate is excessively high, reduce the rate at which data flows into the sys

tem or increase the filtering applied to the data to lower the rate of archiv

ing. To reduce the collection rate, slow the polling rate on some or all tags.

To increase filtering, enable compression at the collector and/or archiver and

widen the compression deadbands.

Failed Writes If the display shows a significant number of failed writes, investigate the

cause and take corrective action to eliminate the malfunctions. Refer to the

DataArchiver-XX.log file or query the message database to determine

the tags for which failed writes occurred.

For example, trying to write values to a deleted archive causes failed writes.

Trying to archive data with a timestamp that precedes the start time of the

first archive, trying to write to a read-only archive, or trying to write a value

with a timestamp more than 15 minutes ahead of the current time on an

archiver will produce a failed write.

System Alerts Examine the messages and alerts and take appropriate action to correct any

problems.

On a regular schedule, examine and analyze the performance indicators displayed in the Performance

section.

Table 76. Collector Performance Indicators

Field Recommended Actions

Avg. Event Rate Chart Is the rate at a normal level? Does the chart exhibit an acceptable trend line?

If not, determine why. Balance polling schedules, adjust scan frequencies

(collection intervals), and modify compression deadbands to lighten load.

Compression Chart Is compression effectiveness acceptable?

Historian | 5 - Using Historian Administrator | 991

Table 76. Collector Performance Indicators (continued)

Field Recommended Actions

If not, verify that compression is enabled and then widen the deadbands to in

crease the effect of compression.

Overruns Chart If the value is anything other than zero, determine the severity and cause of

the problem and take corrective action.

Evaluate and Control Data Compression

You can achieve optimum performance in Historian by carefully controlling the volume of dynamic data it

collects and archives. You need enough information to tell you how the process is running, but you do not

need to collect and store redundant or non-varying data values that provide no useful information. More

information can be found in the Notes on Collector and Archive Compression reference.

Control Data Flow

You can control the amount of online or dynamic data the system handles at a given time by adjusting

certain system parameters. The general principle is to control the flow of data into the archive either by

adjusting the rate at which the collectors gather data or by adjusting the degree of filtering (compression)

the system applies to the data collected.

This manual describes the detailed procedures for executing these adjustments in the sections:

Configuring Archives, Configuring Tags, and Configuring Collectors.

Adjust the following parameters to reduce the rate of data flow into the server.

• Reduce the polling rate by increasing the collection interval for unsolicited and polled collection.

• Enable collector compression and optionally use compression timeout.

• Set the compression deadband on the collectors to a wider value.

• Use the collector compression timeout.

Adjust the following parameters to increase the filtering applied by the archiver in the server.

• Enable archive (trend) compression.

• Set the archive compression deadband to a wider value.

• Where possible, use the scaled data type and enable input scaling on selected tags.

• Where possible, select milliseconds or microseconds rather than seconds for time resolution.

Seconds is optimum for most common devices. This affects disk space.

Historian | 5 - Using Historian Administrator | 992

Evaluate Data Compression Performance

You can determine how effectively data compression is functioning at any given time by examining

the system statistics displayed on the System Statistics page of Historian Administrator, as shown in

Historian Administrator (System Statistics) Screen.

The compression field at the top of the page shows the current effect of archive compression. Values for

this parameter should typically range from 0 to 9%. If the value is zero, it indicates that compression is

either ineffective or turned off. If it shows a value other than zero, it indicates that archive compression is

operating and effective. The value itself indicates how well it is functioning. To increase the effect of data

compression, increase the value of archive compression deadband so that compression becomes more

active.

Handle Value Step Changes with Collector Data Compression

Note:

Individual tags can be configured to retrieve step value changes.

If you enable collector compression, the collector does not send values to the archiver any new input

values if the value remains within its compression deadband. Occasionally, after several sample intervals

inside the deadband, an input makes a rapid step change in value during a single sample interval. Since

there have been no new data points recorded for several intervals, an additional sample is stored one

interval before the step change with the last reported value to prevent this step change from being viewed

as a slow ramp in value. This value marks the end of the steady-state, non-changing value period, and

provides a data point from which to begin the step change in value.

The collector uses an algorithm that views the size of the step change and the number of intervals since

the last reported value to determine if a marker value is needed. The following is an example of the

algorithm:

BigDiff=abs(HI_EGU-LO_EGU)*(CompressionDeadbandPercent/(100.0*2.0))*4.0

If (Collector Compression is Enabled)

If (Elapsed time since LastReportedValue>=(SampleInterval * 5))

If (abs(CurrentValue-LastReportedValue) > BigDiff)

Write LastReportedValue,Timestamp=(CurrentTime-SampleInterval)

In the example above, if a new value was not reported for at least the last 4 sample intervals, and the

new input value is at least 4 deltas away from the old value (where a single delta is equal to half of the

compression deadband), then a marker value is written.

Historian | 5 - Using Historian Administrator | 993

Note:

These settings are also adjustable from the Registry. Please contact technical support for more

information.

Value Spike with Collector Compression

For example, a collector reads a value X once per second, with a compression deadband of 1.0. If the

value of X is 10.0 for a number of seconds starting at 0:00:00 and jumps to 20.0 at 0:00:10, the data

samples read would be:

Time X Value

0:00:00 10.0 (steady state value)

0:00:01 10.0

0:00:02 10.0

0:00:03 10.0

0:00:04 10.0

0:00:05 10.0

0:00:06 10.0

0:00:07 10.0

0:00:08 10.0

0:00:09 10.0

0:00:10 20.0 (new value after step change)

To increase efficiency, the straightforward compression would store only 2 of these 11 samples.

Time X Value

0:00:00 10.0 (steady state value)

0:00:10 20.0 (new value after step change)

However, without the marker value, if this data were to be put into a chart, it would look like the data value

ramped over 10 seconds from a value of 10.0 to 20.0, as shown in the following chart.

https://digitalsupport.ge.com/

Historian | 5 - Using Historian Administrator | 994

The addition of a marker value to the data being stored results in the following data values:

Time X Value

0:00:00 10.0 (steady state value)

0:00:09 10.0 (inserted Marker value)

0:00:10 20.0 (new value after step change)

If you chart this data, the resulting trend accurately reflects the raw data and likely real world values

during the time period as shown in the following chart.

Historian | 5 - Using Historian Administrator | 995

Reviewing System Alerts and Messages

You can examine system alerts by scrolling through the Alerts panel of Historian Administrator System

Statistics page or by examining the Message Search page for more detail. Refer to Searching for

Messages (on page 850) for detailed instructions. You can diagnose most operating problems by

examining the archiver LOG file.

You may also find the Windows Event Viewer to be useful in diagnosing a problem. To open the Event

Viewer, use the following procedure.

1. Launch search.

2. Type eventvwr.msc and select OK.

The Event Viewer window appears.

3. Highlight an item.

A window appears with an explanation of the event.

4. Select Previous or Next to step through the messages.

Monitor Historian Health and Status

Historian provides extensive functionality to determine the health and status of both the data archiver and

the collectors. You can access this information through Historian Administrator or set up your Historian

Historian | 5 - Using Historian Administrator | 996

system to automatically alert you to any Historian change. The following sections describe procedures

and hints for monitoring your Historian system, including:

• Monitor Operating System Event Files

• Monitor Collector Status Tags

• Monitor Historian Subscriptions

• Use Collector Status Tags

• Subscribe to Historian Alerts and Messages

• Create Subscriptions

Monitor Operating System Event Files

You can view the operating system event files through the Event Viewer. For more information on

accessing the Event Viewer, refer to Review System Alerts and Messages (on page 995). The operating

system event files contain the Historian Status messages found in the application log. Entries in that

file are similar to those found in the Alerts panel, but may contain multiple entries for certain items.

Multiple entries occur as a result of distributing the components of Historian. Each component logs its

critical status changes to the local event log. For example, a collector and the data archive will both log a

collector going off-line.

Monitor Collector Status Tags

The iFIX and OPC Collectors contain three status fields that you can write back to the data source for

monitoring. Additionally, the iFIX Collectors allow you to display and alarm on the following three status

fields.

• Rate Output - The number of events per minute the collector processes.

• Status Output - The status of the Collector as either Running or Stopped.

• Heartbeat - Allows the data source to verify that the collector is working. The collector writes a

value of one to this address once a minute.

Other collectors allow you to define tags to record the status of the collector. These tags give an

indication of the health of a collector, not the health of the Historian The following figure displays the iFIX

collector status tags.

Historian | 5 - Using Historian Administrator | 997

The three tags referenced correspond to tag names within the SCADA node FIX.

• NodeName.HIST_RATE.F_CV – An AI block. The F_CV field gives the number of events per minute

that the collector is reporting to the server.

• NodeName.HIST_STATUS.A_CV – A text block. The A_CV field displays a status such as Running

or Stopped depending on the status on the collector. This field does not reflect whether or not the

Collector program is running.

• NodeName.HIST_HEARTBEAT.F_CV – A digital alarm block that will alarm if the F_CV field remains

OPEN for more than 60 seconds. The iFIX collector closes the F_CV field every 60 seconds. You

must use a pro- gram block in conjunction with this block to automatically OPEN the block if it

has been CLOSED. This provides for a momentary reset of the 60 second alarm timeout. Unlike

the HIST_STATUS block that only updates the Collector status if the collection stops, the HIST_

HEARTBEAT detects that the collection has stopped or that the Collector application is no longer

running.

Monitor Historian Subscriptions

Certain objects in the Historian SDK allow you to create subscriptions that fire an event back to the

calling application whenever the object's status updates. These subscriptions allow for exception-based

monitoring of the Historian status without resorting to intensive polling of the server.

The following table displays the objects and their supported subscription events:

Table 77. Historian Objects with Subscription Events

Object Subscription Events

Messages Object AlertReceived and MessageReceived Events

Tags Object ChangeReceived Event

Data Object CurrentDataReceived Event

Archives Object StatusReceived Event

Collectors Object StatusReceived Event

Subscribing to any of these Object's events allows you to receive direct notification of status changes. For

example, using iFIX scripting, you could route this notification to any alarm queue in iFIX.

Historian | 5 - Using Historian Administrator | 998

Subscribe to Historian Alerts and Messages

You can obtain a complete picture of the Historian Server's status by monitoring the server's Alerts and

Messages. Additionally, if you are using iFIX with Historian, you can capture these subscriptions and

forward them to iFIX alarm queues to ensure operator notification.

You can also use scripting in iFIX to subscribe to the Historian message queues using VBA. If you write a

script as part of an iFIX picture, you will need to either keep the picture with the scripts running at all times

or run the scripts in the FIXBackground Server application.

Creating Subscriptions in iFIX

To subscribe to messages or alerts in Historian, you must reference the SDK from within the VBA project.

To access the References window, shown in the following figure, use the Tools menu in the iFIX VBA

Editor.

Once you reference a VBA project to the Historian SDK, you must define two module level objects: a

Server Object and a Messages Object. Declare these Objects to remain in scope for the duration that the

subscription is active.

Note:

You must declare the Messages Object using the WithEvents keyword. This keyword is only valid

at the module or class level.

Historian | 5 - Using Historian Administrator | 999

Typically, the Server and Messages Object are declared as private module level objects. Subscriptions

are made during the module initialization or upon loading the method. You can subscribe to Alerts or

Messages using either the SubscribeAlerts or SubscribeMessages Method of the Messages Object.

Specify Topics

When subscribing to Historian Messages you must specify which topics you are subscribing to. There are

six topics.

• Message Topics: Configuration Audit, Connections, General

• Alert Topics: Performance, Security, ServiceControl

Once you make the subscription, the AlertReceived or MessagesReceived Event will fire when a new

message is created on the Historian Server. The topic of the message determines which event fires.

Additionally, the event receives a copy of the Message or Alert Object properties listed as follows:

• MessageNumber – The NLS string number.

• MessageString – Translated string, including substitutions for time stamp, user, or tag name.

• Substitutions – A collection of substitutions used to make the message string.

• TimeStamp – The time the message was created.

• Topic – The topic number of the message.

• TopicName – The string topic name of the message.

• UserName – The user name for the message.

You can also send Alerts and Messages to the iFIX Operator Message alarm queue using the

SendOperatorMessage method of the System object. This method will send the alerts and messages to

all alarm queues, but NOT the Alarm Summary queue. To send a message that will appear on an alarm

summary, send the message to the Alarm Extension field of a digital alarm block and toggle the alarm

state.

Monitor Historian Performance

Historian provides a variety of counters and tags that can be used to monitor how well the Historian

components are performing. You can use performance tags or counters to determine the resource usage

on the computer that runs the Historian application. Performance counters are also useful when Historian

Administrator is not installed or cannot connect.

Historian | 5 - Using Historian Administrator | 1000

• Use performance tags to view information in an Excel report or SDK program, possibly along with

other Historian tags.

• Use performance counters to view information using Windows Performance monitor, possibly

along with non-Historian counter information.

Like any Windows performance counter, you must add the counters for collection to view history.

Performance tags are always being collected and you can view past data any time.

Performance counters are updated in real time. Performance tags are updated once per minute with the

activity over the last minute.

Performance counters contain more information than tags.

Any counter can be collected to a tag using the Historian Windows Performance Collector. Those tags will

count against your licensed tag count.

For more information, refer to the following sections:

• Historian Server Performance Tags

• Historian Server Performance Counters

Historian Server Performance Tags

The following table provides information about the various Historian Server Performance tags.

Table 78. Server Performance Tags

Tag Name Description

PerfTag_CompressionRatio Specifies the current effect of archive data compression.

PerfTag_MinimumCompressionRatio Specifies the minimum compression ratio.

PerfTag_MaximumCompressionRatio Specifies the maximum compression ratio.

PerfTag_TotalEvents Specifies the total number of data samples reported to the

Historian archive from all sources.

PerfTag_TotalOutOfOrder Specifies the total out of order data samples.

PerfTag_AverageEventRate Specifies the average number of data samples per minute

sent to archiver from all sources

PerfTag_MinimumEventRate Specifies the minimum number of data samples per minute

sent to archiver from all sources.

Historian | 5 - Using Historian Administrator | 1001

Table 78. Server Performance Tags (continued)

Tag Name Description

PerfTag_MaximumEventRate Specifies the maximum number of data samples per minute

sent to archiver from all sources.

PerfTag_WriteCacheHitRatio Specifies the hit ratio of the write cache in percent of the total

writes.

PerfTag_TotalFailedWrites Specifies the total number of samples since startup that

failed to be written.

PerfTag_TotalMessages Specifies the total messages (for example, connection or au

dit messages) received by the archiver since startup

PerfTag_TotalAlerts Specifies the total number of alerts received by the data

archiver since startup.

PerfTag_FreeSpace Indicates the free disk space left in the current archive.

PerfTag_SpaceConsumptionRate Specifies an archive disk space consumption rate in

megabytes per day.

PerfTag_PredictedDaysToFull Indicates the approximate number of days required for an

archive to fill.

PerfTag_MemoryUsage Specifies the amount of RAM used by the Data Archiver.

PerfTag_MemoryVMSize Specifies the amount of virtual memory used by the Data

Archiver.

PerfTag_TotalAlarms Specifies the total number of alarms received by the Data

Archiver since starting up.

PerfTag_AverageAlarmRate Specifies the average alarm rate in alarms per minute re

ceived by Data Archiver.

PerfTag_TotalFailedAlarms Specifies the total number of alarms since startup that failed

to be written.

Perftag_ReadQueueSize Specifies the total number of messages present in the Read

queue.

Perftag_AverageReadRate Specifies the total number of data samples per minute re

turned from the Data Archiver for all read requests.

Historian | 5 - Using Historian Administrator | 1002

Table 78. Server Performance Tags (continued)

Tag Name Description

Perftag_ReadQueuePushRate Specifies the number of read requests per minute that came

into the archiver from all clients. A read request can return

multiple data samples.

Perftag_WriteQueuePushRate Specifies the number of write requests per minute that came

into the archiver from all clients. A write request can contain

multiple data samples.

View Data Trends for Tags

1. On the Tag Maintenance page, select a tag.

2. Right-select the tag and select Trend.

The trend for the selected tag displays.

Add a Performance Tag

1. In the Tag Maintenance page, select the Tags link on the toolbar.

The Tag Maintenance page appears.

2. Select the Add Tag Manually link on the toolbar.

The Add Tag window appears.

3. Enter the performance tag name.

4. Select OK

The Tag Maintenance page displays with the specified tag properties.

Historian Collector Performance Counters

The following table provides information about collector-specific performance counters.

Note:

Replace the placeholder value %CollectorName% with the actual name of the collector.

Table 79. Collector Performance Counters

Counter Name Description

PerfTag_%CollectorName%_InterfaceStatus Specifies the status of an interface.

Historian | 5 - Using Historian Administrator | 1003

Table 79. Collector Performance Counters (continued)

Counter Name Description

PerfTag_%CollectorName%_InterfaceTotalEventsCol

lected

Specifies the total number of events collected by

an interface.

PerfTag_%CollectorName%_InterfaceTotalEventsRe

ported

Specifies the total number of events reported by an

interface.

PerfTag_%CollectorName%_InterfaceOutOfOrder

Events

Specifies the total out of order events.

PerfTag_%CollectorName%_InterfaceAverageEvent

Rate

Specifies the average event rate of an interface.

PerfTag_%CollectorName%_InterfaceMinimumEvent

Rate

Specifies the minimum event rate of an interface.

PerfTag_%CollectorName%_InterfaceMaximumEven

tRate

Specifies the maximum event rate of an interface.

PerfTag_%CollectorName%_InterfaceOverruns Specifies the interface overruns.

PerfTag_%CollectorName%_InterfaceCompression Specifies the compression of an interface.

PerfTag_%CollectorName%_InterfaceOverrunsPer

cent

Specifies the number of overruns in relation to the

total events collected since startup.

Historian Server Performance Counters

The Windows performance counters are exposed as objects with counters. In the tables below, you can

see each counter and the object to which it belongs.

Each object has one or more instances as shown in the Windows Performance Monitor. Counters belong

to a specific instance of an object. For example, there is an instance of the Historian Archive object for

each IHA in the system.

There is also a LatestArchive instance for each data store. The LatestArchive instance lets you collect

the information from the newest archive even as archives become full and new archives are created. The

LatestArchive is the newest archive receiving data, not the prepared archive.

To monitor performance counters, you must add the performance counter tags manually.

Historian | 5 - Using Historian Administrator | 1004

Table 80. Historian Archive Object

Archive Counter Description

Cache Priority Relative priority of items from the archive stored to the Windows

Cache. A higher priority means the item is more likely to stay in

cache. Disk Read Time (usec) Duration of last disk read in microsec

onds.

Disk Read Time (usec) Duration of last disk read in microseconds.

Disk Read Time Max (usec) Maximum duration across all disk reads from the archive in mi

croseconds.

Disk Reads Number of disk reads from archive.

Disk Write Time (usec) Time of last disk write in microseconds.

Disk Write Time Max (usec) Maximum duration of all disk writes to the archive in microseconds.

Disk Writes Number of disk writes to archive.

File Size (MB) Size of the archive file in MB.

Read Calls Number of read calls to the archive since startup.

Read Rate (Calls/min) Number of read calls to the archive per minute.

Write Count Number of data samples written to archive since startup.

Write Count Rate Number of data samples written to archive per minute.

Writes Compressed Number of data samples since startup that were compressed writes

to the archive.

Writes Expensive Number of data samples since startup that were expensive or slow.

Writes Failed Number of data samples that were failed writes to the archive.

Writes OutofOrder Number of data samples that were out of time order writes to the

archive.

Table 81. Historian Cache Object

Counter Description

Hit Percentage Hit rate percentage (0-100) for successful data retrieval calls to the

cache. Higher numbers represent more efficiency.

Historian | 5 - Using Historian Administrator | 1005

Table 81. Historian Cache Object (continued)

Counter Description

Hits Number of hits in the cache since startup. To reset the count, restart

the Archiver.

Misses Number of misses in the cache.

Num Adds Total number objects added to cache.

Num Deletes Total number of objects deleted from cache.

Num High Prio Objs Number high priority objects available for deletion.

Num Low Prio Objs Number of low priority objects available for deletion.

Num Med Prio Objs Number of medium priority objects available for deletion.

Obj Count Number of objects in the cache.

Size (KB) Size of cache in KB.

Table 82. Historian DataStores Object

Counter Description

Compression Ratio (Max) Archive compression ratio for this data store.

Compression Ratio (Max) Maximum archive compression ratio for the data store.

Compression Ratio (Min) Minimum archive compression ratio for the data store.

Messages (Total Alerts) Total alerts since startup

Messages (Total) Total messages since startup.

Read Calls Number of read calls to the data store.

Read Rate (Calls/min) Average read rate across all archives in the data store. (Read Calls/

Minute)

Read Samp Rate (Samp/min) Average read rate across all archives in the data store. (Sam

ples/Minute)

Space (Consumption MB/day) Disk space consumption rate. (MB/day)

Space (Days To Full) Number of days until current archive is full.

Space (Free in MB) Free disk space in the current archive.

Historian | 5 - Using Historian Administrator | 1006

Table 82. Historian DataStores Object (continued)

Counter Description

Write Rate (Average) Average event rate across all archives. (Samples/Minute)

Write Rate (Max) Maximum event rate across all archives. (Samples/Minute)

Write Rate (Min) Minimum event rate across all archives. (Samples/Minute)

Writes (Cache Hit Ratio) Write Cache hit ratio.

Writes (Compressed) Total number of compressed data samples since startup.

Writes (Total Failed) Total failed data sample writes since startup.

Writes (Total OutOfOrder) Total out of order data samples since startup.

Writes (Total) Total data samples across all archives since startup.

Table 83. Historian Overview Object

Counter Description

Compression Ratio (Average) Average archive compression ratio of all data stores.

Compression Ratio (Max) Average maximum compression ratio of all data stores.

Compression Ratio (Min) Average minimum compression ratio of all data stores.

Memory Usage (KB) Private bytes memory usage for Data Archiver.

Memory VM Size (KB) Virtual Bytes memory usage for Data Archiver.

Messages (Total Alerts) Sum of total alerts of all data stores since startup.

Messages (Total) Sum of total messages of all data stores since startup.

Read Rate (Calls/min) Sum of all average read rates of all data stores. (Samples/Minute)

Read Samp Rate (Samp/min) Average read rate across all archives. (Samples/Minute)

Space (Consumption MB/day) Sum of space consumption rate (MB/day) of all data stores.

Space (Days To Full) Minimum number of days until current archive is full for all data

stores.

Space (Free in MB) Sum of all free space in the current archive of all data stores.

Write Rate (Average) Sum of all average event rates of all data stores. (Samples/Minute)

Write Rate (Max) Sum of all maximum event rates of all data stores.

Historian | 5 - Using Historian Administrator | 1007

Table 83. Historian Overview Object (continued)

Counter Description

Write Rate (Min) Sum of all minimum event rates of all data stores.

Writes (Cache Hit Ratio) Average write Cache hit ratio of all data stores.

Writes (Compressed) Sum of total number of compressed data samples of all data stores.

Writes (Expensive) Sum of total number of expensive writes data samples of all data

stores. One of the reasons for expensive writes is out-of-order data.

Writes (Total Failed) Sum of total failed data sample writes of all data stores.

Writes (Total OutOfOrder) Sum of total out of order data samples of all data stores.

Writes (Total) Sum of total data samples across all archives of all data stores.

Table 84. Historian Queue Object

Counter Description

ClientQueues with Msgs The number of client queues with messages current on them. A low

er number means all clients are up to date. A higher number means

that the archiver is not up to date with incoming network traffic

Count (Max) Maximum number of messages on the queue. (memory and disk)

Count (Total) Number of messages on the queue. (memory and disk)

Disk Buf Msg Reads Number of messages read from the disk buffer file.

Disk Buf Msg Writes Number of messages written to the disk buffer file.

Processed Count Number of messages processed from the queue since startup.

Processed Rate (msg/min) Recent rate at which messages have been processed for the queue.

Processing Time (Ave) Average time in milliseconds to process a message.

Processing Time (Last) Time in milliseconds to process the last message.

Processing Time (Max) Maximum time in milliseconds to process a message.

Recv Count (msgs) Number of messages received into the queue.

Recv Rate (msgs/min) Recent rate at which messages have been received for the queue.

Size Kb (Mem&Disk Max) Max size of messages in Kb on the queue. (memory and disk).

Historian | 5 - Using Historian Administrator | 1008

Table 84. Historian Queue Object (continued)

Counter Description

Size Kb (Mem&Disk) Size of messages in Kb on the queue. (memory and disk)

Size Kb (Mem&Disk) Size of messages in Kb on the queue. (memory only)

Threads Number of worker threads allocated to process this queue. This is

the number of created threads but they may be idle.

Threads Working Number of queue processing worker threads currently processing

messages.

Time in Queue (Ave) Average time in milliseconds that a message was in the queue, wait

ing to be processed.

Time in Queue (Last) Time in milliseconds that the last message was in the queue, waiting

to be processed.

Time in Queue (Max) Maximum time in milliseconds that a message was in the queue,

waiting to be processed.

Table 85. Historian Config Counters

Counter Description

File Size The size of the Configuration File in MB

Hist Tags(Actual) Number of the Historical tags in the system

Hist Tags (Licensed) Total licensed Historian tags.

Hist Tags (Used) Effective number of Historical Licensed Tags in the system. Can be

greater than the number of tags because some tags count as more

than one Licensed Tag.

Hist Tags (UsedByArrays) Effective number of Historical Licensed Array Tags in the system

(Not the raw tag count, the effective licensed count).

Hist Tags (UsedByUserDef) Effective number of Historical Licensed User Defined Tags in the

system (Not the raw tag count, the effective licensed count).

Number of Collectors Number of collectors defined on the system.

Number of EnumSets Number of enumerated sets defined on the system.

Number of UserDefTypes Number of user defined types defined on the system.

Historian | 5 - Using Historian Administrator | 1009

Table 85. Historian Config Counters (continued)

Counter Description

SCADA Tags (Actual) Number of SCADA Tags in the system.

SCADA Tags (Licensed) Total Licensed SCADA tags.

SCADA Tags (Used) Effective number of SCADA Licensed Tags in the system. Can be

greater than the number of tags because some tags count as more

than one Licensed Tag.

SCADA Tags (UsedByArrays) Effective number of SCADA Licensed Array Tags in the system (Not

the raw tag count, the effective licensed count).

SCADA Tags (UsedByUserDef) Effective number of SCADA Licensed User Defined Tags in the sys

tem (Not the raw tag count, the effective licensed count).

Troubleshooting

Solve Minor Operating Problems

The following is a table of troubleshooting tips for solving minor operating problems with Historian.

Issue Suggested Action

After setting the system clock

back, browsing the collector from

Historian Administrator produces

a Visual Basic script error.

Delete temporary Internet files and restart Internet Explorer.

With the Historian Administrator,

switching usernames causes the

system to reject the login if the

User must change password at

next login option is selected at

time of user creation.

New users with this setting must log in to the appropriate Windows

operating system at least once. If the login attempt fails, run Histo

rian Administrator as an administrator, and log in with a new user

name and password.

A long error message from the

File collector does not fit within

the message field in the Histori

an File collector console window,

Open the File collector log file to see the complete text of the error

message.

Historian | 5 - Using Historian Administrator | 1010

Issue Suggested Action

resulting a partial display of the

message.

Excel Sample Reports do not dis

play data.

When opening a Sample Excel report, you may receive a message

prompting you to update all linked information in the workbook (Yes)

or keep the existing information (No). It is recommended that you

select No and keep the existing information. The links will be auto

matically updated for your worksheet. Save your worksheet after the

links have been updated.

Need to connect an Historian

Server to an Historian Client

through a firewall.

Open port 14000 to enable client to server connection through a fire

wall.

Receiving archive offline failed

writes messages.

These occur when the timestamps of data being sent to the archiv

er are not in the valid time range of any online archives. For example,

failed writes occur when the timestamps appear before the oldest

archive, the archive is offline, or timestamps are more than 15 min

utes past the current time on another archiver.

FAQ: Run a Collector as a Service

The following list is frequently asked questions about running a collector as a service.

Can all collectors be run as a Windows service? If not, which ones cannot?

The OPC Collector, File collector, Simulation collector, Calculation collector, and Server-to-

Server collector can be run as services. The iFIX collector run as a background task and

cannot be run as a service.

Can all collectors be run as an application? If not, which ones cannot?

All collectors can run as applications (console programs). This includes the Simulation

Collector. To make a collector run as a console program, pass a RUNASDOS command line

parameter.

What does "running as a service" mean?

It means that the collector appears in the Control Panel list of services. It can run at system

boot or be run with a different username and password from the currently logged-in user.

How can the iFIX collector be set up to run when no one is logged in?

Historian | 5 - Using Historian Administrator | 1011

It can be set up to run without a user login by adding it to the iFIX SCU task list as a

background task and by configuring iFIX to continue running after logoff in local startup.

How do you shut down a collector running as console application?

Collectors started as console applications should be shut down by typing S at the command

prompt in the DOS window and pressing Enter.

Can a collector be run as a Windows service and then stopped and restarted?

Yes. Collectors that can run as a service can be stopped and started in Control Panel

Services. They can be paused/resumed through Historian Administrator.

What is the difference between running a collector to start as a service on boot up using the

Services applet in Control Panel versus running iFIX as a service, which starts the collector through

the startup task configuration in the SCU?

The collectors that can run as a service would not be started from iFIX. They can be started

from the Control Panel start at system boot. Although you cannot run an iFIX collector as a

service, you can log off and on while it is running.

Changing the Base Name of Automatically Created Archives

When the IHC file is created, it stores the name of the server inside the IHC file. Automatically created

archives use that server name from the IHC file as a base name, not the Base Archive Name configured in

Historian Administrator.

When you manually create an archive, however, the archive uses the Base Archive Name from Historian

Administrator.

If you move an IHC file from one machine to another, you may want to change the default base archive

name to match the new server. To change the default Base Archive Name, create a new .IHC file.

This topic describes how to change the base name of an archive using Excel Add-in. You can also change

the base name using Configuration Hub (on page 441).

1. Export your tags using the Excel Add-in.

The Fields to Export window appears.

2. Select all tag attributes and select OK.

The data is exported to a new Excel worksheet.

3. Examine the Comments column in the new worksheet. To ensure a clean import, the Comments

column must be completely full or completely empty. If no comments are found, this column must

Historian | 5 - Using Historian Administrator | 1012

be deleted to ensure a clean import. If only some comments are missing, the missing fields must

be filled out with comments.

4. Save the Excel spreadsheet.

5. Stop the Data Archiver service.

6. Open the default archive path in Windows Explorer and rename the .IHC file.

Rename MyMachine.IHC to MyMachine.OLD.

7. Restart the Data Archiver service.

A new, blank IHC file is created for the machine.

8. Import your tags to this new configuration using the Excel Add-In.

Configuring the Inactive Timeout Value

Historian Administrator offers a configurable timeout. This configurable timeout determines how long

Historian Administrator will wait before severing its connection to an inactive Historian archive. The

default timeout value is 90 seconds.

1. Assuming Historian is already open, double-click on the Main button to open Historian

Administrator Login window.

2. Select the Browse for Server button.

3. Select the Historian server you wish to configure from the Servers list.

4. In the Connection Timeout field, select the Use Value option and enter a timeout value in seconds.

Configuring Deep Data Tree Warnings

Reading and writing to deep trees with large time ranges can be very inefficient. Create a

MaxIndexRecursionDepth registry key to configure the depth at which the archiver will warn about deep

data trees.

1. From the Start menu, select Run, and then enter Regedit.

2. Open the following key folder: HKEY_LOCAL_MACHINE\SOFTWARE\Intellution, Inc.

\iHistorian\Services\DataArchiver

3. Create a value as DWORD called MaxIndexRecursionDepth.

4. Set MaxIndexRecursionDepth to a number higher or lower than the default value of 900.

To get more warning messages, set a smaller number if you have an archive which is 10 to 100

deep.

5. Select OK.

6. Close the Registry Editor.

7. Restart the archiver for the changes to take effect.

Historian | 5 - Using Historian Administrator | 1013

Control Data Flow Speeds

Configure buffer flush speed with the BufferFlushMultiplier key

Store-and-forward buffering is a key feature of Historian collectors. It prevents data loss during planned or

unplanned network outages between a collector and Historian server.

If the collector is disconnected from the archiver for several hours or days, many megabytes of data can

be buffered and must be delivered by the collector to the Data Archiver upon reconnect. Since all data is

sent from the collector to the archiver in time order, the design goal has been to catch up to real time as

quickly as possible by sending data as fast as possible.

If this is not the desired behavior because you want to limit the network load on a slow, shared Wide Area

Network (WAN) or you want to limit the CPU load on the Data Archiver caused by the incoming data, you

can configure the collector to throttle the data it is sending. Throttling Store and Forward does not affect

the Alarms and Events collector.

Important:

Because data is sent in time order (oldest first), you will not be able to retrieve current historical

data until the throttled flush is complete.

To configure the buffer flush speed using Configuration Hub:

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Systems.

A list of systems appears in the main section.

3. Right-click the system associated with the collector whose buffer flush speed you want to

configure, and then select Advanced Settings.

The advanced settings of the system appear, displaying the Server section by default.

4. Expand Collector, and then select the collector whose settings you want to configure.

The fields specific to the selected collector appear.

5. In the BUFFER FLUSH MULTIPLIER field, select the multiplier to the buffer flow speed while using

the store-and-forward feature:

Historian | 5 - Using Historian Administrator | 1014

◦ 0: Select this option if you want to disable throttling.

◦ 1: Select this option if you want normal speed.

◦ 2: Select this option if you want the collector to never send data faster than twice the normal

speed.

6. Select Save.

A message appears, asking you whether you want to save and restart the collector as well.

7. If you want to save your changes and restart the collector as well, select Save and Restart. If you

want to just save your changes, select Save. In that case, you must restart the collector later for the

changes to reflect.

Your changes are saved. If you have selected Save and Restart, the collector is restarted.

To configure the buffer flush speed without using Configuration Hub: Configuring the throttle without

using Configuration Hub requires modifying a registry key, so it should be done with caution.

A DWORD registry key called BufferFlushMultiplier is present under each collector. For Windows 32-bit, it

is located under HKey_Local_Machine\Software\Intellution, Inc.\iHistorian\Services

\YOUR_COLLECTOR_TYPE. For Windows 64-bit, it is located under HKEY_LOCAL_MACHINE\SOFTWARE

\Wow6432Node\Intellution, Inc.\iHistorian\Services\YOUR_COLLECTOR_TYPE.

• To slow the store and forward throttling, set the value of BufferFlushMultiplier to 2. The 2 means

that the collector should never send data at more than 2 times its normal rate to limit network and

CPU load.

• To disable throttling, set the value of BufferFlushMultiplier to 0 or delete the registry key.

Control archiver speed using Configuration Hub:

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Systems.

A list of systems appears in the main section.

3. Right-click the system associated with the collector whose archive speed you want to configure,

and then select Advanced Settings.

The advanced settings of the system appear, displaying the Server section by default.

4. Expand Collector, and then select the collector whose settings you want to configure.

The fields specific to the selected collector appear.

Historian | 5 - Using Historian Administrator | 1015

5. In the NUM INTERVALS FLUSH field, specify how quickly you want the collector to send data to

Data Archiver. The value you enter in this field is multiplied by 100 milliseconds. For example, if you

enter 5, the collector sends data to Data Archiver every 500 milliseconds. We recommend that you

enter 5.

6. Select Save.

A message appears, asking you whether you want to save and restart the collector as well.

7. If you want to save your changes and restart the collector as well, select Save and Restart. If you

want to just save your changes, select Save. In that case, you must restart the collector later for the

changes to reflect.

Your changes are saved. If you have selected Save and Restart, the collector is restarted.

Configuring archiver speed without using Configuration Hub: The NumIntervalsFlush registry key

controls how quickly the collector sends data to the archiver. The collector collects from the data source

at the user configured rate, but for efficiency it bundles data samples in a single write to archive. By

default, the collector will send data to archiver every 2 seconds or 10,000 samples, whichever happens

first. Most often, it sends every 2 seconds because the collector is not collecting that many samples that

fast.

If you need collected data sent to archiver right away, so that it is available for retrieval or for calculations,

use the NumIntervalsFlush registry key.

You will have to create the registry key, as it does not exist by default. Create a DWORD value

called NumIntervalsFlush under the collector, in the same place as HISTORIANNODENAME and

INTERFACENAME. On a 64-bit Windows Operating System, all 32-bit component-related registry keys

(such as collectors, Client Tools, and APIs) will be located under HKEY_LOCAL_MACHINE\SOFTWARE

\Wow6432Node\Intellution, Inc.\iHistorian\.

The preferred setting for Num Intervals Before Flush is 5. The intervals are 100 millisecond increments.

The default of 20 means (20 * 100msec) = 2000 msec = 2 seconds. Set the value to 5 and the collector

will send every 500msec.

Note:

Changes to the registry key do not take effect until the collector is restarted. This setting affects

the sending of data whether it was collected polled or unsolicited.

Historian | 5 - Using Historian Administrator | 1016

Configure Inactive Server Reset Timeout

You can configure inactive server connections to reset automatically with the SocketRecvTimeOut registry

key. SocketRecvTimeOut configures a timeout that forces the connection to drop and re-establish if no

data is received during the specified time. Consider this configuration when your collector goes to status

Unknown for long periods of time even when the connection between collector and archiver is good.

Create a DWORD registry key SocketRecvTimeOut under the collector where the problem is occurring and

set to a value greater than 90 seconds. A typical value would be 300 seconds. If no bytes are received by

the collector for 300 seconds, then the network connection will be closed and re-established.

Historian Errors and Message Codes

When you review errors and messages, for example, in an Historian archiver log file, full descriptions are

usually included. If a number appears instead of a description, use the following table to determine the

meaning of the error or message.

Table 86. Historian Error Codes and Messages

Number Description

-32 Operation not permitted

-31 The requested data store was not found

-30 The requested Enumerated Set was not found

-29 A supplied argument is outside the valid range

-28 A supplied argument is NULL

-27 A supplied argument is invalid

-26 Alarms and Events subsystem unreachable

-25 Attempted data delete outside allowed modification interval

-24 Data Retrieval Count Exceeded

-23 Invalid Server Version

-22 Backup Exceeded Space

-21 Calculation Circular Reference

-20 Not Licensed

-19 Duplicate Interface

Historian | 5 - Using Historian Administrator | 1017

Table 86. Historian Error Codes and Messages (continued)

Number Description

-18 No Value

-17 License: Invalid License DLL

-16 License: Too Many Users

-15 License: Too Many Tags

-14 Invalid Tagname

-13 Write No Archive Available

-12 Write Outside Active

-11 Archive Read Only

-10 Write Archive Offline

-9 Write in Future

-8 Access Denied

-7 Not Valid User

-6 Duplicate Data

-5 Not Supported

-4 Interface Not Found

-3 Not Connected

-2 API Timeout

-1 FAILED

0 OK

0 Undefined

1 Connection Successful

2 Connection Unsuccessful

3 Audited Write

4 Audited Write Update

5 Audited Write Out Of Order

Historian | 5 - Using Historian Administrator | 1018

Table 86. Historian Error Codes and Messages (continued)

Number Description

6 Audited Write Update Out Of Order

7 Message On Update

8 Message On Update Out Of Order

9 License Library Function Missing

10 License Library Missing

11 Failed Write

12 Tag Added

13 Tag Modified

14 Tag Deleted

15 Interface Added

16 Interface Modified

17 Interface Deleted

18 Archive Added

19 Archive Add Failure Time Overlap

20 Archive Deleted

21 Archive Overwritten

22 Archive Backup Began

23 Archive Backup Failed

24 Archive Backup Completed

25 Archive Five Days Till Closing

26 Archive Three Days Till Closing

27 Archive One Day Till Closing

28 License Key Removed

29 License Max Tags Exceeded

30 License Max Users Exceeded

Historian | 5 - Using Historian Administrator | 1019

Table 86. Historian Error Codes and Messages (continued)

Number Description

31 License Max Tags Exceeded Shutdown

32 License Max Users Exceeded Shutdown

33 License Library Invalid

34 Buffer Normal

35 Buffer On Disk

36 Buffer Out Of Space

37 Incomplete Shutdown

38 Archive Modified

39 License Expired

40 Buffer Could Not Create

41 Archiver Startup

42 Archiver Shutdown

43 Audit Status Changed

44 Option Modified

45 Write Processing Stopped

46 Write Processing Resumed

47 Interface Status Unknown

48 Archive Closed

49 Interface Stopped

50 Interface Started

Determining the Version of the Historian Server

The version of the Historian Server that Historian Administrator is connected to appears in the About

window. If the version number is "Unknown", you are connected to an Historian v1.0 Server.

1. Open Historian Administrator.

2. Select the About link.

Historian | 5 - Using Historian Administrator | 1020

The About Historian window appears.

3. Note the version number that appear in Versions section of the About Historian window, as shown

in the following figure.

Return a List of Valid Field Options

This topic describes how to determine the fields that are available for an SDK object.

1. Open Microsoft Visual Basic for Applications (VBA).

2. Ensure that you have selected the Historian Software Kit reference in the References window.

3. Select the Object Browser from the View menu.

4. Select Historian_SDK from the Library drop-down list.

5. Select an item in the Classes list to generate a list of valid fields for that item.

when you select ihCollectionType, you see a list of fields that includes Polled and Unsolicited.

Scheduled Software Performance Impact

Running continuous backup or disk scan software applications such as anti-virus scans, automated

backup software, or any other software that accesses disk drives to a high degree may affect the overall

performance of your Historian System by competing with Historian for disk resources.

If your Historian System requires that you need an extremely high throughput (20k/sec or greater),

consider disabling the scheduled software execution.

Intellution 7.x Drivers as OPC Servers

The ABR and the ABC drivers are OPC v2.0 compliant. All other Intellution 7.x drivers, including the MB1,

support OPC v1.0 compliance.

Historian | 5 - Using Historian Administrator | 1021

Version 7.x drivers also comply with the OLE for Process Control (OPC) v1.0a standard. Any 1.0-compliant

OPC client application can access process hardware data through the I/O Server.

The ABC I/O Server also supports the v2.0 standard and with the OPC Alarms and Events v1.0

specification. Refer to Using OLE for Process Control (OPC) Functionality to learn more about the

advantages of OPC.

Troubleshooting Failed Logins

The following is a table of error messages, possible causes, and recommended corrective actions for

failed logins sometimes experienced with Historian Administrator.

Error Message Suggested Action

User does not have authority to

read messages.

The user is NOT a member of iH Readers nor a member of the iH Se

curity Admins security groups. To access the Main Page, the user

must have read access.

[07/18/2001 03:00:46.071 PM]

USER: DOMAIN1\administra

tor TOPIC: Security MSG: DO

MAIN1\administrator(adminis

trator) unsuccessfully connect

ed at 07/18/2001 03:00:46.071

PM. Not able to establish session

to the server from a remote Web-

based Clients. Page cannot be

displayed.

Error in Internet Explorer. Check network connection or IIS on the

server.

[07/17/2001 07:56:06.950 PM]

USER: DataArchiver TOPIC: Se

curity MSG: DataArchiver(Data

Archiver) Exceeded number of

licensed users at 07/17/2001

07:56:06.950 PM (NumUsers=0

MaxUsers=0)

Outdated or failed HASP key is attached. Obtain new key from tech

nical support.

[07/17/2001 07:58:18.980 PM]

USER: \baduser TOPIC: Secu

rity MSG: \baduser(baduser)

Bad password for user account. Enter correct password.

Historian | 5 - Using Historian Administrator | 1022

Error Message Suggested Action

unsuccessfully connected at

07/17/2001 07:58:18.980 PM.

[07/17/2001 07:58:48.712 PM]

USER: \administrator TOPIC:

Security MSG: \administra

tor(administrator) unsuccess

fully connected at 07/17/2001

07:58:48.712 PM.

DataArchiver service is not running. Results in a Failed to connect to

server error. Make sure data archiver service is running and that the

user did not enter a bad password.

[07/17/2001 07:23:44.397 PM]

USER: DataArchiver TOPIC:

Security MSG: DataArchiv

er(DataArchiver) Exceeded

number of licensed tags at

07/17/2001 07:23:44.397 PM

(NumTags=1021 MaxTags=0)

Must Shutdown

Number of configured tags exceeds number of tags allowed by the

key. Delete enough tags to meet the license limit or obtain a license

for more tags from technical support.

[07/17/2001 07:35:32.134 PM]

USER: DataArchiver TOPIC: Se

curity MSG: DataArchiver(Data

Archiver) Licensed expired.

Must shutdown 07/17/2001

07:35:32.134 PM. To trou

bleshoot, refer to the DataArchiv

er.log file.

License on key has expired (archiver will not start). Obtain a new li

cense from technical support.

Troubleshoot Data Collector Configuration

Troubleshooting Data Collector configuration and/or performance requires a thorough understanding

of how Historian works and how the various parameters affect system operation. Armed with this

knowledge, you can usually localize a problem to one or more functions or parameter settings and take

effective corrective action.

Historian offers several tools to help find the cause of an operating problem.

LOG files

Historian | 5 - Using Historian Administrator | 1023

The system creates a new log file each time an archiver or collector is started. You can open

these files in Notepad or another text editor. The -nn suffix in the file name indicates the

place of each log file in the time sequence.

The data collector log files, located in the LogFiles folder within the Historian

program folder, are a historical journal of every event affecting operation of the

collector.

The DataArchiver-nn.LOG files are sequential files for the archiver only.

The iFIX collector-nn.LOG files contain performance information on iFIX collector

functioning.

SHW file

The Data Collector .SHW file shows configuration data for collectors and is also located

in the LogFiles directory under Historian. Verify that the parameter and configuration

settings match what you configured. You can open this file in Notepad or another text editor.

Collector Maintenance Performance Indicators

These performance and status indicators can be a major aid in identifying, localizing, and

diagnosing a problem with a collector.

Collector Maintenance pages

The Collector Maintenance pages can provide useful information about settings and

selections of various options and parameter values. Examine each field and verify that it is

appropriate for the current application.

iHistorianSDKerrors.log

When performing any troubleshooting of the File collector Administrator or SDK program

you should examine the iHistorianSDKerrors.log file, which is located in the

LogFiles folder in your Historian program folder.

Troubleshoot Tags

Tag Configuration

To diagnose a problem in tag configuration, examine the .LOG and .SHW files in the Historian/Logfiles

directory. Since these files are a journal record of all system events and parameter modifications

important to a system administrator, they can be helpful in identifying and localizing the source of a

system malfunction or data error.

Historian | 5 - Using Historian Administrator | 1024

You may also find the Windows Event Viewer helpful in troubleshooting. For more information on the

Windows Event Viewer, refer to Review System Alerts and Messages (on page 995).

When troubleshooting SDK applications, such as Historian Administrator, the Excel Add-In, or File

collector, examine the iHistorianSDKerrors.log file, located in the LogFiles folder in the

Historian program folder.

Stale Tags

If you are not seeing all stale tags in the Historian Web Admin, the ClientManager service may be down. If

so, the thread that processes stale tags is suspended until connection is restored.

If the connection to the ClientManager service is lost while processing a batch of 100 tags, that set

of tags is skipped and a Tag Property Update error is logged. When the ClientManager service is back

up again, the next set of 100 tags is considered for scanning. The skipped tags must wait until the

Diagnostics Manager’s next cycle. Until then, they are not marked as stale or not stale.

Alternately, the DataArchiver or ConfigManager services may be down. If so, all the remaining tags are

skipped, and a DataOpenRecordset/Tag Update failure is logged. Even though the thread that processes

stale tags is not suspended, all the remaining tags have to wait until the Diagnostics Manager’s next

cycle. Until then, they are not marked as stale or not stale.

Troubleshoot Historian Performance

There are many parameters that affect Historian Server performance and scalability. This topic

emphasizes the parameters that help improve performance and scalability.

Buffer Memory Max

Buffer Memory Max allows you to specify the maximum memory buffer size that an archiver queue can

take. Use this parameter to control memory allocation to the write queues. If you plan to collect large

amounts of data with high update rates, increase the Buffer Memory Max size. Increasing the Buffer

Memory Max size provides enough memory for write queues, thus increasing the Historian performance.

Refer to The Global Options Section (on page 843) for more information.

Performance Counters

Historian provides a variety of performance counters that can be used to monitor how well the application

is performing. Using the following performance counters you can determine the Historian Server

performance and scalability:

Historian | 5 - Using Historian Administrator | 1025

• Perftag_GenericWriteQueueSize: displays the total number of messages present in the Generic

Write queue.

• Perftag_FastReadQueueSize: displays the total number of messages present in the Fast Read

queue.

• Perftag_CollectorDataWriteQueueSize: displays the total number of messages present in the

Collector Data Write queue.

• Perftag_EventMonitorQueueSize: displays the total number of events present in the Event Monitor

queue.

• Perftag_DataWriteQueueSize: displays the total number of messages present in the Data Write

queue

• Perftag_ReadQueueSize: displays the total number of messages present in the Read queue

By monitoring the above performance counters, make sure that you manage application performance.

Ideally, all write queues should be zero for optimum archiver performance. If you see an increase in back

logs in write queues, then you can:

• Control archive transitions by having larger archive file size.

• Control update rate.

• Perform a backup when an archiver is in stable state.

• Control the caching evaluation period. Refer to Historian Performance Counters (on page 1002) for

more information.

System File Cache Tuning

Historian allows you to specify the maximum disk cache memory that an archiver can use. Ideally,

Historian consumes 25% of system memory. If your computer has extra memory, then you can increase

the disk cache memory to optimize Historian performance.

Note:

You should not increase disk cache memory if you do not have the necessary system resources.

Troubleshoot the Archive Service

Archiver cannot create a new archive: If an archive is full and you have disabled Overwrite Old Archives

in the Global Options section, Historian can only create a new archive if there is enough disk space

available. If you do not have enough disk space to create a new archive, Historian does not generate

an alert on the Main page, but instead adds the following messages to the Data Archiver log file: Could

Historian | 5 - Using Historian Administrator | 1026

not locate empty archive file, nor create one, nor use old one. Stopped processing data write

requests. Free up disk space or enable Overwrite Old Archives to continue archiving your data.

Archive service not starting automatically: On some systems the Archiver does not start automatically

after install. Start the Archiver manually through the Services window or restart the computer. The

Archiver should start on all future restarts. The Archiver service may also fail to start if it is started by an

improperly configured domain account. In order to add a user from the domain as the Archiver service

start up account, the machine Historian is installed on must have joined the domain. The user changing

the service log on account must also have administrative rights to the Historian machine. This user the

service is configured with must be a member of the Domain Administrators group and have administrative

rights to the Historian machine. The user also needs to be allowed to log on as a service and act as part

of the operating system. This is configured in the local policy editor of the Historian machine.

Investigate failed backups: Refer to the ArchiveBackup-XX.log file to investigate failed backups. The

backup can fail if the user does not have valid permissions or if the archive name supplied is not valid. For

more information, refer to Knowledge Base article: i014491 at http://iglobalcare.gefanucautomation.com.

http://iglobalcare.gefanucautomation.com

Chapter 6. Historian Advanced Topics

Historian Advanced Topics Overview

About Historian Advanced Topics

The intended audience for this content is a user with a high level of computing and technical skills,

specifically with Microsoft Windows and associated networking products. It is also assumed that the user

will have prior experience working with the Historian product.

This Help describes advanced content on the typical flow of data in a Historian system. It also describes

advanced functions which you can run at the command line for data stores.

• Data Input: describes the time up until the data is sent over the network to the archiver.

• Storage: covers the time the archiver receives it until it is requested.

• Retrieval: covers the whole round trip from the client to the archiver and back with the requested

data.

Because Historian can store and retrieve data, comments, and messages, the input, storage, and retrieval

of each is discussed.

Buffering applies to both input and storage and is mentioned in those sections.

There are additional software tools introduced in this document that do not ship with the product.

Contact your technical support agent about such tools, should you require them.

Storage

Archive Compression

Archive Compression Overview

The Data Archiver performs archive compression procedures to conserve disk storage space. Archive

compression can be used on tags populated by any method (collector, migration, File collector, SDK

programs, Excel, etc.)

Archive compression is a tag property. Archive compression can be enabled or disabled on different tags

and can have different deadbands.

Historian | 6 - Historian Advanced Topics | 1028

Archive compression applies to numeric data types (scaled, float, double float, integer and double

integer). It does not apply to string or blob data types. Archive compression is useful only for analog

values, not digital values.

Archive compression can result in fewer raw samples stored to disk than were sent by collector.

If all samples are stored, the required storage space cannot be reduced. If we can safely discard any

samples, then some storage space can be reduced. Briefly, points along a straight or linearly sloping line

can be safely dropped without information loss to the user. The dropped points can be reconstructed by

linear interpolation during data retrieval. The user will still retrieve real-world values, even though fewer

points were stored.

Archive Compression uses a held sample. This is a sample held in memory but not yet written to disk. The

incoming sample always becomes the held sample. When an incoming sample is received, the currently-

held sample is either written to disk or discarded. If the currently-held sample is always sent to disk, no

compression occurs. If the currently-held sample is discarded, nothing is written to disk and storage

space is conserved.

In other words, collector compression occurs when the collected incoming value is discarded. Archive

compression occurs when the currently-held value is discarded.

Held samples are written to disk when archive compression is disabled or the archiver is shut down.

Any sample written to disk is a true incoming sample. No timestamp or value or quality is ever changed or

interpolated.

Note:

internal performance tags use an archive compression deadband of 0% or close to 0%.

Archive Compression Logic

Historian | 6 - Historian Advanced Topics | 1029

The following describes the logic that is executed on every sample written to the archiver while archive

compression is enabled for the tag:

IF the incoming sample data quality = held sample data quality

IF the new point is a bad

Toss the value to avoid repeated bads. Do we toss new bad or old bad?

ELSE

Decide if the new value exceeds the archive compression deadband/

ELSE//

data quality is changed, flush held to disk

IF we have exceeded deadband or changed quality

// Store the old held sample in the archive

// Set up new deadband threshold using incoming value and value written to disk.

// Make the incoming value the held value

Example: Change of data quality

The effect of archive compression is demonstrated in the following examples.

This example demonstrates that:

• A change in data quality causes held samples to be stored.

• Held samples are returned only in a current value sampling mode query.

• Restarting the archiver causes the held sample to be flushed to disk.

Normally, a flat straight line would never cause the held value to be written to disk. An important

exception is that changes in data quality force the held value to be written to disk. Assume a large archive

compression deadband, such as 75% on a 0 to 100 EGU span.

Time Value Quality

t) 2 Good

t1 2 Bad

t2 2 Good

The following SQL query lets you see which data values were stored:

Select * from ihRawData where samplingmode=rawbytime and tagname = t20.ai-1.f_cv and timestamp >

today

Historian | 6 - Historian Advanced Topics | 1030

Notice that the value at t2 does not show up in a RawByTime query because it is a held sample. The held

sample would appear in a current value query, but not in any other sampling mode:

select * from ihRawData where samplingmode=CurrentValue and tagname = t20.ai-1.f_cv

The points should accurately reflect the true time period for which the data quality was bad.

Shutting down and restarting the archiver forces it to write the held sample. Running the same SQL query

would show that all 3 samples would be stored due to the change in data quality.

Archive Compression of Straight Line

In this case we have a straight flat line. Assume a small archive compression deadband, say 2% on a 0 to

100 EGU span. Since data occurs on a straight flat line, the deadband will never be exceeded.

Time Value Quality

t0 2 Good

t0+5 2 Bad

t0+10 2 Good

t0+15 2 Good

t0+20 2 Good

Shut down and restart the archiver, then perform the following SQL query:

select * from ihRawData where samplingmode=rawbytime and tagname = t20.ai-1.f_cv and timestamp >

today

Only t0 and t0+20 were stored. T0 is the first point and T0+20 is the held sample written to disk on

archiver shutdown, even though no deadband was exceeded.

Bad Data

This example demonstrates that repeated bad values are not stored. Assume a large archive compression

deadband, such as, 75%.

Time Value Quality

t0 2 Good

t0+5 2 Bad

Historian | 6 - Historian Advanced Topics | 1031

Time Value Quality

t0+10 2 Bad

t0+15 2 Bad

t0+20 2 Good

t0+25 3 Good

• The t0+5 value is stored because of the change in data quality.

• The t0+10 value is not stored because repeated bad values are not stored.

• The t0+15 value is stored when the t0+20 comes in because of a change of quality.

Disabling Archive Compression for a Tag

Assume a large archive compression deadband, such as 75%

Time Value Quality

t0 2 Good

t0+5 10 Good

t0+10 99 Good

t0+15 Archive compression disabled

• The t0 value is stored because it is the first sample.

• The t0+5 is stored when the t0+10 comes in.

• The t0+10 is stored when archive compression is disabled for the tag.

Archive Compression of Good Data

This example demonstrates that the held value is written to disk when the deadband is exceeded.

In this case, we have an upward ramping line. Assume a large archive compression deadband, such as

75% on a 0 to 100 EGU span.

Time Value Quality

t0 2 Good

t0+5 10 Good

t0+10 10 Good

Historian | 6 - Historian Advanced Topics | 1032

Time Value Quality

t0+15 10 Good

t0+20 99 Good

Shut down and restart the archiver, then perform the following SQL query:

select * from ihRawData where samplingmode=rawbytime and tagname = t20.ai-1.f_cv and timestamp >

today

Because of archive compression, the t0+5 and t0+10 values are not stored. The t0+15 value is stored

when the t0+20 arrives. The t0+20 value would not be stored until a future sample arrives, no matter how

long that takes.

Determining Whether Held Values are Written During Archive Compression

When archive compression is enabled for a tag, its current value is held in memory and not immediately

written to disk. When a new value is received, the actual value of the tag is compared to the expected

value to determine whether or not the held value should be written to disk. If the values are sufficiently

different, the held value is written. This is sometimes described as "exceeding archive compression".

Archive compression uses a deadband on the slope of the line connecting the data points, not the value

or time stamp of the points themselves. The archive compression algorithm calculates out the next

expected value based on this slope, applies a deadband value, and checks whether the new value exceeds

that deadband.

The "expected" value is what the value would be if the line continued with the same slope. A deadband

value is an allowable deviation. If the new value is within the range of the expected value, plus or minus

the deadband, it does not exceed archive compression and the current held value is not written to disk.

(To be precise, the deadband is centered on the expected value, so that the actual range is plus or minus

half of the deadband.)

Exceeding Archive Compression

EGUs are 0 to 200000 for a simulation tag.

Enter 2% Archive compression. This displays as 4,000 EGU units in the administration UI.

When a sample arrives, the archiver calculates the next expected value based on the slope and time since

the last value was written. Let's say that the expected value is 17,000.

Historian | 6 - Historian Advanced Topics | 1033

The deadband of 4,000 is centered, so the archiver adds and subtracts 2,000 from the expected value.

Thus, the actual value must be from 15,000 to 19,000 inclusive for it to be ignored by the compression

algorithm.

In other words, the actual value must be less than 15,000 or greater than 19,000 for it to exceed

compression and for the held value to be written.

Determining Expected Value

The Archive Compression algorithm calculates the expected value from the slope, time, and offset (a

combination of previous values and its timestamp):

ExpectedValue = m_CompSlope * Time + m_CompOffset;

Where

m_CompSlope = deltaValue / deltaT

m_CompOffset = lastValue - (m_CompSlope * LastTimeSecs)

Determining Expected Value

Values arriving into the archiver for tag1 are

Time Value

t0 2

t0+5 10

t0+10 20

The expected value at time stamp t0+15 is calculated based on the samples at t0+5 and t0+10:

m_CompSlope = deltaValue / deltaTime m_CompSlope = (20-10) / 5

m_CompSlope = 2

m_CompOffset = lastValue - (m_CompSlope * LastTimeSecs)

m_CompOffset = 20 - (2 * 10)

m_CompOffset = 0

ExpectedValue = m_CompSlope * Time + m_CompOffset;

ExpectedValue = 2 * 15 + 0;

ExpectedValue = 30

The expected value at t0+15 is 30.

Historian | 6 - Historian Advanced Topics | 1034

Archive Compression of a Ramping Tag

An iFIX tag is associated with an RA register. This value ramps up to 100 then drops immediately to 0.

Assume a 5-second poll time in Historian. How much archive compression can be performed to still

"store" the same information?

With an archive compression of 75%, 25% or 5%, only the change in direction is logged:

11-Mar-2003 19:31:40.000 0.17 Good NonSpecific

11-Mar-2003 19:32:35.000 90.17 Good NonSpecific

11-Mar-2003 19:32:40.000 0.17 Good NonSpecific

11-Mar-2003 19:33:35.000 91.83 Good NonSpecific

11-Mar-2003 19:33:40.000 0.17 Good NonSpecific

An archive compression of 1% stores the most samples.

An archive compression of 0% logs every incoming sample. Even on a perfectly ramping signal with no

deviations, 0% compression conserves no storage space and essentially disables archive compression.

Archive Compression of a Drifting Tag
A drifting tag is one that ramps up, but for which the value barely falls within the deadband each time.

Even though a new held sample is created and the current one discarded, the slope is not updated unless

the current slope exceeded. With a properly chosen deadband value, this is irrelevant: by specifying a

certain deadband, the user is saying that the process is tolerant of changes within that deadband value

and that they do not need to be logged.

Archive Compression of a Filling Tank

In the case of a filling tank, the value (representing the fill level) ramps up, then stops. In this case, the

system also uses collector compression, so when the value stops ramping, no more data is sent to the

archiver. At some point in the future, the value will begin increasing again.

As long as nothing is sent to the archiver, no raw samples are stored. During this flat time (or plateau),

it will appear flat in an interpolated retrieval because the last point is stretched. This illustrates that you

should use interpolated retrieval methods on archived compressed data.

How Archive Compression Timeout Works

The Archive Compression Timeout value describes a period of time at which the held value is written

to disk. If a value is held for a period of time that exceeds the timeout period, the next data point is

considered to exceed the deadband value, regardless of the actual data received or the calculated slope.

Historian | 6 - Historian Advanced Topics | 1035

After the value is written due to an archive compression timeout period, the timeout timer is reset and

compression continues as normal.

Archive De-fragmentation - An Overview

What is De-fragmentation? Having an IHA file with contiguous data values for a particular tag is called

Archive De-fragmentation.

An Historian IHA (Historian Data Archive) file could contain data values for multiple tags and data written

for a particular tag may not be in continuous blocks. This means data values in IHA files are fragmented.

Archive De-fragmentation improves the performance of reading and processing of archive data

dramatically.

De-fragmentation of existing archives:

• An archive can be de-fragmented, when it is not active.

• A command line based tool can be used to run on any existing archive as needed.

• De-fragmentation can be done on all versions of archives, and the resulting archive will be the

latest version.

• The de-fragmentation must be started manually.

De-fragmenting an existing archive

A command line based tool is available to de-fragment an existing archive. This tool can be run on any

existing archive(s). After the de-fragmentation, the new archive will be slightly smaller in size than the

original one.

To de-fragment an archive using the tool:

1. Select a read-only archive to backup.

2. Backup the archive.

3. Transfer the archive from the production machine to another machine.

4. Run the ihArchiveDefrag tool on the archive.

Usage (Single File Mode): Operates on one archive at a time.

ihArchiveDefrag [-v][-d][-y][-h][-s] SrcArchive [DestArchive] [Config.ihc]

Historian | 6 - Historian Advanced Topics | 1036

Usage (Directory Mode): Processes all archives in the source directory.

ihArchiveDefrag [-v][-d][-y][-h][-s] SrcDir [DestDir] [Config.ihc]

 [-v] Verbose logging to the logfile.

 [-c] Skip the defrag step. Only compare/verify the archives.

 [-d] Skip the verify step. Only defrag the archive.

 [-h] Displays this help information.

 [-s] Source is on a SSD. Skip the pre-read step as it is not needed.

 [-y] Yes. Don't ask questions, answer YES. Just do the work.

 * The Config.ihc is only needed for 4.0 or older archives

 * If the DestArchive is not provided, a name will be generated.

 * In directory mode, if the DestDir is not provided a new directory called 'DefragFiles' will be created

 under the SrcDir.

Examples:

 ihArchiveDefrag User_Node_Archive001.iha

 ihArchiveDefrag User_Node_Archive001.iha D:\Output\User_Node_Archive001.iha

 ihArchiveDefrag -y c:\Historian\Archives\Backups

 ihArchiveDefrag -y c:\Historian\Archives\Backups d:\DefragOuput

Note:

◦ As part of this process the source archive MAY be modified, It is HIGHLY

recommended that this tool be run on a disposable copy of the archive just in case

it is modified.

◦ De-fragmenting an archive is a disk intensive operation and can be slow (minutes

to hours to run). Running on a machine with memory greater than twice the archive

size is helpful.

◦ If the performance is not satisfactory it is recommended that the source archive be

on an SSD when running ihArchiveDefrag.

◦ It is recommended that de-fragmentation should not be run on a production system

as it can affect the performance of the production system.

Historian | 6 - Historian Advanced Topics | 1037

5. Transfer the resulting new archive back to the production machine.

6. Unload the existing archive.

7. Load the new de-fragmented archive.

About Storing Future Data

You can store future data in Historian. This future data is the predicted data, which has a future

timestamp. You can use this data to perform a predictive or forecast analysis, and revise the forecasting

algorithms as needed.

The data is stored in the Historian Archiver. You can use it to analyse both the historical data and future

data (for example, using trend charts), and take necessary actions. This allows you to refine the way the

data to be stored in Historian is received and processed.

By default, Historian stores up to 1200 seconds of future data. However, if you enable storage of future

data, you can store data up to the following timestamp: 03:14:07 on Tuesday, 19 January, 2038.

Note:

You can store future data beyond the license expiry date of Historian. For example, even if the

license expires by May 31, 2022, you can store future data that is predicted till 19 January, 2038.

However, after the license expires, you cannot use this feature.

You can store future data related to all the data types used in Historian. You can store future data for all

the tags associated with a data store.

The following collectors support future data (that is, collect the future timestamp of the data):

• The OPC DA collector

• The OPCUA DA collector

• The OPCHDA collector

To use this feature, you must enable the storage of future data. You can do this using sample programs

(on page 1039) or Command Line (on page 1039).

You can then retrieve and/or extract this data using any of the available options such as Historian

Administrator, Rest APIs, Excel Add-In, and the Historian Interactive SQL application (ihsql.exe).

The following conditions apply when you store future data:

Historian | 6 - Historian Advanced Topics | 1038

• You can enable the future data storage only for a data store.

• You can collect future data only using the OPC Data Access, OPCUA Data Access, and OPC HDA

collectors. You cannot collect future data using collectors such as the Server-to-Server collector,

the Server-to-Server distributor, and the Calculation collector.

• When you select the Last 10 Values option for a tag, the results include the last ten values till the

current date and time; the results do not include future data. If you want to view future data, you

can filter the data based on the start and end dates.

• Future data is stored till 19 January, 2038.

Note:

You can store future data beyond the license expiry date of Historian. For example, even

if the license expires by May 31, 2022, you can store future data that is predicted till 19

January, 2038. However, after the license expires, you cannot use this feature.

Best practices:

• For a tag for which you want to store future data, do not store past data.

• As this feature can lead to out-of-order data, use this feature carefully to avoid load on the server.

For example, store future data in the chronological order of time.

Known Issues:

• Data recalculation does not work for future data.

Suppose you have enabled the storage of future data for a data store named FDataStore.

Suppose the current time is 9.00 am, April 13, 2020. And, future data is stored from 11.00 am onwards,

and a size-based archive is created to store the data.

Data can be stored in the archive file only from 11.00 am onwards.

Scenario 1: The timestamp of the data is in the past. For example: 11.00 am, April 12, 2020. A new

archive file will be created to store this data. Therefore, to reduce load on the server, we strongly

recommend that you store future data in the chronological order of time.

Scenario 2: The timestamp of the data is beyond the outside-active-hours of the archive file. For

example: 11.00 am, December 12, 2020. Suppose the current archive file is active only for today. Data will

not be stored in the archive file because the timestamp of the data falls beyond the outside-active-hours

value of the archive file. To avoid this issue, a new archive file must be created in such scenarios. To do

so, you must enable offline archive creation (on page 1043).

Historian | 6 - Historian Advanced Topics | 1039

Scenario 3: The timestamp of the data is much further in the future. For example: 11.00 am, April 12,

2025. The current archive file may be used to store the data for this timestamp as well. This results in an

optimum usage of the archive file instead of creating multiple archive files.

Enable Storing Future Data Using Configuration Hub

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Systems.

A list of systems appears in the main section.

3. Right-click the system associated with the data store for which you want to enable storing future

data, and then select Advanced Settings.

The advanced settings of the system appear, displaying the Server section by default.

4. Expand Datastore, and then, select the data store in which you want to store future data.

The fields specific to the selected data store appear,

5. Switch the ALLOW FUTURE DATA toggle on.

6. As needed, enter values in the remaining fields, and then select Save.

Storing future data is now enabled for the data store.

Enable Storing Future Data Using Command Line

Ensure that you have a mechanism to generate future data that you want to store in Historian.

By default, Historian stores up to 1200 seconds of future data. However, if you enable storage of future

data, you can store data up to the following timestamp: 03:14:07 on Tuesday, 19 January, 2038. This topic

describes how to enable storage of future data using Command Line. You can perform this task for any

data store other than the default USER data store.

1. Stop the Historian DataArchiver service.

2. Open Command Prompt with elevated privileges or administrator privileges.

3. Navigate to the folder in which the ihDataArchiver_x64.exe file is located. By default, it is C:

\Program Files\Proficy\Proficy Historian\x64\Server.

4. Run the following command: ihDataArchiver_x64 OPTION.<data store name>

ihArchiverAllowFutureDataWrites 1

5. Run the following command: ihDataArchiver_x64 OPTION.<data store name> ihArchiveActiveHours

<number of active hours>

6. Start the Historian DataArchiver service.

Enable Storage of Future Data

Ensure that you have a mechanism to generate future data that you want to store in Historian.

Historian | 6 - Historian Advanced Topics | 1040

By default, Historian stores up to 1200 seconds of future data. However, if you enable storage of future

data, you can store data up to the following timestamp: 03:14:07 on Tuesday, 19 January, 2038. This topic

describes how to enable storage of future data.

1. For each data store for which you want to store future data:

a. Enable the ihArchiverAllowFutureDataWrites option.

Tip:

You can perform this step using the sample programs (on page 1040) or Command

Line (on page 1039).

b. Enable the ihArchiveCreateOfflineArchive option.

This is to avoid receiving an outside-active-hours error. It happens if you attempt to store

data when the current archive file is set to read-only.

Tip:

You can perform this step using Command Line (on page 1043).

2. For each collector that sends data to the data store, set the Time Assigned By property to Source.

Note:

You can perform this step only for the OPC Data Access, OPCUA Data Access, and OPC

Classic HDA collectors.

Future data is now stored in Historian. You can retrieve the data using any of the available options such as

Historian Administrator, Rest APIs, Excel Add-In, and the Historian Interactive SQL application (ihsql.exe).

Sample Program to Enable Future Data

Using C++

The following lines of code provide a sample program to enable the ihArchiverAllowFutureDataWrites

option using C++:

void SetFutureDataWriteOptions(void)

{

Historian | 6 - Historian Advanced Topics | 1041

 ihChar enable[50];

 printf("\n\n Please enter 1/0 for enable/disable future data write per data store: ");

 _getws(enable);

 ihChar dataStoreName[50];

 printf("\n\n Please enter data store name to enable future data writes ");

 _getws(dataStoreName);

 ihAPIStatus Status;

 ihOptionEx option;

 option.Option = ihArchiverAllowFutureDataWrites;

 option.DataStoreName = dataStoreName;

 Status = ihArchiveSetOption(SrvHdl, &option,enable);

}

void GetFutureDataWriteOptions()

{

 ihChar dataStoreName[50];

 printf("\n\n Please enter the name of the data store Future Data write Option: ");

 _getws(dataStoreName);

 ihAPIStatus Status;

 ihChar *Value;

 ihOptionEx temp;

 temp.Option = ihArchiverAllowFutureDataWrites;

 temp.DataStoreName = dataStoreName;

 Status = ihArchiveGetOption(SrvHdl,&temp,&Value);

 printf("Archive Future Data Write Option ihArchiverAllowFutureDataWrites value is - [%ls] for the data store

 [%ls]\n", (Value ? Value : L"NULL"), dataStoreName);

 Pause();

}

Historian | 6 - Historian Advanced Topics | 1042

Using C#

The following lines of code provide a sample program to enable the ihArchiverAllowFutureDataWrites

option using C#:

static void Main(string[] args)

 {

 string swtValue = "0";

 string dsName = "";

 ConsoleKeyInfo kInfo;

 connection = ClientConnect.NewConnection;

 do

 {

 Console.WriteLine("1 Set/Enable Data Store Create Offline Archives Option Value");

 Console.WriteLine("2 Set/Enable Data Store Allow Future Data Writes Option Value");

 Console.WriteLine("3 Get Data Store Create Offline Archives Option Value");

 Console.WriteLine("4 Get Data Store Allow Future Data Writes Option Value");

 Console.WriteLine("Enter Option Value");

 swtValue = Console.ReadLine();

 switch (swtValue)

 {

 case "1":

 Console.WriteLine("Enter Data Store Name");

 dsName = Console.ReadLine();

 connection.IServer.SetOption(HistorianOption.ServerCreateOfflineArchives, "1", dsName);

 Console.WriteLine("Option value set to " +

 connection.IServer.GetOption(HistorianOption.ServerCreateOfflineArchives, dsName));

 Console.ReadKey();

 break;

 case "2":

 Console.WriteLine("Enter Data Store Name");

 dsName = Console.ReadLine();

 connection.IServer.SetOption(HistorianOption.ArchiverAllowFutureDataWrites, "1", dsName);

 Console.WriteLine("Option value set to " +

 connection.IServer.GetOption(HistorianOption.ArchiverAllowFutureDataWrites, dsName));

 Console.ReadKey();

 break;

 case "3":

Historian | 6 - Historian Advanced Topics | 1043

 Console.WriteLine("Enter Data Store Name");

 dsName = Console.ReadLine();

 Console.WriteLine("Option value is: " +

 connection.IServer.GetOption(HistorianOption.ServerCreateOfflineArchives, dsName));

 Console.ReadKey();

 break;

 case "4":

 Console.WriteLine("Enter Data Store Name");

 dsName = Console.ReadLine();

 Console.WriteLine("Option value is: " +

 connection.IServer.GetOption(HistorianOption.ArchiverAllowFutureDataWrites, dsName));

 Console.ReadKey();

 break;

 default:

 Console.WriteLine("Please enter valid number");

 Console.ReadKey();

 break;

 }

 Console.WriteLine("Please Enter X to exit");

 kInfo = Console.ReadKey();

 } while (kInfo.Key != ConsoleKey.X);

 }

 }

Enable Offline Archive Creation

This topic describes how to enable offline archive creation. This is to avoid receiving an outside-active-

hours error. It happens if you attempt to store data when the current archive file is set to read-only.

1. Stop the Historian DataArchiver service.

2. Open Command Prompt with elevated privileges or administrator privileges.

3. Navigate to the folder in which the ihDataArchiver_x64.exe file is located. By default, it is C:

\Program Files\Proficy\Proficy Historian\x64\Server.

4. To enable the ihArchiveCreateOfflineArchive option for a data store, run the following command:

ihDataArchiver_x64 OPTION.<data store name> ihArchiveCreateOfflineArchive 1

5. Start the Historian DataArchiver service.

Historian | 6 - Historian Advanced Topics | 1044

Retrieval

Retrieval

When retrieving data from Historian, you specify either a raw or non-raw sampling mode. Non-raw retrieval

can include a calculation mode so that calculations are performed in the archiver before data is returned.

This is detailed in the following sections:

• Sampling Modes

• Hybrid Modes

• Filtered Data Queries

Some sampling and calculation modes are better suited to retrieving compressed data. Understanding

the available modes helps you choose the best method for your archiving process.

The retrieval topics include descriptions of all methods of retrieval:

• API

• SDK

• OLE DB

• Charting

• Reporting via OLE DB and Excel Add In

Sampling Modes

Many different sampling and calculation modes can be used on retrieval of data that has already been

collected in the archive. Available sampling modes in Historian include:

Note:

A filtered data query can be performed with each sampling mode except CurrentValue.

Calculation modes are used when the sampling mode is set to "Calculated".

These topics explain some of these retrieval concepts. Each sampling mode (except calculated) is

described with details and examples, including how sample attributes are determined. Each sample

returned by Historian during data retrieval has the following properties:

• Timestamp — time stamp of the collected sample or an interval time stamp

• Value — The collected value or sampled value

• Quality — Each sample in Current Value and Raw retrieval has a quality of "good" or "bad".

Interpolated and Lab Retrieval express quality as a "per cent good".

Historian | 6 - Historian Advanced Topics | 1045

Current value sampling is the simplest retrieval mode. Raw data retrieval is the second simplest method

of retrieval. Intervals and interpolation concepts are common to Interpolation and Lab sampling.

Interpolation and lab sampling are presented together so that they can be contrasted for values and

qualities returned from the same set of collected data.

Example Data: Each topic contains all necessary data for executing each example in the form of a CSV

file that can be imported by the Historian File collector. You will have to copy and paste the appropriate

data into a separate file with a CSV file name extension. Delete all archives before importing the data.

You will not be able to import the data unless you adjust the active hours setting; this is true any time you

import old data with the File collector. For details, see Historian documentation.

Current Value Sampling Mode

Current Value Sampling Mode retrieves the data sample value with newest timestamp of any quality that

was received by the archiver. This is not the same as retrieving the newest raw sample stored in the

archive, since archive compression sometimes discards raw samples sent by the collector during the

compression process.

Current Value Sampling retrieves a single sample containing the current value of the tag, not a series of

historical samples. The sample has a timestamp, value, and quality.

Timestamp

Returns the time stamp on the sample sent to the archiver. The time stamp is not necessarily the current

time. If collector compression is enabled and the deadband on the collector has not been exceeded for

some time, the time stamp may be much earlier than the current time.

If data is sent to the archiver out of order, the current value is always the newest timestamp, even when

the most recent value received is older than previous samples.

Retrieving the current value of out of order data

1. Import this file that contains out of order data for a tag

* Example of Out Of Order data

* [Tags] Tagname,DataType,HiEngineeringUnits,LoEngineeringUnits

OUTOFORDERTAG,SingleFloat,60,0

[Data]

Tagname,TimeStamp,Value,DataQuality

OUTOFORDERTAG,29-Mar-2002 14:50:00.000,50.0,Good

OUTOFORDERTAG,29-Mar-2002 14:20:00.000,20.0,Good

Historian | 6 - Historian Advanced Topics | 1046

OUTOFORDERTAG,29-Mar-2002 14:30:00.000,30.0,Good

OUTOFORDERTAG,29-Mar-2002 14:10:00.000,10.0,Good

2. Retrieve the data using current value sampling, using the following query:

select timestamp, tagname, value, quality from ihrawdata where samplingmode = CURRENTVALUE and

tagname = OUTOFORDERTAG

The time stamp of the current value should be the newest timestamp with the value and quality that was

sent to the archiver, as shown here:

Timestamp Tagname Value Quality

29-

Mar-200214:50:00.000

OUTOFORDERTAG 50.00 GoodNonSpecific

• Value: Simply the value sent by the collector. The value is not interpolated to the current time or

modified by the archiver during retrieval. The data type of the value will be the same data type as

the tag's raw data.

• Data Quality: Returns the quality of the data sent by the collector. The current value can be of a

bad data quality and will be flagged if the collector sends a sample with a bad data quality to the

archiver. When the collector shuts down cleanly, it sends a bad data quality marker at shutdown

time for all its tags. If the collector simply loses its connection to the archiver or crashes, the

current value's quality will not automatically change to bad.

Retrieving the current value of a tag

The following sequence of steps displays the behavior of Current Value sampling mode. After each step,

retrieve the tag current value using this query:

select timestamp, tagname, value, quality from ihrawdata where samplingmode = CURRENTVALUE and

 tagname = IFIX.RAMP.F_CV

1. Configure the tag IFIX.RAMP.F_CV in an iFIX collector running on different PC than archiver.

Configure it to have a one-second collection interval. The Current Value should be within one

second of the value shown in a data link.

2. Stop the iFIX collector. The end-of-collection marker is sent to the data, so the Current Value

quality should be marked as bad and its value set to zero.

3. Restart the iFIX collector. The Current Value quality should be marked as good and it should have a

valid value.

Historian | 6 - Historian Advanced Topics | 1047

4. Put the block off scan in the PDB. The Current Value quality should be marked as bad. (Put the

block back on scan when you've verified this.)

5. Pull the network cable from the iFIX collector running on another machine. The current value

remains unchanged as the value was good at the time the cable was pulled. To ensure that the

Current Value is accurate, you would have to use the Heartbeat Address of the iFIX collector to

verify that the collector is running.

6. Enable collector compression for the point and ensure that the tag's value does not change. The

time stamp of the current value will stay the same until the collector reports a change.

Anticipated Usage

The current value can be used in any operator display. You should also display the data quality of the

current value. You may choose to use the Heartbeat address of the collector so that you can confirm that

the collector is running and that the current value is therefore up to date.

If the collector was shut down gracefully, then the current value would correctly display a bad data quality

(and a value of 0). If the collector crashed or was disconnected from the server, then the current value will

be the last value sent before the crash or disconnect.

Lab Sampling Mode

Lab Sampling is designed to duplicate the way iFIX classic Historian (HTA/HTC) returned data. This

sampling mode returns only collected values. Each collected value is repeated until the next collected

value, resulting in a jagged step plot instead of a smooth curve.

Interpolated values are used in other calculation modes. Lab sampling is never used by calculation

modes. Each sample has the following attributes:

• Timestamp - Lab sampling determines intervals and timestamps the same as interpolated

retrieval.

• Value - Any value returned is an actual collected raw value; the data value is never interpolated.

• Data Quality - Lab sampling uses the same logic as interpolated sampling to determine percent

good quality.

Retrieving lab sample values of an interval with GOOD data

This sample uses exactly the same parameters as the interpolated sampling example, except that the

sampling mode should be specified as lab.

select timestamp, value, quality from

 ihrawdata where samplingmode=lab and timestamp >= '29-Mar-2002 13:50' and

Historian | 6 - Historian Advanced Topics | 1048

 timestamp <= '29-Mar-2002 14:30' and tagname = tag1 and numberofsamples =

 8

This supplies the following results:

Timestamp Value Quality

29-Mar-200213:55:00.000 0.00 0.00

29-Mar-200214:00:00.000 22.70 100.00

29-Mar-200214:05:00.000 22.70 100.00

29-Mar-200214:10:00.000 12.50 100.00

29-Mar-200214:15:00.000 7.00 100.00

29-Mar-200214:20:00.000 7.00 100.00

29-Mar-200214:25:00.000 4.80 100.00

29-Mar-200214:30:00.000 4.80 100.00

The value is never anything other than a collected value. This differs from interpolated sampling. A plot of

this data would look like a series of steps, rather than a smooth, interpolated curve.

Anticipated Usage: Since lab sampling returns real, collected values, it is more accurate when a sufficient

number of raw samples are stored. Use interpolated sampling for highly compressed data. It is generally

not useful with archive compression. Collector compression can be used to filter out non-changing values,

but a high deadband reduces the number of raw samples and therefore reduces the accuracy of lab

sampling.

Interpolated Sampling Mode

This topic describes interpolated retrieval mode. It also presents concepts that are common to

interpolated, lab, calculated, and trend retrieval modes. Interpolation is a separate sampling mode and is

also used in the various calculation modes.

Data compression necessitates interpolation. A minimal number of real data points is stored in the

archive. On retrieval, interpolation is performed to produce an evenly spaced list of the most likely real

world values. Even if you are not using compression, you can use interpolation if you want samples

spaced on intervals other than the "true" collection rate.

The following data is used in the examples below. You can import this data into Historian if you want to

try the examples yourself:

Historian | 6 - Historian Advanced Topics | 1049

*Example for Interpolated Data Documentation

*

[Tags]

Tagname,DataType,HiEngineeringUnits,

LoEngineeringUnits TAG1,SingleFloat,60,0

BADDQTAG,SingleFloat,60,0

[Data]

Tagname,TimeStamp,Value,DataQuality

TAG1,29-Mar-2002 13:59:00.000,22.7,Good

TAG1,29-Mar-2002 14:08:00.000,12.5,Good

TAG1,29-Mar-2002 14:14:00.000,7.0,Good

TAG1,29-Mar-2002 14:22:00.000,4.8,Good

BADDQTAG,29-Mar-200213:59:00.000,22.7,Good

BADDQTAG,29-Mar-2002 14:08:00.000,12.5,Bad

BADDQTAG,29-Mar-2002 14:14:00.000,7.0,Bad

BADDQTAG,29-Mar-2002 14:22:00.000,4.8,Good

Timestamp

All sampling and calculation modes (except raw sampling) use the same method for creating intervals

from the start and end time. Raw retrieval has no intervals, only a start and end time. Each mode differs in

how it arrives at the value to assign to that interval

The simplest case is when the interval is evenly divisible by the number of samples or by the interval in

milliseconds. For example, the start and end times are one hour apart and you want data at ten-minute

intervals, or 6 samples. The first time stamp occurs at the start time + one interval and represents the

samples from a point greater than the start time to less than or equal to the interval time stamp.

Historian | 6 - Historian Advanced Topics | 1050

Determining interval timestamps for evenly divisible duration

1. Import this data into the Historian. There is only a tag, with no data.

[Tags]

Tagname,DataType,HiEngineeringUnits,LoEngineeringUnits

c1,SingleFloat,100,0

2. Retrieve data for that tag over a 1-hour duration with a 10-minute interval. Use the following query:

select timestamp from ihrawdata where timestamp >= 14:00 and timestamp <= 15:00 and tagname = c1 and

numberofsamples = 6

or this query

select timestamp from ihrawdata where timestamp >= 14:00 and timestamp <= 15:00 and tagname = c1 and

Intervalmilliseconds = 10M

Both SQL queries result in the same intervals and interval timestamps

3/29/2002 14:10:00

3/29/2002 14:20:003/29/2002 14:30:00

3/29/2002 14:40:00

3/29/2002 14:50:00

3/29/2002 15:00:00

When the 1-hour duration is not evenly divisible, interval timestamps will include milliseconds even if the

data samples do not use a resolution of milliseconds.

Example: Determining interval timestamps for a non-divisible duration

Divide the one hour duration from previous example into 7 intervals:

select timestamp from ihrawdata where timestamp >= 14:00 and timestamp <= 15:00 and tagname = c1 and

numberofsamples = 7

3/29/2002 14:08:34.285

3/29/2002 14:17:08.571

3/29/2002 14:25:42.857

3/29/2002 14:34:17.142

3/29/2002 14:42:51.428

3/29/2002 14:51:25.714

3/29/2002 14:59:59.999

Historian | 6 - Historian Advanced Topics | 1051

Note:

Trend sampling determines intervals using a different method, described in the trend sampling

topic.

Value

The logic for determining the value through interpolation is as follows:

Attribute samples to intervals

Any raw sample is attributed to exactly one interval based on the raw sample and interval

time stamp. The rule is that the sample has to have a time stamp greater than the interval

start time, but less than or equal to the end time. This is because the end timestamp of the

interval is the start timestamp on the next interval.

Interpolate a value at each interval end time

For each interval end time, find the raw point before and after the end time. The interval time

stamp is the interval end time; we can then interpolate the value at that time.

Determining interval interpolated value

This example shows how linear interpolation determines the most likely real world value at the interval

timestamp.

Using the same data set as above, there are raw points at:

14:08:00.000,12.5,Good

14:14:00.000,7.0,Good

and you are trying to get an interpolated value at 14:10. The calculation used for linear interpolation would

be:

interpolated value = previous raw sample + ((deltaY/deltaX) * offset)

Substituting the numbers for this example:

deltaY = 7.0 12.5 = -5.5

deltaX = 14-8 = 6

offset = 2 seconds (from 14:08 to 14:10)

Interpolated value = 12.5 + ((-5.5/6)*2) = 10.67

About Interpolated Data Type

Historian | 6 - Historian Advanced Topics | 1052

When interpolating data, the data type of the value will be the same data type as that of

the tag's raw data. Only floating point and double floating point values can be interpolated.

Integers, strings, and blobs cannot be interpolated. When attempting to interpolate string

and integer data, interpolation will simply repeat the collected value for each interval until

the next collected value.

Retrieving interpolated values of an interval with GOOD data

The raw samples for TAG1 can be plotted as follows. The “G” indicates a good data quality raw sample.

Use this SQL query to retrieve the data:

select timestamp, value, quality from ihrawdata where samplingmode=interpolated and timestamp >=

 '29-Mar-2002 13:50' and timestamp <= '29-Mar-2002 14:30' and tagname = tag1 and numberofsamples = 8

Timestamp Value Quality

29-Mar-2002 13:55:00.000 0.00 0.00

29-Mar-2002 14:00:00.000 21.57 100.00

29-Mar-2002 14:05:00.000 15.90 100.00

29-Mar-2002 14:10:00.000 10.67 100.00

29-Mar-2002 14:15:00.000 6.73 100.00

29-Mar-2002 14:20:00.000 5.35 100.00

29-Mar-2002 14:25:00.000 4.80 100.00

29-Mar-2002 14:30:00.000 4.80 100.00

Historian | 6 - Historian Advanced Topics | 1053

Note:

The 13:50 to 13:55 interval is represented by the 13:55 timestamp.

There may be many raw points in an interval, but interpolation uses only the last one in the interval and

the first one in the next interval. The sections below describe the interpolation behavior in the 3 possible

cases.

Case 1: Good Data Samples Before and After the Interval Timestamp

This is the typical case when compression is not used. There are 2 good data quality raw

points. With interpolation, calculate the slope and offset of this line and interpolate the value

at the interval timestamp. The 14:10 interval has a sample at 14:08 and at 14:14.

Case 1a: Good Data Samples between the Interval Timestamp and the Start and End Time

In a similar case, there may be intervals with no raw samples, such as when data

compression is used. Here, there is at least 1 good raw sample between the start time

and interval, and at least 1 good raw sample between the interval and end time. The good

raw samples are interpolated across intervals to determine values at the 14:00 and 14:05

intervals:

Case 2: No Good Data between Start Time and Interval Timestamp

Historian | 6 - Historian Advanced Topics | 1054

If no or bad data occurs before the interval, then the interval is given a bad data quality. The

13:55 interval is an example of this. Note that bad data is treated identically to no data.

Case 3: No Good Data between Interval Timestamp and End Time

If no or bad data occurs after the interval then the interval is given a good data quality, but

the value is simply stretched instead of interpolated. The 14:25 interval is an example of

this. Note that bad data is treated identically to no data. Good data quality is attributed to

the 14:30 interval

Data Quality

Unlike CurrentValue, RawByTime, and RawByNumber, Interpolated data does not assign an individual

data quality to each returned sample. Since Interpolated, Lab, and Calculated retrieval modes can contain

multiple samples in an interval, the data qualities of each point are combined and summarized as a

percent good value.

Interpolated and Lab sampling determine the percent good using the same procedure, resulting in a value

of either 100 or 0 (though the determined value may be different for each mode even with the same data).

Intermediate percent good values are determined only for Calculated retrieval modes.

The following examples illustrate interpolated and lab sampling modes. For each example, you can see

that the behavior is the same for lab and interpolated sampling by changing samplingmode=Interpolated to

samplingmode=lab.

Historian | 6 - Historian Advanced Topics | 1055

Interpolated and Lab retrieval resulting in percent good of 100

This example illustrates the effect of bad data quality samples on the percent good statistic for an

interval. The start and end times vary so that bad samples are included or excluded, which affects the

percent good statistic

The data for BADDQTAG can be plotted as follows. The G is used to indicate a good data quality

raw sample and the B indicates a sample of bad data quality. A query of the whole data set is

shown.

Using this query for a period starting with good data quality:

select timestamp, value, quality from ihrawdata where samplingmode=interpolated and timestamp >=

'29-Mar-2002 13:55' and timestamp <= '29-Mar-2002 14:25' and tagname = baddqtag and numberofsamples = 1

This results in the following data quality:

Timestamp Value Quality

29-Mar-200214:25:00.000 4.80 100.00

The percent good is 100. Even though the interval contains bad data quality samples, the interval does

not end with bad data quality. Percent good is determined this way because the purpose of interpolation

and lab sampling is to determine the value and quality at the interval timestamp. On the other hand,

Calculation modes operate on the full set of raw samples within an interval and therefore result in percent

good values between 0 and 100.

This interval from 14:10 to 14:25 starts with a bad data quality sample but ends with a good sample, so

the results are the same. That is, the query:

select timestamp, value, quality from ihrawdata where samplingmode=interpolated and timestamp >=

 '29-Mar-2002 14:10' and timestamp <= '29-Mar-2002 14:25' and tagname = baddqtag and numberofsamples = 1

produces the same percent good result of 100.

Historian | 6 - Historian Advanced Topics | 1056

Example: Interpolated and Lab retrieval resulting in percent good of 0

This example shows some data patterns that result in a percent good of 0. An interval ending with a bad

data quality sample, always results in a percent good of 0 for the interval.

Timestamp Value Quality

29-Mar-2002 14:10:00.000 0.00 0.00

select timestamp, value, quality from ihrawdata where samplingmode=interpolated and timestamp >=

'29-Mar-2002 13:55' and timestamp <= '29-Mar-2002 14:10' and tagname = baddqtag and numberofsamples = 1

Timestamp Value Quality

29-Mar-2002 14:10:00.000 0.00 0.00

Example: Interpolated and Lab retrieval of an empty interval

The data quality of an empty interval depends on the previous and following raw samples. Intervals with

a prior good data quality sample have a percent good of 100 and intervals preceded by a bad data quality

sample (or no sample) have in a percent good of zero.

Historian | 6 - Historian Advanced Topics | 1057

This query results in a percent good of 100:

select timestamp, value, quality from ihrawdata where samplingmode=interpolated and timestamp >=

 '29-Mar-2002 14:00' and timestamp <= '29-Mar-2002 14:05' and tagname = baddqtag and numberofsamples = 1

Both of these queries produce a percent good of 0. The first has no preceding sample and the second is

preceded by bad data:

select timestamp, value, quality from ihrawdata where samplingmode=interpolated and timestamp >=

'29-Mar-2002 13:50' and timestamp <= '29-Mar-2002 13:55' and tagname = baddqtag and numberofsamples = 1

select timestamp, value, quality from ihrawdata where samplingmode=interpolated and timestamp >=

'29-Mar-2002 14:15' and timestamp <= '29-Mar-2002 14:20' and tagname = baddqtag and numberofsamples = 1

The lab retrieval at 14:15 has a value of 7 but quality of 0. Note that you should almost always ignore

specific values when the percent good is 0.

Raw Data Sampling Modes

To use raw data retrieval, you need only specify a start and end time, or a start time and number of

samples. Any specified interval duration is ignored. Raw data may be retrieved using one of two methods:

Historian | 6 - Historian Advanced Topics | 1058

• RawByTime retrieval: Specify a start and end time for data retrieval. RawByTime returns all

raw samples of all qualities with a time stamp greater than the start time and less than or

equal to the end time. It will not return a raw sample with same time stamp as the start time.

NumberOfSamples is ignored and all raw samples will be returned.

• RawByNumber Retrieval: Specify a start time, a number of samples, and a direction (forward or

backward). RawByNumber retrieval returns X raw samples of all qualities starting from a time

stamp of the indicated start time, moving in the specified direction. It will return a raw sample with

the same time stamp as the start time. If there is no sample at the specified start time, the retrieval

count begins at the next sample.

Each sample has the following attributes:

• Timestamp: The time stamp sent by the collector along with the raw sample.

• Value: The value sent by the collector along with the raw sample.

• Data Quality: The quality of data sent by the collector, as set by the collector.

Archive compression can reduce the number of raw samples stored in the archive. Archive compression

may discard raw samples sent by the collector; these are not stored as raw samples and would not be

returned by raw data retrieval.

If the current value has not been stored as a raw sample, will not be returned by a raw data retrieval.

If they exist within the requested time period, collected samples with a bad data quality and collector

startup and shutdown markers will be returned in a raw data query.

RawByTime retrieval of samples over a period of replaced data

1. Import this data into the Historian.

[Tags]

Tagname,DataType,HiEngineeringUnits,LoEngineeringUnits

RAWTAG,SingleInteger,100,0

[Data]

Tagname,TimeStamp,Value,DataQuality

RAWTAG,29-Mar-2002 13:59:00.000,7,Good

RAWTAG,29-Mar-2002 14:08:00.000,8,Bad

2. Import this data into the Historian so that there is replaced data:

[Data]

Tagname,TimeStamp,Value,DataQuality

Historian | 6 - Historian Advanced Topics | 1059

RAWTAG,29-Mar-2002 13:59:00.000,22,Good

RAWTAG,29-Mar-2002 14:08:00.000,12,Bad

RAWTAG,29-Mar-2002 14:22:00.000,4,Good

3. Retrieve the data using this RawByTime query.

select timestamp, value, quality from ihrawdata where samplingmode=rawbytime and timestamp>='29-Mar-2002

13:59' and timestamp<='29-Mar-2002 14:22' and tagname=rawtag

The following results are obtained:

Timestamp Value Quality

29-Mar-200214:08:00.000 12 Bad NonSpecific

29-Mar-200214:22:00.000 4 Good NonSpecific

Note that the raw sample exactly at the start time is not returned and that the replaced value of 8 at 14:08

is not returned. If the start time is changed to 13:58:59, then all the samples are returned:

select timestamp, value, quality from ihrawdata where samplingmode=rawbytime and timestamp>='29-Mar-2002

13:58:59' and timestamp<='29-Mar-2002 14:22' and tagname=RAWTAG

Timestamp Value Quality

29-Mar-200213:59:00.000 22 Good NonSpecific

29-Mar-200214:08:00.000 12 Bad NonSpecific

29-Mar-200214:22:00.000 4 Good NonSpecific

RawByNumber retrieval over a period of replaced data

The RawByNumber sampling mode returns up to a specified number of raw samples beginning at the

start time. The end time is ignored. Unlike the RawByTime, this can return a sample that has the same

time stamp as the start time. You must specify a direction forward or backward from the start time to

retrieve data.

1. Using the data imported by the previous example, retrieve 10 samples going forward from

13:59:00.

select timestamp, value, quality from ihrawdata where samplingmode=rawbynumber and timestamp>='29-Mar-2002

13:59' and numberofsamples=10 and direction=forward and tagname=RAWTAG

The following results are obtained.

Historian | 6 - Historian Advanced Topics | 1060

Timestamp Value Quality

29-Mar-200213:59:00.000 22 Good NonSpecific

29-Mar-200214:08:00.000 12 Bad NonSpecific

29-Mar-200214:22:00.000 4 Good NonSpecific

2. Using the data imported by the previous example, retrieve 10 samples going backward from

14:22:00.

select timestamp, value, quality from ihrawdata where samplingmode=rawbynumber and timestamp<='29-Mar-2002

14:22' and numberofsamples=10 and direction=backward and tagname=RAWTAG

The following results are obtained.

Timestamp Value Quality

29-Mar-200214:22:00.000 4 Good NonSpecific

29-Mar-200214:08:00.000 12 Bad NonSpecific

29-Mar-200213:59:00.000 22 Good NonSpecific

Anticipated usage

You can use raw sampling to compute a raw minimum or raw maximum over a time period. Raw Average is

already provided as a native calculation mode

You can also use raw sampling to analyze system efficiency. Count the number of raw samples per period

of time, ignoring the values, then compare it to other periods of time.

If you have a high number of raw samples you may decide to implement collector or archive compression.

If you have a different count of raw samples than another time period for the same point in your process,

you should understand why the data is missing or why the extra data was logged.

You can use the ihCount calculation mode to easily count the number of raw samples between the start

and end time.

RawByFilterToggle Sampling Mode

The RawByFilterToggle sampling mode is a form of filtered data query. A filtered data query returns

data values for a particular time period whereas RawByFilterToggle sampling mode returns the time

periods where the condition becomes TRUE or FALSE. The RawByFilterToggle sampling mode returns the

Historian | 6 - Historian Advanced Topics | 1061

Timestamp, Value, and Data Quality for the matching entries. The data values returned will have the same

tagname which you queried for.

RawByFilterToggle returns only 0 and 1. The value 1 is returned with a timestamp when the filter condition

becomes TRUE, and the value 0 is returned with the timestamp when the filter condition becomes FALSE.

You can have multiple pairs of 1 and 0 values if the condition becomes TRUE multiple times between the

start and end time. If the condition never became TRUE between the start and end time, you will not get

any values.

Timestamp

The RawByFilterToggle sampling mode returns 0 and 1 as values. The value 1 is returned

with a timestamp when the filter condition becomes TRUE, and the value 0 is returned with

the timestamp when the filter condition becomes FALSE. You can have multiple pairs of 1

and 0 values if the condition becomes TRUE multiple times between the start and end time.

If the condition never became TRUE between the start and end time, you will not get any

values. You can use a filterexpression to return the time ranges that match the criteria.

The RawByFilterToggle sampling mode can return any timestamp between the start and end

time, depending on if and when the condition becomes TRUE or FALSE. The timestamps

returned can be queried further using RawByTime, RawByNumber, Interpolated, or any other

sampling or calculation mode.

Value

This sampling mode only returns 0 and 1 as values. The value 1 is returned with a

timestamp where the filter condition is TRUE and 0 is returned with the timestamp where the

filter condition is FALSE.

Data Quality

The RawByFilterToggle considers only Good quality data.

Retrieving Data Using RawByFilterToggle Sampling Mode

The following two examples use this data that is imported into Proficy Historian. This data will be used in

the examples for retrieving data with the RawByFilterToggle sampling mode.

[Tags]

Tagname,DataType,HiEngineeringUnits,

LoEngineeringUnits RAMP,SingleInteger,10,0

[Data]

Tagname,TimeStamp,Value,Data Quality

Historian | 6 - Historian Advanced Topics | 1062

RAMP,25-Feb-2013 07:00:00.000,0,Good,

RAMP,25-Feb-2013 07:00:01.000,1,Good,

RAMP,25-Feb-2013 07:00:02.000,2,Good,

RAMP,25-Feb-2013 07:00:03.000,3,Good,

RAMP,25-Feb-2013 07:00:04.000,4,Good,

RAMP,25-Feb-2013 07:00:05.000,5,Good,

RAMP,25-Feb-2013 07:00:06.000,6,Good,

RAMP,25-Feb-2013 07:00:07.000,7,Good,

RAMP,25-Feb-2013 07:00:08.000,8,Good,

RAMP,25-Feb-2013 07:00:09.000,9,Good,

RAMP,25-Feb-2013 07:00:10.000,10,Good,

RAMP,25-Feb-2013 07:00:11.000,11,Good,

RAMP,25-Feb-2013 07:00:12.000,12,Good,

RAMP,25-Feb-2013 07:00:13.000,13,Good,

RAMP,25-Feb-2013 07:00:14.000,14,Good,

RAMP,25-Feb-2013 07:00:15.000,15,Good,

RAMP,25-Feb-2013 07:00:16.000,16,Good,

RAMP,25-Feb-2013 07:00:17.000,17,Good,

RAMP,25-Feb-2013 07:00:18.000,18,Good,

RAMP,25-Feb-2013 07:00:19.000,19,Good,

RAMP,25-Feb-2013 07:00:20.000,20,Good,

RAMP,25-Feb-2013 07:00:21.000,21,Good,

RAMP,25-Feb-2013 07:00:22.000,22,Good,

RAMP,25-Feb-2013 07:00:23.000,23,Good,

RAMP,25-Feb-2013 07:00:24.000,24,Good,

RAMP,25-Feb-2013 07:00:25.000,25,Good,

RAMP,25-Feb-2013 07:00:26.000,26,Good,

RAMP,25-Feb-2013 07:00:27.000,27,Good,

RAMP,25-Feb-2013 07:00:28.000,28,Good,

RAMP,25-Feb-2013 07:00:29.000,29,Good,

RAMP,25-Feb-2013 07:00:30.000,30,Good,

RAMP,25-Feb-2013 07:00:31.000,31,Good,

RAMP,25-Feb-2013 07:00:32.000,32,Good,

RAMP,25-Feb-2013 07:00:33.000,33,Good,

RAMP,25-Feb-2013 07:00:34.000,34,Good,

RAMP,25-Feb-2013 07:00:35.000,35,Good,

RAMP,25-Feb-2013 07:00:36.000,36,Good,

Historian | 6 - Historian Advanced Topics | 1063

RAMP,25-Feb-2013 07:00:37.000,37,Good,

RAMP,25-Feb-2013 07:00:38.000,38,Good,

RAMP,25-Feb-2013 07:00:39.000,39,Good,

RAMP,25-Feb-2013 07:00:40.000,40,Good,

RAMP,25-Feb-2013 07:00:41.000,41,Good,

RAMP,25-Feb-2013 07:00:42.000,42,Good,

RAMP,25-Feb-2013 07:00:43.000,43,Good,

RAMP,25-Feb-2013 07:00:44.000,44,Good,

RAMP,25-Feb-2013 07:00:45.000,45,Good,

RAMP,25-Feb-2013 07:00:46.000,46,Good,

RAMP,25-Feb-2013 07:00:47.000,47,Good,

RAMP,25-Feb-2013 07:00:48.000,48,Good,

RAMP,25-Feb-2013 07:00:49.000,49,Good,

RAMP,25-Feb-2013 07:00:50.000,50,Good,

RAMP,25-Feb-2013 07:00:51.000,51,Good,

RAMP,25-Feb-2013 07:00:52.000,52,Good,

RAMP,25-Feb-2013 07:00:53.000,53,Good,

RAMP,25-Feb-2013 07:00:54.000,54,Good,

RAMP,25-Feb-2013 07:00:55.000,55,Good,

RAMP,25-Feb-2013 07:00:56.000,56,Good,

RAMP,25-Feb-2013 07:00:57.000,57,Good,

RAMP,25-Feb-2013 07:00:58.000,58,Good,

RAMP,25-Feb-2013 07:00:59.000,59,Good,

Determining the Time Range After the Condition Became TRUE

An example of a Query using RawByFilterToggle sampling mode is as follows:

starttime=’02/25/2013 07:00:00’, endtime=’02/25/2013 07:10:00’

select timestamp, value, quality from ihrawdata where tagname = RAMP and samplingmode= rawbyfiltertoggle

and filterexpression=’(RAMP>50)’ and filtermode=AfterTime

This query set would determine when the ramp value exceeded 50 and returns the time range after that.

The following results are obtained:

Timestamp Value Quality

02/25/201307:00:00 0 Good NonSpecific

02/25/201307:00:51 1 Good NonSpecific

Historian | 6 - Historian Advanced Topics | 1064

Timestamp Value Quality

02/25/201307:10:00 1 Good NonSpecific

You can see in the raw data that the condition became true at 7:00:51 so the sample is returned with a

value of 1. The 0 and 1 are bounding values that would make the data easier to plot. You cannot simply

count the number of 1s returned to count the number of times the condition became true. You have to

exclude the bounding values

Example 2: Determining the Time Range Before the Condition Became TRUE

An example of a query using RawByFilterToggle sampling mode is as follows

set starttime=’02/25/2013 07:00:00’, endtime=’02/25/2013 08:00:00’

select timestamp, value, quality from ihrawdata where tagname = RAMP and samplingmode= rawbyfiltertoggle

and filterexpression=’(RAMP>10)’ and filtermode=BeforeTime

The following results are obtained

Timestamp Value Quality

02/25/201307:00:00 0 Good NonSpecific

02/25/201307:00:10 1 Good NonSpecific

02/25/201307:00:59 0 Good NonSpecific

02/25/201308:00:00 0 Good NonSpecific

You can see in the raw data that the condition became true at 7:00:10 so the sample is returned with a

value of 1.

Anticipated Usage

This sampling mode can be used for the same reasons as filtered data queries. That is, when you want

the Historian Data Archiver to determine the exact time(s) of the event and you have an approximate time

range for an event of interest, such as:

• A batch starting or completing.

• A value exceeding a limit.

• A collected value matching a specified value.

Once you have the exact time range(s) as returned from RawByFilterToggle, you can use those time

ranges in the subsequent data queries or in custom reporting or data analysis applications.

Historian | 6 - Historian Advanced Topics | 1065

Trend Sampling Mode

The Trend Sampling mode maximizes performance when retrieving data specifically for plotting.

The Trend Sampling mode identifies significant points and returns them to the caller. These will be raw

samples. Significant points are established by finding the raw minimum and raw maximum values within

each interval. Note that this is not the same as finding the change in slope direction of a line, as archive

compression does.

The Trend Sampling mode approximates a high resolution trend with only as much detail as could be

drawn on the page. For example, say you are about to draw a trend on the page and you know that the

area with the trend graph is only 100 pixels wide. You could not possibly represent any more than 100

points in those 100 pixels. By using the Trend sampling type, you can ensure you retrieve adjacent highs

and lows to draw a visually accurate trend with only 100 points, regardless of whether the time period was

one year or one hour.

Since the Trend Sampling mode does not need to acquire all data between the specified start and end

times, it is a very efficient method of data retrieval, especially for large data sets. Depending on the

requested start and end times (and the amount of data stored for that interval), it could be as much as

100 times faster than other methods.

When displaying data for reports or examination, this principle can be applied to other sampling types

too. It is highly inefficient to trend data at a higher resolution than can be drawn on page or printed on

hard copy. This is useful even for calculation modes like "Average value". It is not suitable for Interpolated

mode, since this results in a loss of detail that ihTrend sampling attempts to recapture.

The ihTrend sampling type returns adjacent highs and lows within each interval. If you ask for 100

samples, you will effectively receive 50 high values and 50 low values over 100 intervals. The retrieval

process works as follows:

1. Divide the query duration into even-length intervals, like other sampling modes.

2. Determine the raw minimum and raw maximum for each interval. If there is only one point, then

that is both the minimum and maximum.

3. Since we want to return 2 samples per interval (a minimum and a maximum), we need twice as

many intervals. Divide each interval in half. For example, a one hour interval of 01:00:00 to 02:00:00

becomes 2 intervals (01:00:00 to 01:30:00) and (01:30:00 to 02:00:00) .

4. Put the minimum in one half-interval and the maximum in the other. If minimum comes before

maximum, put the minimum in the first half-interval and the maximum in second half-interval, and

vice versa.

Historian | 6 - Historian Advanced Topics | 1066

When doing filtered data queries, your maximum returned intervals must pass the throttle, even if only a

few intervals actually match the filtered criteria.

Timestamp

There is no difference between full-interval timestamps and half-interval timestamps. Both

are valid and all interval timestamps are in ascending order.

The Trend Sampling mode will always have an even number of samples, rounded up when

necessary.

For example, if you request num samples = 7 or num samples = 8, you will get 8 samples.

If you request results by interval instead of number of samples, you will get back twice the

number of results you expect.

For example, a 5-minute interval for a 40-minute duration is normally 40 / 5 = 8 samples. But

with trend sampling, you get 16 evenly-spaced intervals.

Value

The raw minimum or raw maximum of the full interval. There is no indication as to which

one you are getting.

Data Quality

Trend sampling uses the same logic as interpolated sampling to determine the percent

good quality.

Retrieving trend sample value

Using the data from the interpolated example, execute this query

select timestamp, value, quality from ihrawdata where samplingmode=trend and timestamp >=

'29-Mar-2002 13:50' and timestamp <= '29-Mar-2002 14:30' and tagname = tag1 and numberofsamples = 8

The following results are returned:

Timestamp Value Quality Raw Samples

29-

Mar-200213:55:00.000

22.70 100.00 None

29-

Mar-200214:00:00.000

22.70 100.00 13:59:00.000,22.7, Good

Historian | 6 - Historian Advanced Topics | 1067

Timestamp Value Quality Raw Samples

29-

Mar-200214:05:00.000

12.50 100.00 None

29-

Mar-200214:10:00.000

12.50 100.00 14:08:00.000,12.5, Good

29-

Mar-200214:15:00.000

7.00 100.00 14:14:00.000,7.0, Good

29-

Mar-200214:20:00.000

7.00 100.00

The interval timestamps are the same as for interpolated. The raw minimum and raw maximum are

determined for each interval.

For example, a tag has data every second for 1 year (around 31 million data points). We want to perform a

query using ihTrend with StartTime = LastYear, EndTime = now, and NumSamples = 364.

The StartTime to EndTime is broken down into NumSamples/2 pseudo-intervals (182). For each

pseudointerval, the min and max value is found. These will be the first two data points. With two data

points per pseudo-interval multiplied by NumSamples/2 gives us the desired NumSamples. If the minimum

occurs before the maximum, it will be the first of the two samples, and vice versa.

The query:

select timestamp, value, quality from ihrawdata where samplingmode=lab and timestamp >=

 '29-Mar-2002 13:50' and timestamp <= '29-Mar-2002 14:30' and tagname = tag1 and numberofsamples = 8

The following results are returned:

Timestamp Value Quality

29-Mar-200213:55:00.000 0.00 0.00

29-Mar-200214:00:00.000 22.70 100.00

29-Mar-200214:05:00.000 22.70 100.00

29-Mar-200214:10:00.000 12.50 100.00

29-Mar-200214:15:00.000 7.00 100.00

29-Mar-200214:20:00.000 7.00 100.00

Historian | 6 - Historian Advanced Topics | 1068

Timestamp Value Quality

29-Mar-200214:25:00.000 4.80 100.00

29-Mar-200214:30:00.000 4.80 100.00

Trend Data returned in the wrong interval

Note that, with trend sampling, data can be returned using an interval timestamp that does not contain the

sample. A CSV file includes three values for each of 9 days.

[Data]

Tagname,TimeStamp,Value

Dfloattag5,01/05/03 8:00,95.00

Dfloattag5,01/05/03 15:00,88.00

Dfloattag5,01/05/03 16:00,80.00

Dfloattag5,01/06/03 7:00,11.00

Dfloattag5,01/06/03 10:00,13.00

Dfloattag5,01/06/03 13:00,93.00

Dfloattag5,01/07/03 8:00,99.0

Dfloattag5,01/07/03 11:00,86.0

Dfloattag5,01/07/03 12:00,16.0

Dfloattag5,01/08/03 8:00,0.00

Dfloattag5,01/08/03 12:00,99.00

Dfloattag5,01/08/03 14:00,100.00

If you use the following query:

Select timestamp,tagname,value Quality from ihrawdata where tagname =dfloattag5

And samplingmode= trend and intervalmilliseconds =24h

And timestamp> ‘1/02/2003 07:00:00’ and timestamp<= ‘01/10/2003 12:00:00’

then the results include:

Timestamp Tag Name Value Quality

6-Jan-200319:00:00 Dfloattag5 13.00 100

7-Jan-200307:00:00 Dfloattag5 93.00 100

7-Jan-200319:00:00 Dfloattag5 99.00 100

8-Jan-200307:00:00 Dfloattag5 16.00 100

Historian | 6 - Historian Advanced Topics | 1069

It is expected that the value 93 is listed for 1/6/03 19:00:00, since that is where the timestamp of the raw

sample occurs. However, the maximum of 1/6/03 07:00:00 to 1/7/03 07:00:00 is:

Dfloattag5,01/06/03 13:00,93.00

which comes after the minimum of:

Dfloattag5,01/06/03 10:00,13.00

Hence, it is placed in the second half-interval, even though its timestamp does not fall into the time range

for that half-interval. Raw samples will never be placed in the wrong "real" interval, but may be placed in

the wrong "fake" interval.

Anticipated Usage: Trend sampling is designed only for graphical plotting applications.

Trend2 Sampling Mode

The Trend2 sampling mode is a modified version of the Trend sampling mode.

The Trend2 sampling mode splits up a given time period into a number of intervals (using either a

specified number of samples or specified interval length), and returns the minimum and maximum data

values that occur within the range of each interval, together with the timestamps of the raw values.

The key differences between Trend and Trend2 sampling modes are in:

• How they treat a sampling period that does not evenly divide by the interval length:

◦ For the Trend sampling mode, Historian ignores any leftover values at the end, rather than

putting them into a smaller interval.

◦ For the Trend2 sampling mode, Historian creates as many intervals of the interval length as

will fit into the sampling period, and then creates a remainder interval from whatever time is

left.

• Spacing of timestamps returned:

◦ For the Trend sampling mode, Historian returns evenly-spaced interval timestamps.

◦ For the Trend2 sampling mode, Historian returns raw sample timestamps. These

timestamps can be unevenly spaced, since raw data can be unevenly spaced.

• Inclusion of start and end times entered:

◦ The Trend sampling mode is start time exclusive and end time inclusive.

◦ The Trend2 sampling mode is start time inclusive and end time inclusive.

The Trend sampling mode is more suitable for plotting applications that prefer evenly-spaced data.

Historian | 6 - Historian Advanced Topics | 1070

The Trend2 sampling mode is more suitable for analysis of mins and maxes and for plotting programs

that can handle unevenly spaced data.

Table 87. Parameters

Name Description

Tagname(s) Specify all of the tag(s) on which to perform Trend2 sampling.

Starting time Specify when the time period starts.

Values in the raw data whose timestamps fall on the starting time will be

included in the results, if they are the minimum or the maximum in the in

terval.

Ending time Specify when the time period ends.

Values in the raw data whose timestamps fall on the ending time will be

included in the results, if they are the minimum or the maximum in the in

terval.

The following determine the size of the intervals:

Name Description

Interval length If you specify the interval length, then Historian splits the time period be

tween start and end into as many intervals of that length as will fit in the

period.

For example, if you have a 30 second time period, and you request inter

vals of 5 seconds, Historian will break the time period into 6 intervals,

each of which covers 5 seconds.

If the sampling period does not evenly divide by the interval length, then

Historian creates as many intervals of that length as will fit, and then cre

ate a remainder interval from whatever time is left. So, if we request inter

vals of 7 seconds for a 30 second time period, Historian splits the sam

pling period into 4 intervals of 7 seconds each, and one remainder inter

val of 2 seconds.

This behavior is in contrast to the original Trend sampling, which would

simply ignore any leftover values at the end, rather than putting them into

a smaller interval.

Historian | 6 - Historian Advanced Topics | 1071

Name Description

Number of samples If you specify the number of samples to return, Historian determines the

number of intervals to return. Each interval returns 2 samples, so Histori

an divides the time period between start and end into half as many inter

vals as there are specified samples.

For example, if you specify 12 samples, Historian will divide the time peri

od into 6 intervals, because 12/2 = 6.

If the number of samples specified is odd, then it is rounded up to the

nearest even number. So, if you ask for 7 samples, Historian rounds up to

8 samples, from 8/2 = 4 intervals. All intervals are of the same length.

If the time period from start to finish is 60 seconds and we request 10 in

tervals, then each interval will be 6 seconds long.

About Retrieving Data from Historian

After data collection, the Historian server compresses and stores the information in an .iha file in Data

Archive. Any client application can retrieve archived data through the Historian API. The Historian API is

a client/server programming interface that maintains connectivity to the Historian Server and provides

functions for data storage and retrieval in a distributed network environment.

You can retrieve data from Historian using any number of clients, including but not limited to:

• Configuration Hub

• Historian Analysis

• Knowledge Center

• iFIX

• CIMPLICITY

• Real-Time Information Portal

• Dream Reports

• Excel Add-In

• Custom SDK Applications

• OLE DB

Historian exposes various sampling and calculation modes that are used on retrieval of data that has

already been collected to the archive. These modes do not effect data collection. Some sampling modes

Historian | 6 - Historian Advanced Topics | 1072

are suited to compressed data and should be used when collector compression or archive compression is

used.

Sampling Modes

Sampling modes are used to specify how the data will be retrieved from Historian. Several modes are

available, such as CurrentValue, Interpolated, Calculated and RawByTime. Sampling modes are specified

in the client you use to retrieve data from Historian.

For more information, refer to the Advanced Topics section in the online help.

• For the Trend sampling mode, Historian ignores any leftover values at the end, rather than putting

them into a smaller interval.

• For the Trend2 sampling mode, Historian creates as many intervals of the interval length as will fit

into the sampling period, and then creates a remainder interval from whatever time is left.

• Spacing of timestamps returned:

◦ For the Trend sampling mode, Historian returns evenly-spaced interval timestamps.

◦ For the Trend2 sampling mode, Historian returns raw sample timestamps. These

timestamps can be unevenly spaced, since raw data can be unevenly spaced.

• Inclusion of start and end times entered:

◦ The Trend sampling mode is start time exclusive and end time inclusive.

◦ The Trend2 sampling mode is start time inclusive and end time inclusive.

Trend sampling mode is more suitable for plotting applications that prefer evenly-spaced data.

Trend2 sampling mode is more suitable for analysis of mins and maxes and for plotting programs that

can handle unevenly spaced data.

TrendtoRaw2: The TrendtoRaw2 sampling mode is a modified version of the TrendtoRaw sampling mode.

The TrendtoRaw2 sampling mode almost always produces the same results as the Trend2 sampling

mode. The exception is that, when more samples are requested than there are raw data points, the

TrendtoRaw2 sampling mode returns all of the available raw data points with no further processing.

Calculated: Returns samples based on a selected Calculation mode.

RawByFilterToggle: RawByFilterToggle returns filtered time ranges. The values returned are 0 and 1. If the

value is 1, then the condition is true and 0 means false.

Historian | 6 - Historian Advanced Topics | 1073

This sampling mode is used with the time range and filter tag conditions. The result starts with a starting

time stamp and ends with an ending timestamp

Calculation Modes

Calculation modes are used when the sampling mode is set to Calculated. The data type of all calculated

values will be DoubleFloat except for MinimumTime, MaximumTime, FirstRawTime and LastRawTime

which will be a Date. The data type of the values of FirstRawValue and LastRawValue will be the same as

that of the selected tag.

Calculation Mode Results

Count Displays the number of raw samples in the specified interval. This only indicates

the count and does not display the actual values or qualities of the samples.

The Count calculation mode is useful for analyzing the distribution of raw data

samples. If you have a higher number of raw samples than expected, you may de

cide to implement collector or archive compression. If samples are missing, then

you may want to slow your collection rates.

State Count Displays the number of times a tag has transitioned to another state from a pre

vious state. A state transition is counted when the previous good sample is not

equal to the state value and the next good sample is equal to state value.

State Time Displays the duration that a tag was in a given state within an interval.

Minimum Displays the minimum value in a specified interval with good data quality. This val

ue may be raw or interpolated.

Note:

The Minimum and MinimumTime calculation retrieve two additional sam

ples per interval; one is interpolated at the interval start time and the other

is interpolated at the interval end time. These samples are used to deter

mine the min or max just like any raw value.

MinimumTime Displays the time stamp of the minimum value in a specified interval.

See the note in Minimum for additional information.

Maximum Displays the maximum value in a specified interval.

Historian | 6 - Historian Advanced Topics | 1074

Calculation Mode Results

Note:

The Maximum and MaximumTime calculation internally retrieve two ad

ditional samples per interval; one is interpolated at the interval start time

and the other is interpolated at the interval end time. These samples are

used in the min or max just like any raw or interpolated value.

MaximumTime Displays the time stamp of the maximum value in a specified interval.

See the note in Maximum for additional information.

RawAverage Displays the arithmetic average of the raw values in a specified interval with good

data quality. This is useful only when a sufficient number of raw data values are

collected.

Average Similar to RawAverage, but performs a special logic for time weighting and for

computing the value at the start of the interval. This is useful for computing an av

erage on compressed data.

OPCQOr and OPC

QAnd

The OPCQOr is a bit wise OR operation of all the 16 bit OPC qualities of the raw

samples stored in the specified interval.

The OPCQAnd is a bit wise AND operation of all the 16 bit OPC qualities of the raw

samples stored in the specified interval.

Total Retrieves the time-weighted total of raw and interpolated values for each calcu

lation interval. The collected value must be a rate per 24 hours. This calculation

mode determines a count from the collected rate.

Delta Queries Historian offers the following delta queries to determine the delta over a time inter

val:

• DELTAPOS (on page 1116)

• DELTANEG (on page 1132)

• DELTA (on page 1141)

RawTotal Displays the arithmetic sum of raw values in a specified interval.

StandardDeviation Displays the time-weighted standard deviation of raw values for a specified inter

val.

Historian | 6 - Historian Advanced Topics | 1075

Calculation Mode Results

RawStandardDevi

ation

Displays the arithmetic standard deviation of raw values for a specified interval.

TimeGood Displays the amount of time (in milliseconds) during an interval when the data is of

good quality and matches filter conditions if the filter tag is used.

FirstRawValue Returns the first good raw value for a specified time interval.

FirstRawTime Returns the timestamp of the first good raw for a specified time interval.

LastRawValue Returns the last good raw value for a specified time interval.

LastRawTime Returns the timestamp of the last good raw for a specified time interval.

TagStats Allows you to return multiple calculation modes for a tag in a single query.

Note:

You can also use INCLUDEBAD or FILTERINCLUDEBAD as query modifiers to include bad quality

data. For more information, refer INLUDEBAD and FILTERINCLUDEBAD sections in Advanced

Topics.

Query Modifiers

Query Modifiers are used for retrieving data that has been stored in the archive. They are used along with

sampling and calculation modes to get a specific set of data.

• The time interval is great than 1 minute.

• The collection interval is greater than 1 second.

• The data node size is greater than the default 1400 bytes.

• The data type of the tags is String or Blob.

Query performance varies depending on all of the above factors.

Use this query modifier only with FirstRawValue, FirstRawTime, LastRawValue, and LastRawTime

calculation modes.

EXCLUDESTALE:

• Stale tags are tags that have no new data samples within a specified period of time, and which

have the potential to add to system overhead and slow down user queries.

• The EXCLUDESTALE query modifier allows for exclusion of stale tags in data queries.

Historian | 6 - Historian Advanced Topics | 1076

• Unless permanently deleted, stale tags from the archiver are not removed but are simply marked as

stale. Use the query without this query modifier to retrieve the sample values.

• Data is not returned for stale tags. An ihSTATUS_STALED_TAG error is returned instead.

Filtered Data Queries

Filtered data queries enhance Historian by adding filter tags and additional filtering criteria to standard

queries. Unfiltered data queries in Historian allow you to specify a start and end time for the query, then

return all data samples within that interval. A filtered data query, however, will allow you to specify a

condition to filter the results by, as well as calculation modes to perform on the returned data. Filtered

data queries are performed on the Historian server.

For example, a filtered data query is useful when trying to retrieve all data for a specific Batch ID, Lot

Number, or Product Code and for filtering data where certain limits were exceeded, such as all data where

a temperature exceeded a certain value. Rather than filtering a full day's worth of process data in the

client application, you can filter data in the Historian archiver, and only return the matching results to the

client application. The result is a smaller, more relevant data set.

You can use filter criteria with raw, interpolated, and calculated sampling modes. You cannot use it

with current value sampling. The logic of selecting intervals is always interpolated, even when the data

retrieval is raw or calculated. The value that triggers a transition from false to true can be a raw value or

interpolated value.

You cannot use a filtered data query in an iFIX chart. For more information, refer to Advanced Topics

section in the online help.

Filter Parameters for Data Queries

Use of filter parameters with a data query is optional.

• AND Condition

• OR Condition

• Combination of both AND and OR

Filter Expression can be used instead of FilterTag, FilterComparisonMode and FilterValue parameters.

While using FilterExpression, the expression is passed within single quotes and for complex expressions

we write the conditions within a parenthesis. There is no maximum length for a filter expression, but if it is

called using OLE DB or Excel, they may have their own limitations.

Filter Mode: The type of time filter.

Historian | 6 - Historian Advanced Topics | 1077

The Filter Mode defines how time periods before and after transitions in the filter condition should be

handled.

For example, AfterTime indicates that the filter condition should be True starting at the timestamp of the

archive value that triggered the True condition and leading up to the timestamp of the archive value that

triggered the False condition.

ExactTime

Retrieves data for the exact times that the filter condition is True (only True).

BeforeTime

Retrieves data from the time of the last False filter condition up until the time of the True

condition (False until True).

AfterTime

Retrieves data from the time of the True filter condition up until the time of next False

condition (True until False).

BeforeAndAfterTime

Retrieves data from the time of the last False filter condition up until the time of next False

condition (While True).

Filter Comparison Mode: Filter Comparison Mode is only used if Filter Tag is filled in. The Filter

Comparison Mode defines how archive values for the Filter Tag should be compared to the Filter Value

to establish the state of the filter condition. If a Filter Tag and Filter Comparison Value are supplied, time

periods are filtered from the results where the filter condition is False.

The type of comparison to be made on the filter comparison value:

Equal

Filter condition is True when the Filter Tag is equal to the comparison value.

EqualFirst

Filter condition is True when the Filter Tag is equal to the first comparison value.

EqualLast

Filter condition is True when the Filter Tag is equal to the last comparison value.

NotEqual

Filter condition is True when the Filter Tag is NOT equal to the comparison value.

LessThan

Historian | 6 - Historian Advanced Topics | 1078

Filter condition is True when the Filter Tag is less than the comparison value.

GreaterThan

Filter condition is True when the Filter Tag is greater than the comparison value.

LessThanEqual

Filter condition is True when the Filter Tag is less than or equal to the comparison value.

GreaterThanEqual

Filter condition is True when the Filter Tag is greater than or equal to the comparison value.

AllBitsSet

Filter condition is True when the binary value of the Filter Tag is equal to all the bits in the

condition. It is represented as ^ to be used in Filter Expression.

AnyBitSet

Filter condition is True when the binary value of the Filter Tag is equal to any of the bits in

the condition. It is represented as ~ to be used in Filter Expression.

AnyBitNotSet

Filter condition is True when the binary value of the Filter Tag is not equal to any one of the

bits in the condition. It is represented as !~ to be used in Filter Expression.

AllBitsNotSet

Filter condition is True when the binary value of the Filter Tag is not equal to all the bits in

the condition. It is represented as !^ to be used in Filter Expression.

Alarm Condition

Specifies an alarm condition to filter data by. For example, Level.

Alarm SubCondition

Specifies an alarm sub-condition to filter data by. For example, HIHI.

Filter Comparison Value: Filter Comparison Value is only used if Filter Tag is filled in. The value to

compare the filter tag with when applying the appropriate filter to the data record set query (to determine

the appropriate filter times).

Filtered Queries in the Excel Add-in Example

This example shows how a filtered data query returns specific data from the Historian archive. The

example uses two tags: batchid and ramp. The batchid tag is updated before a new batch is produced

with the new batch's ID. The ramp tag contains raw data sent by a device in the process. In this example, it

Historian | 6 - Historian Advanced Topics | 1079

is requested that Historian return data samples at ten second intervals for the ramp tag during the period

that the batchid tag is set to B1.

A standard query in Historian for the ramp tag's values between 08:00 and 08:01, at ten second intervals,

would look like this:

Time Stamp Value Data Quality

07/30/2003 08:00:00 B0 Good

07/30/2003 08:00:20 B1 Good

07/30/2003 08:00:45 B2 Good

Filtering Data Queries in the Excel Add-in

You can enter your filter conditions using Filter tag, Filter Comparison Mode, and Filter Comparison Value

or you can put that all that information in a single FilterExpression. You can enter the filter conditions

in the FilterExpression field of the Historian Data Query window. The filter conditions are passed within

single quotes.

To find the values of the ramp tag for the B1 batch, enter the following values into the Historian Filtered

Data Query window:

1. In the Tag Name(s) field, enter the tag you want to receive results from - the ramp tag in this

example.

2. Select a start and end time for your query.

3. In the Filter Tag field, enter the tag you want to enable filtering with - batchid in this example.

4. In the Filter Comparison field, select your comparison condition.

5. n the Include Data Where Value Is field, enter your filter condition value.

6. In the Include Times field, select your filter mode.

7. In the Sampling Type field, select your sampling mode.

8. In the Calculation field, select your calculation mode.

9. Select your Sampling Interval.

10. In the Output Display field, select the tag values you want to display.

Hybrid Modes

Hybrid mode is an advanced method of sampling collected data for trending. This mode of sampling has

the ability to switch between sampled (like interpolated or trend) and raw data based on the actual and

Historian | 6 - Historian Advanced Topics | 1080

requested number of samples or a specified time interval. The purpose of these modes is to return the

minimum number of points to speed and simplify trending .

Hybrid mode is available for Interpolated, Lab, Trend, and Trend2 modes of sampling.

In these hybrid modes, the behavior is as follows

• If the actual number of stored samples is fewer than requested you will receive the raw data

samples.

• If the actual number of stored samples is fewer than requested you will receive the raw data

samples.

Data for Examples

All queries in this section use this set of data. The data here can be entered into Historian as a CSV file

using the File collector. The queries can all be run in Historian Interactive SQL.

[Tags]

Tagname,DataType

TagA,DoubleInteger

[Data]

Tagname,Timestamp,Value,Quality

TagA,01/06/2014 12:00:01 PM,40000000,Good

TagA,01/06/2014 12:00:02 PM,30696808,Good

TagA,01/06/2014 12:00:03 PM,1952308224,Good

TagA,01/06/2014 12:00:04 PM,672641664,Good

TagA,01/06/2014 12:00:05 PM,636126336,Good

TagA,01/06/2014 12:00:06 PM,1826624640,Good

TagA,01/06/2014 12:00:07 PM,838753408,Good

TagA,01/06/2014 12:00:08 PM,520660896,Good

TagA,01/06/2014 12:00:09 PM,1293350272,Good

TagA,01/06/2014 12:00:10 PM,1959451264,Good

TagA,01/06/2014 12:00:11 PM,89220576,Good

TagA,01/06/2014 12:00:12 PM,1951745280,Good

TagA,01/06/2014 12:00:13 PM,888276160,Good

TagA,01/06/2014 12:00:14 PM,1031795200,Good

TagA,01/06/2014 12:00:15 PM,1449288960,Good

TagA,01/06/2014 12:00:16 PM,1516603392,Good

TagA,01/06/2014 12:00:17 PM,1843676544,Good

TagA,01/06/2014 12:00:18 PM,1672796672,Good

Historian | 6 - Historian Advanced Topics | 1081

TagA,01/06/2014 12:00:19 PM,1533833984,Good

TagA,01/06/2014 12:00:20 PM,1697586560,Good

TagA,01/06/2014 12:00:21 PM,1647121280,Good

TagA,01/06/2014 12:00:22 PM,543921472,Good

TagA,01/06/2014 12:00:23 PM,1141920768,Good

TagA,01/06/2014 12:00:24 PM,540008448,Good

TagA,01/06/2014 12:00:25 PM,731087232,Good

TagA,01/06/2014 12:00:26 PM,631079296,Good

TagA,01/06/2014 12:00:27 PM,1160291968,Good

TagA,01/06/2014 12:00:28 PM,1324413696,Good

TagA,01/06/2014 12:00:29 PM,1875167744,Good

TagA,01/06/2014 12:00:30 PM,390197280,Good

TagA,01/06/2014 12:00:31 PM,192162736,Good

TagA,01/06/2014 12:00:32 PM,646106624,Good

TagA,01/06/2014 12:00:33 PM,210439200,Good

TagA,01/06/2014 12:00:34 PM,675144064,Good

TagA,01/06/2014 12:00:35 PM,1421636224,Good

TagA,01/06/2014 12:00:36 PM,537191872,Good

TagA,01/06/2014 12:00:37 PM,492214752,Good

TagA,01/06/2014 12:00:38 PM,1376227840,Good

TagA,01/06/2014 12:00:39 PM,1085046656,Good

TagA,01/06/2014 12:00:40 PM,924105984,Good

TagA,01/06/2014 12:00:41 PM,1294991488,Good

TagA,01/06/2014 12:00:42 PM,1737416960,Good

TagA,01/06/2014 12:00:43 PM,582910848,Good

TagA,01/06/2014 12:00:44 PM,1745973760,Good

TagA,01/06/2014 12:00:45 PM,1607484928,Good

TagA,01/06/2014 12:00:46 PM,2005492352,Good

TagA,01/06/2014 12:00:47 PM,746677184,Good

TagA,01/06/2014 12:00:48 PM,2143539456,Good

TagA,01/06/2014 12:00:49 PM,2009761664,Good

TagA,01/06/2014 12:00:50 PM,640139968,Good

TagA,01/06/2014 12:00:51 PM,990464704,Good

TagA,01/06/2014 12:00:52 PM,109999792,Good

TagA,01/06/2014 12:00:53 PM,1269805568,Good

TagA,01/06/2014 12:00:54 PM,1111627520,Good

TagA,01/06/2014 12:00:55 PM,60175184,Good

Historian | 6 - Historian Advanced Topics | 1082

TagA,01/06/2014 12:00:56 PM,1407366400,Good

TagA,01/06/2014 12:00:57 PM,928761280,Good

TagA,01/06/2014 12:00:58 PM,1666397696,Good

TagA,01/06/2014 12:00:59 PM,438304832,Good

TagA,01/06/2014 12:01:00 PM,1179844864,Good

TagA,01/07/2014 06:00:01 PM,9000,Good

TagA,01/07/2014 06:00:02 PM,5,Good

TagA,01/07/2014 06:00:03 PM,8,Good

TagA,01/07/2014 06:00:04 PM,-1,Good

TagA,01/07/2014 06:00:05 PM,4,Good

TagA,01/07/2014 06:00:06 PM,485,Good

TagA,01/07/2014 06:00:07 PM,-30000,Good

TagA,01/07/2014 06:00:08 PM,2,Good

TagA,01/07/2014 06:00:09 PM,4,Good

TagA,01/07/2014 06:00:10 PM,-60000,Good

TagA,01/07/2014 06:00:11 PM,60000,Good

TagA,01/07/2014 06:00:12 PM,1,Good

TagA,01/07/2014 06:00:13 PM,1,Good

TagA,01/07/2014 06:00:14 PM,30,Good

TagA,01/07/2014 06:00:15 PM,-70000,Good

TagA,01/07/2014 06:00:16 PM,-70000,Good

TagA,01/07/2014 06:00:17 PM,5,Good

TagA,01/07/2014 06:00:18 PM,1,Good

TagA,01/07/2014 06:00:19 PM,8,Good

TagA,01/07/2014 06:00:20 PM,220,Good

TagA,01/07/2014 06:00:21 PM,45,Good

TagA,01/07/2014 06:00:22 PM,44,Good

TagA,01/07/2014 06:00:23 PM,12,Good

TagA,01/07/2014 06:00:24 PM,13,Good

TagA,01/07/2014 06:00:25 PM,-5600,Good

TagA,01/07/2014 06:00:26 PM,15,Good

TagA,01/07/2014 06:00:27 PM,0,Good

TagA,01/07/2014 06:00:28 PM,25000,Good

TagA,01/08/2014 09:00:01 AM,1400,Good

TagA,01/08/2014 09:00:02 AM,0,Good

TagA,01/08/2014 09:00:03 AM,16,Good

TagA,01/08/2014 09:00:04 AM,-1400,Good

Historian | 6 - Historian Advanced Topics | 1083

TagA,01/08/2014 09:00:05 AM,-12,Good

TagA,01/08/2014 09:00:06 AM,125,Good

TagA,01/08/2014 09:00:07 AM,150,Good

TagA,01/08/2014 09:00:08 AM,13,Good

TagA,01/08/2014 09:00:09 AM,-56,Good

TagA,01/08/2014 09:00:10 AM,12,Good

TagA,01/08/2014 09:00:11 AM,45,Good

This following examples provide various cases of the InterpolatedtoRaw hybrid mode illustrating the

switching of data between raw and calculated data.

The following data is used in the example below. You can import this data into Historian if you want to try

the example yourself:

Tag1 5/16/2011 15:52:24 1,000.0000000 100.0000000

Tag1 5/16/2011 15:52:25 1,001.0000000 100.0000000

Tag1 5/16/2011 15:52:26 1,002.0000000 100.0000000

Tag1 5/16/2011 15:52:27 1,003.0000000 100.0000000

Tag1 5/16/2011 15:52:28 1,004.0000000 100.0000000

Tag1 5/16/2011 15:52:29 1,005.0000000 100.0000000

Tag1 5/16/2011 15:52:30 1,006.0000000 100.0000000

Case 1

Use the following query to retrieve data for Tag 1 where it requests for 5 samples using InterpolatedtoRaw

mode.

SET starttime= '5/16/2011 15:52:05 PM', endtime= '5/16/2011 15:52:47 PM', numberofsamples = 5, samplingmode=

 Interpolatedtoraw SELECT * FROM ihrawdata where tagname = "TAG1"

The query will return interpolated data as shown below because the actual number of raw samples (7) is

greater than the requested number of samples (5):

tagname timesstamp value quality samplingmode
numberof

samples

Tag1 5/16/2011

15:52:13

0.0000000 0.0000000 InterpolatedtoRaw 5

Tag1 5/16/2011

15:52:21

0.0000000 0.0000000 InterpolatedtoRaw 5

Historian | 6 - Historian Advanced Topics | 1084

tagname timesstamp value quality samplingmode
numberof

samples

Tag1 5/16/2011

15:52:30

1,006.0000000 100.0000000 InterpolatedtoRaw 5

Tag1 5/16/2011

15:52:38

1,006.0000000 100.0000000 InterpolatedtoRaw 5

Tag1 5/16/2011

15:52:47

1,006.0000000 100.0000000 InterpolatedtoRaw 5

Case 2

Use the following query to retrieve data for Tag 1 where it requests for 50 samples using

InterpolatedtoRaw mode.

starttime= '5/16/2011 3:52:05 PM', endtime= '5/16/2011 3:52:47 PM', numberofsamples = 50, sampling- mode=

 Interpolatedtoraw SELECT & FROM ihrawdata where tagname = "TAG1"

The query will return raw data as shown below because the actual sample count(7) is less than the

requested sample count (50):

tagname timesstamp value quality samplingmode
numberof

samples

Tag1 5/16/2011

15:52:24

1,000.0000000 100.0000000 InterpolatedtoRaw 50

Tag1 5/16/2011

15:52:25

1,001.0000000 100.0000000 InterpolatedtoRaw 50

Tag1 5/16/2011

15:52:26

1,002.0000000 100.0000000 InterpolatedtoRaw 50

Tag1 5/16/2011

15:52:27

1,003.0000000 100.0000000 InterpolatedtoRaw 50

Tag1 5/16/2011

15:52:28

1,004.0000000 100.0000000 InterpolatedtoRaw 50

Tag1 5/16/2011

15:52:29

1,005.0000000 100.0000000 InterpolatedtoRaw 50

Historian | 6 - Historian Advanced Topics | 1085

tagname timesstamp value quality samplingmode
numberof

samples

Tag1 5/16/2011

15:52:30

1,006.0000000 100.0000000 InterpolatedtoRaw 50

Case 3

Use the following query to retrieve data for Tag 1 where it requests for samples in a time interval

(milliseconds), using InterpolatedtoRaw mode.

SET starttime= '5/16/2011 3:52:05 PM', endtime= '5/16/2011 3:52:25 PM', intervalmilliseconds=10s , samplingmode=

 Interpolatedtoraw

Tag1 5/16/2011 15:52:24 1,000.0000000 100.0000000

Tag1 5/16/2011 15:52:25 1,001.0000000 100.0000000

The query will return interpolated data as shown below because the actual number of raw samples (7) is

greater than the requested number of samples (5):

Tagname Timestamp Value Quality Sampling MOde

Tag1 5/16/2011

15:52:24

1,000.0000000 1,000.0000000 InterpolatedtoRaw

Tag1 5/16/2011

15:52:25

1,001.0000000 1,000.0000000 InterpolatedtoRaw

Calculation Modes

This information is intended to supplement the information in the Historian product documentation and

the SDK Help File.

Sampling and calculation modes are used on retrieval of data that has already been collected to the

archive. Calculation modes are used when the sampling mode is set to "Calculated". It is helpful to

separate the many modes into 3 main categories from simplest to most complex. A detailed explanation

of the calculation modes with examples are discussed in following topics:

Raw Calculation Modes: Easiest to understand. Only raw points are used to determine calculated value.

• Count

• RawTotal

• RawAverage

Historian | 6 - Historian Advanced Topics | 1086

• RawStandardDeviation

• FirstRawValue

• FirstRawTime

• LastRawValue

• LastRawTime

Interpolated Calculation Modes – both raw and interpolated points are used to determine a value.

• Minimum

• MinimumTime

• Maximum

• MaximumTime

• TimeGood

Delta Query Calculation Modes - Determine the delta over a time interval.

• DELTAPOS (on page 1116)

• DELTANEG (on page 1132)

• DELTA (on page 1141)

Time Weighted Calculation Modes – Most complicated. Time weighting on raw and interpolated points is

used to determine a value.

• Average

• Total

• StandardDeviation

Other Calculation Modes

• STATECOUNT

• STATETIME

• OPCQOR and OPCQAND

• TagStats

Each sample retrieved from Historian has a timestamp, value, and quality.

• Timestamp - the same logic as for interpolated values. It is covered in detail in the Understanding

Sampling Modes document and not covered at all in this document.

• Value – depends entirely on the calculation mode being used

• Quality - Depending on the calculation mode, this either means:

Historian | 6 - Historian Advanced Topics | 1087

◦ The percent of raw samples vs. total raw samples in the interval that were of good data

quality.

◦ The percent of time in the interval that the data was of good data quality

Filtered data queries are described in the Filtered data Queries section.

Note:

This document intentionally contains all necessary data for executing the examples and

reproducing the results. The tags and data are in the form of a CSV to be imported with the

Historian File collector. You will not be able to import the data unless you adjust the active hours

setting and possibly the Create Offline Archives setting of the archiver. This is true any time you

are importing old data with the File collector.

Raw Calculation Modes

The calculation modes use only collected raw samples to determine the value for each interval.

Count Mode:

• Value: The count of raw samples with good quality in the interval. The values of the each sample

are ignored. The Count does not include any samples with bad quality, including the start and end

of collection markers.

• Quality: Percent good is always 100, even if the interval does not contain any raw samples or

contains only bad quality samples.

• Anticipated Usage: Count is useful for analyzing the distribution of the raw data samples to

determine the effect of compression deadbands. It is also useful to determine which tags are

consuming the most archive space.

RawTotal Mode: Retrieves the arithmetic total (sum) of sampled values for each interval.

• Value: The sum of the good quality values of all raw samples in the interval. All bad quality

samples are ignored.

• Quality: Percent good is always 100, even if the interval does not contain any raw samples or it

contains only bad quality samples.

• Anticipated Usage: RawTotal mode is useful for calculating an accurate total when a sufficient

number of raw samples are collected. Note that unlike ihTotal, this is a simple sum with no

assumption that the values are rate values.

RawAverage Mode: The arithmetic average (mean) of all good quality raw samples in the interval.

Historian | 6 - Historian Advanced Topics | 1088

• Value: The sum of all good quality samples in the interval, divided by the number of good quality

samples in the interval. All bad quality samples are ignored. That is, RawAverage is equivalent to

the RawTotal divided by Count.

• Quality: If there are no raw samples in the interval or they all have bad quality, then the percent

good is 0. Otherwise, percent good is always 100, even if the interval contains bad quality

samples.

select timestamp, value, quality from ihrawdata where samplingmode=calculated

and calculationmode=rawaverage and timestamp >= '29-Mar-2002 13:30' and

timestamp <= '29-Mar-2002 14:30' and tagname = counttag and intervalmilliseconds = 10M

• Anticipated Usage: The RawAverage mode is useful for calculating an accurate average when a

sufficient number of raw samples are collected.

RawAverage Mode:

• Value:

• Quality:

• Anticipated Usage:

RawStandardDeviation Mode: Retrieves the arithmetic standard deviation of raw values for each

calculation interval.

• Value: Any raw point of bad data quality is ignored.

• Quality: If there are no raw samples in the interval or they all have bad quality, then the percent

good is 0. Otherwise, percent good is always 100, even if the interval contains bad quality samples.

• Anticipated Usage: The RawStandardDeviation mode is useful for calculating an accurate standard

deviation when a sufficient number of raw samples are collected.

FirstRawValue/FirstRawTime Modes: Retrieve the first good raw sample value and timestamp for a given

time interval, respectively.

• Value: The value of the raw sample or zero if there are no good raw samples in the interval. The

timestamp of the sample or the year 1969 if there are no good raw samples in the interval.

• Quality: The quality is the same for FirstRawValue and First RawTime. If there are no good raw

samples in the interval, then the percent good is 0. Otherwise, the percent good is always 100, even

if the interval contains bad quality samples.

Historian | 6 - Historian Advanced Topics | 1089

The Raw sample has a quality of Good, Bad or Uncertain, and that is converted to a 0 or 100

percent.

• Anticipated Usage:

LastRawValue/LastRawTime Modes: Retrieve the last good raw sample value and timestamp for a given

time interval, respectively.

• Value: The value of the raw sample or zero if there are no good raw samples in the interval. The

timestamp of the sample or the year 1969 if there are no good raw samples in the interval.

• Quality:

The quality is the same for LastRawValue and LastRawTime. If there are no good raw samples in

the interval, then the percent good is 0. Otherwise, percent good is always 100, even if the interval

contains bad quality samples.

The Raw sample has a quality of Good, Bad or Uncertain, and that is converted to a 0 or 100

percent.

• Anticipated Usage:

Calculating the count of raw samples

The following example demonstrates that only good samples are counted. Importing the following data

ensures that at least one interval has 0 samples.

[Tags]

Tagname,DataType,HiEngineeringUnits,LoEngineeringUnits

COUNTTAG,SingleInteger,100,0

[Data]

Tagname,TimeStamp,Value,DataQuality

COUNTTAG,29-Mar-2002 13:59:00.000,22,Good

COUNTTAG,29-Mar-2002 14:08:00.000,12,Bad

COUNTTAG,29-Mar-2002 14:22:00.000,4,Good

The following query retrieves data with a start time of 14:00 and an end time of 14:30 with a 10-minute

interval.

select timestamp, value, quality from ihrawdata where samplingmode=calculated and calculationmode=count and timestamp

 >='29-Mar-2002 14:00' and timestamp <= '29-Mar-2002 14:30' and tagname = counttag and intervalmilliseconds = 10M

Historian | 6 - Historian Advanced Topics | 1090

Time Stamp Value Quality

29-Mar-200214:10:00.000 0.00 100.00

29-Mar-200214:20:00.000 0.00 100.00

29-Mar-200214:30:00.000 1.00 100.00

Note:

The bad raw sample at 14:08 is not counted, but the good sample at 14:22 is counted. The 14:11

to 14:20 interval has no raw samples, but still has a percent good of 100 percent.

Calculating the Raw Total

The following example demonstrates that only good quality samples are included in the sum. Perform the

fol- lowing query on the same data set as that in the Count example above:

select timestamp, value, quality from ihrawdata where samplingmode=calculated and calculationmode=rawtotal and

 timestamp >= '29-Mar-2002 13:30' and timestamp <= '29-Mar-2002 14:30' and tagname = counttag and intervalmilliseconds

 = 10M

Time Stamp Value Quality

29-Mar-200213:40:00.000 0.00 100.00

29-Mar-200213:50:00.000 0.00 100.00

29-Mar-200214:00:00.00 22.00 100.00

29-Mar-200214:10:00.000 0.00 100.00

29-Mar-200214:20:00.000 0.00 100.00

29-Mar-200214:30:00.000 4.00 100.00

If the same start and end time are used, but the time span is treated as a single interval, then all values

are added together:

select timestamp, value, quality from ihrawdata where samplingmode=calculated and calculationmode=rawtotal and

 timestamp >= '29-Mar-2002 13:30' and timestamp <= '29-Mar-2002 14:30' and tagname = counttag

and numberofsamples=1

Historian | 6 - Historian Advanced Topics | 1091

Time Stamp Value Quality

29-Mar-200214:30:00.000 26.00 100.00

Even though the time span covers all raw samples, only the two good quality samples are used in the

calculation: 26 = 22 + 4

Calculating RawAverage

The following example demonstrates that only good quality samples are included in RawAverage.

Perform the following query on the same data set as that in the Count example above. This query

retrieves data using RawAverage, with a start time of 13:30 and an end time of 14:30 at 10-minute

intervals.

select timestamp, value, quality from ihrawdata where samplingmode=calculated and calculationmode=rawaverage and

timestamp >= '29-Mar-2002 13:30' and timestamp <= '29-Mar-2002 14:30' and tagname = counttag and intervalmilliseconds

 = 10M

Time Stamp Value Quality

29-Mar-200213:40:00.000 0.00 0.00

29-Mar-200213:50:00.000 0.00 0.00

29-Mar-200214:00:00.000 22.00 100.00

29-Mar-200214:10:00.000 0.00 0.00

29-Mar-200214:30:00.000 4.00 100.00

The interval from 14:11 to 14:20 has no raw samples. The percent good quality of 0.

The interval from 14:01 to 14:10 has 0 good and 1 bad samples. It also has a percent good quality of 0.

The interval from 14:21 to 14:30 has 1 good and 0 bad samples. It has a percent good quality of 100.

If the same start and end time are used, but the time span is treated as a single interval, then all values

are averaged together:

select timestamp, value, quality from ihrawdata where samplingmode=calculated and calculationmode=rawaverage

and timestamp >= '29-Mar-2002 13:30' and timestamp <= '29-Mar-2002 14:30' and tagname = counttag and

numberofsamples=1

Historian | 6 - Historian Advanced Topics | 1092

Time Stamp Value Quality

29-Mar-200214:30:00.000 13.00 100.00

Even though the time span covers all raw samples, but only the two good samples are used in the

calculation: 13 = (22+4)/2 Since the interval includes at least one good quality sample, percent good for

the interval is 100, even though 33% of the samples are of bad quality.

Calculating the Raw Standard Deviation

The following example demonstrates that only good samples are included in the standard deviation.

Perform the following query on the same data set as that in the Count example above:

select timestamp, value, quality from ihrawdata where samplingmode=calculated and calculationmode=rawstandarddeviation

 and

timestamp >= '29-Mar-2002 13:30' and timestamp <= '29-Mar-2002 14:30' and tagname = counttag and numberofsamples=1

Time Stamp Value Quality

29-Mar-200214:30:00.000 12.73 100.00

Retrieving the FirstRawValue/FirstRawTime Values

Import this data to Historian:

[Tags]

Tagname,DataType,HiEngineeringUnits,LoEngineeringUnits

Tag1,SingleFloat,60,0

[Data]

Tagname,TimeStamp,Value,DataQuality

Tag1,07-05-2011 17:24:00,29.72,Bad

Tag1,07-05-2011 17:25:00,29.6,Good

Tag1,07-05-2011 17:26:00,29.55,Good

Tag1,07-05-2011 17:27:00,29.49,Bad

Tag1,07-05-2011 17:28:00,29.53,Bad

Tag1,07-05-2011 17:29:00,29.58,Good

Tag1,07-05-2011 17:30:00,29.61,Bad

Tag1,07-05-2011 17:31:00,29.63,Bad

Tag1,07-05-2011 18:19:00,30,Good

Tag1,07-05-2011 18:20:00,29.96,Good

Tag1,07-05-2011 18:21:00,29.89,Good

Historian | 6 - Historian Advanced Topics | 1093

Tag1,07-05-2011 18:22:00,29.84,Good

Tag1,07-05-2011 18:23:00,29.81,Bad

Using FirstRawValue Calculation Mode

set starttime='07-05-2011 16:00:00', endtime='07-05-2011 19:00:00'

select timestamp,value,quality from ihrawdata where tagname like 'Tag1' and samplingMode=Calculated and

CalculationMode=FirstRawValue and intervalmilliseconds=1h

The output is as follows:

Time Stamp Value Quality

07-05-201117:00:00 0.0000000 0.0000000

07-05-201118:00:00 29.6000000 100.0000000

07-05-201119:00:00 30.0 100.0000000

For the time interval 16:00 to 17:00 there are no raw values so a value and quality of 0 is returned for both

FirstRawValue and FirstRawTime. The first raw sample from17:00 to 18:00 is 29.72 but it is a bad data

quality so it is skipped and the 29.6 is returned and its timestamp of 17:25 is returned in FirstRawTime.

FirstRawValue calculation mode considers only good quality data. In the last interval the first good raw

sample is 30 and is returned and its timestamp is returned as FirstRawTime.

Retrieving the LastRawValue/LastRawTime Values

Import this data into Historian

[Tags]Tagname,DataType

DecimatedOneHour,DoubleInteger

[Data]

Tagname,Timestamp,Value,DataQuality

Tag1,07-05-2011 17:29:00,29,Good

Tag1,07-05-2011 20:00:00,0,Good

Tag1,07-05-2011 20:12:00,12,Good

Tag1,07-05-2011 20:15:00,0,Bad

Using LastRawValue Calculation Mode

set starttime='07-05-2011 17:00:00',endtime=' 07-05-2011 21:00:00'

select timestamp,value,quality from ihrawdata where tagname like Tag1 and samplingmode=Calculated and

CalculationMode=LastRawValue and Intervalmilliseconds=1h

Historian | 6 - Historian Advanced Topics | 1094

The output is as follows:

Time Stamp Value Quality

07-05-201118:00:00 29 100.0000000

07-05-201119:00:00 0 0.0000000

07-05-201120:00:00 0 100.0000000

07-05-201121:00:00 12 100.0000000

In the interval from 17:00 to 18:00 the last good value is 29. The 18:00 to 19:00 has no raw samples so

the quality is bad. The 20:00 sample is returned as the last good value in the 19:00 to 20:00. In the final

interval, the last raw sample is bad quality so it is ignored and the previous sample is returned.

Using LastRawTime Calculation Mode

set starttime='07-05-2011 17:00:00',endtime=' 07-05-2011 21:00:00'

select timestamp,value,quality from ihrawdata where tagname like Tag1 and samplingmode=Calculated and CalculationMode=

LastRawTime and Intervalmilliseconds=1h

The output is as follows:

Time Stamp Value Quality

07-05-201117:00:00 07-05-201117:29:00 100.0000000

07-05-201118:00:00 01-01-197005:30:00 0.0000000

07-05-201119:00:00 07-05-201120:00:00 100.0000000

07-05-201120:00:00 07-05-201120:12:00 100.0000000

Note:

You can also use the INCLUDEBAD query modifier to include bad quality data.

Interpolated Calculation Modes

Interpolation is used in many calculation modes. When using interpolated data, it is possible that there are

no raw samples in the interval (such as with highly-compressed data) so the archiver requires additional

samples to perform calculations.

Historian | 6 - Historian Advanced Topics | 1095

The Minimum, MinimumTime, Maximum, and MaximumTime all use interpolation to arrive at two

additional samples per interval. One is interpolated at the interval start time and one is interpolated at the

interval end time. The interpolated samples are used in calculations just like raw, collected samples within

the interval. In particular, the minimum or maximum calculated value can be a raw or interpolated value.

All described rules for interpolating a value at an interval's end time also apply to the interval's start time.

There is no raw maximum or raw minimum sampling mode. To acquire these values, you must retrieve the

raw samples using RawByTime or RawByNumber and compute the minimum or maximum yourself.

Similarly, you must also manually calculate a minimum or maximum when using values acquired through

lab sampling.

Minimum/Maximum and MinimumTime/MaximumTime Modes: The minimum (or maximum) value in the

interval and the time stamp of that value.

• Value:

Maximum returns the raw or interpolated value with the greatest value and good data quality in the

interval. Minimum returns the raw or interpolated value with the lowest value and good data quality

in the interval

MaximumTime returns the time stamp of the Maximum value. MinimumTime returns the time

stamp of the Minimum value.

In all cases, all raw samples of bad quality is ignored, both during interpolation and when

calculating the maximum.

• Quality: If the raw samples in the interval all have bad quality, or if the sample before the interval

has bad quality, then percent good is 0. Otherwise, percent good is always 100, even if the interval

does not contain any raw samples or contains both good and bad quality samples.

TimeGood Mode: The TimeGood mode calculates the amount of time for which the data was of good

quality.

The TimeGood mode is most useful when combined with filtered data queries. You can use a filter

condition to acquire samples for which a specific condition was true, then calculate for how long that data

was of a good quality. For example, you could use a filter condition to determine the amount of time a

pump was activated, then calculate for how much of that time the data was of a good quality.

To get the most use out of the TimeGood mode, you should understand how filtered data queries work.

Historian | 6 - Historian Advanced Topics | 1096

• Value: The TimeGood mode retrieves the total number of milliseconds during the interval for which

the data is good AND for which the filter condition is true. If there is no filter tag or condition, then

TimeGood is the total number of milliseconds in the interval that the data is good.

• Quality: The TimeGood mode always has a percent good of 100, even if there are no raw samples

or if all samples have bad quality. In the latter case, the Value will be 0, but the percent good is still

100.

Finding minimum and maximum of Downward Sloping Data

The following example demonstrates how a raw sample is interpolated at the interval's start and end time

and how this interpolation is used with raw samples when calculating minimum and maximum values.

Import the following data:

[Tags]

Tagname,DataType,HiEngineeringUnits,LoEngineeringUnits

DOWNSLOPE,SingleFloat,100,0

[Data]

Tagname,TimeStamp,Value,DataQuality

DOWNSLOPE,29-Mar-2002 13:59:00.000,22,Good

DOWNSLOPE,29-Mar-2002 14:08:00.000,12,Good

DOWNSLOPE,29-Mar-2002 14:22:00.000,4,Good

The following query retrieves the Maximum value:

select timestamp, value, quality from ihrawdata where samplingmode=calculated

and calculationmode=Maximum and timestamp >= '29-Mar-2002 13:50' and

timestamp <= '29-Mar-2002 14:30' and tagname = DOWNSLOPE and numberofsamples = 8

The following query retrieves the MaximumTime:

select timestamp, value, quality from ihrawdata where samplingmode=calculated

and calculationmode=MaximumTime and timestamp >= '29-Mar-2002 13:50' and

timestamp <= '29-Mar-2002 14:30' and tagname = DOWNSLOPE and numberofsamples = 8

The following query retrieves the Minimum:

select timestamp, value, quality from ihrawdata where samplingmode=calculated

and calculationmode=Minimum and timestamp >= '29-Mar-2002 13:50' and

timestamp <= '29-Mar-2002 14:30' and tagname = DOWNSLOPE and numberofsamples = 8

The following query retrieves the MaximumTime value:

Historian | 6 - Historian Advanced Topics | 1097

select timestamp, value, quality from ihrawdata where samplingmode=calculated

and calculationmode=MinimumTime and timestamp >= '29-Mar-2002 13:50' and

timestamp <= '29-Mar-2002 14:30' and tagname = DOWNSLOPE and numberofsamples = 8

The following query retrieves the Minimum value:

select timestamp, value, quality from ihrawdata where samplingmode=calculated

and calculationmode=Min

The following query retrieves the MinimumTime value:

select timestamp, value, quality from ihrawdata where samplingmode=calculated

and calculationmode=MinimumTime and timestamp >= '29-Mar-2002 13:50' and

timestamp <= '29-Mar-2002 14:30' and tagname = DOWNSLOPE and numberofsamples = 8

Interval

Time Stamp
Maximum Maximum Time Minimum Minimum Time Quality

13:55:00.000 0.00 31-Dec-1969

19:00:00.000

0.00 31-Dec-1969

19:00:00.000

0.00

14:00:00.000 22.00 13:59:00.000 20.89 14:00:00.000 100.00

14:05:00.000 20.89 14:00:00.000 15.33 14:05:00.000 100.00

14:10:00.000 15.33 14:05:00.000 10.86 14:10:00.000 100.00

14:15:00.000 10.86 14:10:00.000 8.00 14:15:00.000 100.00

14:20:00.000 8.00 14:15:00.000 5.14 14:20:00.000 100.00

14:25:00.000 5.14 14:20:00.000 4.00 14:25:00.000 100.00

14:30:00.000 4.00 14:30:00.000 4.00 14:30:00.000 100.00

The value is 4 for the entire interval of 14:26:00 to 14:30:00. However, the newest value is always returned

for MinimumTime and MaximumTime for an interval, so the values instead are calculated as 14:30.

All modes have the same quality. A MaximumTime or MinimumTime of 1969 means there is no value in

that interval.

Maximum always begins at the start of the interval because the data forms this is a downwards-sloping

line. The Maximum takes the sample interpolated at the interval start time. The timestamp is still the

interval end time.

Historian | 6 - Historian Advanced Topics | 1098

When an interval has no raw samples, such as in the 14:05 interval, samples are interpolated at the

beginning and the end of the interval. This means that the 14:05 interval has 2 samples to example at

when calculating the Minimum or Maximum.

Finding Minimum and Maximum of Changing Data

The following example uses a value that continually changes, rather than one that simply slopes upwards

or downwards. Any Minimum or Maximum within an interval is necessarily a raw sample. If the minimum

or maximum occurred as raw samples in the middle of the interval, these are also detected.

Import the following data:

[Tags]

Tagname,DataType,HiEngineeringUnits,LoEngineeringUnits

SAWTOOTH,SingleFloat,60,0

[Data]

Tagname,TimeStamp,Value,DataQuality

SAWTOOTH,29-Mar-2002 13:59:00.000,22.7,Good

SAWTOOTH,29-Mar-2002 14:01:00.000,12.5,Good

SAWTOOTH,29-Mar-2002 14:02:00.000,47.0,Good

SAWTOOTH,29-Mar-2002 14:03:00.000,2.4,Good

SAWTOOTH,29-Mar-2002 14:04:00.000,9.5,Good

SAWTOOTH,29-Mar-2002 14:08:00.000,12.5,Good

SAWTOOTH,29-Mar-2002 14:14:00.000,7.0,Good

SAWTOOTH,29-Mar-2002 14:22:00.000,4.8,Good

The following query retrieves the Maximum value:

select timestamp, value, quality from ihrawdata where

samplingmode=calculated and calculationmode=Maximum and timestamp >= '29-Mar-2002 13:50'

and timestamp <= '29-Mar-2002 14:30' and tagname = SAWTOOTH and numberofsamples = 8

The following query retrieves the MaximumTime value:

select timestamp, value, quality from ihrawdata where

samplingmode=calculated and calculationmode=MaximumTime and timestamp >= '29-Mar-2002 13:50'

and timestamp <= '29-Mar-2002 14:30' and tagname = SAWTOOTH and numberofsamples = 8

The following query retrieves the Minimum value:

Historian | 6 - Historian Advanced Topics | 1099

select timestamp, value, quality from ihrawdata where

samplingmode=calculated and calculationmode=Minimum and timestamp >= '29-Mar-2002 13:50'

and timestamp <= '29-Mar-2002 14:30' and tagname = SAWTOOTH and numberofsamples = 8

The following query retrieves the MinimumTime value:

select timestamp, value, quality from ihrawdata where

samplingmode=calculated and calculationmode=MinimumTime and timestamp >= '29-Mar-2002 13:50'

and timestamp <= '29-Mar-2002 14:30' and tagname = SAWTOOTH and numberofsamples = 8

Interval

Time Stamp
Maximum Maximum Time Minimum Minimum Time Quality

13:55:00.000 0.00 31-Dec-1969

19:00:00.000

0.00 31-Dec-1969

19:00:00.000

0.00

14:00:00.000 22.70 13:59:00.000 17.60 14:00:00.000 100.00

14:05:00.000 47.00 14:02:00.000 2.40 14:03:00.000 100.00

14:10:00.000 12.50 14:08:00.000 10.25 14:03:00.000 100.00

14:15:00.000 10.67 14:10:00.000 6.73 14:15:00.000 100.00

14:20:00.000 6.73 14:15:00.000 5.35 14:20:00.000 100.00

14:25:00.000 4.80 14:20:00.000 4.80 14:25:00.000 100.00

14:30:00.000 4.80 14:30:00.000 4.80 14:30:00.000 100.00

Querying with a single interval so that all samples are included results in the following:

Interval

Time Stamp
Maximum Maximum Time Minimum Minimum Time Quality

14:30:00.000 47.00 14:02:00.000 2.40 14:03:00.000 100.00

Finding the Minimum and Maximum with Bad Quality Data and Repeated Values

Import the following data:

[Tags]

Tagname,DataType,HiEngineeringUnits,LoEngineeringUnits

MINMAXBAD,SingleFloat,60,0

Historian | 6 - Historian Advanced Topics | 1100

[Data]

Tagname,TimeStamp,Value,DataQuality

MINMAXBAD,29-Mar-2002 13:59:00.000,22.7,Good

MINMAXBAD,29-Mar-2002 14:01:00.000,12.5,Good

MINMAXBAD,29-Mar-2002 14:02:00.000,47.0,Bad

MINMAXBAD,29-Mar-2002 14:03:00.000,2.4,Bad

MINMAXBAD,29-Mar-2002 14:04:00.000,9.5,Good

MINMAXBAD,29-Mar-2002 14:08:00.000,12.5,Good

MINMAXBAD,29-Mar-2002 14:14:00.000,7.0,Good

MINMAXBAD,29-Mar-2002 14:22:00.000,4.8,Good

Querying with a single interval so that all samples are included results in the following:

Interval

Time Stamp
Maximum Maximum Time Minimum Minimum Time Quality

14:30:00.000 22.70 13:59:00.00 4.80 14:30:00.000 100.00

Note:

MinimumTime is not 14:22 but 14:30. When multiple values within an interval have the same

Minimum or Maximum value, (such as here, where two samples have a minimum of 4.8), the

newest time stamp is always taken.

Finding the amount of time the collector was running

The following example uses multiple intervals without a filter condition. If the data is good for the entire

interval, the returned Value would be the length of the interval in milliseconds.

Import the following data (identical to that used in the examples for Interpolated Data)

[Tags]

Tagname,DataType,HiEngineeringUnits,LoEngineeringUnits

BADDQTAG,SingleFloat,60,0

[Data]

Tagname,TimeStamp,Value,DataQuality

BADDQTAG,29-Mar-2002 13:59:00.000,22.7,Good

BADDQTAG,29-Mar-2002 14:08:00.000,12.5,Bad

Historian | 6 - Historian Advanced Topics | 1101

BADDQTAG,29-Mar-2002 14:14:00.000,7.0,Bad

BADDQTAG,29-Mar-2002 14:22:00.000,4.8,Good

The following SQL query retrieves data with a start time of 14:00 and an end time of 14:30 in 5-minute

intervals:

select timestamp,value,intervalmilliseconds from ihRawData where

tagname = baddqtag and samplingmode=calculated and calculationmode=timegood

and timestamp > '29-mar-2002 13:55:00' and timestamp <'29-mar-2002 14:30:00'

and intervalmilliseconds=5m

Time Stamp Value Intervalmilliseconds

29-Mar-2002 14:00:00.000 60,000.00 300,000

29-Mar-2002 14:05:00.000 300,000.00 300,000

29-Mar-2002 14:10:00.000 180,000.00 300,000

29-Mar-2002 14:15:00.000 0.00 300,000

29-Mar-2002 14:20:00.000 0.00 300,000

29-Mar-2002 14:25:00.000 180,000.00 300,000

The percent quality for each returned interval is 100.00 and is not shown. By including the

intervalmilliseconds column, you can compare the returned milliseconds to the total milliseconds for the

interval.

• When data is good for the whole interval: From 14:01 to 14:05 the data is good, though no raw

samples are contained. The value is equal to intervalmilliseconds (300,000).

• When data starts bad while entering the interval and then turns good: The data is bad going into the

14:21 to 14:25 interval, resulting in a value of 180,000 (out of 300,000).

• When data is bad from the middle of the interval to the end the interval: The data in the 14:06 to

14:10 interval starts with good quality and changes to bad quality. The value is therefore less than

the calculated intervalmilliseconds (180,000 out of 300,000).

• When there are no raw samples in an interval: The number of raw samples has no effect on the

Value; it only affects the percent quality

Historian | 6 - Historian Advanced Topics | 1102

The interval from 14:01 to 14:05 contains no raw samples. The data quality throughout the entire

interval is good. Therefore, for this interval, the Value is 300,000 (the length of the entire interval).

The interval from 14:16 to 14:20 contains no raw samples. The data quality throughout the entire

interval is bad. At no time in this interval is there good data, so for this interval, the Value is 0.

The following example demonstrates the case of bad data throughout a section in the middle of an

interval. The following query retrieves data from a larger interval that has a section of bad quality in the

middle of 2 periods of good quality.

select timestamp,value,intervalmilliseconds from ihRawData where

tagname = baddqtag and samplingmode=calculated and calculationmode=timegood and

timestamp >= '29-mar-2002 14:05:00' and timestamp <= '29-mar-2002 14:25:00' and

intervalmilliseconds=20m

Time Stamp Value Intervalmilliseconds

29-Mar-2002 14:25:00.000 360,000.00 1,200,000

A value of 360,000 milliseconds corresponds to 3 minutes of good quality at the beginning of the interval

and 3 minutes of good quality at the end of the interval.

Time Weighted Calculation Modes

The ihAverage and ihTotal and ihStandardDeviation modes use time-weighted calculations of interpolated

and raw samples. The following example illustrates this concept using the ihAverage mode.

Import the following data:

[Tags]

Tagname,DataType,HiEngineeringUnits,LoEngineeringUnits

TAG2,SingleFloat,60,0

[Data]

Tagname,TimeStamp,Value,DataQuality

TAG2,29-Mar-2002 14:00:00.000,30.0,Good

TAG2,29-Mar-2002 14:01:00.000,40.0,Good

TAG2,29-Mar-2002 14:01:10.000,50.0,Good

TAG2,29-Mar-2002 14:01:15.000,20.0,Bad

TAG2,29-Mar-2002 14:01:45.000,25.0,Good

Historian | 6 - Historian Advanced Topics | 1103

Attributes for each data sample are Tagname, TimeStamp, Value, and DataQuality. The data can also be

organized by duration:

Value Duration

30 60 seconds

40 10 seconds

50 5 seconds

20 30 seconds

25 15 seconds

We want to analyze the data over the following interval. The time begins at the timestamp for the first

sample and ends 15 seconds after the timestamp of the last sample.

3/29/2002 14:00:00 - start time

3/29/2002 14:02:00 - end time

Calculating a raw average over these two minutes produces the following:

(40 + 50 + 25) / 3 = 38.33

You can also calculate it with the following query:

select timestamp, value, quality from ihrawdata where

samplingmode=calculated and calculationmode=RawAverage and timestamp >= '29-Mar-2002 14:00'

and timestamp <= '29-Mar-2002 14:02' and tagname = tag2 and numberofsamples = 1

Time Stamp Value Quality

29-Mar-200214:02:00.000 38.33 100.00

The value of 30 is not used because the RawAverage mode uses only samples whose timestamps are

greater than the interval's start time. A value whose timestamp is 14:00 would be associated with the

previous interval.

In a time-weighted average, the values are multiplied by the durations. The two-minute time weighted

average is:

((30 * 59.999) + (40 * 10) + (50 * 5) + (25*15)) / (60 + 10 + 5 + 15) = 31.38

You can calculate this with the following query:

Historian | 6 - Historian Advanced Topics | 1104

select timestamp, value, quality from ihrawdata where

samplingmode=calculated and calculationmode=Average and timestamp >= '29-Mar-2002 14:00'

and timestamp <= '29-Mar-2002 14:02' and tagname = tag2 and numberofsamples = 1

This more closely describes the real situation, the value was 30 during most of the queried interval. The

value of 30 is assigned to a timestamp of 14:00:00.001, which is the first possible timestamp greater than

the interval start time (up to a resolution of milliseconds).

Note:

The bad quality sample (whose value was 20) is ignored when calculating the time-weighted

average. The quality was bad for 30 seconds out of the 2 minutes, so the percent good quality

is 75. When performing time-weighted calculations, percent good represents the percentage of

time within the interval that had data with good quality: (90 seconds of good data quality / 120

seconds of the total interval duration) = 75%

Computing an Average Without A Raw Sample At Start Time

There is rarely a raw sample available at the interval start time. However, the archiver needs to know

the value at the start of an interval before it can perform time-weighted calculations. The archiver uses

interpolation to get values it needs for which no raw samples are available.

For example, if we set the start time for the query to 14:05, then the archiver will interpolate a value at the

timestamp of 14:05.

The RawAverage would then be calculated as follows:

select timestamp, value, quality from ihrawdata where samplingmode=calculated and

calculationmode=RawAverage and timestamp >= '29-Mar-2002 14:00:05' and

timestamp <= '29-Mar-2002 14:02' and tagname = tag2 and numberofsamples = 1

Time Stamp Value Quality

29-Mar-200214:02:00.000 38.33 100.00

Similarly, the time-weighted average would be calculated as follows:

select timestamp, value, quality from ihrawdata where samplingmode=calculated

and calculationmode=Average and timestamp >= '29-Mar-2002 14:00:05' and

timestamp <= '29-Mar-2002 14:02' and tagname = tag2 and numberofsamples = 1

Historian | 6 - Historian Advanced Topics | 1105

Time Stamp Value Quality

29-Mar-2002 14:02:00.000 32.01 73.91

Average and Step Values

The average of the raw samples is the interval, but there is special logic for time weighting and for

computing the value at the start of the interval.

Averages are computed differently depending on the value of the Tag.StepValue property. If

StepValuee=FALSE then the average works as it always did in 2.0 and 3.0. A value at the start of the interval

is determined via interpolation.

If StepValue=TRUE then lab sampling, not interpolation, is used to determine the value at interval start time.

This would more accurately reflect a value that steps or a value that uses collector compression and did

not change for a long period of time.

ihTotal Mode

The ihTotal mode retrieves the time weighted rate total for each calculation interval.

A rate total is considered for totalizing a continuous measurement. A factor is applied to the totalized

value to convert into the appropriate engineering units. Since this is a rate total, a base rate of Units/Day

is assumed. If the actual units of the continuous measurement is Units/Minute, multiply the results by

1440 Minutes / Day to convert the totalized number into the appropriate engineering units.

The formula for total is total = average & (interval in milliseconds / 1000) / 86400. The 86400 is number

of seconds in a day. This formula takes the average, which is assumed to be already in units per day, and

divides it into "units per interval".

Collecting a Rate from a Data Source

Assume an average of 240 barrels per day.

If your interval is one day, then the "units per interval" is units per DAY. Since the average was already

assumed to be in units per day, you just get back the average.

240 = 240 * (86400000/1000) / 86400

240 = 240 * 1

If your interval is 1 hour, you should get back 1/24 of the average.

total= 240 * (3600000/1000) / 86400

Historian | 6 - Historian Advanced Topics | 1106

total = 240 * 0.0417

total = 10

Ten is 1/24 of 240 and tells you 10 units were produced that hour.

Filtered Data Queries

You can retrieve data using an optional filter tag or filter expression if the client program or API you are

using supports it.

Normally, a data query specifies a start and an end time for the query. Data is returned for ALL intervals

between the start and end times. A filtered data query allows you to specify a filter tag or expression with

additional criteria so that only some of those intervals which match the filter conditions are returned. The

method of calculating the value attributed to the interval can be different from a non-filtered query, since

the filter criteria can exclude raw samples inside an interval as well as exclude intervals themselves.

The value that triggers a transition from FALSE to TRUE can be a raw value or interpolated value. If a

FilterTag or expression is supplied, the Data Archiver attempts to filter time periods from the results.

The filter data query parameters include:

• FilterTag or FilterExpression

• FilterMode

• FilterComparisonMode

• FilterComparisonValue

Each parameter is described in the following table with examples that demonstrate common usages.

Internally to the Data Archiver, the filter condition is evaluated to get zero or more time ranges. For

example, if you query from 1pm to 2pm and the filter condition was never TRUE during that time, nothing

is returned.

If the condition was TRUE from 1:40 to 1:45 then only the data for that time range is queried and returned.

Together the Filter Tag, Filter value, and Filter Comparison Mode define the criteria to apply to each

interval to determine inclusion or exclusion. You can optionally use Filter Expression to include all the

above parameters in one condition.

The Include Times defines how the time periods before and after transitions in the filter condition should

be handled. An example with actual data and a graphic to clarify the behavior of each of the IncludeTime

options is provided in the following topics.

Historian | 6 - Historian Advanced Topics | 1107

You can retrieve data using a filtered data query or filter expressions.

Using a Filtered Data Query

The filter query logic has two problems to solve:

• Which time ranges should be included? In the following example, you see that No Filter mode

returns all intervals. Each mode has its own logic to determine if an interval passes the filter or not.

• What value and quality should be attributed to the interval? If the filter condition is TRUE for the

whole interval, then this is just like the non-filtered result. When the filter condition is TRUE only for

part of the inter- val, raw samples get filtered out, changing the values returned.

For the following example, we know that we want to use AfterTime since the batch ID is written to the PLC

at the start of the batch. The intervals included are the ones for the times the batch is running. You would

use the BeforeTime if the batch ID was written at the end. Use the ExactTime if you are comparing 2 or

more values at a single point in time.

* Example for Filtered Data Documentation

*

[Tags]

Tagname,DataType,HiEngineeringUnits,LoEngineeringUnits

BATCHID,VariableString,10,0

RAMP,SingleInteger,60,0

ONOFF,SingleInteger,60,0

HAS SPACE,SingleInteger,60,0

[Data]

Tagname,TimeStamp,Value,DataQuality

BATCHID,30-Jul-2002 07:00:00.000,B1,Good

BATCHID,30-Jul-2002 07:00:20.000,B2,Good

BATCHID,30-Jul-2002 07:00:34.000,B3,Good

BATCHID,30-Jul-2002 07:00:52.000,B1,Good

RAMP,30-Jul-2002 07:00:00.000,0,Good

RAMP,30-Jul-2002 07:00:01.000,1,Good

RAMP,30-Jul-2002 07:00:02.000,2,Good

RAMP,30-Jul-2002 07:00:03.000,3,Good

RAMP,30-Jul-2002 07:00:04.000,4,Good

RAMP,30-Jul-2002 07:00:05.000,5,Good

RAMP,30-Jul-2002 07:00:06.000,6,Good

RAMP,30-Jul-2002 07:00:07.000,7,Good

Historian | 6 - Historian Advanced Topics | 1108

RAMP,30-Jul-2002 07:00:08.000,8,Good

RAMP,30-Jul-2002 07:00:09.000,9,Good

RAMP,30-Jul-2002 07:00:10.000,10,Good

RAMP,30-Jul-2002 07:00:11.000,11,Good

RAMP,30-Jul-2002 07:00:12.000,12,Good

RAMP,30-Jul-2002 07:00:13.000,13,Good

RAMP,30-Jul-2002 07:00:14.000,14,Good

RAMP,30-Jul-2002 07:00:15.000,15,Good

RAMP,30-Jul-2002 07:00:16.000,16,Good

RAMP,30-Jul-2002 07:00:17.000,17,Good

RAMP,30-Jul-2002 07:00:18.000,18,Good

RAMP,30-Jul-2002 07:00:19.000,19,Good

RAMP,30-Jul-2002 07:00:20.000,20,Good

RAMP,30-Jul-2002 07:00:21.000,21,Good

RAMP,30-Jul-2002 07:00:22.000,22,Good

RAMP,30-Jul-2002 07:00:23.000,23,Good

RAMP,30-Jul-2002 07:00:24.000,24,Good

RAMP,30-Jul-2002 07:00:25.000,25,Good

RAMP,30-Jul-2002 07:00:26.000,26,Good

RAMP,30-Jul-2002 07:00:27.000,27,Good

RAMP,30-Jul-2002 07:00:28.000,28,Good

RAMP,30-Jul-2002 07:00:29.000,29,Good

RAMP,30-Jul-2002 07:00:30.000,30,Good

RAMP,30-Jul-2002 07:00:31.000,31,Good

RAMP,30-Jul-2002 07:00:32.000,32,Good

RAMP,30-Jul-2002 07:00:33.000,33,Good

RAMP,30-Jul-2002 07:00:34.000,34,Good

RAMP,30-Jul-2002 07:00:35.000,35,Good

RAMP,30-Jul-2002 07:00:36.000,36,Good

RAMP,30-Jul-2002 07:00:37.000,37,Good

RAMP,30-Jul-2002 07:00:38.000,38,Good

RAMP,30-Jul-2002 07:00:39.000,39,Good

RAMP,30-Jul-2002 07:00:40.000,40,Good

RAMP,30-Jul-2002 07:00:41.000,41,Good

RAMP,30-Jul-2002 07:00:42.000,42,Good

RAMP,30-Jul-2002 07:00:43.000,43,Good

RAMP,30-Jul-2002 07:00:44.000,44,Good

Historian | 6 - Historian Advanced Topics | 1109

RAMP,30-Jul-2002 07:00:45.000,45,Good

RAMP,30-Jul-2002 07:00:46.000,46,Good

RAMP,30-Jul-2002 07:00:47.000,47,Good

RAMP,30-Jul-2002 07:00:48.000,48,Good

RAMP,30-Jul-2002 07:00:49.000,49,Good

RAMP,30-Jul-2002 07:00:50.000,50,Good

RAMP,30-Jul-2002 07:00:51.000,51,Good

RAMP,30-Jul-2002 07:00:52.000,52,Good

RAMP,30-Jul-2002 07:00:53.000,53,Good

RAMP,30-Jul-2002 07:00:54.000,54,Good

RAMP,30-Jul-2002 07:00:55.000,55,Good

RAMP,30-Jul-2002 07:00:56.000,56,Good

RAMP,30-Jul-2002 07:00:57.000,57,Good

RAMP,30-Jul-2002 07:00:58.000,58,Good

RAMP,30-Jul-2002 07:00:59.000,59,Good

ONOFF,30-Jul-2002 07:00:00.000,0,Good

ONOFF,30-Jul-2002 07:00:01.000,1,Good

ONOFF,30-Jul-2002 07:01:01.000,0,Good

ONOFF,30-Jul-2002 07:01:16.000,0,Good

ONOFF,30-Jul-2002 07:01:17.000,1,Good

ONOFF,30-Jul-2002 07:01:18.000,1,Good

ONOFF,30-Jul-2002 07:02:01.000,1,Good

ONOFF,30-Jul-2002 07:03:01.000,0,Good

HAS SPACE,30-Jul-2002 07:00:00.000,0,Good

HAS SPACE,30-Jul-2002 07:00:01.000,1,Good

HAS SPACE,30-Jul-2002 07:01:01.000,0,Good

HAS SPACE,30-Jul-2002 07:01:16.000,0,Good

HAS SPACE,30-Jul-2002 07:01:17.000,1,Good

HAS SPACE,30-Jul-2002 07:01:18.000,1,Good

HAS SPACE,30-Jul-2002 07:02:01.000,1,Good

HAS SPACE,30-Jul-2002 07:03:01.000,0,Good

The key to understanding this example is that the batch ID is written to the text tag at the start of the

batch, and only at the start. It is not repeated during the batch. Other systems may write the batch ID at

the end of the interval. You can tell the time period of a batch by looking at the raw samples of the batch

ID tag.

Historian | 6 - Historian Advanced Topics | 1110

BATCHID,30-Jul-2002 07:00:00.000,B1,Good

BATCHID,30-Jul-2002 07:00:20.000,B2,Good

BATCHID,30-Jul-2002 07:00:34.000,B3,Good

BATCHID,30-Jul-2002 07:00:52.000,B1,Good

In this system, since the batch ID is written at the start of the batch, you can tell that batch B1 ran from

07:00:01 to 07:00:19 and then batch B2 ran. This assumes that all time is attributable to some batch and

there is no dead time between batches. If there is equipment downtime after a batch, you need to write

some other value to the batch ID tag to indicate the end time of the batch.

The query parameters are given below:

Query Parameter Value

Start Time 07/30/2002 07:00:00

End Time 07/30/2002 07:01:00

Interval 10 seconds

Using Filter Expressions

You can enter filter expressions in filtered data queries to indicate the desired time range. A Filter

Expression has one or more filter conditions.

A filter condition has:

1. A Historian tag

2. A comparison (=, !=, >, <, <=, >=, ^, ~, !~, !^)

3. A value

For example: mytag < 7

You can add more than one filter condition in a filter expression using AND, OR within a parenthesis. For

example: (mytag > 3) and (mytag < 7).

You can use bitwise comparison for a tag. By using bitwise comparison you can compare the binary

values of the given filter tag with the bits specified in the condition. The Bitwise comparison modes are:

1. AllBitssSet (^)

2. AnyBitSet (~)

3. AnyBitNotSet (!~)

4. AllBitsNotSet (!^)

Historian | 6 - Historian Advanced Topics | 1111

While using filter expression you should remember the following things:

• You cannot use a NOT operator; you can use != instead.

• You cannot do mathematical operations such as (mytag1+7) > 15.

• You cannot compare two tags such as mytag1 > mytag2.

Your conditions can only include values and not qualities. Values are used only if they are of good

quality so you need not check the quality separately. As with any filtered data query, the filter expression

determines the time ranges of the data returned. There is no maximum length for an expression but a

typical expression will be have 1 or 3 conditions.

Import this data to Historian:

*

[Tags]

Tagname,DataType,HiEngineeringUnits,LoEngineeringUnits

BATCHID,VariableString,10,0

RAMP,SingleInteger,60,0

ONOFF,SingleInteger,60,0

HAS SPACE,SingleInteger,60,0

[Data]

Tagname,TimeStamp,Value,DataQuality

BATCHID,30-Jul-2002 07:00:00.000,B1,Good

BATCHID,30-Jul-2002 07:00:20.000,B2,Good

BATCHID,30-Jul-2002 07:00:34.000,B3,Good

BATCHID,30-Jul-2002 07:00:52.000,B1,Good

RAMP,30-Jul-2002 07:00:00.000,0,Good

RAMP,30-Jul-2002 07:00:01.000,1,Good

RAMP,30-Jul-2002 07:00:02.000,2,Good

RAMP,30-Jul-2002 07:00:03.000,3,Good

RAMP,30-Jul-2002 07:00:04.000,4,Good

RAMP,30-Jul-2002 07:00:05.000,5,Good

RAMP,30-Jul-2002 07:00:06.000,6,Good

RAMP,30-Jul-2002 07:00:07.000,7,Good

RAMP,30-Jul-2002 07:00:08.000,8,Good

RAMP,30-Jul-2002 07:00:09.000,9,Good

RAMP,30-Jul-2002 07:00:10.000,10,Good

RAMP,30-Jul-2002 07:00:11.000,11,Good

RAMP,30-Jul-2002 07:00:12.000,12,Good

Historian | 6 - Historian Advanced Topics | 1112

RAMP,30-Jul-2002 07:00:13.000,13,Good

RAMP,30-Jul-2002 07:00:14.000,14,Good

RAMP,30-Jul-2002 07:00:15.000,15,Good

RAMP,30-Jul-2002 07:00:16.000,16,Good

RAMP,30-Jul-2002 07:00:17.000,17,Good

RAMP,30-Jul-2002 07:00:18.000,18,Good

RAMP,30-Jul-2002 07:00:19.000,19,Good

RAMP,30-Jul-2002 07:00:20.000,20,Good

RAMP,30-Jul-2002 07:00:21.000,21,Good

RAMP,30-Jul-2002 07:00:22.000,22,Good

RAMP,30-Jul-2002 07:00:23.000,23,Good

RAMP,30-Jul-2002 07:00:24.000,24,Good

RAMP,30-Jul-2002 07:00:25.000,25,Good

RAMP,30-Jul-2002 07:00:26.000,26,Good

RAMP,30-Jul-2002 07:00:27.000,27,Good

RAMP,30-Jul-2002 07:00:28.000,28,Good

RAMP,30-Jul-2002 07:00:29.000,29,Good

RAMP,30-Jul-2002 07:00:30.000,30,Good

RAMP,30-Jul-2002 07:00:31.000,31,Good

RAMP,30-Jul-2002 07:00:32.000,32,Good

RAMP,30-Jul-2002 07:00:33.000,33,Good

RAMP,30-Jul-2002 07:00:34.000,34,Good

RAMP,30-Jul-2002 07:00:35.000,35,Good

RAMP,30-Jul-2002 07:00:36.000,36,Good

RAMP,30-Jul-2002 07:00:37.000,37,Good

RAMP,30-Jul-2002 07:00:38.000,38,Good

RAMP,30-Jul-2002 07:00:39.000,39,Good

RAMP,30-Jul-2002 07:00:40.000,40,Good

RAMP,30-Jul-2002 07:00:41.000,41,Good

RAMP,30-Jul-2002 07:00:42.000,42,Good

RAMP,30-Jul-2002 07:00:43.000,43,Good

RAMP,30-Jul-2002 07:00:44.000,44,Good

RAMP,30-Jul-2002 07:00:45.000,45,Good

RAMP,30-Jul-2002 07:00:46.000,46,Good

RAMP,30-Jul-2002 07:00:47.000,47,Good

RAMP,30-Jul-2002 07:00:48.000,48,Good

RAMP,30-Jul-2002 07:00:49.000,49,Good

Historian | 6 - Historian Advanced Topics | 1113

RAMP,30-Jul-2002 07:00:50.000,50,Good

RAMP,30-Jul-2002 07:00:51.000,51,Good

RAMP,30-Jul-2002 07:00:52.000,52,Good

RAMP,30-Jul-2002 07:00:53.000,53,Good

RAMP,30-Jul-2002 07:00:54.000,54,Good

RAMP,30-Jul-2002 07:00:55.000,55,Good

RAMP,30-Jul-2002 07:00:56.000,56,Good

RAMP,30-Jul-2002 07:00:57.000,57,Good

RAMP,30-Jul-2002 07:00:58.000,58,Good

RAMP,30-Jul-2002 07:00:59.000,59,Good

ONOFF,30-Jul-2002 07:00:00.000,0,Good

ONOFF,30-Jul-2002 07:00:01.000,1,Good

ONOFF,30-Jul-2002 07:01:01.000,0,Good

ONOFF,30-Jul-2002 07:01:16.000,0,Good

ONOFF,30-Jul-2002 07:01:17.000,1,Good

ONOFF,30-Jul-2002 07:01:18.000,1,Good

ONOFF,30-Jul-2002 07:02:01.000,1,Good

ONOFF,30-Jul-2002 07:03:01.000,0,Good

HAS SPACE,30-Jul-2002 07:00:00.000,0,Good

HAS SPACE,30-Jul-2002 07:00:01.000,1,Good

HAS SPACE,30-Jul-2002 07:01:01.000,0,Good

HAS SPACE,30-Jul-2002 07:01:16.000,0,Good

HAS SPACE,30-Jul-2002 07:01:17.000,1,Good

HAS SPACE,30-Jul-2002 07:01:18.000,1,Good

HAS SPACE,30-Jul-2002 07:02:01.000,1,Good

HAS SPACE,30-Jul-2002 07:03:01.000,0,Good

For the following scenarios, import the data tags provided.

Counter Delta Queries

A delta counter measures the change in tag values that increase steadily over a time interval and then

reset to a minimum value (for example, the electricity meter of a household).

Historian offers the following delta queries to determine the delta over a time interval:

• DELTAPOS (on page 1116)

• DELTANEG (on page 1132)

• DELTA (on page 1141)

Historian | 6 - Historian Advanced Topics | 1114

Advantages of using delta queries:

• Simplified visualization and analysis of counter data.

• Returns the delta over a period rather than the exact value at the end of each counter.

• Handles counter resets and counter wrap around.

Delta counters are useful when you are monitoring data from multiple sources. The following terms are

used in a delta counter:

Counter Reset

A point where data points are reset to the minimum value. For example, the electricity meter

of a household is reset to 0 at the beginning of every month or when a meter is replaced

with a new one.

Counter Wrap Around

A point where data in an increasing trend suddenly drops to a value less than a specified

value. This happens when the reading goes beyond the maximum value that the meter can

read. For example, if a meter can read from 0 to 255, any reading greater than 255 is set to

0. This is called a counter wrap around.

Delta Max Value

The maximum value that a tag can have. It also called the rollover point of the counter or

totalizer. If the tag values exceed MaxValue, the counter is reset to the minimum value. If

you do not provide MaxValue, the delta query cannot check for a positive counter wrap. You

can set this value while specifying tags for data collection (on page 357) in Configuration

Hub.

Delta Min Value

The minimum value that a tag can have. If the tag values are less than MinValue (and the

counter is going in the negative direction), the tag values are reset to MaxValue. If you do

not provide MinValue, 0 is considered. You can set this value while specifying tags for data

collection (on page 357) in Configuration Hub.

Delta Max Positive RPH

The maximum rate per hour between two consecutive data points in the positive direction. If

two consecutive data points exceed this value, they are not considered in a delta query. You

can set this value while specifying tags for data collection (on page 357) in Configuration

Hub.

Delta Max Negative RPH

Historian | 6 - Historian Advanced Topics | 1115

The maximum rate per hour between two consecutive data points in the negative direction.

If two consecutive data points exceed this value, they are not considered in a delta

query. You can set this value while specifying tags for data collection (on page 357) in

Configuration Hub.

The Delta Max Positive RPH and Delta Max Negative RPH values are used to determine if a counter

wrap has occurred or if the counter has been manually reset. They help ignore data points whose values

increase or decrease drastically.

Suppose a tag stores the readings of an electricity meter. And you have provided the following values:

Field Value

Delta Max Value 255

Delta Min Value 5

Delta Max Positive RPH 10

Delta Max Negative RPH 10

Suppose the following data points are received for the tag:

After 35, the value increases to 47. Since the difference is greater than MaxPositiveRPH, the data points

35 and 47 will not considered in a delta query.

Historian | 6 - Historian Advanced Topics | 1116

Similarly, the difference between 55 and 40 is greater than MaxNegativeRPH; therefore, these two data

points will not considered in a delta query.

After 55, the counter has been reset to its minimum value.

DELTAPOS Calculation

The following diagrams show how DELTAPOS is calculated. If Delta Min is not considered, 0 is

considered.

Historian | 6 - Historian Advanced Topics | 1117

Figure 2. DELTAPOS Calculation When Delta Max Positive RPH is not Provided

Historian | 6 - Historian Advanced Topics | 1118

Figure 3. DELTAPOS Calculation When Delta Max Positive RPH is Provided

Note:

Delta Max Negative RPH is not used to calculate DELTAPOS.

Calculating DELTAPOS When Delta Max Positive RPH is Not Provided and Data is in the
Increasing Trend
Suppose you have received the following tag data:

TimeStamp
Tag

Value
Data Quality

19-Dec-2021 14:01:10 0 Good

19-Dec-2021 14:01:20 5 Good

19-Dec-2021 14:01:30 10 Good

19-Dec-2021 14:01:40 15 Good

19-Dec-2021 14:01:50 20 Good

19-Dec-2021 14:02:00 25 Good

19-Dec-2021 14:02:10 30 Good

19-Dec-2021 14:02:20 35 Good

19-Dec-2021 14:02:30 40 Good

Historian | 6 - Historian Advanced Topics | 1119

TimeStamp
Tag

Value
Data Quality

19-Dec-2021 14:02:40 45 Good

19-Dec-2021 14:02:50 50 Good

19-Dec-2021 14:03:00 55 Good

19-Dec-2021 14:03:10 60 Good

19-Dec-2021 14:03:20 65 Good

19-Dec-2021 14:03:30 70 Good

19-Dec-2021 14:03:40 75 Good

19-Dec-2021 14:03:50 80 Good

19-Dec-2021 14:04:00 85 Good

19-Dec-2021 14:04:10 90 Good

19-Dec-2021 14:04:20 95 Good

19-Dec-2021 14:04:30 100 Good

19-Dec-2021 14:04:40 105 Good

19-Dec-2021 14:04:50 110 Good

19-Dec-2021 14:05:00 115 Good

19-Dec-2021 14:05:10 120 Good

19-Dec-2021 14:05:20 125 Good

19-Dec-2021 14:05:30 130 Good

19-Dec-2021 14:05:40 135 Good

19-Dec-2021 14:05:50 140 Good

19-Dec-2021 14:06:00 145 Good

Suppose you have run the following query:

Select timestamp,value,quality from IHrawdata

where tagname=BasicTestPos and samplingmode=calculated and

timestamp>='19-Dec-2021 14:00:00.000' and timestamp<='19-Dec-2021 14:06:00.000'

and calculationmode=DeltaPos and intervalmilliseconds=1M

Historian | 6 - Historian Advanced Topics | 1120

Regardless of whether you have provided Delta Min and Delta Max, since you have not provided Delta

Max Positive RPH, and since the data points are in the increasing trend, DELTAPOS is calculated as the

difference between consecutive data points:

TimeStamp
DELTAPOS

Value
Data Quality

19-Dec-2021 14:00:00 0 100

19-Dec-2021 14:01:00 0 100

19-Dec-2021 14:02:00 25.00 100

19-Dec-2021 14:03:00 30.00 100

19-Dec-2021 14:04:00 30.00 100

19-Dec-2021 14:05:00 30.00 100

19-Dec-2021 14:06:00 30.00 100

Calculating DELTAPOS When Data Quality is Bad
Suppose you have received the following data:

Time Stamp
Val

ue
Data Quality

19-Dec-2021 14:01:10 0 Good

19-Dec-2021 14:01:20 5 Bad

19-Dec-2021 14:01:30 10 Good

19-Dec-2021 14:01:40 15 Bad

19-Dec-2021 14:01:50 20 Good

19-Dec-2021 14:02:00 25 Bad

19-Dec-2021 14:02:10 30 Good

19-Dec-2021 14:02:20 35 Bad

19-Dec-2021 14:02:30 40 Good

19-Dec-2021 14:02:40 45 Bad

19-Dec-2021 14:02:50 50 Good

19-Dec-2021 14:03:00 55 Bad

Historian | 6 - Historian Advanced Topics | 1121

Time Stamp
Val

ue
Data Quality

19-Dec-2021 14:03:10 60 Good

19-Dec-2021 14:03:20 65 Bad

19-Dec-2021 14:03:30 70 Good

19-Dec-2021 14:03:40 75 Bad

19-Dec-2021 14:03:50 80 Good

19-Dec-2021 14:04:00 85 Bad

19-Dec-2021 14:04:10 90 Good

19-Dec-2021 14:04:20 95 Bad

19-Dec-2021 14:04:30 100 Good

19-Dec-2021 14:04:40 105 Bad

19-Dec-2021 14:04:50 110 Good

19-Dec-2021 14:05:00 115 Bad

19-Dec-2021 14:05:10 120 Good

19-Dec-2021 14:05:20 125 Bad

19-Dec-2021 14:05:30 130 Good

19-Dec-2021 14:05:40 135 Bad

19-Dec-2021 14:05:50 140 Good

19-Dec-2021 14:06:00 145 Bad

Suppose you have run the following query:

Select timestamp,value,quality from IHrawdata

where tagname=BasicTestWithBad and samplingmode=calculated

and timestamp>='19-Dec-2021 14:00:00.000' and timestamp<='19-Dec-2021 14:06:00.000'

and calculationmode=DeltaPos and intervalmilliseconds=1M

Data with bad quality is not considered in the calculation. Therefore, DELTAPOS is the difference between

consecutive data points with good quality.

Historian | 6 - Historian Advanced Topics | 1122

Time Stamp
Val

ue
Data Quality DELTAPOS

19-Dec-2021 14:01:10 0 Good 0

19-Dec-2021 14:01:20 5 Bad 0

19-Dec-2021 14:01:30 10 Good 10

19-Dec-2021 14:01:40 15 Bad 0

19-Dec-2021 14:01:50 20 Good 10

19-Dec-2021 14:02:00 25 Bad 0

19-Dec-2021 14:02:10 30 Good 10

19-Dec-2021 14:02:20 35 Bad 0

19-Dec-2021 14:02:30 40 Good 10

19-Dec-2021 14:02:40 45 Bad 0

19-Dec-2021 14:02:50 50 Good 10

19-Dec-2021 14:03:00 55 Bad 0

19-Dec-2021 14:03:10 60 Good 10

19-Dec-2021 14:03:20 65 Bad 0

19-Dec-2021 14:03:30 70 Good 10

19-Dec-2021 14:03:40 75 Bad 0

19-Dec-2021 14:03:50 80 Good 10

19-Dec-2021 14:04:00 85 Bad 0

19-Dec-2021 14:04:10 90 Good 10

19-Dec-2021 14:04:20 95 Bad 0

19-Dec-2021 14:04:30 100 Good 10

19-Dec-2021 14:04:40 105 Bad 0

19-Dec-2021 14:04:50 110 Good 10

19-Dec-2021 14:05:00 115 Bad 0

19-Dec-2021 14:05:10 120 Good 10

19-Dec-2021 14:05:20 125 Bad 0

Historian | 6 - Historian Advanced Topics | 1123

Time Stamp
Val

ue
Data Quality DELTAPOS

19-Dec-2021 14:05:30 130 Good 10

19-Dec-2021 14:05:40 135 Bad 0

19-Dec-2021 14:05:50 140 Good 10

19-Dec-2021 14:06:00 145 Bad 0

DELTAPOS for a given duration is calculated as the sum of the individual DELTAPOS values in that

duration as shown in the following table.

Time Stamp
Val

ue
Data Quality

19-Dec-2021 14:00:00 0.00 100

19-Dec-2021 14:01:00 0.00 100

19-Dec-2021 14:02:00 20.00 100

19-Dec-2021 14:03:00 30.00 100

19-Dec-2021 14:04:00 30.00 100

19-Dec-2021 14:05:00 30.00 100

19-Dec-2021 14:06:00 30.00 100

Calculating DELTAPOS When Rate of Increase is Greater than Delta Max Positive RPH
Suppose you have provided the following data:

Delta Max 265

Delta Min 50

Delta Max Positive RPH 10

Delta Max Negative

RPH

10

Suppose you have received the following data:

Historian | 6 - Historian Advanced Topics | 1124

TimeStamp
Tag

Value
Data Quality

19-Dec-2021 14:01:10 55 Good

19-Dec-2021 14:01:20 65 Good

19-Dec-2021 14:01:30 80 Good

19-Dec-2021 14:01:40 85 Good

19-Dec-2021 14:01:50 95 Good

19-Dec-2021 14:02:00 105 Good

19-Dec-2021 14:02:10 120 Good

19-Dec-2021 14:02:20 125 Good

19-Dec-2021 14:02:30 140 Good

19-Dec-2021 14:02:40 145 Good

19-Dec-2021 14:02:50 155 Good

19-Dec-2021 14:03:00 165 Good

19-Dec-2021 14:03:10 175 Good

19-Dec-2021 14:03:20 185 Good

19-Dec-2021 14:03:30 195 Good

19-Dec-2021 14:03:40 205 Good

19-Dec-2021 14:03:50 215 Good

19-Dec-2021 14:04:00 225 Good

19-Dec-2021 14:04:10 235 Good

19-Dec-2021 14:04:20 245 Good

19-Dec-2021 14:04:30 255 Good

19-Dec-2021 14:04:40 265 Good

19-Dec-2021 14:04:50 55 Good

19-Dec-2021 14:05:00 65 Good

19-Dec-2021 14:05:10 75 Good

Historian | 6 - Historian Advanced Topics | 1125

TimeStamp
Tag

Value
Data Quality

19-Dec-2021 14:05:20 85 Good

19-Dec-2021 14:05:30 95 Good

19-Dec-2021 14:05:40 105 Good

19-Dec-2021 14:05:50 115 Good

19-Dec-2021 14:06:00 125 Good

Suppose you have run the following query:

Select timestamp,value,quality from IHrawdata

where tagname=DeltaPosSample4 and samplingmode=calculated

and timestamp>='19-Dec-2021 14:00:00.000' and timestamp<='19-Dec-2021 14:06:00.000'

and calculationmode=DeltaPos and intervalmilliseconds=1M

In the cases where the rate of increase is greater than Delta Max Positive RPH, DELTAPOS = 0. For the

other values, DELTAPOS is the difference between the consecutive values (highlighted in bold formatting):

Time Stamp
Val

ue
Data Quality

19-Dec-2021 14:00:00 0.00 100

19-Dec-2021 14:01:00 0.00 100

19-Dec-2021 14:02:00 50.00 100

19-Dec-2021 14:03:00 60.00 100

19-Dec-2021 14:04:00 60.00 100

19-Dec-2021 14:05:00 55.00 100

19-Dec-2021 14:06:00 60.00 100

Calculating DELTAPOS When Delta Max is not Provided and Data does not Follow a Trend
Suppose you have received the following data:

Time Stamp
Val

ue
Data Quality

19-Dec-2021 14:01:10 0 Good

Historian | 6 - Historian Advanced Topics | 1126

Time Stamp
Val

ue
Data Quality

19-Dec-2021 14:01:20 5 Good

19-Dec-2021 14:01:30 10 Good

19-Dec-2021 14:01:40 8 Good

19-Dec-2021 14:01:50 20 Good

19-Dec-2021 14:02:00 25 Good

19-Dec-2021 14:02:10 30 Good

19-Dec-2021 14:02:20 19 Good

19-Dec-2021 14:02:30 40 Good

19-Dec-2021 14:02:40 45 Good

19-Dec-2021 14:02:50 50 Good

19-Dec-2021 14:03:00 55 Good

19-Dec-2021 14:03:10 60 Good

19-Dec-2021 14:03:20 38 Good

19-Dec-2021 14:03:30 70 Good

19-Dec-2021 14:03:40 75 Good

19-Dec-2021 14:03:50 80 Good

19-Dec-2021 14:04:00 85 Good

19-Dec-2021 14:04:10 90 Good

19-Dec-2021 14:04:20 95 Good

19-Dec-2021 14:04:30 100 Good

19-Dec-2021 14:04:40 105 Good

19-Dec-2021 14:04:50 110 Good

19-Dec-2021 14:05:00 115 Good

19-Dec-2021 14:05:10 120 Good

19-Dec-2021 14:05:20 125 Good

Historian | 6 - Historian Advanced Topics | 1127

Time Stamp
Val

ue
Data Quality

19-Dec-2021 14:05:30 130 Good

19-Dec-2021 14:05:40 135 Good

19-Dec-2021 14:05:50 140 Good

19-Dec-2021 14:06:00 145 Good

Suppose you have run the following query:

Select timestamp,value,quality from IHrawdata

where tagname=DeltaPosSample1 and samplingmode=calculated

and timestamp>='19-Dec-2021 14:00:00.000' and timestamp<='19-Dec-2021 14:06:00.000'

and calculationmode=DeltaPos and intervalmilliseconds=1M

Since you have not provided Delta Max Positive RPH, for data points that are in the increasing trend,

the difference is used. For data points that are in the decreasing trend, DELTAPOS is calculated as the

difference between the latest value and Delta Min (highlighted in bold formatting). Since Delta Min is not

provided, it is considered as 0.

Time Stamp
Val

ue
DELTAPOS

19-Dec-2021 14:01:10 0 0

19-Dec-2021 14:01:20 5 5

19-Dec-2021 14:01:30 10 5

19-Dec-2021 14:01:40 8 8

19-Dec-2021 14:01:50 20 12

19-Dec-2021 14:02:00 25 5

19-Dec-2021 14:02:10 30 5

19-Dec-2021 14:02:20 19 19

19-Dec-2021 14:02:30 40 21

19-Dec-2021 14:02:40 45 5

19-Dec-2021 14:02:50 50 5

Historian | 6 - Historian Advanced Topics | 1128

Time Stamp
Val

ue
DELTAPOS

19-Dec-2021 14:03:00 55 5

19-Dec-2021 14:03:10 60 5

19-Dec-2021 14:03:20 38 38

19-Dec-2021 14:03:30 70 32

19-Dec-2021 14:03:40 75 5

19-Dec-2021 14:03:50 80 5

19-Dec-2021 14:04:00 85 5

19-Dec-2021 14:04:10 90 5

19-Dec-2021 14:04:20 95 5

19-Dec-2021 14:04:30 100 5

19-Dec-2021 14:04:40 105 5

19-Dec-2021 14:04:50 110 5

19-Dec-2021 14:05:00 115 5

19-Dec-2021 14:05:10 120 5

19-Dec-2021 14:05:20 125 5

19-Dec-2021 14:05:30 130 5

19-Dec-2021 14:05:40 135 5

19-Dec-2021 14:05:50 140 5

19-Dec-2021 14:06:00 145 5

DELTAPOS for a given duration is calculated as the sum of the individual DELTAPOS values in that

duration as shown in the following table.

Time Stamp
DELTAPOS

Value
Data Quality

19-Dec-2021 14:00:00 0.00 100

19-Dec-2021 14:01:00 0.00 100

Historian | 6 - Historian Advanced Topics | 1129

Time Stamp
DELTAPOS

Value
Data Quality

19-Dec-2021 14:02:00 35.00 100

19-Dec-2021 14:03:00 60.00 100

19-Dec-2021 14:04:00 90.00 100

19-Dec-2021 14:05:00 30.00 100

19-Dec-2021 14:06:00 30.00 100

Calculating DELTAPOS When Delta Max is Provided and Data does not Follow a Trend
Suppose you have provided the following values:

Delta Max 265

Delta Min 50

Suppose you have received the following data:

Time Stamp
Val

ue
Data Quality

19-Dec-2021 14:01:10 50 Good

19-Dec-2021 14:01:20 60 Good

19-Dec-2021 14:01:30 55 Good

19-Dec-2021 14:01:40 80 Good

19-Dec-2021 14:01:50 90 Good

19-Dec-2021 14:02:00 100 Good

19-Dec-2021 14:02:10 110 Good

19-Dec-2021 14:02:20 80 Good

19-Dec-2021 14:02:30 130 Good

19-Dec-2021 14:02:40 110 Good

19-Dec-2021 14:02:50 150 Good

19-Dec-2021 14:03:00 160 Good

Historian | 6 - Historian Advanced Topics | 1130

Time Stamp
Val

ue
Data Quality

19-Dec-2021 14:03:10 170 Good

19-Dec-2021 14:03:20 180 Good

19-Dec-2021 14:03:30 190 Good

19-Dec-2021 14:03:40 200 Good

19-Dec-2021 14:03:50 210 Good

19-Dec-2021 14:04:00 220 Good

19-Dec-2021 14:04:10 230 Good

19-Dec-2021 14:04:20 240 Good

19-Dec-2021 14:04:30 250 Good

19-Dec-2021 14:04:40 260 Good

19-Dec-2021 14:04:50 50 Good

19-Dec-2021 14:05:00 60 Good

19-Dec-2021 14:05:10 70 Good

19-Dec-2021 14:05:20 80 Good

19-Dec-2021 14:05:30 90 Good

19-Dec-2021 14:05:40 100 Good

19-Dec-2021 14:05:50 110 Good

19-Dec-2021 14:06:00 120 Good

Suppose you have run the following query:

Select timestamp,value,quality from IHrawdata

where tagname=DeltaPosSample3 and samplingmode=calculated

and timestamp>='19-Dec-2021 14:00:00.000' and timestamp<='19-Dec-2021 14:06:00.000'

and calculationmode=DeltaPos and intervalmilliseconds=1M

Since you have not provided Delta Max Positive RPH, for data points that are in the increasing trend, the

difference is used. For data points that are in the decreasing trend, DELTAPOS is calculated as follows:

DELTAPOS = Delta Max - Previous Value + Current Value - Delta Min These values as highlighted in

bold formatting in the following table.

Historian | 6 - Historian Advanced Topics | 1131

Time Stamp
Val

ue

DELTAPOS

Value

19-Dec-2021 14:01:10 50 0

19-Dec-2021 14:01:20 60 10

19-Dec-2021 14:01:30 55 210

19-Dec-2021 14:01:40 80 25

19-Dec-2021 14:01:50 90 10

19-Dec-2021 14:02:00 100 10

19-Dec-2021 14:02:10 110 10

19-Dec-2021 14:02:20 80 185

19-Dec-2021 14:02:30 130 50

19-Dec-2021 14:02:40 110 195

19-Dec-2021 14:02:50 150 40

19-Dec-2021 14:03:00 160 10

19-Dec-2021 14:03:10 170 10

19-Dec-2021 14:03:20 180 10

19-Dec-2021 14:03:30 190 10

19-Dec-2021 14:03:40 200 10

19-Dec-2021 14:03:50 210 10

19-Dec-2021 14:04:00 220 10

19-Dec-2021 14:04:10 230 10

19-Dec-2021 14:04:20 240 10

19-Dec-2021 14:04:30 250 10

19-Dec-2021 14:04:40 260 10

19-Dec-2021 14:04:50 50 5

19-Dec-2021 14:05:00 60 10

19-Dec-2021 14:05:10 70 10

Historian | 6 - Historian Advanced Topics | 1132

Time Stamp
Val

ue

DELTAPOS

Value

19-Dec-2021 14:05:20 80 10

19-Dec-2021 14:05:30 90 10

19-Dec-2021 14:05:40 100 10

19-Dec-2021 14:05:50 110 10

19-Dec-2021 14:06:00 120 10

DELTAPOS for a given duration is calculated as the sum of the individual DELTAPOS values in that

duration as shown in the following table.

Time Stamp Value Data Quality

19-Dec-2021 14:00:00 0.00 100

19-Dec-2021 14:01:00 0.00 100

19-Dec-2021 14:02:00 265.00 100

19-Dec-2021 14:03:00 490.00 100

19-Dec-2021 14:04:00 60.00 100

19-Dec-2021 14:05:00 55.00 100

19-Dec-2021 14:06:00 60.00 100

DELTANEG Calculation

The following diagrams show how DELTANEG is calculated. If Delta Min is not considered, 0 is

considered.

Historian | 6 - Historian Advanced Topics | 1133

Figure 4. DELTANEG Calculation When Delta Max Negative RPH is not Provided

Historian | 6 - Historian Advanced Topics | 1134

Figure 5. DELTANEG Calculation When Delta Max Negative RPH is Provided

Note:

Delta Max Positive RPH is not used to calculate DELTANEG.

Calculating DELTANEG When Delta Max Negative RPH is Not Provided and Data is in the
Decreasing Trend
Suppose you have received the following tag data:

TimeStamp
Tag

Value
Data Quality

19-Dec-2021 14:01:10 265 Good

19-Dec-2021 14:01:20 260 Good

19-Dec-2021 14:01:30 255 Good

19-Dec-2021 14:01:40 250 Good

19-Dec-2021 14:01:50 245 Good

19-Dec-2021 14:02:00 240 Good

19-Dec-2021 14:02:10 235 Good

19-Dec-2021 14:02:20 230 Good

19-Dec-2021 14:02:30 225 Good

Historian | 6 - Historian Advanced Topics | 1135

TimeStamp
Tag

Value
Data Quality

19-Dec-2021 14:02:40 220 Good

19-Dec-2021 14:02:50 215 Good

19-Dec-2021 14:03:00 210 Good

19-Dec-2021 14:03:10 205 Good

19-Dec-2021 14:03:20 200 Good

19-Dec-2021 14:03:30 195 Good

19-Dec-2021 14:03:40 190 Good

19-Dec-2021 14:03:50 185 Good

19-Dec-2021 14:04:00 180 Good

19-Dec-2021 14:04:10 175 Good

19-Dec-2021 14:04:20 170 Good

19-Dec-2021 14:04:30 165 Good

19-Dec-2021 14:04:40 160 Good

19-Dec-2021 14:04:50 155 Good

19-Dec-2021 14:05:00 150 Good

19-Dec-2021 14:05:10 145 Good

19-Dec-2021 14:05:20 140 Good

19-Dec-2021 14:05:30 135 Good

19-Dec-2021 14:05:40 130 Good

19-Dec-2021 14:05:50 125 Good

19-Dec-2021 14:06:00 120 Good

Suppose you have run the following query:

Select timestamp,value,quality from IHrawdata

where tagname=BasicTest and samplingmode=calculated

and timestamp>='19-Dec-2021 14:00:00.000' and timestamp<='19-Dec-2021 14:06:00.000'

and calculationmode=DeltaNeg and intervalmilliseconds=1M

Historian | 6 - Historian Advanced Topics | 1136

Regardless of whether you have provided Delta Min and Delta Max, since you have not provided Delta

Max Negative RPH, and since the data points are in the decreasing trend, DELTANEG is calculated as the

difference between consecutive data points:

TimeStamp
DELTANEG

Value
Data Quality

19-Dec-2021 14:00:00 0 100

19-Dec-2021 14:01:00 0 100

19-Dec-2021 14:02:00 -25.00 100

19-Dec-2021 14:03:00 -30.00 100

19-Dec-2021 14:04:00 -30.00 100

19-Dec-2021 14:05:00 -30.00 100

19-Dec-2021 14:06:00 -30.00 100

Calculating DELTANEG When Data Quality is Bad
Suppose you have received the following data:

Time Stamp
Val

ue
Data Quality

19-Dec-2021 14:01:10 265 Good

19-Dec-2021 14:01:20 260 Bad

19-Dec-2021 14:01:30 255 Good

19-Dec-2021 14:01:40 250 Bad

19-Dec-2021 14:01:50 245 Good

19-Dec-2021 14:02:00 240 Bad

19-Dec-2021 14:02:10 235 Good

19-Dec-2021 14:02:20 230 Bad

19-Dec-2021 14:02:30 225 Good

19-Dec-2021 14:02:40 220 Bad

19-Dec-2021 14:02:50 215 Good

19-Dec-2021 14:03:00 210 Bad

Historian | 6 - Historian Advanced Topics | 1137

Time Stamp
Val

ue
Data Quality

19-Dec-2021 14:03:10 205 Good

19-Dec-2021 14:03:20 200 Bad

19-Dec-2021 14:03:30 195 Good

19-Dec-2021 14:03:40 190 Bad

19-Dec-2021 14:03:50 185 Good

19-Dec-2021 14:04:00 180 Bad

19-Dec-2021 14:04:10 175 Good

19-Dec-2021 14:04:20 170 Bad

19-Dec-2021 14:04:30 165 Good

19-Dec-2021 14:04:40 160 Bad

19-Dec-2021 14:04:50 155 Good

19-Dec-2021 14:05:00 150 Bad

19-Dec-2021 14:05:10 145 Good

19-Dec-2021 14:05:20 140 Bad

19-Dec-2021 14:05:30 135 Good

19-Dec-2021 14:05:40 130 Bad

19-Dec-2021 14:05:50 125 Good

19-Dec-2021 14:06:00 120 Bad

Suppose you have run the following query:

Select timestamp,value,quality from IHrawdata

where tagname=BasicTestWithBad and samplingmode=calculated

and timestamp>='19-Dec-2021 14:00:00.000' and timestamp<='19-Dec-2021 14:06:00.000'

and calculationmode=DeltaNeg and intervalmilliseconds=1M

Data with bad quality is not considered in the calculation. Therefore, DELTANEG is the difference between

consecutive data points with good quality.

Historian | 6 - Historian Advanced Topics | 1138

Time Stamp
Val

ue
Data Quality DELTANEG

19-Dec-2021 14:01:10 265 Good 0

19-Dec-2021 14:01:20 260 Bad 0

19-Dec-2021 14:01:30 255 Good -10

19-Dec-2021 14:01:40 250 Bad 0

19-Dec-2021 14:01:50 245 Good -10

19-Dec-2021 14:02:00 240 Bad 0

19-Dec-2021 14:02:10 235 Good -10

19-Dec-2021 14:02:20 230 Bad 0

19-Dec-2021 14:02:30 225 Good -10

19-Dec-2021 14:02:40 220 Bad 0

19-Dec-2021 14:02:50 215 Good -10

19-Dec-2021 14:03:00 210 Bad 0

19-Dec-2021 14:03:10 205 Good -10

19-Dec-2021 14:03:20 200 Bad 0

19-Dec-2021 14:03:30 195 Good -10

19-Dec-2021 14:03:40 190 Bad 0

19-Dec-2021 14:03:50 185 Good -10

19-Dec-2021 14:04:00 180 Bad 0

19-Dec-2021 14:04:10 175 Good -10

19-Dec-2021 14:04:20 170 Bad 0

19-Dec-2021 14:04:30 165 Good -10

19-Dec-2021 14:04:40 160 Bad 0

19-Dec-2021 14:04:50 155 Good -10

19-Dec-2021 14:05:00 150 Bad 0

19-Dec-2021 14:05:10 145 Good -10

19-Dec-2021 14:05:20 140 Bad 0

Historian | 6 - Historian Advanced Topics | 1139

Time Stamp
Val

ue
Data Quality DELTANEG

19-Dec-2021 14:05:30 135 Good -10

19-Dec-2021 14:05:40 130 Bad 0

19-Dec-2021 14:05:50 125 Good -10

19-Dec-2021 14:06:00 120 Bad 0

DELTANEG for a given duration is calculated as the sum of the individual DELTANEG values in that

duration as shown in the following table.

Time Stamp DELTANEG Data Quality

19-Dec-2021 14:00:00 0.00 100

19-Dec-2021 14:01:00 0.00 100

19-Dec-2021 14:02:00 -20.00 100

19-Dec-2021 14:03:00 -30.00 100

19-Dec-2021 14:04:00 -30.00 100

19-Dec-2021 14:05:00 -30.00 100

19-Dec-2021 14:06:00 -30.00 100

Calculating DELTANEG When Delta Max Negative RPH is not Provided and Data is in the
Increasing Trend
Suppose you have received the following data:

TimeStamp
Tag

Value
Data Quality

19-Dec-2021 14:01:10 265 Good

19-Dec-2021 14:01:20 260 Good

19-Dec-2021 14:01:30 262 Good

19-Dec-2021 14:01:40 250 Good

19-Dec-2021 14:01:50 245 Good

19-Dec-2021 14:02:00 240 Good

Historian | 6 - Historian Advanced Topics | 1140

TimeStamp
Tag

Value
Data Quality

19-Dec-2021 14:02:10 235 Good

19-Dec-2021 14:02:20 230 Good

19-Dec-2021 14:02:30 231 Good

19-Dec-2021 14:02:40 233 Good

19-Dec-2021 14:02:50 215 Good

19-Dec-2021 14:03:00 210 Good

19-Dec-2021 14:03:10 205 Good

19-Dec-2021 14:03:20 220 Good

19-Dec-2021 14:03:30 195 Good

19-Dec-2021 14:03:40 190 Good

19-Dec-2021 14:03:50 185 Good

19-Dec-2021 14:04:00 180 Good

19-Dec-2021 14:04:10 175 Good

19-Dec-2021 14:04:20 170 Good

19-Dec-2021 14:04:30 165 Good

19-Dec-2021 14:04:40 160 Good

19-Dec-2021 14:04:50 155 Good

19-Dec-2021 14:05:00 150 Good

19-Dec-2021 14:05:10 145 Good

19-Dec-2021 14:05:20 140 Good

19-Dec-2021 14:05:30 135 Good

19-Dec-2021 14:05:40 130 Good

19-Dec-2021 14:05:50 125 Good

19-Dec-2021 14:06:00 120 Good

Suppose you have run the following query:

Historian | 6 - Historian Advanced Topics | 1141

Select timestamp,value,quality from IHrawdata

where tagname=DeltaNegSample1 and samplingmode=calculated

and timestamp>='19-Dec-2021 14:00:00.000' and timestamp<='19-Dec-2021 14:06:00.000'

and calculationmode=DeltaNeg and intervalmilliseconds=1M

For data that is in the increasing trend, since you have not provided values for Delta Max, Delta Min, and

Delta Max Negative RPH, DELTANEG = 0. For the other cases, DELTANEG is the difference between the

values.

Time Stamp
DELTANEG

Value
Data Quality

19-Dec-2021 14:00:00 0.00 100

19-Dec-2021 14:01:00 0.00 100

19-Dec-2021 14:02:00 -27.00 100

19-Dec-2021 14:03:00 -33.00 100

19-Dec-2021 14:04:00 -45.00 100

19-Dec-2021 14:05:00 -30.00 100

19-Dec-2021 14:06:00 -30.00 100

DELTA Calculation

The following diagram shows how DELTA is calculated.

Historian | 6 - Historian Advanced Topics | 1142

Figure 6. DELTA Calculation

Note:

To calculate Delta, all of these values are required: Delta Max, Delta Min, Delta Max Positive RPH,

and Delta Max Negative RPH.

Other Calculation Modes

STATECOUNT

The STATECOUNT calculation mode counts the number of times a tag has transitioned to another state

from a previous state. A state transition is counted when the previous good sample is not equal to the

state value and the next good sample is equal to state value.

The STATECOUNT calculation mode cannot be used on tags of BLOB data type.

Historian | 6 - Historian Advanced Topics | 1143

• Value: The number of transitions into the state in a given time interval.

• Quality: The percent good is 100 if there are no bad samples within the time interval. Otherwise,

the percent good is the percent of interval time that the value was of good quality.

• Anticipated usage: The STATECOUNT calculation mode is useful to determine the number of

times a value transitioned to a certain state such as when a digital state was turned on or the

enumerated value was of certain value. It should mostly be used with integer values because it

may not exactly match a float state value due to rounding.

STATETIME Calculation Mode: The STATETIME calculation mode retrieves the duration that a tag was in

a given state within an interval.

• Value: The STATETIME calculation mode retrieves the total number of milliseconds during the

interval for which the data was in the state value.

• Quality:

The percent good is 100 if the data is good quality for the entire the time interval.

Import this data to use in the examples.

[Tags]

Tagname,DataType,HiEngineeringUnits,LoEngineeringUnits

STATECOUNTTAG,SingleInteger,60,0

STATEBADTAG,SingleInteger,60,0

STATEBADTAG2,SingleInteger,60,0

[Data]

Tagname,TimeStamp,Value,DataQuality

STATECOUNTTAG,06-Aug-2012 8:59:00.000,2,Good

STATECOUNTTAG,06-Aug-2012 9:08:00.000,4,Good

STATECOUNTTAG,06-Aug-2012 9:14:00.000,4,Good

STATECOUNTTAG,06-Aug-2012 9:22:00.000,2,Good

STATEBADTAG,06-Aug-2012 8:59:00.000,2,Good

STATEBADTAG,06-Aug-2012 9:08:00.000,0,Bad

STATEBADTAG,06-Aug-2012 9:14:00.000,2,Good

STATEBADTAG,06-Aug-2012 9:22:00.000,4,Good

STATEBADTAG2,06-Aug-2012 8:59:00.000,2,Good

STATEBADTAG2,06-Aug-2012 9:08:00.000,0,Bad

Historian | 6 - Historian Advanced Topics | 1144

STATEBADTAG2,06-Aug-2012 9:14:00.000,4,Good

STATEBADTAG2,06-Aug-2012 9:22:00.000,2,Good

• Anticipated usage: The STATETIME calculation mode is useful to determine the duration the tag

was in a particular state. For example, if a tag records the state of a motor you can use state count

to determine the duration a motor was in idle state.

OPCQOR and OPCQAND Calculation Modes:

The OPCQOR calculation mode is a bit-wise OR operation of all the 16 bit OPC qualities of the raw

samples stored in the specified interval. This calculation mode can be used only if you have set the ”Store

OPC Quality” to ”Enabled” in Historian Administrator and your data is coming from an OPC Collector.

The OPCQAND calculation mode is a bit wise AND operation of all the 16 bit OPC qualities of the raw

samples stored in the specified interval. This calculation mode can be used only if you have set the ”Store

OPC Quality” to Enabled in Historian Administrator and your data is coming from an OPC Collector.

When collecting data from OPC servers, the Historian OPC collector will convert the 16 bits of OPC quality

to a Historian quality and subquality. When ”Store OPC Quality” is enabled, the 16 bits are also stored with

the data and can be retrieved here.

Use the returned value from OPCQOR like a data quality. By using OPCQOR and OPCQAND values, you can

see if a condition occurred during an interval and therefore know how trustworthy your returned data is.

• Value: The 16 bits are in the following format: VVVVVVVVQQSSSSSS

The first 16 bits are for vendor to fill in. The next two are the actual quality, good, bad,uncertain.

The rest of the bits are subquality.

◦ OPC good is a decimal 192 which is binary 0000000011000000.

◦ OPC bad is all zeros 0000000000000000.

• Quality: The percent good is 100 if all the samples have good Historian quality. The Historian

quality is based on the OPC quality but both the qualities are not the same.

• Anticipated usage:

The OPCQOR and OPCQAND calculation modes are useful if you want to the know the quality of

your samples between a time interval. For example,if you want to know how many of your samples

from 3pm to 4pm had the following quality:

Historian | 6 - Historian Advanced Topics | 1145

◦ All good - If you do an OPCAND from 3 P.M. to 4 P.M and get the result as

0000000011000000 which is 192 decimal, it means that the value was good for the whole

time.

◦ All bad - If OPCOR returns 0, then the data was bad the whole time.

◦ Some bad - If you do a OPCOR and get the result as 0000000011000000 which is 192

decimal, it means that there were at least some good values. If you do an OPCAND and get

the result as 0000000000000000, it means that at least some data was bad.

TagStats Calculation Mode: The TagStats calculation mode returns multiple values for a tag in a single

query. The TagStats calculation mode returns the values by appending the calculation mode to the

tagname. For example, when you query tag1 the result will be tag1.Min which is the result of the minimum

calculation mode and tag1.Max, the result of the maximum calculation mode. The calculation mode is

appended to the tagname.

• Value: A query will return multiple values for the same timestamp. They are the results of each

individual calculation mode. For more information on different Calculation Modes, refer to the

corresponding sections

• Quality: There is no single overall quality for the query, only a quality per calculation mode.

Calculating the state count of good quality data

This example shows a simple case of counting state transitions. In this example, the value 4 means that a

machine is running so we want to count the number of times the tag transitioned from some other value

to 4.

Import the following data.

[Tags]

Tagname,DataType,HiEngineeringUnits,LoEngineeringUnits

STATECOUNTTAG,SingleInteger,60,0

STATEBADTAG,SingleInteger,60,0

STATEBADTAG2,SingleInteger,60,0

[Data]

Tagname,TimeStamp,Value,DataQuality

STATECOUNTTAG,06-Aug-2012 8:59:00.000,2,Good

STATECOUNTTAG,06-Aug-2012 9:08:00.000,4,Good

STATECOUNTTAG,06-Aug-2012 9:14:00.000,4,Good

STATECOUNTTAG,06-Aug-2012 9:22:00.000,2,Good

STATEBADTAG,06-Aug-2012 8:59:00.000,2,Good

Historian | 6 - Historian Advanced Topics | 1146

STATEBADTAG,06-Aug-2012 9:08:00.000,0,Bad

STATEBADTAG,06-Aug-2012 9:14:00.000,2,Good

STATEBADTAG,06-Aug-2012 9:22:00.000,4,Good

STATEBADTAG2,06-Aug-2012 8:59:00.000,2,Good

STATEBADTAG2,06-Aug-2012 9:08:00.000,0,Bad

STATEBADTAG2,06-Aug-2012 9:14:00.000,4,Good

STATEBADTAG2,06-Aug-2012 9:22:00.000,2,Good

Execute the following query in Historian Interactive SQL:

set starttime='08/06/2012 8:00:00',endtime='08/06/2012 10:00:00'

select timestamp,value,quality from ihrawdata where tagname = STATECOUNTTAG and samplingmode=Calculation and

CalculationMode=StateCount and IntervalMilliseconds=20m and statevalue=4

The following results are returned:

Time Stamp Value Quality

8/6/2012 08:20:00 0.000000000000 0.0000000

8/6/2012 08:40:00 0.000000000000 0.0000000

8/6/2012 09:00:00 0.000000000000 5.0000000

8/6/2012 09:40:00 1.000000000000 100.0000000

8/6/2012 09:40:00 0.000000000000 100.0000000

8/6/2012 10:00:00 0.000000000000 100.0000000

Note that the transition from 2 to 4 (machine started running) happened at 9:08, so it is included in the

9:00 to 9:20 interval.

The data was of bad quality until 8:59:00 which is for 1 minute of the 20 minute interval. The percent good

for that interval is 5.

There are two samples with the value 4. We do not count the number of times the statevalue occurred, but

the number of transitions from some other value to the state value.

We only count transitions into the state value not out of the state value. So, the transition from 4 to 2 is

not counted.

Historian | 6 - Historian Advanced Topics | 1147

Calculating the state count of bad quality data

Note that this tag had a bad data sample when the collector was restarted. This does not, however, affect

the state count.

Run the following query:

set starttime='08/06/2012 8:00:00',endtime='08/06/2012 10:00:00'

select timestamp,value,quality from ihrawdata where tagname = STATEBADTAG and samplingmode=Calculation and

CalculationMode=StateCount and IntervalMilliseconds=20m and statevalue=4

The following results are returned:

Time Stamp Value Quality

8/6/2012 08:20:00 0.000000000000 0.0000000

8/6/2012 08:40:00 0.000000000000 0.0000000

8/6/2012 09:00:00 0.000000000000 5.0000000

8/6/2012 09:20:00 0.000000000000 70.0000000

8/6/2012 09:40:00 1.000000000000 100.0000000

8/6/2012 10:00:00 0.000000000000 100.0000000

Note that the bad value is ignored and the state change that happened at 9:22 is counted. We do not

know if the machine had started and stopped while the collector was shutdown.

If the value did change to running while the collector was shut down then that change is counted as in

shown in the following example:

set starttime='08/06/2012 8:00:00',endtime='08/06/2012 10:00:00'

select timestamp,value,quality from ihrawdata where tagname = STATEBADTAG2 and samplingmode=Calculation and

CalculationMode=StateCount and IntervalMilliseconds=20m and statevalue=4

Time Stamp Value Quality

8/6/2012 08:20:00 0.000000000000 0.0000000

8/6/2012 08:40:00 0.000000000000 0.0000000

8/6/2012 09:00:00 0.000000000000 5.0000000

8/6/2012 09:20:00 1.000000000000 70.0000000

Historian | 6 - Historian Advanced Topics | 1148

Time Stamp Value Quality

8/6/2012 09:40:00 0.000000000000 100.0000000

8/6/2012 10:00:00 0.000000000000 100.0000000

Note:

The state change at 9:14 is counted and returned in the 9:20 interval.

Calculating the state count of enumerated set data

When querying a tag that uses enumerated sets, use the string state name as the state value.

Using the data from previous example, assume that the STATECOUNTTAG had an enumerated set with

the values as 2=Stopped and 4=Running.

You should use this query with statevalue of Running instead of the native value 4.

set starttime='08/06/2012 8:00:00',endtime='08/06/2012 10:00:00'

select timestamp,value,quality from ihrawdata where tagname = STATECOUNTTAG and samplingmode=Calculation and

CalculationMode=StateCount and IntervalMilliseconds=20m and statevalue='Running'

The results match with the results when statevalue=4 is used.

Time Stamp Value Quality

8/6/2012 08:20:00 0.000000000000 0.0000000

8/6/2012 08:40:00 0.000000000000 0.0000000

8/6/2012 09:00:00 0.000000000000 5.0000000

8/6/2012 09:20:00 1.000000000000 100.0000000

8/6/2012 09:40:00 0.000000000000 100.0000000

8/6/2012 10:00:00 0.000000000000 100.0000000

Calculating the state time of good quality data

Run this query in the Historian Interactive SQL:

set starttime='08/06/2012 8:00:00',endtime='08/06/2012 10:00:00'

select timestamp,value,quality from ihrawdata where tagname = STATECOUNTTAG and samplingmode=Calculation and

CalculationMode=StateTime and IntervalMilliseconds=20m and statevalue=4

Historian | 6 - Historian Advanced Topics | 1149

The following results are returned:

Time Stamp Value Quality

8/6/2012 08:20:00 0.000000000000 0.0000000

8/6/2012 08:40:00 0.000000000000 0.0000000

8/6/2012 09:00:00 0.000000000000 5.0000000

8/6/2012 09:20:00 720,000.000000000000 100.0000000

8/6/2012 09:40:00 120,0.000000000000 100.0000000

8/6/2012 10:00:00 0.000000000000 100.0000000

A 20 minute interval is 20*60*1000=1200000 milliseconds. In the 9:00 to 9:20 interval the value was in

state 4 from 9:08 to 9:20 which is 12 minutes * 60 *1000 = 720000 milliseconds.

In the 9:20 to 9:40 interval the value was in state 4 from 9:20 to 9:22 which is 2*60*1000 = 120000

milliseconds.

Calculating the state time of bad quality data

This tag has a bad data sample such as when the collector was restarted. A new value is recorded when

the collector is started.

set starttime='08/06/2012 8:00:00',endtime='08/06/2012 10:00:00'

select timestamp,value,quality from ihrawdata where tagname = STATEBADTAG2 and samplingmode=Calculation and

CalculationMode=StateTime and IntervalMilliseconds=20m and statevalue=4

Tagname,TimeStamp,Value,DataQuality

STATEBADTAG2,06-Aug-2012 8:59:00.000,2,Good

STATEBADTAG2,06-Aug-2012 9:08:00.000,0,Bad

STATEBADTAG2,06-Aug-2012 9:14:00.000,4,Good

STATEBADTAG2,06-Aug-2012 9:22:00.000,2,Good

The following results are returned:

Time Stamp Value Quality

8/6/2012 08:20:00 0.000000000000 0.0000000

8/6/2012 08:40:00 0.000000000000 0.0000000

Historian | 6 - Historian Advanced Topics | 1150

Time Stamp Value Quality

8/6/2012 09:00:00 0.000000000000 5.0000000

8/6/2012 09:20:00 360,000.000000000000 70.0000000

8/6/2012 09:40:00 120,000.000000000000 100.0000000

8/6/2012 10:00:00 0.000000000000 100.0000000

In the interval between 9:00 to 9:20, the value was in state 4 from 9:14 to 9:20 = 6 minutes * 60 * 1000 =

360000 milliseconds.

In the interval between 9:20 to 9:40, the value was in state 4 from 9:20 to 9:22 = 2 minutes * 60 * 1000 =

120000 milliseconds.

Calculating the OPCQOR

The following is the data set used to run the query on.

TagName,Timestamp,Value

DATA1:Bad-0 OPC-(60)(08/09/12 18:00:01.000,Val=10

DATA2:Bad-0 OPC-(59)(08/09/12 18:00:02.000,Val=10

DATA3:Bad-0 OPC-(58)(08/09/12 18:00:03.000),Val=10

DATA4:Bad-0 OPC-(57)(08/09/12 18:00:04.000),Val=10

DATA5:Bad-0 OPC-(56)(08/09/12 18:00:05.000),Val=10

DATA6:Bad-0 OPC-(55)(08/09/12 18:00:06.000),Val=10

DATA7:Bad-0 OPC-(54)(08/09/12 18:00:07.000),Val=10

DATA8:Bad-0 OPC-(53)(08/09/12 18:00:08.000),Val=10

DATA9:Bad-0 OPC-(52)(08/09/12 18:00:09.000),Val=10

DATA10:Bad-0 OPC-(51)(08/09/12 18:00:10.000),Val=10

DATA11:Bad-0 OPC-(50)(08/09/12 18:00:11.000),Val=10

The following query retrieves the OPCQOR data with a start time of 18:00:00 and end time of 18:00:10

with a 2 second time interval.

set starttime='08/09/2012 18:00:00',endtime='08/09/2012 18:00:10'

select tagname,timestamp,value,Quality from ihrawdata where tagname like OPCQualityDataTag and samplingmode=Calculated

and calculationmode=OPCQOR and IntervalMilliseconds=2S

The following output is retrieved.

Historian | 6 - Historian Advanced Topics | 1151

Tag Name Time Stamp Value Quality

OPCQualityDataTag 8/9/2012 18:00:02 63.000000000000 50.0000000

OPCQualityDataTag 8/9/2012 18:00:04 59.000000000000 100.0000000

OPCQualityDataTag 8/9/2012 18:00:06 63.000000000000 100.0000000

OPCQualityDataTag 8/9/2012 18:00:08 55.000000000000 100.0000000

OPCQualityDataTag 8/9/2012 18:00:10 55.000000000000 100.0000000

Calculating the OPCQAND

The following query retrieves the OPCQAND data with a start time of 18:00:00 and end time of 18:00:10

with a 2 second time interval.

set starttime='08/09/2012 18:00:00',endtime='08/09/2012 18:00:10'

select tagname,timestamp,value,Quality,opcquality from ihrawdata where tagname like OPCQualityDataTag and

samplingmode=Calculated and calculationmode=OPCQAND and IntervalMilliseconds=2S

he following output is retrieved.

Tag Name Time Stamp Value Quality

OPCQualityDataTag 8/9/2012 18:00:02 50.0000000 0

OPCQualityDataTag 8/9/2012 18:00:04 100.0000000 0

OPCQualityDataTag 8/9/2012 18:00:06 100.0000000 0

OPCQualityDataTag 8/9/2012 18:00: 100.0000000 0

OPCQualityDataTag 8/9/2012 18:00:10 100.0000000 0

Using TagStats Calculation Mode

This image displays the TagStats calculation mode example in the Proficy Historian Interactive SQL

Application.

In this example we perform the calculations for a single interval by giving numberofsamples=1.

Historian | 6 - Historian Advanced Topics | 1152

StepValue Tag Property

Retrieval generally does not take into account how a value changes. When retrieving data from the

archive, Historian will attempt to interpolate it, which may result in an inaccurate representation of the

data's real world changes, such as that shown in the following figure.

Historian | 6 - Historian Advanced Topics | 1153

In order for Historian to know that a tag did not ramp down between reported values, the StepValue tag

property must be applied. This tag property is used to indicate that the value in the real world changes in a

sharp step instead of a smooth linear interpolation. An example would be a digital signal that quickly goes

0 to 1. Or, a flow rate that goes 5 to 25 when an upstream valve is opened.

Historian | 6 - Historian Advanced Topics | 1154

Note:

The StepValue tag property only affects retrieval of Average values in Historian. It does not affect

data collection or storage.

Example: Reporting Step Change

Copy and paste the following into an empty CSV file and import the file with the File

collector.

[Tags]

Tagname,DataType,HiEngineeringUnits,LoEngineeringUnits

TAG1,SingleFloat,100,0

[Data]

Tagname,TimeStamp,Value,DataQuality

tag1,9/19/05 05:15:00,26.41,Good

tag1,9/19/05 06:15:00,26.45,Good

tag1,9/19/05 07:15:00,26.59,Good

tag1,9/19/05 08:15:00,26.58,Good

tag1,9/19/05 09:15:00,26.36,Good

tag1,9/19/05 10:15:00,10.74,Good

tag1,9/19/05 11:15:00,11.00,Good

tag1,9/19/05 12:15:00,10.94,Good

tag1,9/19/05 13:15:00,11.03,Good

Set the StepValue=TRUE in Historian Administrator. Then, use the following query to retrieve

data using Average with a 15 minute interval.

select * from ihrawdata where tagname=TAG1 and timestamp > '9/19/05 09:30:00'

and timestamp <= '9/19/05 11:30:00' and calculationmode=average and

intervalmilliseconds=15m

You will see the following results, which show two distinct steps:

Value Quality

09:45:00 26.36

10:00:00 26.36

10:15:00 26.36

Historian | 6 - Historian Advanced Topics | 1155

Value Quality

10:30:00 10.74

10:45:00 10.74

11:00:00 10.74

11:15:00 10.74

11:30:00 11.00

If you set the StepValue=FALSE and run the same query, you will see the following results,

which reflect interpolated values.

Value Quality

09:45:00 22.46

10:00:00 18.55

10:15:00 14.64

10:30:00 10.74

10:45:00 10.80

11:00:00 10.87

11:15:00 10.93

11:30:00 11.00

Example: No raw sample at start time

Copy and paste these lines into an empty CSV file and import the file with the File collector

[Tags]

Tagname,DataType,HiEngineeringUnits,LoEngineeringUnits,StepValue

TAG2,SingleFloat,100,0,TRUE

[Data]

Tagname,TimeStamp,Value,DataQuality

TAG2,9/19/05 13:59:00.000,22,Good

TAG2,9/19/05 14:08:00.000,12,Good

TAG2,9/19/05 14:22:00.000,4,Good

Use the following query to retrieve the data using Average with a 30 minute interval

Historian | 6 - Historian Advanced Topics | 1156

select * from ihrawdata where tagname=tag2 and timestamp >

'9/19/05 14:00:00' and timestamp <= '9/19/05 14:30:00' and

calculationmode=average and intervalmilliseconds=30m

You will see the following results.

Time Stamp Value Quality

14:30:00 12.53 100.00

The following table is another way to look at the data as values and durations.

Point Value Duration (Seconds)

Point 1 22.00 480 (lab sampled at start)

Point 3 12 1320

Point 4 4 480

The step value average would be:

((22.00 * 480) + (12 * 840) + (4 * 480)) / (480 + 840 + 480) = 12.53

The percent good is 100 since it was good the whole time.

The interpolated average is 12.24 because the first sample is different.

Point Value Duration (Seconds)

Point 1 20.88 480 (lab sampled at start)

Point 3 12 1320

Point 4 4 480

The lab average would be:

((20.88 * 480) + (12 * 840) + (4 * 480)) / (480 + 840 + 480) = 12.24

Example: Raw sample at end time

The point of this example is that if you have a raw sample on the interval end time then it is

ignored because of the time weighting.

Copy and paste these lines into an empty CSV file and import the file with the File collector.

Historian | 6 - Historian Advanced Topics | 1157

[Tags]

Tagname,DataType,HiEngineeringUnits,LoEngineeringUnits,StepValue

TAG5,SingleFloat,100,0,TRUE

[Data]

Tagname,TimeStamp,Value,DataQuality

TAG5,9/19/05 13:10:00.000,22,Good

TAG5,9/19/05 14:18:00.000,12,Good

TAG5,9/19/05 14:30:00.000,1,Good

Use the following query to retrieve the data using Average with a 30 minute interval.

select * from ihrawdata where tagname=tag5 and timestamp >

'9/19/05 14:00:00' and timestamp <= '9/19/05 14:30:00' and

calculationmode=average and intervalmilliseconds=30m

You will see the following results.

Time Stamp Value

14:30:0 18.00

See that the last raw sample is ignored

Point Value Duration (Seconds)

Point 1 22.00 1080 (lab sampled at start)

Point 3 12.00 720

Point 4 1.00 0

The lab sampled average is:

((22.00 * 1080) + (12 * 720) + (1 * 0)) / (1080 + 720) = 18.0

• The interpolated average gives 13.59 because of the different interpolated value at

interval start.

• The percent good is 100 since it was good the whole time.

Example: No raw samples in interval

This case shows the biggest difference between averages of step value and non step value

tags. In this case we lab sample a value at the start time and that is the average.

Historian | 6 - Historian Advanced Topics | 1158

Copy and paste these lines into an empty CSV file and import the file with the File collector.

[Tags]

Tagname,DataType,HiEngineeringUnits,LoEngineeringUnits,StepValue

TAG4,SingleFloat,100,0,TRUE

[Data]

Tagname,TimeStamp,Value,DataQuality

TAG4,9/19/05 13:55:00.000,99,Good

TAG4,9/19/05 14:40:00.000,10,Good

Use the following query to retrieve the data using Average.

select * from ihrawdata where tagname=tag4 and timestamp >

'9/19/05 14:00:00' and timestamp <= '9/19/05 14:30:00' and

calculationmode=average and intervalmilliseconds=30m

You will see the following results.

Time Stamp Value Quality

14:30:00 99 100

Note:

The single lab sampled value at interval start time is the average.

Retrieving the data when StepValue=FALSE gives the following:

Time Stamp Value Quality

14:30:00 89.11 100

Note:

The single interpolated sample at interval start time is the average of the interval.

Comment Retrieval Mode

The Comment Retrieval Mode returns any comments or annotations that have been stored with the data

between the start time and end time of the query.

Historian | 6 - Historian Advanced Topics | 1159

However, some Sampling and Calculation modes use raw samples beyond the start and end time to

interpolate a value. An average will interpolate a value at the start of each interval and this will likely use

raw samples outside the interval.

To retrieve the comments from raw values that were used beyond the interval, you can define a registry

key on a computer running the Data Archiver.

Create a DWORD value under:

HKEY_LOCAL_MACHINE\Software\Intellution, Inc.\iHistorian\Services\DataArchiver

• If you have the Data Archiver installed, the registry key should already exist and you are just adding

a DWORD value.

• Set CommentRetrievalMode to 1.

Note:

• You do not have to restart the Archiver for the changes to the registry to take place. The

changes to registry setting take effect immediately

• Raw data queries are not affected with this change.

• Any application can be used to query the data

• The Comment Retrieval Mode may result in many comments being returned for a query.

Therefore, it is not recommended for users who want to plot the data via the Proficy Real

Time Information Portal (RTIP) Chart as it may cause slower performance.

Query Modifiers

Query Modifiers are used for retrieving data that has been stored in the archive. They are used along with

sampling and calculation modes to get a specific set of data. The following sections describe the Query

Modifiers in Historian.

• ONLYGOOD

The ONLYGOOD modifier excludes bad and uncertain data quality values from retrieval and

calculations. Use this modifier with any sampling or calculation mode but it is most useful with

Raw and CurrentValue queries.

All the calculation modes such as minimum or average exclude bad values by default, so this

modifier is not required with those.

Historian | 6 - Historian Advanced Topics | 1160

Example 1:Demonstrating the Behavior

Import the following data to demonstrate the behavior of ONLYGOOD

[Tags]

Tagname,DataType,HiEngineeringUnits,LoEngineeringUnits

BADDQTAG,SingleFloat,60,0

[Data]

Tagname,TimeStamp,Value, DataQuality

BADDQTAG,12-Jul-2012 8:59:00.000,22.7,Good

BADDQTAG,12-Jul-2012 9:08:00.000,12.5,Bad

BADDQTAG,12-Jul-2012 9:14:00.000,7.0,Bad

BADDQTAG,12-Jul-2012 9:22:00.000,4.8,Good

Example 2: Excluding bad data from raw data query

Without any query modifier, all raw samples are returned from a RawByTime query.

select timestamp,value,quality

from ihrawdata

where tagname = BADDQTAG and samplingmode=Rawbytime and timestamp < now

Time Stamp Value Quality

7/12/2012 08:59:00 22.7000000 Good, NonSpecific

7/12/201209:08:00 12.5000000 Bad, NonSpecific

7/12/201209:14:00 7.0000000 Bad, NonSpecific

7/12/201209:22:00 4.8000000 Good, NonSpecific

Note:

The above results have both good and bad samples:

Now by using the ONLYGOOD modifier, you can exclude the bad quality values:

select timestamp,value,quality

from ihrawdata

where tagname = BADDQTAG and samplingmode=Rawbytime and timestamp < now and

 criteriastring="#ONLYGOOD"

timestamp value quality

Historian | 6 - Historian Advanced Topics | 1161

Time Stamp Value Quality

7/12/2012 08:59:00 22.7000000 Good, NonSpecific

7/12/201209:22:00 4.8000000 Good, NonSpecific

Note:

Only the good samples have been retrieved.

Example 3: Retrieving the last known value

Value

You can use the ONLYGOOD query modifier to show the last known

good value for a tag. If the collector loses communication with the data

source or has shut down, you can ignore the bad data that is logged.

The following examples demonstrate the ways to retrieve the last

known values:

[Tags]

Tagname,DataType,HiEngineeringUnits,LoEngineeringUnit

EXAMPLETAG,SingleInteger,60,0

[Data]

Tagname,TimeStamp,Value,DataQuality

EXAMPLETAG,06-Aug-2012 8:59:00.000,2,Good

EXAMPLETAG,06-Aug-2012 9:02:00.000,0,Bad

Without any query modifier, the newest raw sample is returned in a

current value query as retrieved with the following query.

select timestamp,value,quality

from ihrawdata

where tagname = EXAMPLETAG and samplingmode=CurrentValue

Time Stamp Value Quality

8/6/201209:02:00 Bad NonSpecific

The bad data could be a communication error or collector shutdown

marker

Historian | 6 - Historian Advanced Topics | 1162

When the ONLYGOOD modifier is used, the bad quality value is ignored

and last known good value is returned as per the query here.

select timestamp,value,quality

from ihrawdata

where tagname = EXAMPLETAG and samplingmode=CurrentValue and

 criteriastring="#ONLYGOOD"

Note:

Only the Good value has been retrieved as following. timestamp

value quality.

Time Stamp Value Quality

8/6/201208:59:00 2 Good NonSpecific

Anticipated Usage

You can use the ONLYGOOD modifier to exclude end of collection

markers but understand that it excludes all bad data, even

communication errors, and out of range errors.

If you want to bring data into Microsoft Excel for further analysis,

you can use ONLYGOOD so that good values are brought into a

spreadsheet.

• INCLUDEREPLACED

Normally, when you query raw data from Historian, any values that have been replaced with a

different value for the same timestamp are not returned. The INCLUDEREPLACED modifier helps

you to indicate that you want replaced values to be returned, in addition to the currently retrievable

data. However, you cannot query only the replaced data and the retrievable values that have

replaced. You can query all currently visible data and get the data that has been replaced.

This modifier is only useful with rawbytime or rawbynumber retrieval. Do not use it with any other

sampling or calculation mode.

Example

Import this data to demonstrate the behavior of the INCLUDEDELETED query

modifier.

Historian | 6 - Historian Advanced Topics | 1163

[Tags]

Tagname,DataType,HiEngineeringUnits,LoEngineeringUnits

DELETEDDATA,SingleInteger,60,0

[Data]

Tagname,TimeStamp,Value,DataQuality

DELETEDDATA,06-Aug-2012 9:01:00.000,1,Good

DELETEDDATA,06-Aug-2012 9:02:00.000,2,Good

DELETEDDATA,06-Aug-2012 9:04:00.000,4,Good

Delete the raw sample at 9:02 and query the raw data without any modifier and you

will get only the non-deleted values.

Run the following query:

select timestamp,value,quality

from ihrawdata

where tagname = DELETEDDATA and samplingmode=RawByTime and timestamp < now

Time Stamp Value Quality

8/6/2012 09:01:00 1 Good NonSpecific

8/6/2012 09:04:00 4 Good NonSpecific

Query with the INCLUDEDELETED modifier and you will get the deleted sample

together with the non-deleted data.

select timestamp,value,quality

from ihrawdata

where tagname = DELETEDDATA and samplingmode=RawByTime and timestamp < now and

 criteriastring="#INCLUDEDELETED"

Time Stamp Value Quality

8/6/2012 09:01:00 1 Good NonSpecific

8/6/2012 09:02:00 2 Good NonSpecific

8/6/2012 09:04:00 4 Good NonSpecific

Anticipated Usage

Historian | 6 - Historian Advanced Topics | 1164

The INCLUDEDELETED modifier can be used to detect and recover deleted data.

Perform a query without the modifier and with the modifier and compare the results.

You will detect the deleted samples. You can also determine the deleted samples

with a User API program.

ONLYIFCONNECTED and ONLYIFUPTODATE

The ONLYIFCONNECTED and ONLYIFUPTODATE modifiers can be used on any sampling or calculation

mode to retrieve bad data if the collector is not currently connected and sending data to the archiver.

The bad data is not stored in the IHA file but is only returned in the query. If the collector reconnects and

flushes data and you run the query again, the actual stored data is returned in the following situations:

• Collector loses connection to the Archiver

• Collector crashes

• Collector compression is used and no value exceeds the deadband

Any data query will return the last known value repeated till the current time with the quality of data as

good. But the information could have changed in the real world and has yet to reach the archiver.

Repeating the last known good value data can be misleading. Data should be returned as bad quality if no

data is coming in from a collector.

The Data Archiver keeps track of the newest raw sample received for any tag for each collector. If no

data is received for any tag, the collector is considered to be idle. If the collector is idle for more than 270

seconds, then either the data is heavily compressed or the collector is crashed or has lost connection.

The collector idle time defaults to 270 seconds and this current setting appears in the dataarchiver.shw

file. You can change the value using an SDK program. The setting applies to all collectors.

Use the ONLYIFUPTODATE modifier to return bad data from the time of the newest raw sample to the

current time. However, if there is an unlikely chance that all tags are heavily compressed, then use the

ONLYIFCONNECTED modifier. The difference in the behavior of the two modifiers is given in the following

examples:

When you add an ONLYIFCONNECTED or ONLYIFUPTODATE modifier to the query, and the collector is

disconnected from the archiver, bad values are returned from the time of the disconnect until the current

time. Queries of data before the disconnect time are unaffected.

Historian | 6 - Historian Advanced Topics | 1165

Note:

• The ONLYIFCONNECTED and ONLYIFUPTODATE modifiers are applicable to tags that are

collected by data collectors.

• For raw by number, if the number of samples collected are greater or equal to the number

of samples, bad data quality is not added.

• For raw by time, if the endtime is less than maximum data received time, bad data quality

is not added.

• For raw by number backward, bad data quality is added at the beginning.

Example 1: Using ONLYIFCONNECTED to detect connection loss

To demonstrate the behavior of ONLYIFCONNECTED, you need to query data currently being

collected.

1. Configure the Simulation collector to collect any tag once per second with no

compression. For example, collect the simulation RAMP tag.

2. Let the collector run for at least 5 minutes of collection.

3. Disconnect the collector but leave it running. In this test, the collector was

disconnected at 20:55:00.

4. After about 5 minutes, query the data without ONLYIFCONNECTED and the last

known value repeated with good quality to the current time, even though the collector

is not connected.

set starttime='22-Aug-2012 20:53:00',endtime='now

select timestamp,value,quality

from ihrawdata

where tagname = RAMP and samplingmode=Interpolated and intervalmilliseconds=5s order by

 timestamp asc

Time Stamp Value Quality

8/22/2012 20:54:55 166.666666666667 100.0000000

8/22/2012 20:55:00 0.000000000000 100.0000000

8/22/2012 20:55:05 166.666666666667 100.0000000

8/22/2012 20:55:10 333.333333333333 100.0000000

Historian | 6 - Historian Advanced Topics | 1166

Time Stamp Value Quality

8/22/2012 20:55:15 500.000000000000 100.0000000

8/22/2012 20:55:20 533.333333333333 100.0000000

8/22/2012 20:55:25 533.333333333333 100.0000000

8/22/2012 20:55:30 533.333333333333 100.0000000

8/22/2012 20:55:35 533.333333333333 100.0000000

5. Run the query again with ONLYIFCONNECTED and the data is marked bad at the time

of the collector disconnect:

set starttime='22-Aug-2012 20:53:00',endtime='now

select timestamp,value,quality

from ihrawdata

where tagname = RAMP and samplingmode=Interpolated and intervalmilliseconds=5s and

 criteriastring=#onlyifconnect

Time Stamp Value Quality

8/22/2012 20:54:55 166.666666666667 100.0000000

8/22/2012 20:55:00 0.000000000000 100.0000000

8/22/2012 20:55:05 166.666666666667 100.0000000

8/22/2012 20:55:10 333.333333333333 100.0000000

8/22/2012 20:55:15 500.000000000000 100.0000000

8/22/2012 20:55:20 0.000000000000 0.0000000

8/22/2012 20:55:25 0.000000000000 0.0000000

8/22/2012 20:55:30 0.000000000000 0.0000000

8/22/2012 20:55:35 0.000000000000 0.0000000

6. Reconnect the collector and once the collector reconnects and flushes its buffered

data run the query again with ONLYIFCONNECTED and the period of bad data is filled

in with ramping values:

Historian | 6 - Historian Advanced Topics | 1167

Time Stamp Value Quality

8/22/2012 20:54:55 166.666666666667 100.0000000

8/22/2012 20:55:00 0.000000000000 100.0000000

8/22/2012 20:55:05 166.666666666667 100.0000000

8/22/2012 20:55:10 333.333333333333 100.0000000

8/22/2012 20:55:15 500.000000000000 100.0000000

8/22/2012 20:55:20 569.696969985962 100.0000000

8/22/2012 20:55:25 615.151515960693 100.0000000

8/22/2012 20:55:30 660.606061935425 100.0000000

8/22/2012 20:55:35 706.060606002808 100.0000000

Example 2: Querying Compressed Data

If all tags for a collector are compressed, then the newest raw sample across all tags can

easily be older than 270 seconds even when the collector is connected to archiver. It is

unlikely in a real system that a collector will send 0 raw samples for 270 seconds, but it is

possible.

1. Use the simulation collector and collect the constant tag as 1 second polled with

a small deadband such as 1. In the example below, the newest raw sample is at

17:27:31 and the current time is 5 minutes or more.

2. Query the data as interpolated with a 5 second interval and no modifier.

set starttime='23-Aug-2012 17:00:30',endtime='now,rowcount=0

select timestamp,value,quality

from ihrawdata

where tagname = CONSTANT and samplingmode=Interpolated and intervalmilliseconds=5s order by

 timestamp asc

Time Stamp Value Quality

8/23/20121 7:27:20 500.000000000000 100.0000000

8/23/20121 7:27:25 500.000000000000 100.0000000

8/23/20121 7:27:30 500.000000000000 100.0000000

Historian | 6 - Historian Advanced Topics | 1168

Time Stamp Value Quality

8/23/20121 7:27:35 0.000000000000 100.0000000

8/23/20121 7:27:40 0.000000000000 100.0000000

Note:

The newest sample is repeated to the current time

3. Query with ONLYIFCONNECTED and you get the same results even when the newest

raw sample is more than 270 seconds old. The data is old but the collector is

currently connected.

set starttime='23-Aug-2012 17:00:30',endtime='now,rowcount=0

select timestamp,value,quality

from ihrawdata

where tagname = CONSTANT and samplingmode=Interpolated and intervalmilliseconds=5s and

 criteriastring=#onlyifcon

Time Stamp Value Quality

8/23/20121 7:27:20 500.000000000000 100.0000000

8/23/20121 7:27:25 500.000000000000 100.0000000

8/23/20121 7:27:30 500.000000000000 100.0000000

8/23/20121 7:27:35 500.000000000000 100.0000000

8/23/20121 7:27:40 500.000000000000 100.0000000

4. Query with ONLYIUPTODATE and the data is considered bad quality after the newest

raw sample.

set starttime='23-Aug-2012 17:00:30',endtime='now,rowcount=0

select timestamp,value,quality

from ihrawdata

where tagname = CONSTANT and samplingmode=Interpolated and intervalmilliseconds=5s and

 criteriastring=#onlyifupt

Time Stamp Value Quality

8/23/20121 7:27:20 500.000000000000 100.0000000

Historian | 6 - Historian Advanced Topics | 1169

Time Stamp Value Quality

8/23/20121 7:27:25 500.000000000000 100.0000000

8/23/20121 7:27:30 500.000000000000 100.0000000

8/23/20121 7:27:35 0.000000000000 0.0000000

8/23/20121 7:27:40 0.000000000000 0.0000000

Note:

If your collector can possibly have no data for any tag due to compression, use

ONLYIFCONNECTED. Otherwise, if you want to detect data being old due to collector

crash or disconnect, then use ONLYIFUPTODATE and optionally adjust the collector

idle time.

Anticipated Usage

Use the ONLYIFCONNECTED and ONLYIFUPTODATE modifiers so that your trend lines stop

plotting when the collector loses connection.

Use the ONLYIFCONNECTED and ONLYIFUPTODATE modifiers with CurrentValue retrieval so

that the current value turns to bad quality if the collector is disconnected. This way you are

not misled by looking at an outdated value that does not match the real world.

ONLYRAW

The ONLYRAW modifier retrieves only the raw stored samples. It does not add interpolated or lab sampled

values at the beginning of each interval during calculated retrieval such as average or minimum or

maximum.

Normally, a data query for minimum value will interpolate a value at the start of each interval and use that

together with any raw samples to determine the minimum value in the interval. Interpolation is necessary

because some intervals may not have any raw samples stored.

Note:

Use the ONLYRAW modifier with Calculation modes only, not with raw or sampled retrieval like

interpolated modes.

Example

Historian | 6 - Historian Advanced Topics | 1170

Import this data to demonstrate the behavior of the ONLYRAW query modifier.

[Tags]

Tagname,DataType,HiEngineeringUnits,LoEngineeringUnits

RAMPUP,SingleFloat,100,0

[Data]

Tagname,TimeStamp,Value,DataQuality

RAMPUP,06-Aug-2012 9:01:00.000,1,Good

RAMPUP,06-Aug-2012 9:02:00.000,2,Good

RAMPUP,06-Aug-2012 9:03:00.000,3,Good

RAMPUP,06-Aug-2012 9:04:00.000,4,Good

RAMPUP,06-Aug-2012 9:05:00.000,5,Good

RAMPUP,06-Aug-2012 9:06:00.000,6,Good

When you query the minimum without any modifier, you see that the minimum value may not

be one of the stored values.

set starttime='06-Aug-2012 09:02:30',endtime='06-Aug-2012 09:05:30'

select timestamp,value,quality

from ihrawdata

where tagname = RAMPUP and samplingmode=Calculated and CalculationMode=minimum and numberofsamples=3

Time Stamp Value Quality

8/6/2012 09:03:30 2.500000000000 100.0000000

8/6/2012 09:04:30 3.500000000000 100.0000000

8/6/2012 09:05:30 4,500000000000 100.0000000

set starttime='06-Aug-2012 09:02:30',endtime='06-Aug-2012 09:05:30'

select timestamp,value,quality

from ihrawdata

where tagname = RAMPUP and samplingmode=Calculated and CalculationMode=minimum and numberofsamples=3

and criteriastring='#onlyraw'

Time Stamp Value Quality

8/6/2012 09:03:30 3.000000000000 100.0000000

8/6/2012 09:04:30 4.000000000000 100.0000000

8/6/2012 09:05:30 5.000000000000 100.0000000

Historian | 6 - Historian Advanced Topics | 1171

Anticipated Usage

Use the ONLYRAW modifier to query the minimum and maximum values of stored data

samples, similar to the RawAverage Calculation mode. A minimum or maximum of raw

samples is more like doing a MIN() or MAX () in an Excel spreadsheet. Realize that if you

use the ONLYRAW modifier, there may be intervals with no raw samples. The ONLYRAW

modifier is useful for Calculation modes and not the Sampling modes.

LABSAMPLING

The LABSAMPLING modifier affects the calculation modes that interpolate a value at the start of each

interval. Instead of using interpolation, lab sampling is used. When querying highly compressed data you

may have intervals with no raw samples stored. An average from 2 P.M to 6 P.M on a one hour interval

will interpolate a value at 2 P.M., 3 P.M., 4 P.M, and 5 P.M and use those in addition to any stored samples

to compute averages. When you specify LABSAMPLING, then lab sampling mode is used instead of

interpolated sampling mode to determine the 2 P.M., 3 P.M., 4 P.M., and 5 P.M., values.

A lab sampled average would be used when querying a tag that never ramps but changes in a step pattern

such as a state value or setpoint.

Note:

Use the LABSAMPLING modifier with calculation modes only, not raw or sampled retrieval like

interpolated modes.

Example

Import this data to demonstrate the behavior of the LABSAMPLING query modifier.

[Tags]

Tagname,DataType,HiEngineeringUnits,LoEngineeringUnits

RAMPUP,SingleFloat,100,0

[Data]

Tagname,TimeStamp, Value,DataQuality

RAMPUP,06-Aug-2012 9:01:00.000,1,Good

RAMPUP,06-Aug-2012 9:02:00.000,2,Good

RAMPUP,06-Aug-2012 9:03:00.000,3,Good

RAMPUP,06-Aug-2012 9:04:00.000,4,Good

RAMPUP,06-Aug-2012 9:05:00.000,5,Good

RAMPUP,06-Aug-2012 9:06:00.000,6,Good

Historian | 6 - Historian Advanced Topics | 1172

Run this query without a modifier to see the minimum values using the interpolated values:

set starttime='06-Aug-2012 09:02:30',endtime='06-Aug-2012 09:05:30'

select timestamp,value,quality

from ihrawdata

where tagname = RAMPUP and samplingmode=Calculated and CalculationMode=minimum and numberofsamples=3

Time Stamp Value Quality

8/6/2012 09:03:30 2.500000000000 100.0000000

8/6/2012 09:04:30 3.500000000000 100.0000000

8/6/2012 09:05:30 4.500000000000 100.0000000

The returned minimum values are stored values but sampled forward to each interval

timestamp. This is the behavior of lab sampling and is applied here to calculated values.

Anticipated Usage

Use the LABSAMPLING modifier to query the minimum, maximum, and average values of

tags that change in a step fashion and never ramp. For example, you may want to retrieve

the minimum of a set point. This tag would change from one value directly to another

without ramping. And the value may not change in a long period. A minimum should not

return a value that ramps over a long period of time from one set point value to the next. The

LABSAMPLING modifier is useful for Calculation modes and not the Sampling modes.

ENUMNATIVEVALUE

The ENUMNATIVEVALUE modifier retrieves the native, numeric values such as 1 or 2 instead of string

values such as on/off for the data that has enumerated states associated with it.

Note:

You can use the ENUMNATIVEVALUE modifier with any sampling or calculation mode.

Example

Import this data to demonstrate the use of ENUMNATIVEVALUE:

[Tags]

Tagname,DataType,HiEngineeringUnits,LoEngineeringUnits

STATETAG,SingleInteger,60,0

[Data]

Historian | 6 - Historian Advanced Topics | 1173

Tagname,TimeStamp,Value,DataQuality

STATETAG,06-Aug-2012 9:08:00.000,4,Good

STATETAG,06-Aug-2012 9:14:00.000,4,Good

STATETAG,06-Aug-2012 9:22:00.000,2,Good

Assume the tag has an enumerated set associated where 2=Stopped and 4=Running. When

you do the interpolated query you get the string value:

set starttime='06-Aug-2012 09:10:00',endtime='06-Aug-2012 09:30:00'

select timestamp,value,quality

from ihrawdata

where tagname = STATETAG and samplingmode=Interpolated and numberofsamples=6

Time Stamp Value Quality

8/6/2012 09:13:20 running 100.0000000

8/6/2012 09:16:40 running 100.0000000

8/6/2012 09:20:00 running 100.0000000

8/6/2012 09:23:20 stopped 100.0000000

8/6/2012 09:26:40 stopped 100.0000000

8/6/2012 09:30:00 stopped 100.0000000

Using the ENUMNATIVEVALUE query modifier, you can get the numeric value suitable for

plotting

set starttime='06-Aug-2012 09:10:00',endtime='06-Aug-2012 09:30:00'

select timestamp,value,quality

from ihrawdata

where tagname = STATETAG and samplingmode=Interpolated and numberofsamples=6 and

 criteriastring='#enumnativevalue'

Time Stamp Value Quality

8/6/2012 09:13:20 4 100.0000000

8/6/2012 09:16:40 4 100.0000000

8/6/2012 09:20:00 4 100.0000000

8/6/2012 09:23:20 2 100.0000000

Historian | 6 - Historian Advanced Topics | 1174

Time Stamp Value Quality

8/6/2012 09:26:40 2 100.0000000

8/6/2012 09:30:00 2 100.0000000

Note:

For bad data, the values are returned as string values based on the Enumerated

State table though the enumerative value is set to FALSE.

Anticipated Usage

Use the ENUMNATIVEVALUE query modifier to plot tags that use enumerated values. You

can put the string value in a data link and put the native value in a chart.

INCLUDEBAD

The INCLUDEBAD modifier directs the Data Archiver to consider raw samples of bad data quality when

computing calculation modes. Use INCLUDEBAD modifier to consider both good and bad quality values.

You can use the INCLUDEBAD modifier with any Sampling or Calculation mode only if you want to include

bad quality data.

Use the INCLUDEBAD modifier only if you believe the bad quality data has meaningful values and are

useful as input to calculations. Most bad data quality values do not have meaningful values; they show 0

or unpredictable numbers. But in some cases, if the data is being written using a user program instead of

a collector, you can use this query modifier.

Bad data always has a sub quality such as Comm Error or Configuration Error. When you use the

INCLUDEBAD modifier any end of collection raw samples or calculation error raw samples are still ignored

because they are not process data, just data markers that are inserted by collectors.

Example

Import this data to demonstrate the behavior of the INCLUDEBAD query modifier:

[Tags]

Tagname,DataType,HiEngineeringUnits,LoEngineeringUnits

Tag1,SingleFloat,60,0

[Data]

Tagname,TimeStamp,Value,DataQuality

Tag1,07-05-2011 17:24:00,29.72,Bad

Historian | 6 - Historian Advanced Topics | 1175

Tag1,07-05-2011 17:25:00,29.6,Good

Tag1,07-05-2011 17:26:00,29.55,Good

Tag1,07-05-2011 17:27:00,29.49,Bad

Tag1,07-05-2011 17:28:00,29.53,Bad

Note:

The given sample contains three bad quality data.

Run the following query

set starttime='07-05-2011 16:00:00', endtime='07-05-2011 21:00:00'

select timestamp,value,quality from ihrawdata where tagname like 'Tag1' and samplingMode=calculated and

 CalculationMode=count and Numberofsamples=1

Time Stamp Value Quality

7/5/201121:00:00 2.000000000000 100.0000000

The count is 2 because only good quality data is considered. If you want to consider bad

quality use the INLCUDEBAD query modifier as given in the following example.

set starttime='07-05-2011 16:00:00', endtime='07-05-2011 21:00:00'

select timestamp,value,quality from ihrawdata where tagname like 'Tag1' and samplingMode=calculated and

CalculationMode=count and criteriastring="#INCLUDEBAD" and Numberofsamples=1

Time Stamp Value Quality

7/5/201121:00:00 5.000000000000 100.0000000

Note:

When we use INCLUDEBAD query modifier all the values are considered and the

count is 5.

Anticipated Usage

The INCLUDEBAD modifier can be used to force the Data Archiver to consider every raw

sample collected from a field device while still excluding Proficy Historian collection

markers or calculation errors and timeouts.

Historian | 6 - Historian Advanced Topics | 1176

The INCLUDEBAD modifier is usually used if you are writing data with a custom program and

not a collector and your program stores meaningful values with bad quality.

FILTERINCLUDEBAD

The FILTERINCLUDEBAD modifier directs the Data Archiver to consider the values of bad quality

data when determining the time ranges that match the filter condition. This modifier is similar to the

INCLUDEBAD but that modifier applies to the data tag and this modifier applies to the FilterTag.

You can use the FILTERINCLUDEBAD modifier if you are also using INCLUDEBAD because your application

data of bad quality has meaningful values then you can also consider this modifier but, you do not need to

use both modifiers at the same time.

Example: Filtered Data Query containing Bad Quality Filter Values

Import this data to demonstrate the behavior of the FILTERINCLUDEBAD query modifier:

[Tags]

Tagname,DataType,HiEngineeringUnits,LoEngineeringUnits

ExcelTag1,SingleFloat,60,0

[Data]

Tagname,TimeStamp,Value,DataQuality

ExcelTag1,07-05-2011 17:24:00,29.72,Bad

ExcelTag1,07-05-2011 17:25:00,29.6,Good

ExcelTag1,07-05-2011 17:26:00,29.55,Good

ExcelTag1,07-05-2011 17:27:00,29.49,Bad

ExcelTag1,07-05-2011 17:28:00,29.53,Bad

The given sample contains three bad quality data samples. Run the following query:

set starttime='07-05-2011 16:00:00', endtime='07-05-2011 21:00:00'

select timestamp,value,quality from ihrawdata where tagname=ExcelTag1 and samplingMode=Calculated and

calculationmode=rawtotal and FilterExpression ='ExcelTag1>29.5' and numberofsamples=1

In this query, we use a filtered expression where the filter condition is ExcelTag1>29.5, and

the result is as follows because it adds the two good values to compute the RawTotal:

Time Stamp Value Quality

7/5/201121:00:00 59.149999618530 100.0000000

Historian | 6 - Historian Advanced Topics | 1177

Bad quality data is not considered while filtering. If you want to consider bad quality data

then use the FILTERINLCUDEBAD query modifier together with the INCLUDEBAD query

modifier as in the following query:

set starttime='07-05-2011 16:00:00', endtime='07-05-2011 21:00:00'

select timestamp,value,quality from ihrawdata where tagname=ExcelTag1 and samplingMode=Calculated and

calculationmode=rawtotal and FilterExpression ='ExcelTag1>29.5' and numberofsamples=1 and

 CriteriaString='#FilterIncludeBad#IncludeBad'

The result is as follows

Time Stamp Value Quality

7/5/201121:00:00 118.399999618530 100.0000000

Note:

The value is 118 because all the values that are greater than 29.5 are added

together, not just the good quality values.

Anticipated Usage

The FILTERINCLUDEBAD modifier can be used to force the Data Archiver to consider every

raw sample collected from a field device when determining the time ranges while still

excluding Historian injected end of collection markers or calculation errors and timeouts.

USEMASTERFIELDTIME

The USEMASTERFIELDTIME query modifier is used only for the MultiField tags. It returns the value of all

the fields at the same timestamp of the master field time, in each interval returned.

The following are the points to remember while using the USEMASTERFIELDTIME query modifier:

1. In your user defined data type, you have to indicate which field is the master field. You can define a

master field when you define the type.

2. When you use the USEMASTERFIELDTIME query modifier, the query returns raw values of all the

field elements at the timestamp determined by the MasterField.

3. When you use the USEMASTERFIELDTIME query modifier in Excel Add-in, the percentage good

value displayed will be incorrect. It is recommended to use this query modifier using APIs.

4. Only a few calculation modes are supported by the USEMASTERFIELDTIME query modifier. The

supported calculation modes are:

Historian | 6 - Historian Advanced Topics | 1178

◦ Minimum Value

◦ Maximum Value

◦ Minimum Time

◦ Maximum Time

◦ FirstRawValue

◦ FirstRawTime

◦ LastRawValue

◦ LastRawTime

The supported modes will examine the raw samples for the master field of a Multi Field tag. For each raw

sample in the interval, the minimum or maximum or first or last sample is determined depending on the

mode. The timestamp of that raw sample is the master field time.

For example you have a multi-field tag called mytag with 3 fields and field3 is the master field.

1. You do a LastRawValue query on mytag and pass the USEMASTERFIELDTIME query modifier.

2. The Data Archiver determines the last raw sample for mytag.field3 between 3pm and 4pm is at

3:42pm. That is the master field time for this interval. Each interval has a master field time.

3. The Data Archiver gets the values for field1 and field2 at 3:42 so now you have a value for all 3

fields at 3:42.

Note:

When there is no raw sample for a field in the given interval then there is no master time for that

interval. Most of the calculation modes will then return a 0 Value and Quality Bad for that interval.

Example

Import this data to demonstrate the behavior of the USEMASTERFIELDTIME query modifier.

[Data]

Tagname,TimeStamp,Value,DataQuality

MUser1.F1,05-22-2013 14:15:00,4,Good

MUser1.F1,05-22-2013 14:15:01,7,Good

MUser1.F1,05-22-2013 14:15:02,9,Good

MUser1.F2,05-22-2013 14:15:00,241,Good

MUser1.F2,05-22-2013 14:15:01,171,Good

MUser1.F2,05-22-2013 14:15:02,191,Good

Historian | 6 - Historian Advanced Topics | 1179

Note:

In this sample the MUser1 tag has two fields F1 and F2 and F2 is marked as the

MasterField.

Run the following query:

set starttime = '5/22/2013 14:15:00', endtime = '5/22/2013 14:15:02'

select tagname, timestamp, value, quality from ihrawdata where tagname = 'MUser1' and

samplingmode = calculated and calculationmode = minimum and

criteriastring = '#USEMASTERFIELDTIME' and numberofsamples = 1

The output is as follows:

Tag Name Time Stamp Value Quality

MUser1.F1 05-22-201314:15:02 7 0.0000000

MUser1.F2 05-22-201314:15:02 171.000000000000 100.0000000

Here the minimum value for the Master Field tag F2 is 171 at 14:15:01 timestamp. That is

the master time. Then the master time is used to get the value of F1 at the same timestamp

which is 7 and this is returned even as the minimum value of F1 is 4.

In a multi field tag it is possible that some fields may be NULL at a given timestamp. In this

case if F1 was a NULL value at 14:15:01 you would get a value of null and bad quality.

HONORENDTIME

Normally, a query keeps searching through archives until the desired number of samples has been

located, or until it gets to the first or last archive. However, there are cases where you would want to

specify a time limit as well. For example, you may want to output the returned data for a RawByNumber

query in a trend page, in which case there is no need to return data that would be off page.

In cases where you want to specify a time limit, you can do this by specifying an end time in your

RawByNumber query and including the HONORENDTIME query modifier. Since RawByNumber has

direction (backwards or forwards), the end time must be older than the start time for a backwards

direction or newer than the start time for a forwards direction.

Note:

Use the HONORENDTIME modifier only with the RawByNumber sampling mode.

Historian | 6 - Historian Advanced Topics | 1180

Example using HONORENDTIME with RawByNumber Sampling Mode

Import this data to Historian:

[Tags]

Tagname,DataType,HiEngineeringUnits,LoEngineeringUnits

TAG1,SingleInteger,60,0

[Data]

Tagname,TimeStamp,Value,DataQuality

TAG1,09/18/2015 14:00:00.000,00,Good

TAG1,09/18/2015 14:05:00.000,5,Good

TAG1,09/18/2015 14:10:00.000,10,Good

TAG1,09/18/2015 14:15:00.000,15,Good

TAG1,09/18/2015 14:20:00.000,20,Good

TAG1,09/18/2015 14:25:00.000,25,Good

TAG1,09/18/2015 14:30:00.000,30,Good

TAG1,09/18/2015 14:35:00.000,35,Good

TAG1,09/18/2015 14:40:00.000,40,Good

TAG1,09/18/2015 14:45:00.000,45,Good

TAG1,09/18/2015 14:50:00.000,50,Good

TAG1,09/18/2015 14:55:00.000,55,Good

TAG1,09/18/2015 15:00:00.000,60,Good

Without HONORENDTIME Query Modifier

set starttime='9/18/2015 14:00:00',endtime='9/18/2015 14:15:00'

select Timestamp,Value,Quality from ihrawdata where tagname like TAG1 and

 samplingmode=rawbynumber and

direction=forwardand numberofsamples=6

The output is as follows:

Time Stamp Value Quality

9/18/2015 14:00:00 0 Good NonSpecific

9/18/2015 14:05:00 5 Good NonSpecific

9/18/2015 14:10:00 10 Good NonSpecific

9/18/2015 14:15:0 15 Good NonSpecific

9/18/2015 14:20:00 20 Good NonSpecific

Historian | 6 - Historian Advanced Topics | 1181

Time Stamp Value Quality

9/18/2015 14:25:00 25 Good NonSpecific

In the above query, the endtime specified is ignored and 6 values are returned.

With HONORENDTIME Query Modifier

set starttime='9/18/2015 14:00:00',endtime='9/18/2015 14:15:00'

select TagName,Timestamp,Value,Quality from ihrawdata where tagname like TAG1 and

 samplingmode=rawbynumber and

direction=forward and numberofsamples=6 and criteriastring=#honorendtime

The output is as follows:

Time Stamp Value Quality

9/18/2015 14:00:00 0 Good NonSpecific

9/18/2015 14:05:00 5 Good NonSpecific

9/18/2015 14:10:00 10 Good NonSpecific

9/18/2015 14:15:0 15 Good NonSpecific

In the above query, the endtime specified is used and only 4 values are

returned.

Anticipated Usage

Use the HONORENDTIME modifier when you would want to specify a time limit to a query.

For example, you may want to output the returned data for a RawByNumber query in a trend

page, in which case there is no need to return data that would be offpage.

EXAMINEFEW

Queries using calculation modes normally loop through every raw sample, between the given start time

and end time, to compute the calculated values.

When using FirstRawValue, FirstRawTime, LastRawValue, and LastRawTime calculation modes, we can

use only the raw sample near each interval boundary and achieve the same result. The EXAMINEFEW

query modifier enables this. If you are using one of these calculation modes you may experience better

read performance using the EXAMINEFEW query modifier.

Historian | 6 - Historian Advanced Topics | 1182

Note:

Use the EXAMINEFEW query modifier only with FirstRawValue, FirstRawTime, LastRawValue, and

LastRawTime calculation modes.

Examples using EXAMINEFEW with FirstRawValue and FirstRawTime Calculation Modes

Import this data to Historian:

[Tags]

Tagname,DataType,HiEngineeringUnits,LoEngineeringUnits

Tag1,SingleFloat,60,0

[Data]

Tagname,TimeStamp,Value,DataQuality

Tag1,07-05-2011 17:24:00,29.72,Bad

Tag1,07-05-2011 17:25:00,29.6,Good

Tag1,07-05-2011 17:26:00,29.55,Good

Tag1,07-05-2011 17:27:00,29.49,Bad

Tag1,07-05-2011 17:28:00,29.53,Bad

Tag1,07-05-2011 17:29:00,29.58,Good

Tag1,07-05-2011 17:30:00,29.61,Bad

Tag1,07-05-2011 17:31:00,29.63,Bad

Tag1,07-05-2011 18:19:00,30,Good

Tag1,07-05-2011 18:20:00,29.96,Good

Tag1,07-05-2011 18:21:00,29.89,Good

Tag1,07-05-2011 18:22:00,29.84,Good

Tag1,07-05-2011 18:23:00,29.81,Bad

Using FirstRawValue Calculation Mode

set starttime='07-05-2011 16:00:00', endtime='07-05-2011 19:00:00'

select timestamp,value,quality from ihrawdata where tagname like 'Tag1' and

 samplingMode=Calculated and

CalculationMode=FirstRawValue and criteriastring="#EXAMINEFEW" and

 intervalmilliseconds=1h

The output is as follows:

Time Stamp Value Quality

07-05-2011 17:00:00 00.0000000 0.0000000

Historian | 6 - Historian Advanced Topics | 1183

Time Stamp Value Quality

07-05-2011 18:00:00 29.6000000 100.0000000

07-05-2011 19:00:00 30.0 100.0000000

Note:

The EXAMINEFEW query modifier does not affect query results, but

may improve read performance.

Using FirstRawTime Calculation Mode

set starttime='07-05-2011 16:00:00', endtime='07-05-2011 19:00:00'

select timestamp,value,quality from ihrawdata where tagname like 'Tag1' and

 samplingMode=Calculated and

CalculationMode=FirstRawTime and criteriastring="#EXAMINEFEW" and

 intervalmilliseconds=1h

The output is as follows:

Time Stamp Value Quality

07-05-2011 17:00:00 01-01-1970 05:30:00 0.0000000

07-05-2011 18:00:00 07-05-2011 17:25:00 100.0000000

07-05-2011 19:00:00 07-05-2011 18:20:00 100.0000000

Note:

The EXAMINEFEW query modifier does not affect query results, but

may improve read performance.

Anticipated Usage

Using the EXAMINEFEW modifier is recommended when:

• The time interval is greater than 1 minute.

• The collection interval is greater than 1 second.

• The data node size is greater than the default 1400 bytes.

• The data type of the tags is String or Blob.

Historian | 6 - Historian Advanced Topics | 1184

Note:

Query performance varies depending on all of the above factors.

EXCLUDESTALE

Stale tags are tags that have no new data samples within a specified period of time, and which have the

potential to add to system overhead and slow down user queries.

The EXCLUDESTALE query modifier allows for exclusion of stale tags in data queries.

Unless permanently deleted, stale tags from the archiver are not removed but are simply marked as stale.

Use the query without the EXCLUDESTALE query modifier to retrieve the sample values.

Note:

Data is not returned for stale tags. An ihSTATUS_STALED_TAG error is returned instead.

Example

Data

In this example, the data below is for the last raw samples for Tag1 to Tag7:

Tag, Timestamp, Value

Tag1, 9/25/2015 10:00:00, 10

Tag2, 9/18/2015 10:00:00, 20

Tag3, 9/25/2015 10:00:00, 30

Tag4, 9/25/2015 10:00:00, 40

Tag5, 9/18/2015 10:00:00, 50Tag6, 9/25/2015 10:00:00, 60

Tag7, 9/18/2015 10:00:00, 70

Further Assumptions

• Current System Time: 9/26/2015 11:00:00

• Server configuration

◦ Stale Period: 7 Days

◦ Stale Period Check: 1 Day

In this case, Tag2, Tag5, and Tag7 were logged more than 7 days ago. They are

therefore considered stale.

Query without EXCLUDESTALE

Historian | 6 - Historian Advanced Topics | 1185

The following query is run at 9/26/2015 11:00:00:

set StartTime='9/17/2015 10:00:00',EndTime='9/26/2015 11:00:00'

select TagName,Timestamp,Value from ihrawdata where tagname like Tag* and

 Samplingmode=RawByTime and

CriteriaString="#ExcludeStale"

Output is returned for the following tags:

Tag, Timestamp, Value

Tag1, 9/25/2015 10:00:00, 10

Tag3, 9/25/2015 10:00:00, 30

Tag4, 9/25/2015 10:00:00, 40

Tag6, 9/25/2015 10:00:00, 60

In the above query, the stale tags (Tag 2, Tag5, and Tag7) are excluded from

the results.

Query with EXCLUDESTALE:

The following query is run at 9/26/2015 11:00:00:

set StartTime='9/17/2015 10:00:00',EndTime='9/26/2015 11:00:00'

select TagName,Timestamp,Value from ihrawdata where tagname like Tag* and

 Samplingmode=RawByTime and

CriteriaString="#ExcludeStale"

Output is returned for the following tags:

Tag, Timestamp, Value

Tag1, 9/25/2015 10:00:00, 10

Tag3, 9/25/2015 10:00:00, 30

Tag4, 9/25/2015 10:00:00, 40

Tag6, 9/25/2015 10:00:00, 60

In the above query, the stale tags (Tag 2, Tag5, and Tag7) are excluded from

the results.

Anticipated Usage

Stale tags have the potential to add to system overhead and slow down user queries,

without adding new data. The EXCLUDESTALE modifier can be used to exclude such tags,

thereby speeding up query time.

Historian | 6 - Historian Advanced Topics | 1186

Work with Data Stores from the Command Line

Using the Command Line to Work with Data Stores

You can create new data stores or delete existing ones from the command line. Before you can work with

data stores from the command line, you must follow these steps.

1. Stop all Historian services.

2. Open a command prompt, or shell, and switch to the directory where ihConfigManager.exe is

located.

By default, this folder is located in: C:\Program Files\Proficy\Historian\x64\Server.

3. Run ihConfigureManager.exe with the options you choose.

Related reference

Examples (on page 1187)

Related information

Creating a Data Store (on page 1186)

Deleting a Data Store (on page 1186)

Creating a Data Store

To create a new data store, run the following:

ihConfigManager_x64.exe CreateDataStore DataStoreName [StoreType: Historical = 0, Scada = 1]

[DefaultStore: NotADefault=0, Default = 1] ["OptionalDataStoreDescription"]

Where DataStoreName is the name of the data store you want to create.

Deleting a Data Store

To delete an existing data store, run the following:

ihConfigManager_x64.exe DeleteDataStore MyStore [NoConfirm]

Where:

Historian | 6 - Historian Advanced Topics | 1187

• MyStore is the name of the data store you want to delete, and

• NoConfirm allows you delete a data store without a validation message appearing.

CAUTION:

Exercise extreme care in using the NoConfirm option, as it will delete an entire data store

without a prompt. This is sometimes helpful in scripting, but it is a dangerous option

otherwise.

Examples

Example 1: Create a new historical data store, but do not change my default data store

C:\Program Files\Proficy\Historian\x64\Server\ihConfigManager_x64.exe CreateDataStore MyStore 0 0

Example 2: Create a new historical data store and make it a default data store

C:\Program Files\Proficy\Historian\x64\Server\ihConfigManager_x64.exe CreateDataStore MyStore 0 1 "This

 is my default historical store"

Example 3: Delete a data store, and display a validation message after it is removed

C:\Program Files\Proficy\Historian\x64\Server\ihConfigManager_x64.exe DeleteDataStore MyStore

Example 4: Delete a data store, but suppress any validation messages

C:\Program Files\Proficy\Historian\x64\Server\ihConfigManager_x64.exe DeleteDataStore MyStore NoConfirm

Measuring Historian Performance

About Measuring Performance of Proficy Historian

You can use the Windows Performance Counters to measure activity and performance of the Data

Archivers. The Counters are more familiar to the system administrators and monitors the following

Historian information.

• Read rates

• Side by side with non-Historian counters such as CPU usage or handle

• Thread counts

The following topics provide the objects and counters most useful for measuring and describing the

system activity. The counters that are specified in the following topics are a subset of all the available

counters.

Historian | 6 - Historian Advanced Topics | 1188

Note:

• The Historian Advanced Topics documentation is not a replacement of the documentation

for the full set of counters. Examples contained in each topic of this documentation use

the counters to produce other measurements. Sometimes, the measurement number that

you want is not exposed as a single counter. However, the number can be a combination of

counters or a comparison of two counters.

• The counters only describe the behavior of the Data Archiver. For more information about

troubleshooting and optimizing performance using the Historian and Windows counters,

refer to the appropriate Historian documentation.

About the Proficy Historian Overview Objects

The Overview objects are the counters that measure the samples collected and sent by the Data Archiver.

You cannot use the counters to perform the following actions:

• Measure the performance of a specific read.

• Track the reads of a specific client or program.

The Overview objects are preferred to measure and describe a system. It is calculated as the sum total of

the numbers in each instance of a data store. After you understand the Overview object, you can identify

the most active data store by using the associated counters.

The performance counters are more useful because:

• You cannot access the read rates in the administrator UI.

• The write rate is updated only once in a minute. The counters are updated in real time making it

much easier to see exactly when a problem began.

• The administrator UI shows only the data in the last 10 minutes but the counters are displayed over

a longer time period to locate active times.

• You can access the counters in relation to the non-historian counters in the same trend.

• The counters are accessible when you cannot access the administrator UI due to performance or

security reasons.

The reads vary based on the load on the Data Archiver.

Historian | 6 - Historian Advanced Topics | 1189

Note:

The load on the Data Archiver does not depend only on the number of read calls. The load

increases with the increased number of tags, archives, and the raw samples. You can monitor

some of these activities using the counters.

You can use the Overview object to measure the following:

• Number of samples examined internally with respect to the number of samples returned to a user

at a given time

• Inconsistency of reads and writes in a day, week, or month

• The number of out-of-order writes during a given time range

• The average number of samples examined per read call

Counter Name Description

Read Rate (Calls/min) The number of user or program initiated read calls

processed over the last minute

Read Raw Rate (Samp/min) The number of raw data samples examined inter

nally over the last minute in response to read calls

Read Samp Rate (Samp/min) The number of raw data samples returned to exter

nal programs over the last minute in response to

read calls

Note:

The counts and rates provided in the above table are generic across the Data Archiver. The

counts and rates do not provide detailed information, such as the reason of the time taken by a

read (for example, 8 seconds) and the activities where the time was spent. However, the counts

and rates can describe the reason of a scenario, when the same read criteria takes different time

frames in two different days. If there are more reads or writes happening in the Data Archiver, the

read criteria takes more time.

Comparing Read Raw Rate and Read Samp Rate

Run a query for a month average of 200 tags that have collected data in every second. Assume that you

stored the data in one day archives. The Data Archiver has to examine a large number (200 tags x 60

seconds x 24 hours x 30 days) of raw samples that are spread across 30 one day archives to produce only

Historian | 6 - Historian Advanced Topics | 1190

200 returned samples. If the query is run in 1 minute without any error, the Read Raw Rate value is a large

number and the Read Samp Rate value is 200.

Run the same query with samplingmode Raw By Time. The Read Raw Rate shows the same value

because the same number of raw samples were examined. As the query results returned to the caller, the

Read Samp Rate = Read Raw Rate.

Note:

The number of archives examined is not reflected for the counter. You will get the same Read

Raw Rate and Read Samp Rate if you have a 30 days archive instead of a 31 days archive.

You cannot only look at the number of write calls with reads. A write can have samples for multiple tags

and the timestamps on the data can affect the number of archives accessed by a write. A collector can

typically write data for all its tags, but with the same timestamp and the write call can access the same

archive. A migration program can write two years of data for a tag, which can access many archives.

The following table provides the counters that have a rate over the last minute. These counters describe

the data write activity in the Data Archiver.

Counter Name Description

Write Rate (Average) The number of raw samples received from the ex

ternal programs in the last minute

Write Rate (Max) The highest number of Write Rates (average) after

starting the Data Archiver

The following table provides the total counters after starting the Data Archiver. If the Data Archiver runs

for a long time, the counters are set to zero.

Counter Name Description

Writes (Expensive) The total number of raw samples that are expen

sive writes after the Data Archiver started

Writes (Total Failed) The total number of data samples that failed to be

stored after the Data Archiver started

Writes (Total) The total number data samples stored to IHA files

after the Data Archiver started

Historian | 6 - Historian Advanced Topics | 1191

Counter Name Description

Writes (Total OutOfOrder) The total number of data samples written out of

time order after the Data Archiver started. The

number only includes the successful writes, and

performs slower than when the data is in time or

der.

Note:

Although some counters are rates and some are totals, all the counters are in units of data

samples.

Comparing the number of Raw Samples Read and Written

The Write Rate (Average) is the write equivalent to the Read Samp Rate. You can compare the two

counters to see if more reads or writes per minute are created in your Data Archiver.

Understanding the varying load on the Data Archiver

Trend the Write Rate (Average) and Read Samp Rate over a 24 hour period. You may see certain times

of the day where the load varies, such as when reports are run, or a collector has a store and forward

flush, or data is recalculated with Calculation collector. Access the data available for a month. A system

used for compliance or billing will have a very low read rate until you run the report till the end of month.

Compare the value to a system used for real time, auto updating trending. That system will have a more

consistent read load throughout the month.

Calculating the rate of out of order writes during a given time range

Out of order data writes are only exposed as a count, not a rate.

You can compute the number of out of order writes between a specific time (for example, between

3:15pm and 3:25pm) by getting the value of Total Out of Order at each timestamp and subtracting the

value. You can convert the value to a rate per minute by dividing the value by 10 minutes.

The measurement is necessary because there are occurrences of out of order data in many systems.

There is a base rate of out of order data for the system. If the system has intermittent changes in write

performance, you can calculate the out of order rate during those times and compare the data to the base

rate.

Historian | 6 - Historian Advanced Topics | 1192

Calculating samples examined per read

As both the number of read calls and number of samples examined are exposed, you can divide to get the

number of samples examined per read. In some systems, the number is near one, which indicates many

small reads while the Calculation collector does many current value reads that examine one sample and

return it. The samples per read will also be one, if you query raw data, such as when replicating data. An

analytic program can summarize the data into 5 minute averages. For one second uncompressed data,

the value is 300 samples examined per read. The number is an overall system wide number so it will not

be useful to troubleshoot one read.

About Proficy Historian Message Queue Object

In any server software, there will be a number of queues. Most of the time, and all the queues should

ideally have 0 items. This implies that the server is keeping up with the workload. The read and write

counters of the overview object tell you how many read and write operations were performed. However,

the queue counters can tell you how many actions are expected to happen, and if the user had to wait for

a response.

Measuring the system performance through queues is an excellent way to determine if the server has

reached the steady state performance limit. It can also tell you if the usage comes in bursts and needs to

be mores spread out over time.

When using the queues for measurement, you should think about what are the “items” on that queue. The

“items” or “messages” here are read calls or write calls. One read call can have multiple tag names and

one write call can have multiple data samples.

There are 3 queue instances exposed by counters

• Write Queue: Data writes from collectors and non-collectors.

• Read Queue: Anything for data that is not a write. It is not just data reads, it can also be tag

browses.

• Msgs Queue: Anything other than read queue and write queue. You can practically ignore this

queue as it is only a tiny part of the activity and it is not considered in this document.

You can get basic or very detailed information from the queue counters. At a basic level, if the queues are

non-zero at a point in time, you are doing too much work at that point in time. If your queues are always

non zero, then you are always expecting too much and have reached your performance limit.

Use the Queue Counters on the Read and Write queues to measure the following parameters as explained

in the sections that follow:

Historian | 6 - Historian Advanced Topics | 1193

• Last Read time vs Average Read Time

• Variability of the current queue counts

• Variability of the processed rate of read or write queue

• Number of samples per write

Basic Queue Counters

These counters represent concepts that apply to any queue usage in any server software. There is a set of

these for the read queue and set for the write queue.

Counter Name Description

Count (Max) The highest number reached by the Count (Total).

Count (Total) Number of messages currently on the queue.

Processed Count Number of messages processed from the queue

since Data Archiver startup. This number will wrap

around and reset to zero if the Data Archiver runs

for a long time.

Processed Rate (msg/min) Number of messages processed from the queue in

the last minute.

Processing Time (Ave) Average time (in milliseconds) since the Data

Archiver startup to process a message.

Processing Time (Last) Time (in milliseconds) to process the most recent

ly processed message.

Processing Time (Max) Highest number the Processing Time (Last)

reached since the Data Archiver startup.

Recv Count (msgs) Number of messages received into the queue

since the Data Archiver startup.

Recv Rate (msgs/min) Rate at which messages are received in the last

minute.

If your Processed Rate (msgs/min) is more than your Recv Rate (msgs/min), then your Count (Total) will

be zero as the Data Archiver will be keeping up with the incoming requests.

Historian | 6 - Historian Advanced Topics | 1194

The current value of these counters in report view is displayed at all times in the Performance Monitor.

You can log these counters to a Performance Monitor group file so that the times can be matched up with

periods of slow performance.

Detailed Queue Counters

These counters require a detailed understanding of how the queues are used.

There is no single read or write queue in memory. They are a virtual queue that is the sum total of all the

client queues. Each connection from a client uses a socket. Each socket is monitored by a thread called

a client thread. A queue is used between one client thread and the pool of threads that access the IHA

files. This can be called as a client queue. No client thread goes directly to the IHA files. There are a fixed

number of threads that monitor all client queues and read and write the IHA files.

A default system has one write thread and four read threads. You may have 20 collectors and 35 clients

connected to the data archiver, that is, 20+35=55 client threads. That is, 55 x 2 = 110 client queues as

each client thread has one read and one write queue.

The four read threads will monitor the 55 client read queues, most of which are empty most of the time.

The one write thread monitors the 55 client write queues.

The Count (Total) on the Read Queue instance or the Write Queue instance is the sum total of all the items

on the 55 read queues.

Counter Name Description

Threads Number of configured threads that go to the IHAs.

This number will not change at runtime. It defaults

to one write thread and four read threads.

Threads Working Number of configured queue processing worker

threads that are currently working on processing a

message. If there is not much work to do, there will

be idle threads and which will be much less than

the Threads counter, possibly zero.

Time In Queue (Ave) The average time since the Data Archiver startup

of the “Time In Queue (Last)”.

Time In Queue (Last) Time (in milliseconds) that the last message wait

ed in the queue before a thread started processing

Historian | 6 - Historian Advanced Topics | 1195

Counter Name Description

it. This should be near zero, meaning the archiver

is keeping up with the requests and writes.

Time In Queue (Max) The max time since the Data Archiver startup of

the Time In Queue (Last).

ClientQueues with Msgs The number of client queues with messages on

them. In the previous example, this is how many

of the 55 read client queues have at least one item

on it. It doesn’t matter how many items are on the

client queue, only that it has at least one item. The

number would be between 0 and 55.

This number gives some idea about how balanced

the incoming load is and how balanced the ser

vicing of the clients is. You don’t want any single

client doing too many reads or write causing other

clients to have to wait.

The time to process one read or one write would be the Time In Queue (Last) + the Processing

Time (Last). But these are not visible as these are overall system wide counters, and not the way to

troubleshoot one read or one client. The Time in Queue (Last) increases when the Threads Working

equals Threads meaning all threads are busy.

Example: Comparing current to average processing time

Every system is different and has its own “normal” data rate. You can measure it if your current rate is

above or below normal. To determine if the Recv Rate or Processed Rate is above or below normal, you

must look at the number over a longer period of time, maybe 1 hour or 24 hours.

To determine if the processing time is taking longer than normal, you can trend the Processing Time

(Last) to the Processing Time (Average) at the same time range. One line will be above the other to show

if the range is above or below normal.

Example: Measuring the variability of Queue Count Total

This demonstrates that the Count (Total) can change. The number will change based on the Recv Count

and the Processed Count.

Historian | 6 - Historian Advanced Topics | 1196

The Write Queue Recv Rate is usually consistent. But you may see the Write Queue Recv Rate increase

during a Store and Forward flush of a collector. The Write Queue Processed Count will vary more, and that

will cause the Write Queue Count (Total) to vary as well. Consider an archive backup done at midnight

each day. During a backup, the writes have to stop. The Write Queue Recv Rate will stay the same because

collectors are still writing. The Processed Count will be zero during the backup so the Write Count (Total)

will grow.

The same happens if there are long reads happening. If there are any reads, then the writes will have

to wait and the Write Count (Total) will grow. But the Overview object Read Raw Rate should be busy,

indicating the Data Archiver is busy doing some work, but not the writes.

If the writes are out of time order, the exact same number and bundle size of the raw samples can take

longer to write. The exact same number of raw samples can take longer to read if there are cache misses

and the data archiver does file I/O.

Reads are unlike writes because collectors will keep sending writes, even if they don’t get responses. A

client that does a read will wait for the response before sending the next read. The reads will not queue

up in the Data Archiver. In general, the Read Queue Count (Total) will not grow as high as the Write Queue

Count (Total) unless you have many read clients.

You can measure how much your Read and Write Queue Count (Total) vary over a 24 hour period, and

understand that Count (Total) variability is caused by the variability of the Recv Rate and Processed Rate.

The variability of those is caused by the variability of the sizes of the reads and writes combined with

whatever else is happening on the machine.

Example: Computing the number of samples per write

The Overview object has a Read Calls counter but does not have a Write calls counter. You don’t know

the number of write calls nor can you compute a number of samples per write call. But, since one Write

Queue Recv Count is one write call, you can use that number.

About Proficy Historian Cache Object

Caching is used in many kinds of server software. You may have a basic idea of the concept and

terminology of caching and just need to know how Historian makes use of a cache to give improved

performance. The Historian Data Archiver is used to store and retrieve data from gigabytes of archives

on disk. All those raw samples can not be kept in memory. For performance reasons, the Data Archiver

will attempt to keep the most recently used information in memory. Cache hits avoid file I/O which is the

number one negative performance factor in any server software.

Historian | 6 - Historian Advanced Topics | 1197

As with multiple queues, there are multiple caches in the Data Archiver, each holding a different type of

object. As with “items” in queues you want to understand what “objects” are in a cache. One Read Call

in the overview object becomes one Recv Count in the Queue object which becomes one or more cache

hits or misses in the Archive Data Cache. This is because one read may span the raw samples stored in

multiple data nodes. Some of those data nodes may be in cache and some may not.

There are four caches within the Data Archiver: ArchiveDataCache, ArchiveIndexCache, ArchiveTagCache,

and ConfigTagCache. You can ignore three of them and only monitor the Archive Data Cache. These are

raw samples. So, this cache is the simplest to understand and has the biggest effect on performance.

The Archive Data Cache starts empty at Data Archiver startup and fills as data is read and written.

Cache counters, like Queue counts are best viewed as current values in the report view of Performance

monitor. These are displayed on the Archive Data Cache instance.

Counter Name Description

Hits When a program is queried or re-queried a tag and

time range, and it was found in the cache.

Misses Data reads where the requested information was

either never in cache or had to be removed to make

room for more recently accessed data.

Hit Percentage Hits divided by Misses expressed as a percent. A

high percentage means most data requests are be

ing satisfied without having to access the disk.

The objects in the Archive Data Cache are the data nodes. One data node is about 250 consecutive raw

samples for one tag.

Counter Name Description

Obj Count Number of objects (data nodes containing raw

samples) in the cache.

Num Adds Total number objects added to cache since Da

ta Archiver startup. This number will always be in

creasing as new data is collected and queried.

Num Deletes Total number of objects deleted from cache.

Deletes will not happen until the cache has

reached its maximum size.

Historian | 6 - Historian Advanced Topics | 1198

Counter Name Description

Size (MB) The amount of memory used by the cache to con

tain the raw samples.

Possible uses of the counters are demonstrated in the sections that follow.

Example: Computing the cache hits for a specific time range

All the counters are numbers since Data Archiver startup, which means it is hard to detect a period of time

that had many cache misses. If you know that the read was run at 4pm and took 1 minute, you can get the

hits and miss counts at 3:59 and 4:02 and subtract them to know what the hit percentage was at the time

the read was done. This is more useful than the hit percentage since startup. When subtracting, verify if

the counter had rollover and went back to zero.

Example: Best Case Archive Data Cache hit percentage

Run the exact same SQL query 10 times with fixed start and end times. Your hits would be nine and

misses would be one, that is, the first read. This is a cache hit percent of 90%. If you keep doing the read

you will keep hitting the same raw samples in the same data nodes.

You must have an auto updating chart that always shows the data up to current time. You will have a high

but not 100% cache hit percentage. This is because, as new data is added, you will have one cache miss

accessing that newly created data node.

Example: Diagnosing Data Archiver memory growth due to cache

The overall Data Archiver memory usage consists of multiple kinds of objects. But you can monitor the

memory usage due to caching in detail.

There are memory usage numbers on the cache and another way to do it is look at the object count in

the cache. If Data Archiver Virtual Memory use is increasing, look at the Object Count over the same time

period to see if it is also increasing.

Example: Removing items from cache to limit memory usage

There is no maximum reserved size for the cache. If adding more objects would put you past the

configured Archiver Memory Usage, then adding one object will delete another object. Or, if the archiver

memory is used for non-cache reasons like large tag browses, then the Data archiver cache will remove

items to meet the target memory usage.

Example: Monitoring the size in bytes of the cache

Historian | 6 - Historian Advanced Topics | 1199

Configure the Archiver Memory Size (MB) in the Admin UI to 100 meg and in the Report View of

Performance Monitor look at the Size(MB) counter of the ArchiveDataCache instance. It is zero. Now

change the Archiver Memory Size to 1700 and restart the data Archiver. The number is still zero.

This is because the counter measures how much space the cache is currently using, not a configured size

nor maximum size. If you start reading and writing data, the Size (MB) will grow.

Chapter 7. Historian Alarms and Events

Overview of Alarms and Events
Using Historian, you can archive alarms and events data from any OPC-compliant alarms and events

server.

Alarms: Alarms are generally defined as tags going into an abnormal condition. For example, you can set

an alarm on a boiler when it reaches a specified temperature. Alarms usually have a well-defined life cycle,

which is defined by the individual data sources from which the alarms data is collected. They enter an

alarm state, are generally acknowledged, then return to normal.

To collect alarms and events data, you can use any of the following collectors:

• iFIX Alarms and Events collector

• OPC Classic Alarms and Events collector

Historian handles alarm data in two ways. You can view the entire Alarm as a single record that contains

all information about the alarm, or you can view the Alarm History, which shows the transitions of the

alarm as individual records.

Events: Events are generally defined as activities in a system that occur once only. For example, a user

logging on to a device is an event. When viewing this data in Historian, each event is returned as a record.

Note:

If you have configured Historian to use the SQL Server, you must ensure that both Historian and

SQL Servers have write access to Default Archive Path and Default Backup Path. (By default,

Archive and Backup path is C:\Proficy Historian Data\Archives\.) Also, make sure that

the SQL service user account has permission to create a new database in the SQL Server.

Alarms and Events Requirements
To generate alarms and events data, you can use any OPC-compliant alarms and events server such as:

• CIMPLICITY

• iFIX

To collect alarms and events data, install collectors (on page 142), and then add any of the following

collector instances:

Historian | 7 - Historian Alarms and Events | 1201

• iFIX Alarms and Events collector (on page 505)

• OPC Classic Alarms and Events collector (on page 532)

To store alarms and events data, install Historian Alarms and Events (on page 140). During the

installation, provide the credentials of Microsoft SQL server 2012 or later.

To view and analyze alarms and events data, you can use any of the following applications:

• Configuration Hub

• Historian Administrator

• Crystal Reports 11 or later

• The OLEDB Provider

• REST APIs

Note:

Before starting the Alarm Archive service, ensure that "NT AUTHORITY/SYSTEM" has "SysAdmin"

privileges.

Install Alarms and Events
• You must install Historian Alarms and Events on the same machine as the data archiver.

• If you have chosen to connect Historian to a remote SQL server, the following conditions must be

satisfied:

◦ The Historian Alarm Archiver service must be run on a user account that has privileges to

log in to the SQL server using Windows authentication.

◦ The default backup path, which you can set on the Archive page, must be a shared directory

that is accessible to both the Historian Data Archiver and the remote SQL server. It is

recommended that this shared directory be placed on the same computer as the Historian

Data Archiver service.

1. Run the InstallLauncher.exe file.

2. Select Install Alarms and Events.

The Alarms and Events Archiver page appears.

Historian | 7 - Historian Alarms and Events | 1202

3. If needed, change the values in the Server Name and Database Name fields to provide the name of

the SQL server and the name of the database where the alarms and events data is archived.

4. If you want to use the SQL server credentials, clear the Use Windows Authentication check box,

and then enter the SQL server login credentials in the Admin User and Password fields. If you want

to use Windows authentication, select the Use Windows Authentication check box. When you do

so, the Admin User and Password fields are disabled.

5. Select Next.

6. When prompted to restart your system, select Yes.

Historian Alarms and Events is installed in the following folder: <installation drive>:

\Program Files\Proficy\Proficy Historian\x86\Server, and the following registry

path is created: HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\ Intellution, Inc.

\iHistorian\Services\AlarmArchiver

Historian | 7 - Historian Alarms and Events | 1203

7. To verify that the Alarms service has started, access the Services window, and check the status of

the Historian Alarm Archiver service.

If the Startup Type field is set to Automatic, the service is started automatically when the system is

started or restarted.

Upgrade Alarms and Events
• If Alarms and Events were installed prior to Historian 7.0, you must install them separately.

• If you want to upgrade from Historian 4.5, since the database schema are different, if you select

the same database name that is pre-populated by default, you will get an error message: Later

or Higher version of Alarms and Events database is already installed. Hence, you cannot

proceed further. You need to enter a different database name and then proceed with the upgrade.

Install Alarms and Events (on page 140).

Alarms and Events are upgraded to the latest version.

Change the SQL Server to Store Alarms and Events Data
If you have chosen to connect Proficy Historian to a remote SQL server:

• The Historian Alarm Archiver service must be run on a user account that has privileges to log into

the SQL Server using Windows Authentication.

• The Default Backup Path, found on the Archive page, must be a shared directory that is accessible

to both the Historian Data Archiver and the remote SQL Server. It is recommended that this shared

directory be placed on the same computer as the Historian Data Archiver service.

1. Run the Proficy.Historian.AandE.Migration.exe file. By default, it is located at C:

\Program Files (x86)\Proficy\Proficy DataBase.

The Proficy Historian Alarm and Event Data Migration window appears.

2. Select Specify SQL Server Instance.

3. In the Server Name, Database Name, Admin User, and Admin User Password fields, enter values.

4. Select Use default SQL path as data and log path if you want to place the data and log files at the

default location as the SQL server.

If you want to install the data and log files in a different location, cancel the selection and in the

Alarms Data Path and Alarms Log Path fields, and provide the path to place the data and log files.

Historian | 7 - Historian Alarms and Events | 1204

About Backing up Alarms
It is a good practise to back up alarm data periodically. It helps restore the data if you accidentally delete

it. In addition, if you want to migrate alarms and events data from one version of Historian to another, you

must first back up the data.

When you back up alarms, a copy of the alarm data is created on your machine, which you can restore (on

page 1209) later.

You can back up alarm data using any of the following methods:

• Using Configuration Hub (on page 753)

• Using the Proficy Historian Alarm and Event Data Migration utility (on page 1205)

• Using Historian Administrator (on page 1206)

• At a command prompt (on page 1208)

Back up Alarms Using Configuration Hub

1. Access Configuration Hub (on page 336)

2. In the NAVIGATION section, under the Configuration Hub for Historian, select Alarms.

The Alarms section appears.

3. Select , and then select Backup Alarms.

The Backup Alarms window appears.

4. Enter values as described in the following table.

Field Description

GENERATED FROM Enter the start time for which you want to back up alarms.

GENERATED TO Enter the end time for which you want to back up alarms.

PROVIDE FILE NAME Enter the file name and location of the back up file that you want

to create. By default, the backup location of the default data

store is considered. And, the file name is in the following format:

mm_dd_yyyy_hh_mm_ss. For example: 11_25_2022_11_23_26.zip.

The time format followed is the 24-hour time notation.

Note:

This file naming convention for alarm backup is stan

dard to Historian. Even if you use other date settings

Historian | 7 - Historian Alarms and Events | 1205

Field Description

such as dd-mm, the file name will still be saved in the

mm-dd format.

The end time stamp in the file name indicates the time at which

the alarms have been backed up but not the time till when the

alarms are backed up. For example, suppose, at 8.00 am, you

back up alarms for the past two hours, the backup will contain

alarms from 6:00 am to 8:00 am but may not contain an alarm

generated at 8:00 am. The last alarm may have been at 7:50 am.

But the backup file name will have the time stamp of 8:00:00

along with the date.

5. Select Backup.

The alarms data is backed up.

Back Up Alarms and Events Using the Utility

1. Run the Proficy.Historian.AandE.Migration.exe file. By default, it is located at C:

\Program Files (x86)\Proficy\Proficy DataBase.

The Proficy Historian Alarm and Event Data Migration window appears.

2. Select Backup Existing Alarms and Events.

3. Enter values as described in the following table.

Field Description

Time Range Enter the duration in which you want to back up alarms.

SQL Server Instance Name Enter the SQL server instance name in which the alarms are

stored.

Database Name Enter the name of the database from which you have to backup

the data. Typically, this will be the same as the SQL Server you

are currently using.

Use Windows Authentication

or Use SQL Authentication

Select either of these options to specify the type of authentica

tion you want to use.

User Id Depending on whether you have selected Use Windows Authen

tication or Use SQL Authentication, enter the Windows or SQL

Historian | 7 - Historian Alarms and Events | 1206

Field Description

server username to connect to the SQL server. Ensure that this

user has the permission to back up alarms.

Password Depending on whether you have selected Use Windows Authen

tication or Use SQL Authentication, enter the Windows or SQL

server password to connect to the SQL server.

Backup Folder Path Enter the absolute path, including file name, to store the backed

up alarms (for example, c:\temp\March2010.bak).

If the SQL server is on a remote machine, enter a path that ex

ists on the remote machine.

4. Select Test Connection to verify that the source database is active and the information is accurate.

The Begin Backup button is enabled after the connection is successful.

5. Select Begin Backup.

The alarm data is backed up.

Back Up Alarms Using Historian Administrator

When you back up alarms, a copy of the alarm data is created on your machine, which you can restore

later.

1. Access Historian Administrator (on page 823).

2. Select Data Stores > Alarms.

Historian | 7 - Historian Alarms and Events | 1207

3. In the Start Time and End Time fields, enter the duration in which you want to back up alarms.

4. Select Backup Alarms, provide a name for the backup file, and then save the file. If the SQL server

is on a different machine, ensure that you specify a path available to the SQL server.

By default, the file name is in the following format: mm-dd-yyyy hh:mm:ss. The time format followed

is the 24-hour time notation.

Note:

This file naming convention for alarm backup is standard to Historian. Even if you use

other date settings such as dd-mm, the file name will still be saved in the mm-dd format.

The end time stamp in the file name indicates the time at which the alarms have been backed up

but not the time till when the alarms are backed up. For example, suppose, at 8.00 am, you back up

alarms for the past two hours, the backup will contain alarms from 6:00 am to 8:00 am but may not

contain an alarm generated at 8:00 am. The last alarm may have been at 7:50 am. But the backup

file name will have the time stamp of 8:00:00 along with the date.

The alarms data is backed up.

Historian | 7 - Historian Alarms and Events | 1208

Back up Alarms at a Command Prompt

When you back up alarms, a copy of the alarm data is created on your machine, which you can restore

later.

1. Run the ihBackupAlarms.exe file. By default, it is located at C:\Program Files\Proficy

\ProficyHistorian\Server\ihBackupAlarms.exe

2. Use the following parameters to back up alarms data:

Parameter Description

-s <Historian server> The Historian server containing the alarm data that you want to

back up. If you do not provide this parameter, the local machine

is considered.

-u <username> The username to connect to the archiver.

-p <password> The password to connect to the archiver.

-b "<file path>" The file path where you want to place the backup file. If the path

is not specified, the default backup path of the archive is consid

ered.

Note:

You must enter the file path in double quotes (for exam

ple, "C:\\backup\\").

-d <number of Days prior to

the current time>

Indicates the time in days till the current date for which you

want to back up alarms. For example, to back up alarms of the

past seven days, enter:

-d 7

-h <number of hours prior to

the current time>

Indicates the time in hours till the current time for which you

want to back up alarms. For example, to back up alarms of the

past two and half days, enter:

-d 2 -h 12

-m <number of minutes prior

to the current time>

Indicates the time in minutes till the current time for which you

want to back up alarms. For example, to back up alarms of the

past 3 hours 15 minutes, enter:

Historian | 7 - Historian Alarms and Events | 1209

Parameter Description

-h 3 -m 15

-sec <number of seconds pri

or to the current time>

Indicates the time in seconds till the current time for which you

want to back up alarms. For example, to back up alarms of the

past 30 seconds, enter:

-sec 30

The alarm data is backed up.

Restoring Data

Restore Alarms Using Configuration Hub

Restoring alarms to a running system makes them available for query and analysis. You can restore

alarms that have been backed up or deleted previously.

1. Access Configuration Hub (on page 336)

2. In the NAVIGATION section, under the Configuration Hub for Historian, select Alarms.

The Alarms section appears.

3. Select , and then select Restore Alarms.

The Restore Alarms window appears.

4. In the PROVIDE FILE NAME field, provide the backup file in the .zip format that you want to restore.

Note:

Remember to include .zip at the end of the file name.

5. Select Restore.

The alarm data is restored.

Restore Alarms Using Historian Administrator

Restoring alarms to a running system makes them available for query and analysis. You can restore

alarms that have been backed up or deleted previously.

1. Access Historian Administrator (on page 823).

2. Select Data Stores > Alarms.

Historian | 7 - Historian Alarms and Events | 1210

3. In the Select File field, provide the backup file in the .zip format that you want to restore.

4. Select Restore.

The alarm data is restored.

About Migrating Alarms and Events Data
If you are upgrading to the latest version of Historian, and you have already collected alarms, you can

migrate the alarms and events data after upgrading to latest version of Historian. Only after you migrate

the data, you can retrieve alarms.

Note:

Before migrating alarms and events data, ensure that you have backed up the data (on page

1205).

To migrate your alarms into the new alarm database, you must back up the old alarms, and restore them

into the new database. You can back up the data before the upgrade using Configuration Hub or Historian

Historian | 7 - Historian Alarms and Events | 1211

Administrator, or you can back up the data after the upgrade using the Proficy Alarms Database Migration

Tool.

You may need to migrate small time periods if you have many alarms. If you need to migrate the alarms in

blocks of time, do the oldest alarms first.

Migrate Alarms and Events Using the Utility

Back up the alarms and events data (on page 1205).

1. Run the Proficy.Historian.AandE.Migration.exe file. By default, it is located at C:

\Program Files (x86)\Proficy\Proficy DataBase.

The Proficy Historian Alarm and Event Data Migration window appears.

2. Select Migrate Alarms and Events Backup.

3. Enter values as described in the following table.

Field Description

Backup File Path Enter the location of the backup file. If your server is running on

a remote computer, enter a path that exists on the remote com

puter.

SQL Server Instance Name Enter the SQL server instance name in which the backup file is

stored.

Database Name Enter the name of the database using which you have backed up

the data. Typically, this will be the same as the SQL Server you

are currently using.

Use Windows Authentication

or Use SQL Authentication

Select either of these options to specify the type of authentica

tion you want to use.

User Id Depending on whether you have selected Use Windows Authen

tication or Use SQL Authentication, enter the Windows or SQL

server username to connect to the SQL server. Ensure that this

user has the permission to restore alarms.

Password Depending on whether you have selected Use Windows Authen

tication or Use SQL Authentication, enter the Windows or SQL

server password to connect to the SQL server.

4. Select Test Connection to verify that the source database is active and the information is accurate.

Historian | 7 - Historian Alarms and Events | 1212

Note:

You can find this information in the registry under: HKEY_LOCAL_MACHINE\SOFTWARE

\Intellution, Inc.\iHistorian\Services\AlarmArchiver.

The Begin Migration is activated and the alarm data is restored.

5. Select Begin Migration.

The data is migrated.

Migrate Alarms and Events at a Command Prompt

Back up the alarms and events data (on page 1205).

1. Run the ihBackupAlarms.exe file. By default, it is located at C:\Program Files\Proficy

\ProficyHistorian\Server\ihBackupAlarms.exe

2. Use the following parameters to migrate data:

arameter Description

/TASK Specify whether you want to back up or restore data. Enter one

of the following values:

◦ BACKUP

◦ RESTORE

This parameter is required.

/SERVER Enter the SQL server instance name in which the backup file is

stored. This parameter is required.

/DBNAME Enter the name of the database using which you have backed up

the data. Typically, this will be the same as the SQL Server you

are currently using. This parameter is required.

/SDATETIME Enter the start time from which you want to migrate alarms. En

ter a value in the following format: mm/dd/yyyy HH:MM:ss (for

example 5/21/2023 10:20:30). Alarms and events data collect

ed from this time will be considered. This parameter is manda

tory if you are backing up alarms.

/EDATETIME Enter the end time up to which you want to migrate alarms. En

ter a value in the following format: mm/dd/yyyy HH:MM:ss (for

example 5/21/2023 10:20:30). Alarms and events data collect

Historian | 7 - Historian Alarms and Events | 1213

arameter Description

ed from this time will be considered. This parameter is manda

tory if you are backing up alarms.

/BKPPATH Fully qualified path of the .dat file where the backup of the

database will be taken. This parameter is mandatory if you are

backing up alarms.

/RSTPATH Fully qualified path of the .dat file from where the database

will be restored. This parameter is mandatory if you are restor

ing alarms.

/USERNAME Enter the Windows or SQL server username to connect to the

SQL server. If you do not provide this parameter, Windows au

thentication is used.

/PWD Enter the Windows or SQL server password to connect to the

SQL server. By default, the password is blank, but we recom

mend that you enter a password.

To back up using SQL authentication:

Proficy.Historian.AandE.Migration.exe /TASK=Backup

/SERVER=CPHIST45\PROFICYHIST /DBNAME=CPHIST45_plantdatabase

/SDateTime="3/9/2013 21:00:00" /EDateTime="3/9/2013 23:59:59"

/BKPPATH=C:\temp\PDB_0309.dat /USERNAME=sa /PWD=Pr0f1cyhist

To back up using Windows authentication:

Proficy.Historian.AandE.Migration.exe /TASK=Backup

/SERVER=Domain\Node /DBNAME=AEDB /SDateTime="5/10/2012 10:20:30"

/EDateTime="6/10/2012 10:20:30" /BKPPATH=E:\DBBkpPath\AEDB_1.dat

To restore using SQL authentication:

Proficy.Historian.AandE.Migration.exe /TASK=Restore

/SERVER=CPHIST45\PROFICYHIST /DBNAME=CPHIST45_AEDatabase

/RSTPATH=C:\temp\PDB_0309.dat /USERNAME=sa /PWD=Pr0f1cyhist

To restore using Windows Authentication:

Proficy.Historian.AandE.Migration.exe /TASK=RESTORE

/SERVER=Domain\Node /DBNAME=AEDB /RSTPATH=E:\DBBkpPath\AEDB_1.dat

Historian | 7 - Historian Alarms and Events | 1214

To perform multiple back ups using a batch file:

cd C:\Program Files\Proficy\Proficy DataBase

start/b/wait Proficy.Historian.AandE.Migration.exe /TASK=Backup

/SERVER=CPHIST45\PROFICYHIST /DBNAME=CPHIST45_plantdatabase

/SDateTime="3/9/2013 21:00:00" /EDateTime="3/9/2013 23:59:59"

/BKPPATH=C:\temp\PDB_0309.dat /USERNAME=sa /PWD=Pr0f1cyhist

start /b /wait Proficy.Historian.AandE.Migration.exe /TASK=Backup

/SERVER=CPHIST45\PROFICYHIST /DBNAME=CPHIST45_plantdatabase

/SDateTime="3/10/2013 00:00:00" /EDateTime="3/10/2013 02:00:00"

/BKPPATH=C:\temp\PDB_0310_1.dat /USERNAME=sa /PWD=Pr0f1cyhist

start /b /wait Proficy.Historian.AandE.Migration.exe /TASK=Backup

/SERVER=CPHIST45\PROFICYHIST /DBNAME=CPHIST45_plantdatabase

/SDateTime="3/10/2013 02:00:00" /EDateTime="3/10/2013 04:00:00"

/BKPPATH=C:\temp\PDB_0310_2.dat /USERNAME=sa /PWD=Pr0f1cyhist

To perform multiple restores using a batch file:

Multiple Restores Using a Batch File:

cd C:\Program Files\Proficy\Proficy DataBase

start/b/wait Proficy.Historian.AandE.Migration.exe /TASK=Restore

/SERVER=CPHIST45\PROFICYHIST /DBNAME=CPHIST45_AEDatabase

/RSTPATH=C:\temp\PDB_0309.dat /USERNAME=sa /PWD=Pr0f1cyhist

start /b /wait Proficy.Historian.AandE.Migration.exe /TASK=Restore

/SERVER=CPHIST45\PROFICYHIST /DBNAME=CPHIST45_AEDatabase

/RSTPATH=C:\temp\PDB_0310_1.dat /USERNAME=sa /PWD=Pr0f1cyhist

start /b /wait Proficy.Historian.AandE.Migration.exe

/TASK=Restore /SERVER=CPHIST45\PROFICYHIST /DBNAME=CPHIST45_AEDatabase

/RSTPATH=C:\temp\PDB_0310_2.dat /USERNAME=sa /PWD=Pr0f1cyhist

Note:

Parameter values with spaces must be enclosed within quotation marks.

Historian | 7 - Historian Alarms and Events | 1215

Query Alarms and Events Data Using the Excel Add-In
Querying Alarms and Events data in the Excel Add-In retrieves alarms and events data according to your

Query Criteria. Three query types are available: Alarm, Alarm history, and Events.

Note:

You cannot use an OPC alarms and events server with FIX32 SCADA systems. To collect alarm

data from these systems, you can use a proxy for alarms through an iFIX node with an OPC

alarms and events server. The OPC Classic Alarms and Events collector of Proficy Historian

can then collect the data. For more information, refer to Using the OPC AE Collector with FIX32

SCADA Systems (on page 1225).

1. Open an Excel worksheet.

2. Select Historian > Query Alarms & Events.

The Query Alarms & Events window appears.

3. Enter values as described in the following table.

Field Description

Server Select the SQL server that contains the alarms and events data.

Query Type Select one of the following values:

◦ Alarms: In Historian, an alarm's entire life cycle is stored

as a single record in the alarm archive. Thus, when re

trieving from the archive, the entire life cycle of an alarm

will be returned in a single record.

◦ Alarm History: Each change in the alarm's state will be re

turned in a single record.

◦ Events: One row per event is returned.

Query Criteria Enter the criteria that you want to use in the query. For example,

you may want to include alarms where the Alarm ID is equal to

a specific Alarm ID occurring after a specific start time. In ad

dition, you can specify which attributes must be displayed and

how the results must be sorted in the spreadsheet.

Output Range Select a range of cells in a single row or column to determine

where the returned data must be placed.

Output Orientation Select either Columns or Rows for the output display. Selecting

Columns displays a table of values with parameters arranged in

Historian | 7 - Historian Alarms and Events | 1216

Field Description

columns with header labels at the top. Selecting Rows rotates

the table 90 degrees.

Maximum Results Enter the maximum number of results for the query to return.

Note:

An Excel spreadsheet can display up to 255 columns

and 32,767 rows.

Output Display Specify the attributes that you want to display in the spread

sheet.

Output Sorting Select the parameter using which you want to sort the results:

◦ Alarm Time: Sorts the data by the start time. The results

appear in the reverse chronological order.

◦ Custom Sort: Allows you to select the field using which

you want to sort the results.

◦ None: The results are not sorted at all. They are returned

in the order they are received from the alarms and events

database.

4. Select OK.

The query results appear.

Import Alarms and Events Data into a Spreadsheet
Using the Historian Excel add-in, you can import alarms and events data into a spreadsheet. It helps you

include alarms and events data into the Historian archive that is not normally collected by Historian or

when you are migrating data from an older system into Historian.

Note:

• The Excel worksheet must contain at least the source and timestamp columns.

• If an error occurs while importing data, the whole operation is aborted.

Historian | 7 - Historian Alarms and Events | 1217

1. Open an Excel worksheet.

2. Select Historian > Administration > Import Alarms.

The alarms and events data is imported.

Export Alarms and Events Data from a Spreadsheet
Using the Historian Excel add-in, you can export alarms and events data into a new worksheet or into a

CSV or an XML file.

1. Open an Excel worksheet.

2. Select Historian > Administration > Export Alarms.

The Historian Alarm Export window appears.

3. Enter values as described in the following table.

Field Description

Server Select the SQL server that contains the alarms and events data.

Query Type Select one of the following values:

◦ Alarms: In Historian, an alarm's entire life cycle is stored

as a single record in the alarm archive. Thus, when re

trieving from the archive, the entire life cycle of an alarm

will be returned in a single record.

◦ Alarm History: Each change in the alarm's state will be re

turned in a single record.

◦ Events: One row per event is returned.

Query Criteria Enter the criteria that you want to use in the query. For example,

you may want to include alarms where the Alarm ID is equal to

a specific Alarm ID occurring after a specific start time. In ad

dition, you can specify which attributes must be displayed and

how the results must be sorted in the spreadsheet.

Output Range Select a range of cells in a single row or column to determine

where the returned data must be placed.

Output Orientation Select either Columns or Rows for the output display. Selecting

Columns displays a table of values with parameters arranged in

columns with header labels at the top. Selecting Rows rotates

the table 90 degrees.

Maximum Results Enter the maximum number of results for the query to return.

Historian | 7 - Historian Alarms and Events | 1218

Field Description

Note:

An Excel spreadsheet can display up to 255 columns

and 32,767 rows.

Output Display Specify the attributes that you want to display in the spread

sheet.

Output Sorting Select the parameter using which you want to sort the results:

◦ Alarm Time: Sorts the data by the start time. The results

appear in the reverse chronological order.

◦ Custom Sort: Allows you to select the field using which

you want to sort the results.

◦ None: The results are not sorted at all. They are returned

in the order they are received from the alarms and events

database.

Export Options Select the format in to which you want to export the data:

◦ To New Worksheet: Exports the data to a new Excel work

sheet.

◦ To CSV File: Exports the data with comma separated val

ues to a new file.

◦ To XML File: Exports the data to a new XML file.

4. Select OK.

The data is exported.

About Purging Alarms
Purging alarm data involves deleting the data from the database.

Note:

• Even after purging, the data is not lost; a backup is created to maintain an audit trail. You

can restore the data if needed.

• When using circular archives (that is, archives that roll over), alarms are purged

automatically.

Historian | 7 - Historian Alarms and Events | 1219

You can choose to purge alarm data for any of the following reasons:

• To maintain alarm data efficiently

• The data is outdated or redundant

• The disk space is limited

Data in the following tables is purged:

• Alarm Attribute Values

• Alarm Attribute Value History

• Delete from Alarm History

• Delete from Alarm Table esignatures

• comments

You can purge data using one of the following methods:

• Purge data within a specified duration. You can do this using Configuration Hub (on page 756),

using the Proficy Historian Alarm and Event Data Migration utility (on page 1221) or at a command

prompt (on page 1223).

• Purge data related to a specific alarm ID. You can do this using Alarms.PurgeAlarmsById (on page

1604) to develop an SDK program.

Purging is performed in batches. You can check the log data in the

Proficy.Historian.AandE.Migration.log file. By default, this file is located in the C:\Program

Files(x86)\Proficy folder.

In the case of a failure:

• The batch size is changed to 10. That is, the collector receives an acknowledgement after sending

10 messages, thus reducing the load on the server.

• The waiting time for receiving an acknowledgement is automatically incremented after each

failure per batch, starting from 90 seconds to 270 seconds. This gives more time for the server to

respond.

Note:

After the acknowledgement is received, the batch size and the waiting time are reset for the

subsequent batches.

Historian | 7 - Historian Alarms and Events | 1220

If the time taken to purge exceeds the timeout limit, instead of reverting the entire purging operation, only

the current batch, which is still under processing, is purged.

Best Practices:

• Restart the Alarms and Events services before purging data.

Purge Alarms Using Configuration Hub

1. Access Configuration Hub (on page 336)

2. In the NAVIGATION section, under the Configuration Hub for Historian, select Alarms.

The Alarms section appears.

3. Select , and then select Purge Alarms.

The Purge Alarms window appears.

4. In the PROVIDE FILE NAME field, pro

5. Enter values as described in the following table.

Field Description

GENERATED FROM Enter the start time for which you want to purge alarms.

GENERATED TO Enter the end time for which you want to purge alarms.

PROVIDE FILE NAME Enter the file name and location of the back up file that you want

to create. This field is enabled only if you select the BACKUP

ALARMS BEFORE PURGE? check box. By default, the backup lo

cation of the default data store is considered. And, the file name

is in the following format: mm_dd_yyyy_hh_mm_ss. For example:

11_25_2022_11_23_26.zip. The time format followed is the 24-

hour time notation.

Note:

This file naming convention for alarm backup is stan

dard to Historian. Even if you use other date settings

such as dd-mm, the file name will still be saved in the

mm-dd format.

The end time stamp in the file name indicates the time at which

the alarms have been backed up but not the time till when the

alarms are backed up. For example, suppose, at 8.00 am, you

Historian | 7 - Historian Alarms and Events | 1221

Field Description

back up alarms for the past two hours, the backup will contain

alarms from 6:00 am to 8:00 am but may not contain an alarm

generated at 8:00 am. The last alarm may have been at 7:50 am.

But the backup file name will have the time stamp of 8:00:00

along with the date.

BACKUP ALARMS BEFORE

PURGE?

Select the check box if you want to back up alarms before purg

ing.

6. Select Purge.

The alarms data is purged. A backup file is created if you have selected the BACKUP ALARMS

BEFORE PURGE? check box.

Purge Data Using the Utility

This topic describes how to purge alarms using the Proficy Historian Alarm and Event Data Migration

utility. You can also purge them at a command prompt (on page 1223).

Ensure that you are a member of the ihsecurityAdmins security group.

1. Run the Proficy.Historian.AandE.Migration.exe file. By default, it is located at C:

\Program Files (x86)\Proficy\Proficy DataBase.

The Proficy Historian Alarm and Event Data Migration window appears.

2. Select Purge Alarms.

Historian | 7 - Historian Alarms and Events | 1222

The Purge Alarms section appears.

3. Enter values as described in the following table.

Field Description

SQL In

stance

Name

Enter the Microsoft SQL server instance that contains the data that you want to

purge.

Database

Name

Enter the name of the database that contains the data that you want to purge.

Authentica

tion

Select Windows or SQL depending on whether you want to provide credentials of

the Windows machine or the SQL server, respectively.

User Id Enter the User ID of the Windows user or the SQL user (depending on whether you

have selected Windows or SQL).

Password Enter the password of the Windows or SQL user account (depending on whether

you have selected Windows or SQL).

Historian | 7 - Historian Alarms and Events | 1223

4. Select Connect.

A message appears, specifying that a connection to the Microsoft SQL database is established.

The Space Consumed (MB) and the Alarms and Events count fields are populated with the

appropriate values.

5. If you want to purge data within a time range, provide the start time and end time in the From and

To fields, respectively.

6. If you want to purge data for a certain duration till the current date and time, enter a value in the

Retention field, and then select the units of measurement. The default value is 1 minute.

If you want to purge data until last week, enter 7, and then select Days. Data from the beginning

until seven days prior to the current date and time is purged.

7. Select Begin Purge.

The data received within the specified duration is purged. You can check the log data in the

Proficy.Historian.AandE.Migration.log file. By default, this file is located in the C:

\Program Files(x86)\Proficy folder.

In addition, an audit log is created at ..\Proficy Historian Data\LogFilesfolder.

Purge Alarms at a Command Prompt

This topic describes how to purge alarms at a command prompt. You can also purge them using the

Proficy Historian Alarm and Event Data Migration utility (on page 1221).

Ensure that you are a member of the ihsecurityAdmins security group.

1. Run the ihPurgeAlarms.exe file. By default, it is located at C:\Program Files\Proficy

\ProficyHistorian\Server\ihPurgeAlarms.exe.

2. Use the following parameters to purge alarms.

Parameter Description

-s <Historian server> The Historian server on which you want to access archive data.

If you do not provide this parameter, the local machine is con

sidered.

-u <username> The username to connect to the archiver.

-p <password> The password to connect to the archiver.

-b "<file path>" The file path where you want to place the backup file of the

purged alarms. If the path is not specified, the default backup

path of the archive is considered.

Historian | 7 - Historian Alarms and Events | 1224

Parameter Description

Note:

You must enter the file path in double quotes (for exam

ple, "C:\\backup\\").

-z 1 <file name> The name of the backup file in the .zip file format. For exam

ple, if you want to purge alarms older than 36 hours, but want to

back up the data in a .zip file format, enter:

ihPurgeAlarms.exe -h 36 -z 1

If you run this command, the backup file will be created in the

default archive backup folder.

-d <number of Days prior to

the current time>

Indicates the time in days till the current date for which you

want to purge alarms. For example, to purge alarms older than

seven days, enter:

-d 7

-h <number of hours prior to

the current time>

Indicates the time in hours till the current time for which you

want to purge alarms. For example, to purge alarms older than

two and half days, enter:

-d 2 -h 12

-m <number of minutes prior

to the current time>

Indicates the time in minutes till the current time for which you

want to purge alarms. For example, to purge alarms older than 3

hours 15 minutes, enter:

-h 3 -m 15

-sec <number of seconds pri

or to the current time>

Indicates the time in seconds till the current time for which you

want to purge alarms. For example, to purge alarms older than

30 seconds, enter:

-sec 30

The alarms are purged, and an audit log is created at ..\Proficy Historian Data

\LogFilesfolder.

Historian | 7 - Historian Alarms and Events | 1225

Close an Alarm
1. Access Historian Administrator (on page 823).

2. Select Collectors.

3. From the list of collectors, select the alarms and events collector that you want to close.

4. Select Close Alarms.

The Close Alarms window appears.

5. In the End Date/Time field, enter the duration for which you want to close alarms.

6. Select Show Alarms.

A list of open alarms in the duration appear.

7. Select the alarms that you want to close, and then select Close Alarms.

Using the OPC AE Collector with FIX32 SCADA Systems
You cannot use an OPC alarms and events server with FIX32 SCADA systems. To collect alarm data

from these systems, you can use a proxy for alarms through an iFIX node with an OPC alarms and events

server. The OPC Classic Alarms and Events collector of Proficy Historian can then collect the data.

There are two different configurations that can occur in this instance:

1. A single proxy in which only one FIX32 system forwards its alarms through a particular iFIX node.

In this case, you can link the OPC Classic Alarms and Events collector to the FIX32 data collector.

Refer to Configure the OPC Alarms and Events Collector (on page 2392). You can then query the

data using clients such as Configuration Hub, Historian Excel add-in, and so on.

Historian | 7 - Historian Alarms and Events | 1226

2. Multiple FIX32 system proxy alarms through a single iFIX node.

In this case, you cannot set the Link To Data Collector parameter to both FIX32 data collectors.

As a result, it is not possible to create a relationship between alarm and tag data. Therefore, you

cannot link the data using Historian Excel add-in.

To link the alarm and tag data in this scenario, perform an OLE DB query with a join between the

ItemID column of the ihAlarms database and the TagName column of the ihRawData database. You

can do this only if No Prefix has been added to the tagname.

The following example shows a parametrized query that uses the AlarmID property to find all values

read from the corresponding tag for that alarm during the duration of the alarm.

SELECT ihRawData.'Value', ihRawData.Tagname, ihRawData.'TimeStamp'

FROM ihRawData, ihAlarms

WHERE ihRawData.Tagname = ihAlarms.ItemID

AND (ihRawData.'TimeStamp' >= ihAlarms.Starttime)

AND (ihRawData.'TimeStamp' <= ihAlarms.'Timestamp')

AND (ihAlarms.AlarmID = 13240)

AND (ihRawData.SamplingMode = 'RawByTime')

Chapter 8. Historian REST APIs

Introduction to Historian REST APIs

Historian APIs

Historian is a high performance data archiving system designed to collect, store, and retrieve time-based

information at extremely high speed efficiently. The Historian environment provides a set of REST APIs to

query data from the archives.

This document provides links for setting up your development environment, as well as information for

getting started with the Historian services and their associated APIs.

Starting Historian 8.0, the default https port is 443. If you use the default port, you need not include it in

the Rest API calls.

Also, the default admin client name is changed from admin to hostname.admin, and it is case-sensitive.

Example:

curl -u admin:adminsecret https://<nodename>:443/uaa/oauth/token -d

 'grant_type=client_credentials'

should be replaced with

curl -u hostname.admin:adminsecret https://<nodename>/uaa/oauth/token -d

 'grant_type=client_credentials'

See the following topics for more information:

• About Security and Authentication (on page 1227)

• Standards (on page 1229)

• API Methods (on page 1230)

• API Status Messages (on page 1230)

About Security and Authentication

For security purposes, Historian uses the Proficy Authentication service as a trusted source of tokens

issued for authentication. It is a multi-tenant identity management service, used in Cloud Foundry, but

also available as a standalone OAuth2 server. Its primary role is as an OAuth2 provider, issuing tokens

for client applications to use when they act on behalf of Cloud Foundry users. It can also authenticate

users with Cloud Foundry credentials, and can act as an SSO service using those credentials, or others.

Historian | 8 - Historian REST APIs | 1228

It contains endpoints for managing user accounts, registering OAuth2 clients, and other management

functions.

The following diagram shows how the Proficy Authentication server functions with a Python REST client:

Figure 7. Proficy Authentication Server and Python REST Client

Authorization

For exchanging data between the client-server system, user authentication is required. Once you have

provided your client credentials, an access or bearer token is generated. This token is used for the REST

APIs.

cURL command format for generating an oauth token for clients: curl -u <client ID>:<client secret>

https://<node name>:443/uaa/oauth/token -d 'grant_type=client_credentials'

Historian | 8 - Historian REST APIs | 1229

Example: curl -u server1.admin:adminsecret https://server1:443/uaa/oauth/token -d

'grant_type=client_credentials'

cURL command format for generating an oauth token for Proficy Authentication users: curl -d

"client_id=<value>&client_secret=<value>&grant_type=password&username=<value>&password=<value>&token_format=opaque&response_type=token"

https://<node name>:8080/uaa/oauth/token

Example: curl -d

"client_id=historian_public_rest_api&client_secret=publicapisecret&grant_type=password&username=<value>&password=<value>&token_format=opaque&response_type=token"

https://<nodename>/uaa/oauth/token

In the following image, the actual token text is blurred for security concerns.

Figure 8. OAuth Access Token Sample

Client applications can access data using service REST API endpoints. Your application makes an HTTP

request and parses the response. You can use any web-development language to access the APIs.

Standards

Historian APIs use a REST application architecture constrained by Hypermedia as the Engine of

Application State (HATEOAS) that distinguishes it from most other network application architectures.

Therefore, a client interacts with a network application entirely through hypermedia provided dynamically

by application servers. The REST client doesn't need prior knowledge about how to interact with a

particular application or server beyond a basic understanding of hypermedia.

As defined by the query parameters, the Historian APIs use "search" functions to access raw data using

cURL and HTTP, while responses are in JSON format.

cURL is a command-line utility used to transfer data from or to a server, using one of the supported

protocols, such as DICT, FILE, FTP, FTPS, GOPHER, HTTP, HTTPS, IMAP, IMAPS, LDAP,LDAPS, POP3,

POP3S, RTMP, RTSP, SCP, SFTP, SMTP, SMTPS, TELNET and TFTP. The command is designed to work

without user interaction.

Historian | 8 - Historian REST APIs | 1230

cURL offers many useful functions such as proxy support, user authentication, FTP upload, HTTP post,

SSL connections, cookies, file transfer resume, user and password authentication, and more.

You can run the sample commands provided in this document from Bash on Windows in the Windows

operating system, and also in Linux Shell in the Linux operating system.

As a prerequisite, make sure you install cURL on your system, if it is not already installed. Run the curl --

version command on Windows Bash or Linux shell to check if cURL is installed on your system.

Important:

Do not create your own URIs. Instead, use the links in this document and in the responses to

navigate between resources.

API Methods

The Historian APIs use GET, POST, PUT, and DELETE methods.

Method Usage

GET Retrieves a resource.

POST Creates (or adds) a resource.

PUT Updates a resource.

DELETE Removes a resource.

API Status Messages

In its use of the following HTTP status codes, the Historian API services adhere as closely as possible to

standard HTTP and REST conventions.

Status Code Usage

200 OK Success message. The request has completed.

201 Created Success message. A new resource has been created. The resource URI

is available from the location header in the response.

204 No Content Success message. An update to an existing resource has been applied.

400 Bad Request Error message. The request was malformed. The response body pro

vides additional information.

Historian | 8 - Historian REST APIs | 1231

Status Code Usage

401 Unauthorized Error message. Either you are not authenticated, or the authentication is

incorrect. You must re-authenticate and try again.

403 Forbidden Error message. You do not have permission to access this resource.

404 Not Found Error message. The requested resource does not exist.

500 Internal Error Error message. The server encountered an unexpected condition that

prevented it from fulfilling the request.

Common API Parameters

Overview of Commonly Used API Parameters

The Historian REST service provides various REST API calls to retrieve the current tags list and query data

with different sampling modes. Most of these API calls use the following common parameters:

• tagNames (on page 1231)

• Start and End timestamps (on page 1232)

• TagSamples (on page 1232)

• DataSamples (on page 1234)

• SamplingModeType (on page 1235)

• Direction (on page 1237)

• CalculationModeType (on page 1237)

• FilterModeType (on page 1243)

• ReturnDataFields (on page 1244)

• Payload (on page 1245)

• Error Code Definitions (on page 1251)

TagNames Parameter

By default, the Historian REST service provides support to read samples for multiple tags. Multiple tag

names are separated by semicolons (;). For example, "tagname1;tagname2;tagname3".

https://<historianservername>:443/historian-rest-api

/v1/datapoints/currentvalue?tagNames=tagName1;tagname2;tagname3

https://RestTestsNode/historian-rest-api/v1/datapoints/currentvalue?tagNames=TAG01;TAG02

Historian | 8 - Historian REST APIs | 1232

Encode the semicolon as %3B if using the URI format, as the semicolon is also a valid character for a

Historian name, and the web service parses the tag names incorrectly if a tag name contains a semicolon.

Start and End Timestamps Parameter

For the Start and End Timestamps parameter, the Timestamp format in the URI must be in ISO data

format, such as YYYY-MM-DDTHH:mm:ss.SSSZ.

EPOCH time (standard base time) is only valid in the JSON-format request body or response body, such

as \/Date(928167600000-0500)\/. If you use the same timestamp for start and end timestamps, the

request returns a single result.

All timestamps passed to the REST service must be formatted as UTC timestamps.

Object Name Description

StartTime Start time of the query. This represents the earliest

timestamp for any tag contained in the query.

If no StartTime is specified, the start time is two

hours prior to running the query.

EndTime End time of the query. This represents the latest

timestamp for any tag contained in the query.

If no EndTime is specified, the end time is the time

that the query runs.

TagSamples Parameter

The TagSamples parameter is the output from the REST API calls.

Property Name
Proper

ty Type
Description

TagName String Name of the tag.

DataType String Tag Data Type Value:

Historian | 8 - Historian REST APIs | 1233

Property Name
Proper

ty Type
Description

• Blob – Stores tags as binary large objects. The Blob datatype gen

erally refers to undetermined binary data types, such as an Excel

spreadsheet, a PDF file, or a Word file.

• Boolean (one byte) – Stores boolean values. Valid values for the

boolean data type are 0=FALSE and 1=TRUE. If the user sends ze

ro, the value is taken as zero. Anything other than zero, the value

is treated as one.

• Byte (one byte) – Stores integer values. Valid values for the byte

data type are -128 to +127.

• SingleFloat (four bytes) – Stores decimal values up to six places.

Valid ranges for the single float data type are 1.175494351e-38F

to 3.402823466e+38F

• DoubleFloat (eight bytes) – Stores decimal values up to

15 places. Valid values for the double float data type are

2.2250738585072014e-308 to 1.7976931348623158e+308.

• SingleInteger (two bytes) – Stores whole numbers, without dec

imal places. Valid values for the single integer data type are

-32767 to +32767.

• DoubleInteger (four bytes) – Stores whole numbers, without dec

imal places. Valid values for the double integer data type are

-2147483648 to +2147483648.

• FixedString (Configured by user) – Stores string data of a fixed

size. Valid values are between 0 and 255 bytes.

• Float – Single float.

• Integer – Single integer.

• MultiField – Stores string data that has multiple words.

• QuadInteger (eight bytes) – Stores whole numbers without

decimal places. Valid values for the quad integer data type

are -9,223,372,036,854,775,808 (negative nine quintillion) to

+9,223,372,036,854,775,807 (positive nine quintillion).

• Scaled (two bytes) – Lets you store a four-byte float as a twobyte

integer in the Historian archive. The scaled data type saves disk

space but sacrifices data precision as a result.

• Time – Returns or sets the type of time stamping applied to data

at collection time.

Historian | 8 - Historian REST APIs | 1234

Property Name
Proper

ty Type
Description

• UDoubleInteger (Unsigned Double Integer) (four bytes) – Stores

whole numbers without decimal places. Valid values for the un

signed double integer data type are 0 to 4,294,967, 295 (4.2 bil

lion).

• Undefined – Data type is not defined.

• UQuadInteger (Unsigned Quad Integer) (eight bytes)

– Stores whole numbers without decimal places. Valid

values for the unsigned quad integer data type are 0 to

18,446,744,073,709,551,615 (19 quintillion).

• USingleInteger (Unsigned Single Integer) (two bytes) – Stores

whole numbers without decimal places. Valid values for the un

signed single integer data type are 0 to 65535.

• VariableString (No fixed size) – Stores string values of undeter

mined size. This data type is useful if you cannot rely on a con

stant string length from your data source.

• Array – Returns an array of tags from your data source. You can

specify orientation, size, and number of rows returned in the array.

ErrorCode Error Code Error Code Definition

See Error Code Definition (on page 1251) for more information.

Samples Data Sam

ple

See DataSample Parameter (on page 1234) for more information.

DataSample Parameter

The DataSample Parameter specifies the number of data samples to retrieve from the archive. Samples

are evenly spaced within the time range defined by start time and end time for most sampling modes.

Property Name Property Type Description

Value String Format for a multi-field tag like

{ "field1":"1","field2":"1000.0" }

(user-defined type tag).

Historian | 8 - Historian REST APIs | 1235

Property Name Property Type Description

JavaScript code can parse the value

string as a JSON object. All field values

are string.

TimeStamp DateTime Start and end times of the query. If no

start time is specified, the start time is

two hours prior to running the query. If

no EndTime is specified, the end time

is the time the query runs.

Quality Integer

(Enumerated value of Data

Quality.StatusType)

Data type consisting of a set of named

values called elements, members or

enumerators of the type. Property val

ues reflect quality as "quality is good"

or " quality is bad".

Value and Status

• 0 – Bad

• 1 – Uncertain

• 2 – NA

• 3 – Good

SamplingModeType Parameter

The SamplingModeType parameter is the mode of sampling data from the archive. The default setting for

the Sampling Mode is Calculated.

Properties Description Value

Undefined Sampling mode is not defined. 0

CurrentValue Retrieves the current value. The time- in

terval criteria are ignored.

1

Interpolated Retrieves evenly-spaced, interpolated

values based on interval or NumberOf

Samples and the time-frame criteria.

2

Trend Returns the raw minimum and raw max

imum value for each specified interval.

3

Historian | 8 - Historian REST APIs | 1236

Properties Description Value

Use the Trend sampling mode to max

imize performance when retrieving da

ta points for plotting. For the Trend sam

pling mode, if the sampling interval does

not evenly divide by the interval length,

Historian ignores any leftover values at

the end, rather than putting them into a

smaller interval.

RawByTime Retrieves raw archive values based on

time-frame criteria.

4

RawByNumber Retrieves raw archive values based on

the StartTime criteria, the NumberOf

Samples, and Direction criteria. The End

Time criteria is ignored for this sampling

mode.

5

Calculated Retrieves evenly spaced calculated val

ues based on NumberOfSamples, inter

val, the time frame criteria, and the Cal

culationMode criteria.

6

Lab Returns actual collected values without

interpolation.

7

InterpolatedtoRaw Provides raw data in place of interpolat

ed data when the number of samples

are fewer than the available samples.

8

TrendtoRaw The TrendtoRaw sampling mode almost

always produces the same results as

the Trend sampling mode. However,

when more samples are requested than

there are raw data points, the Trendto

Raw sampling mode returns all available

raw data points with no further process

ing. Use TrendtoRaw in place of Trend

when this condition exists.

9

Historian | 8 - Historian REST APIs | 1237

Properties Description Value

LabtoRaw Provides raw data for the selected cal

culated data, when NumberOfSamples

is less than the available samples.

10

RawByFilterToggle Returns filtered time ranges using the

following values:

• 1 – true

• 0 – false

This sampling mode is used with the

time range and filter tag conditions. The

response string starts with a starting

time stamp and ends with an ending

timestamp.

11

Direction Parameter

The Direction Parameter specifies the direction (Forward or Backward from the starting time) of data

sampling from the archive. The default value is Forward.

Direction Value

Forward 1

Backward 0

CalculationModeType Parameter

The CalculationModeType parameter is only applied if the Sampling Mode is set to Calculated. It

represents the type of calculation to use on the archive data. The default Calculation Mode, if none is

specified, is Average.

Calculation Mode Type Description Value

Undefined Calculation mode is not defined. 0

Average Retrieves the time-weighted average for

each calculation interval.

1

Historian | 8 - Historian REST APIs | 1238

Calculation Mode Type Description Value

StandardDeviation Retrieves the time-weighted standard devia

tion for each calculation interval.

2

Total Retrieves the time-weighted rate total for

each calculation interval.

Use rate totals when working with a contin

uous measurement. Time weighting takes

into account that compressed data is not

evenly spaced in time. A factor must be ap

plied to the total value to convert into appro

priate engineering units. As a rate total, the

default is Units/Day. If the actual units of the

continuous measurement are Units/Minute,

you would multiply the results by 1440 (min

utes per day) to convert the total into appro

priate engineering units.

3

Minimum Retrieves the minimum value for each calcu

lation interval.

4

Maximum Retrieves the maximum value for each cal

culation interval.

5

Count Counts the number of raw samples found

with good quality in the interval.

Value is the count of raw samples with good

quality in the interval. The values of each

sample are ignored. The Count does not in

clude any samples of bad quality, including

the start and end of collection markers.

For Quality, the percentage of good samples

is always 100, even if the interval does not

contain any raw samples, or contains only

bad quality samples.

Count is useful for analyzing the distribution

of the raw data samples to determine the ef

6

Historian | 8 - Historian REST APIs | 1239

Calculation Mode Type Description Value

fect of compression deadbands. It is also

useful to determine which tags are consum

ing the most archive space.

RawAverage Retrieves the arithmetic average of all good

quality raw samples for each calculation in

terval.

Value is the sum of all good quality samples

in the interval, divided by the number of good

quality samples in the interval. All bad qual

ity samples are ignored. That is RawAver

age is equivalent to RawTotal divided by the

Count.

For Quality, if there are no raw samples in

the interval or if they all are bad quality, then

the percentage of good is 0. Otherwise, the

percentage of good is always 100, even if

the interval contains bad quality samples.

RawAverage is useful for calculating an ac

curate average when a sufficient number of

raw samples are collected.

7

RawStandardDeviation Retrieves the arithmetic standard deviation

of raw values for each calculation interval.

For Value, any raw point of bad data quality

is ignored.

For Quality, if there are no raw samples in

the interval or they all have bad quality, then

the percentage of good is 0. Otherwise, the

percentage of good is always 100, even if

the interval contains bad quality samples.

RawStandardDeviation is useful for calcu

lating an accurate standard deviation when

8

Historian | 8 - Historian REST APIs | 1240

Calculation Mode Type Description Value

a sufficient number of raw samples are col

lected.

RawTotal Retrieves the arithmetic total (sum) of sam

pled values for each interval.

Value is the sum of the good quality values

of all raw samples in the interval. All bad

quality samples are ignored.

For Quality, the percentage of good samples

is always 100, even if the interval does not

contain any raw samples or it contains only

bad quality samples.

If the same start and end times are used,

and the time span is treated as a single inter

val, then all values are added together.

RawTotal is useful for calculating an accu

rate total when a sufficient number of raw

samples are collected. Note that unlike ihTo

tal, this is a simple sum with no assumption

that the values are rate values.

9

MinimumTime Retrieves the timestamp of the minimum

value found within each calculation interval.

It can be a raw or an interpolated value. The

minimum must be a good data quality sam

ple.

10

MaximumTime Retrieves the timestamp of the maximum

value found within each calculation interval.

It can be a raw or an interpolated value. The

maximum must be a good data quality sam

ple.

11

TimeGood Retrieves the amount of time (milliseconds)

during the interval when the data is of good

quality and the filter condition is met.

12

Historian | 8 - Historian REST APIs | 1241

Calculation Mode Type Description Value

StateCount Retrieves the amount of time a tag uses to

transition to another state from a previous

state during a time interval.

13

StateTime Retrieves the duration that a tag stayed in a

given state within an interval.

14

OPCQAnd Retrieves the OPCQAND, bit-wise AND op

eration of all the 16-bit OPC qualities of the

raw samples stored in the specified interval.

Note that OPC Quality is a subfield for Quali

ty-Value-Timestamp (QVT), so when this cal

culation mode is used, OPC Quality is con

sidered for calculation.

15

OPCQOr Retrieves the OPCQOR, bit-wise OR opera

tion of all the 16-bit OPC qualities of the raw

samples stored in the specified interval.

Note that OPC Quality is a subfield for Quali

ty-Value-Timestamp (QVT), so when this cal

culation mode is used, OPC Quality is con

sidered for calculation.

16

FirstRawValue Retrieves the first good raw sample value for

a given interval.

Value is the value of the raw sample, or zero

if there are no good raw samples in the inter

val.

For Quality, if there are not good raw sam

ples in the interval, then the percentage of

good is 0. Otherwise, the percentage of good

is always 100, even if the interval contains

bad quality samples. Note that Quality is the

same for FirstRawValue and FirstRawTime.

17

Historian | 8 - Historian REST APIs | 1242

Calculation Mode Type Description Value

The Raw sample has a quality of Good, Bad,

or Uncertain, and that is converted to a 0 or

100 percent.

FirstRawTime Retrieves the first good raw timestamp for a

given interval.

Value is the timestamp of the sample or the

year 1969 if there are no good raw samples

in the interval.

For Quality, if there are not good raw sam

ples in the interval, then the percentage of

good is 0. Otherwise, the percentage of good

is always 100, even if the interval contains

bad quality samples. Note that Quality is the

same for FirstRawValue and FirstRawTime.

The Raw sample has a quality of Good, Bad,

or Uncertain, and that is converted to a 0 or

100 percent.

18

LastRawValue Retrieves the last good raw sample value for

a given time interval.

Value is the value of the raw sample or zero

if there are no good raw samples in the inter

val.

For Quality, if there are no good raw samples

in the interval, the percentage of good sam

ples is 0. Otherwise, the percentage of good

is always 100, even if the interval contains

bad samples. Note that Quality is the same

for LastRawValue and LastRawTime.

The Raw sample has a quality of Good, Bad,

or Uncertain, and that is converted to a 0 or

100 percent.

19

Historian | 8 - Historian REST APIs | 1243

Calculation Mode Type Description Value

LastRawTime Retrieves the last good timestamp of the

last value for a given time interval.

Value is the timestamp of the sample or the

year 1969 if there are no good raw samples

in the interval.

For Quality, if there are no good raw samples

in the interval, the percentage of good sam

ples is 0. Otherwise, the percentage of good

is always 100, even if the interval contains

bad samples. Note that Quality is the same

for LastRawValue and LastRawTime.

The Raw sample has a quality of Good, Bad,

or Uncertain, and that is converted to a 0 or

100 percent.

20

TagStats Retrieves the statistics for a tag from the

archive stored in the specified interval.

21

FilterModeType Parameter

The FilterModeType parameter defines how time periods before and after transitions in the filter condition

should be handled.

When the FilterModeType parameter is applied, then the Start time and End time are specified as:

• ExactTime

• BeforeTime

• AfterTime

• BeforeAndAfterTime

For example, AfterTime indicates that the filter condition should be True starting at the timestamp of the

archive value that triggered the True condition, and leading up to the timestamp of the archive value that

triggered the False condition.

Historian | 8 - Historian REST APIs | 1244

Properties Description Value

ExactTime Retrieves data for the exact times that

the filter condition is True.

1

BeforeTime Retrieves data from the timestamp

of the last False filter condition to the

timestamp of the next True condition.

2

AfterTime Retrieves data from the timestamp of

the True filter condition to the time

stamp of the next False condition.

3

BeforeAndAfterTime Retrieves data from the timestamp

of the last False filter condition to the

timestamp of the next False condition.

4

ReturnDataFields Parameter

The ReturnDataFields bitwise parameter specifies which data fields are returned in a query. Using it in a

query returns data such as TimeStamp, and each field returns a Boolean value.

Each time-series data sample contains QVT (quality, value, and timestamp) values. If ReturnDataFields

is not provided, then the default value of 0 is considered, and all QVT values are returned for each data

sample. To return one of the data field properties, such as TimeStamp, use the TimeStamp option as

shown in the table.

Properties Description Field value (Boolean)

All Fields Specifies that all data fields

are returned in the query.

0 (0000)

TimeStamp The time stamp of the col

lected sample or an inter

val time stamp. When speci

fied in the query, returns the

TimeStamp property.

1 (0001)

Value The collected value or sam

pled value; the data type of

the value will be the same

2 (0010)

Historian | 8 - Historian REST APIs | 1245

Properties Description Field value (Boolean)

data type as the tag's raw da

ta.

Quality When specified in the query,

returns the Quality property.

Each sample in Current Value

and Raw query retrieval has a

quality of:

• Good (3)

• Not Available (2)

• Uncertain (1)

• Bad (0)

Interpolated and Lab Re

trieval express quality as

"percent good".

4 (0100)

Payload Parameter
This parameter queries for the tag properties requested from the server.

Use the Payload parameter to query for all the tag properties to return from the server. In the Update Tag

Configuration API, you must provide the actual tag property value. However, in the Get Tag Properties API,

you must provide the property name and value of 1 (true), so the property can be read from the server and

returned.

The properties listed in the following table are valid in APIs that use the Payload parameter, unless

otherwise specified. For Property Names used in the Get Tag Properties API, the property name is always

a Boolean (true/false) value, while it can be a string or integer for other APIs.

Property Name Property Type Description

AllFields Boolean Used for Get Tag Properties API.

Name Boolean,

String

Used for the Get Tag Properties API, Add Single

Tag API, and Add Bulk Tags API.

Description String

EngineeringUnits String

Historian | 8 - Historian REST APIs | 1246

Property Name Property Type Description

Comment String

DataType : ihDataType SignedInte

gral

Type definition is an enumerated type "ihData

Type".

{

ihDataTypeUndefined = 0,

ihScaled,

ihFloat,

ihDoubleFloat,

ihInteger,

ihDoubleInteger,

ihFixedString,

ihVariableString,

ihBlob,

ihTime,

ihInt64,

ihUInt64,

ihUInt32,

ihUInt16,

ihByte,

ihBool,

ihMultiField,

ihArray,

ihMaxDataType

} ihDataType;

FixedStringLength UnsignedChar

CollectorName String

SourceAddress String

CollectionType : ihCollectionType SignedInte

gral

Type definition is an enumerated type "ihCollec

tionType".

{

ihUnsolicited = 1,

ihPolled

} ihCollectionType;

Historian | 8 - Historian REST APIs | 1247

Property Name Property Type Description

CollectionInterval SignedInte

gral

CollectionOffset Unsigned

Long

LoadBalancing Boolean

TimeStampType : ihTimeStamp

Type

SignedInte

gral

Type definition is an enumerated type "ihTimeS

tampType".

{

ihSource = 1,

ihInterface,

} ihTimeStampType;

HiEngineeringUnits Double

LoEngineeringUnits Double

InputScaling Boolean

HiScale Double

LoScale Double

CollectorCompression Boolean

CollectorDeadbandPercentRange Float

ArchiveCompression Boolean

ArchiveDeadbandPercentRange Float

General1 String

General2 String

General3 String

General4 String

General5 String

ReadSecurityGroup String

WriteSecurityGroup String

Historian | 8 - Historian REST APIs | 1248

Property Name Property Type Description

AdministratorSecurityGroup String

LastModified Boolean Used for Get Tag Properties API.

LastModifiedUser Boolean Used for Get Tag Properties API.

InterfaceType Boolean Used for Get Tag Properties API.

CollectorType : ihInterfaceType SignedInte

gral

Type definition is an enumerated type "ihInterface

Type".

{

ihInterfaceUndefined = 0,

ihIFix,

ihRandom,

ihOPC,

ihFile,

ihIFixLabData,

ihManualEntry,

ihOther,

ihCalcEngine,

ihServerToServer,

ihPI,

ihOPCAE,

ihCIMPE,

ihPIDistributor,

ihCIMME,

ihPerfTag,

ihCustom,

ihServerToServerDistributor,

ihWindowsPerfMon,

} ihInterfaceType;

UTCBias SignedInte

gral

AverageCollectionTime Boolean Used for Get Tag Properties API.

CalculationDependencies StringArray

CollectionDisabled Boolean

Historian | 8 - Historian REST APIs | 1249

Property Name Property Type Description

ArchiveCompressionTimeout Unsigned

Long

CollectorCompressionTimeout Unsigned

Long

SpikeLogic Boolean

SpikeLogicOverride Boolean

CollectorAbsoluteDeadbanding Boolean

CollectorAbsoluteDeadband Double

ArchiveAbsoluteDeadbanding Boolean

ArchiveAbsoluteDeadband Double

StepValue Boolean

TimeResolution : ihTimeResolution SignedInte

gral

Type definition is an enumerated type "ihTimeRes

olution".

{

ihSeconds = 0,

ihMilliseconds,

ihMicroseconds,

ihNanoseconds

} ihTimeResolution;

ConditionCollectionEnabled Boolean

ConditionCollectionTriggerTag String

ConditionCollectionComparison :

ihConditionCollectionComparison

SignedInte

gral

Type definition is an enumerated type "ihCondition

CollectionComparison".

{

ihConditionComparisonUndefined = 0,

ihConditionComparisonEqual,

ihConditionComparisonLessThan,

ihConditionComparisonLessThanEqual,

ihConditionComparisonGreaterThan,

ihConditionComparisonGreaterThanEqual,

Historian | 8 - Historian REST APIs | 1250

Property Name Property Type Description

ihConditionComparisonNotEqual

} ihConditionCollectionComparison;

ConditionCollectionCompareValue String

ConditionCollectionMarkers Boolean

Calculation String When the Calculation field is used, then two more

conditions are required. Calculation is not a specif

ic field for a tag property. If the tag's collector or in

terface type is Server-to-server and the Calculation

field is set (not Null), then the field value is set to

the source address.

TagId Boolean Used for Get Tag Properties API.

EnumeratedSetName String

DataStoreName String

DefaultQueryModifiers Long Long

UserDefinedTypeName String

NumberOfElements SignedInte

gral

DataDensity : ihTagDataDensity SignedInte

gral

Type definition is an enumerated type "ihTagData

Density".

{

ihDataDensityUndefined = 0,

ihDataDensityMinimum = 1,

ihDataDensityMedium = 4,

ihDataDensityMaximum = 7

} ihTagDataDensity;

CalcType : ihTagCalcType SignedInte

gral

Type definition is an enumerated type "ihCalc

Type".

{

ihRawTag = 0,

ihAnalyticTag = 1,

Historian | 8 - Historian REST APIs | 1251

Property Name Property Type Description

ihPythonExprTag = 2

} ihTagCalcType;

HasAlias Boolean Used for Get Tag Properties API.

IsStale Boolean Used for Get Tag Properties API.

Error Code Definitions

The following table provides the values and definitions for the ErrorCode parameter.

Table 88. Error Code Definitions

Error Code Value: Error Code Definition

Success = 0 Operation successful.

Failed = -1 Operation failed.

Timeout = -2 Operation failed due to timeout.

NotConnected = -3 Not connected to Historian server.

CollectorNotFound = -4 The given collector does not exist on the server.

NotSupported = -5 Operation not supported.

DuplicateData = -6 Attempt to overwrite an existing data sample.

InvalidUsername = -7 Bad user name or password.

AccessDenied = -8 Insufficient permissions for operation.

WriteInFuture = -9 Attempted data write too far in the future.

WriteArchiveOffline = -10 Attempted data write to an offline archive.

WriteArchiveReadonly = -11 Attempted data write to a read-only archive.

WriteOutsideActiveRange = -12 Attempted data write beyond the configured active

range.

WriteNoArchiveAvailable = -13 Attempted data write with no available archives.

InvalidTagname = -14 The requested tag was not found.

LicensedTagCountExceeded = -15 Number of licensed tags exceeded.

Historian | 8 - Historian REST APIs | 1252

Table 88. Error Code Definitions (continued)

Error Code Value: Error Code Definition

LicensedConnectionCountExceeded = -16 Number of licensed server connections exceeded.

InternalLicenseError = -17 Internal license error.

NoValue = -18 No available tag data.

DuplicateCollector = -19 The given collector name already exists on the

server.

NotLicensed = -20 Server or feature is not licensed.

CircularReference = -21 Circular reference detected in calculation.

BackupInsufficientSpace = -22 Insufficient disk space to perform backup.

InvalidServerVersion = -23 Operation unsupported due to server version.

QueryResultSizeExceeded = -24 Upper limit on query results exceeded.

DeleteOutsideActiveRange = -25 Attempted data delete outside allowed modifica

tion interval.

AlarmArchiverUnavailable = -26 Alarms and Events subsystem unreachable.

ArgumentException = -27 A supplied argument is invalid.

ArgumentNullException = -28 A supplied argument is NULL.

ArgumentOutOfRangeException = -29 A supplied argument is outside the valid range.

InvalidEnumeratedSet = -30 The requested Enumerated Set was not found.

InvalidDataStore = -31 The requested data store was not found.

NotPermitted = -32 Operation not permitted.

InvalidCustomDataType = -33 The Custom data type is not supported.

ihSTATUS_EXISTING_USERDEF_REFERENCES =

-34

N/A

ihSTATUS_INVALID_TAGNAME_DELETEDTAG =

-35

N/A

ihSTATUS_INVALID_DHS_NODENAME = -36 N/A

ihSTATUS_DHS_SERVICE_IN_USE = -37 N/A

Historian | 8 - Historian REST APIs | 1253

Table 88. Error Code Definitions (continued)

Error Code Value: Error Code Definition

ihSTATUS_DHS_STORAGE_IN_USE = -38 N/A

ihSTATUS_DHS_TOO_MANY_NODES_IN_MIRROR =

-39

N/A

ihSTATUS_ARCHIVE_IN_SYNC = -40 N/A

InvalidArchiveName= -41 N/A

InvalidSession = 1 Session id is invalid.

SessionExpired = 2 Session has expired.

UnknownError = 3 Unknown error, please check server log.

NoValidClientBufferManager= 4 No valid client buffer manager.

NoValueInDataSet = 5 No value in returned data set.

TagNotExisting = 6 Tag doesn't exist.

ClientBufferManagerCommunicationError = 7 Service call to central buffer server fail.

TagTypeNotSupported=8 Tag type is not supported.

ValueTypeNotMatchTagDataType = 9 Value type doesn't match tag data type.

InvalidParameter=10 Invalid query parameter.

TagSearchResultIsHuge = 11 Tag Search Criteria result was more than 5000.

InvalidHistorianServer=12 No valid server or historian server name isn't in the

server list.

ihSTATUS_INVALID_INTERFACETYPE = -49 The collector type is not valid. For a list of collector

types, refer to Collector Type and Subtype (on page

1339).

ihSTATUS_INTERFACE_START_FAIL = -50 Starting the collector has failed.

ihSTATUS_INTERFACE_STOP_FAIL = -51 Stopping the collector has failed.

Historian | 8 - Historian REST APIs | 1254

Historian REST APIs

Overview of the Historian REST APIs

Historian provides REST APIs to manage Historian systems, collectors, data stores, and tags. In addition,

it provides APIs to install and manage collector instances.

Important:

Port 443 is used in examples and sample code. If you copy and paste the sample code from Help,

you must change this port to your installed port.

Managing Systems

The Get DHS Machines API

Using the Get DHS Machines API, you can view the list of DHS machines in a location.

METHOD GET

URI https://<historianservername>/historian-rest-a

pi/v1/dhsmachines?storageName=

SAMPLE QUERY PARAM GET URL https://<historianservername>/historian-rest-a

pi/v1/dhsmachines?storageName=xx

SAMPLE RESPONSE {

 "ErrorCode": 0,

 "ErrorMessage": null,

 "Data": [

 {

 "NodeName": "xyz",

 "IsAlreadyAdded": true

 }

Historian | 8 - Historian REST APIs | 1255

]

}

 }

SAMPLE cURL COMMAND curl -i -H "Accept: application/json" -H

 "Authorization: Bearer <TOKEN>”

https://<historianservername>/historian-rest-a

pi/v1/dhsmachines?storageName=xxx

Table 89. Query Parameters

Parameter Description Required? Values

storageName The value of the location whose

DHS machines you want to view.

Yes String

Table 90. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, ErrorCode = 0 implies the

operation was successful.

ErrorMessage String Yes For example, NULL.

The Get DHS Services API

Using the Get DHS Services API, you can view the list of DHS services in a data store.

METHOD GET

URI https://<historianservername>/historian-rest-a

pi/v1/dhsservices?dHSServiceMask=&withReason=fa

lse

SAMPLE QUERY PARAM GET URL https://<historianservername>/historian-rest-a

pi/v1/dhsservices?dHSServiceMask

 =*&withReason=false

Historian | 8 - Historian REST APIs | 1256

SAMPLE RESPONSE {

 "ErrorCode": 0,

 "ErrorMessage": null,

 "Data": [

 {

 "LogicalName":

 "ConfigManager_NPI212611749M1",

 "NodeName": "NPI212611749M1",

 "ServiceType": 4,

 "Status": 1,

 "TCPPort": 14002

 },

 {

 "LogicalName":

 "DataArchiver_NPI212611749M1",

 "NodeName": "NPI212611749M1",

 "ServiceType": 2,

 "Status": 1,

 "TCPPort": 14001

 },

Historian | 8 - Historian REST APIs | 1257

 {

 "LogicalName":

 "ClientManager_NPI212611749M1",

 "NodeName": "NPI212611749M1",

 "ServiceType": 3,

 "Status": 1,

 "TCPPort": 14000

 },

 {

 "LogicalName":

 "DiagnosticsManager_NPI212611749M1",

 "NodeName": "NPI212611749M1",

 "ServiceType": 5,

 "Status": 1,

 "TCPPort": 14003

 },

 {

 "LogicalName":

 "DataArchiver_distmachine2",

 "NodeName": "distmachine2",

Historian | 8 - Historian REST APIs | 1258

 "ServiceType": 2,

 "Status": 0,

 "TCPPort": 14001

 },

 {

 "LogicalName":

 "DataArchiver_distmachine1",

 "NodeName": "distmachine1",

 "ServiceType": 2,

 "Status": 1,

 "TCPPort": 14001

 },

 {

 "LogicalName":

 "ClientManager_distmachine1",

 "NodeName": "distmachine1",

 "ServiceType": 3,

 "Status": 1,

 "TCPPort": 14000

Historian | 8 - Historian REST APIs | 1259

 },

 {

 "LogicalName":

 "DiagnosticsManager_distmachine1",

 "NodeName": "distmachine1",

 "ServiceType": 5,

 "Status": 0,

 "TCPPort": 14003

 }

]

}

 }

SAMPLE cURL COMMAND curl -i -H "Accept: application/json" -H

 "Authorization: Bearer <TOKEN>”

https://<historianservername>/historian-rest-a

pi/v1/dhsservices?dHSServiceMask=*&withReason=fa

lse

Table 91. Query Parameters

Parameter Description Required? Values

withReason Indicates whether the reason

must be retrieved in the API re

sponse.

Yes Boolean

dHSService

Mask

The value of the DHS service

mask.

Yes String

Historian | 8 - Historian REST APIs | 1260

Table 92. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, ErrorCode = 0 implies the

operation was successful.

ErrorMessage String Yes For example, NULL.

The Get Server Properties API

Using the Get Server Properties API, you can view the list of properties of a server.

METHOD GET

URI https://<historianservername>/historian-rest-a

pi/v1/serverproperties

SAMPLE QUERY PARAM GET URL https://<historianservername>/historian-rest-a

pi/v1/serverproperties

SAMPLE RESPONSE {

 "ErrorCode": 0,

 "ErrorMessage": null,

 "Data": {

 "Storages": [

 {

 "StorageName": "System Storage",

 "StorageType": 2,

 "NumberOfDataStores": 1,

 "NumberOfArchivers": 0,

 "DataStores": [

Historian | 8 - Historian REST APIs | 1261

 "System"

],

 "Id":

 "861C2743-72E0-46FC-9B31-90E28CC39B8D",

 "IsDefault": false,

 "LastModifiedUser": null,

 "LastModifiedTime":

 "1970-01-01T00:00:00.000Z",

 "ArchiverServices": []

 },

 {

 "StorageName": "xyz",

 "StorageType": 0,

 "NumberOfDataStores": 3,

 "NumberOfArchivers": 1,

 "DataStores": [

 "ScadaBuffer",

 "DHSSystem",

 "User"

Historian | 8 - Historian REST APIs | 1262

],

 "Id":

 "5F267DF3-879A-4222-8A0E-D31EDEA83C14",

 "IsDefault": true,

 "LastModifiedUser": null,

 "LastModifiedTime":

 "1970-01-01T00:00:00.000Z",

 "ArchiverServices": [

 {

 "LogicalName":

 "DataArchiver_xyz",

 "NodeName": "xyz",

 "ServiceType": 2,

 "IsAlreadyAdded": true,

 "TCPPort": 14001

 }

]

 }

],

 "Servers": [

Historian | 8 - Historian REST APIs | 1263

 {

 "LogicalName":

 "DataArchiver_xyz0",

 "NodeName": "xyz",

 "ServiceType": 2,

 "Status": 1,

 "TCPPort": 14001,

 "MemoryVMSize": "4778",

 "TotalFailedWrites": "0",

 "WriteCacheHitRatio": "0.748",

 "TotalOutOfOrder": "3",

 "CompressionRatio": "0.321",

 "ReadQueueSize": "0",

 "WriteQueueSize": "0",

 "MsgQueueSize": "0",

 "ReadQueueProcessingRate": "1",

 "WriteQueueProcessingRate":

 "31",

 "MsgQueueProcessingRate": "0"

 }

Historian | 8 - Historian REST APIs | 1264

]

 }

}

SAMPLE cURL COMMAND curl -i -H "Accept: application/json" -H

 "Authorization: Bearer <TOKEN>”

https://<historianservername>/historian-rest-a

pi/v1/serverproperties

Table 93. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, ErrorCode = 0 implies the

operation was successful.

ErrorMessage String Yes For example, NULL.

The Get System Statistics API

Using the Get System Statistics API, you can view the statistics of a system.

METHOD GET

URI https://<historianservername>/historian-rest-a

pi/v1/systemstats

SAMPLE QUERY PARAM GET URL https://<historianservername>/historian-rest-a

pi/v1/systemstats

SAMPLE RESPONSE {

 "ErrorCode": 0,

 "ErrorMessage": null,

 "Data": {

 "Utilization": {

Historian | 8 - Historian REST APIs | 1265

 "WriteCacheHitRatio": "0.499",

 "SpaceConsumptionRate": "",

 "CompressionRatio": "0.199",

 "ReadQueueSize": "0",

 "WriteQueueSize": "0",

 "MsgQueueSize": "0",

 "ReadQueueProcessRate": "3",

 "WriteQueueProcessRate": "0",

 "MsgQueueProcessRate": "0",

 "MemoryVMUsage": "62",

 "OutOfOrderRate": "0",

 "ReadThreadUsage": "0",

 "WriteThreadUsage": "0",

 "FailedWriteRate": "0",

 "DiskFreeSpace": "59828"

 },

 "AlarmEvents": {

 "AverageAlarmRate": ""

Historian | 8 - Historian REST APIs | 1266

 },

 "TotalCollectors": {

 "TotalCollectors": 1,

 "RunningCollectors": 1,

 "StoppedCollectors": 0,

 "UnknownCollectors": 0

 },

 "Licence": {

 "ActualDataStores": 3,

 "MaxDataStores": 200,

 "ActualTags": 0,

 "MaxTags": 2147483647,

 "ActualUsers": 0,

 "MaxUsers": 1000

 }

 }

}

SAMPLE cURL COMMAND curl -i -H "Accept: application/json" -H

 "Authorization: Bearer <TOKEN>”

Historian | 8 - Historian REST APIs | 1267

https://<historianservername>/historian-rest-a

pi/systemstats

Table 94. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, ErrorCode = 0 implies the

operation was successful.

ErrorMessage String Yes For example, NULL.

The Get Read Sample and Receive Rate API

Using the Get Read Sample and Receive Rate API, you can view the read rate and receive

rate of a system.

METHOD GET

URI Read Sample Rate

https://<historianservername>/historian-rest-a

pi/v1/performancecounter/perftagdata/

PerfTag_AverageEventRate/-/-/starttime/endtime/i

nterval

Receive Rate

https://<historianservername>/historian-rest-a

pi/v1/performancecounter/perftagdata/

PerfTag_AverageReadRawRate/-/-/starttime/endti

me/interval

SAMPLE GET URI https://<historianservername>/historian-rest-a

pi/v1/performancecounter/

perftagdata/PerfTag_AverageEventRate/-/-/2020-12

-15T11:19:01.719Z/2020-12-15T12:19:01.719Z/360

000

SAMPLE RESPONSE {

 "ErrorCode": 0,

Historian | 8 - Historian REST APIs | 1268

 "ErrorMessage": null,

 "Data": [

 {

 "TagName":

 "PerfTag_AverageEventRate",

 "ErrorCode": 0,

 "DataType": "DoubleFloat",

 "Samples": [

 {

 "TimeStamp":

 "2020-11-18T05:35:22.612Z",

 "Value": "0",

 "Quality": 0

 },

 {

 "TimeStamp":

 "2020-11-18T05:47:22.612Z",

 "Value": "0",

 "Quality": 0

 },

Historian | 8 - Historian REST APIs | 1269

 {

 "TimeStamp":

 "2020-11-18T05:53:22.612Z",

 "Value": "0",

 "Quality": 0

 },

 {

 "TimeStamp":

 "2020-11-18T06:11:22.612Z",

 "Value": "0",

 "Quality": 0

 },

 {

 "TimeStamp":

 "2020-11-18T06:29:22.612Z",

 "Value": "0",

 "Quality": 0

 }

]

 }

Historian | 8 - Historian REST APIs | 1270

]

}

SAMPLE cURL COMMAND curl -i -H "Accept: application/json"

 -H "Authorization: Bearer <TOKEN>”

 https://<historianservername>/historian-rest-a

pi/v1/performancecounter/perftagdata/

PerfTag_AverageEventRate/-/-/2020-12-15T11:19:01

.719Z/2020-12-15T12:19:01.719Z/360000

Table 95. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, ErrorCode = 0 implies the

operation was successful.

ErrorMessage String Yes For example, NULL.

The Get Storages API

Using the Get Storages API, you can view the list of locations in a system.

METHOD GET

URI https://<historianservername>/historian-rest-a

pi/v1/storages?storageMask=

SAMPLE QUERY PARAM GET URL https://<historianservername>/historian-rest-a

pi/v1/storages?storageMask=*

SAMPLE RESPONSE {

 "ErrorCode": 0,

 "ErrorMessage": null,

 "Data": [

 {

Historian | 8 - Historian REST APIs | 1271

 "StorageName": "System Storage",

 "StorageType": 2,

 "NumberOfDataStores": 1,

 "NumberOfArchivers": 0,

 "DataStores": [

 "System"

],

 "Id":

 "861C2743-72E0-46FC-9B31-90E28CC39B8D",

 "IsDefault": false,

 "LastModifiedUser": null,

 "LastModifiedTime":

 "1970-01-01T00:00:00.000Z",

 "ArchiverServices": []

 },

 {

 "StorageName": "srinivaswin10",

 "StorageType": 0,

 "NumberOfDataStores": 3,

Historian | 8 - Historian REST APIs | 1272

 "NumberOfArchivers": 1,

 "DataStores": [

 "ScadaBuffer",

 "DHSSystem",

 "User"

],

 "Id":

 "5F267DF3-879A-4222-8A0E-D31EDEA83C14",

 "IsDefault": true,

 "LastModifiedUser": null,

 "LastModifiedTime":

 "1970-01-01T00:00:00.000Z",

 "ArchiverServices": [

 {

 "LogicalName":

 "DataArchiver_xyz",

 "NodeName": "xyz",

 "ServiceType": 2,

 "TCPPort": 14001

 }

Historian | 8 - Historian REST APIs | 1273

]

 }

]

}

SAMPLE cURL COMMAND curl -i -H "Accept: application/json" -H

 "Authorization: Bearer <TOKEN>”

https://<historianservername>/historian-rest-a

pi/v1/storages?storageMask=*

Table 96. Query Parameters

Parameter Description Required? Values

storageMask The value of the location mask. No String

Table 97. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, ErrorCode = 0 implies the

operation was successful.

ErrorMessage String Yes For example, NULL.

The Add Machine API

Using the Add Machine API, you can add a server in a Historian system.

METHOD POST

URI https://<historianservername>/historian-rest-a

pi/v1/machine

SAMPLE URI https://<historianservername>/historian-rest-a

pi/v1/machine

Payload

{

Historian | 8 - Historian REST APIs | 1274

"nodeName": "node1"

}

SAMPLE RESPONSE {

 "ErrorCode": 0,

 "ErrorMessage": null

}

SAMPLE cURL COMMAND curl -i -H "Accept: application/json" -i

 -H "Content-Type: application/json" -H

 "Authorization: Bearer <TOKEN>”

-d “{ \”nodeName \”:\”name\”}” -X POST

 https://<historianservername>/historian-rest-a

pi/v1/machine

Table 98. Query Parameters

Parameter Description Required? Values

Payload Contains the machine name of

the server that you want to add.

Yes Multiple

Table 99. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, ErrorCode = 0 implies the

operation was successful.

ErrorMessage String Yes For example, NULL.

The Delete Machine API

Using the Delete Machine API, you can remove a server from a Historian system.

METHOD DELETE

URI https://<historianservername>/historian-rest-a

pi/v1/machine

Historian | 8 - Historian REST APIs | 1275

SAMPLE URI https://<historianservername>/historian-rest-a

pi/v1/machine

Payload

{

"nodeName": "",

}

SAMPLE RESPONSE {

 "ErrorCode": 0,

 "ErrorMessage": null

}

SAMPLE cURL COMMAND curl -i -H "Accept: application/json" -i -H

 "Content-Type: application/json"

-H "Authorization: Bearer <TOKEN>” -d

 “{ \”nodeName \”:\”name\”}” -X DELETE

 https://<historianservername>/historian-rest-a

pi/v1/machine

Table 100. Query Parameters

Parameter Description Required? Values

Payload Contains the name of the ma

chine that you want to remove.

Yes Multiple

Table 101. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, ErrorCode = 0 implies the

operation was successful.

ErrorMessage String Yes For example, NULL.

Historian | 8 - Historian REST APIs | 1276

The Create Mirror Group API

Using the Create Mirror Group API, you can create a mirror group.

METHOD POST

URI https://<historianservername>/historian-rest-a

pi/v1/mirrorgroup

SAMPLE URI https://<historianservername>/historian-rest-a

pi/v1/mirrorgroup

Payload

{

"mirrorStorageName": "storagename",

"nodes": "node1;node2"

}

SAMPLE RESPONSE {

 "ErrorCode": 0,

 "ErrorMessage": null

}

SAMPLE cURL COMMAND curl -i -H "Accept: application/json" -i

 -H "Content-Type: application/json" -H

 "Authorization: Bearer <TOKEN>”

-d “{ \” mirrorStorageName \”:\”name\”,\"

 nodes \": \"xx;yy\"}” -X POST

 https://<historianservername>/historian-rest-a

pi/v1/mirrorgroup

Historian | 8 - Historian REST APIs | 1277

Table 102. Query Parameters

Parameter Description Required? Values

Payload Contains the mirror group name

and the servers you want to add

to the group.

Yes Multiple

Table 103. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, ErrorCode = 0 implies the

operation was successful.

ErrorMessage String Yes For example, NULL.

The Add Mirror Machine API

Using the Add Mirror Machine API, you can add a server to a mirror group.

METHOD POST

URI https://<historianservername>/historian-rest-a

pi/v1/mirrormachine

SAMPLE URI https://<historianservername>/historian-rest-a

pi/v1/mirrormachine

Payload

{

"mirrorStorageName": "Mirror2",

"mirrorMachineName": "distmachine1"

}

SAMPLE RESPONSE {

 "ErrorCode": 0,

 "ErrorMessage": null

Historian | 8 - Historian REST APIs | 1278

}

SAMPLE cURL COMMAND curl -i -H "Accept: application/json" -i

 -H "Content-Type: application/json" -H

 "Authorization: Bearer <TOKEN>”

-d “{ \” mirrorStorageName \”:\”name\”,\"

 nodes \": \"xx;yy\"}” -X POST

 https://<historianservername>/historian-rest-a

pi/v1/mirrormachine

Table 104. Query Parameters

Parameter Description Required? Values

Payload Contains the machine name of

the server that you want to add.

Yes Multiple

Table 105. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, ErrorCode = 0 implies the

operation was successful.

ErrorMessage String Yes For example, NULL.

The Mirror Group Update API

Using the Mirror Group Update API, you can update the name of a mirror group.

METHOD PUT

URI https://<historianservername>/historian-rest-a

pi/v1/mirrorgroup

SAMPLE URI https://<historianservername>/historian-rest-a

pi/v1/mirrorgroup

Payload

{

"mirrorStorageName": "Mirror2",

Historian | 8 - Historian REST APIs | 1279

"mirrorStorageNewName": "Mirror3"

}

SAMPLE RESPONSE {

 "ErrorCode": 0,

 "ErrorMessage": null

}

SAMPLE cURL COMMAND

curl -i -H "Accept: application/json" -i

 -H "Content-Type: application/json" -H

 "Authorization: Bearer <TOKEN>”

-d “{ \”mirrorStorageName \”:\”name\”,\"

 mirrorStorageNewName \": \"sname\"}” -X PUT

 https://<historianservername>/historian-rest-a

pi/v1/mirrorgroup

Table 106. Query Parameters

Parameter Description Required? Values

Payload Contains the existing and new

names of the mirror group that

you want to rename.

Yes Multiple

Table 107. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, ErrorCode = 0 implies the

operation was successful.

ErrorMessage String Yes For example, NULL.

The Delete Mirror Machine API

Using the Delete Mirror Machine API, you can remove a server from a mirror group.

Historian | 8 - Historian REST APIs | 1280

METHOD DELETE

URI https://<historianservername>/historian-rest-a

pi/v1/mirrormachine

SAMPLE URI https://<historianservername>/historian-rest-a

pi/v1/mirrormachine

Payload

{

"mirrorStorageName": "Mirror 2",

"mirrorMachineName": "distmachine1"

}

SAMPLE RESPONSE {

 "ErrorCode": 0,

 "ErrorMessage": null

}

SAMPLE cURL COMMAND curl -i -H "Accept: application/json" -i -H

 "Content-Type: application/json"

-H "Authorization: Bearer <TOKEN>” -d

 “{ \”mirrorStorageName \”:\”name\”,

\” mirrorMachineName\”:\”name\”}” -X DELETE

 https://<historianservername>/historian-rest-a

pi/v1/mirrormachine

Table 108. Query Parameters

Parameter Description Required? Values

Payload Contains the name of the ma

chine that you want to remove

Yes Multiple

Historian | 8 - Historian REST APIs | 1281

Table 108. Query Parameters (continued)

Parameter Description Required? Values

and the name of the mirror

group.

Table 109. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, ErrorCode = 0 implies the

operation was successful.

ErrorMessage String Yes For example, NULL.

The Delete Mirror Group API

Using the Delete Mirror Group API, you can delete a mirror group.

METHOD DELETE

URI https://<historianservername>/historian-rest-a

pi/v1/mirrorgroup

SAMPLE URI https://<historianservername>/historian-rest-a

pi/v1/mirrorgroup

Payload

{

"mirrorStorageName": "Mirror3",

}

SAMPLE RESPONSE {

 "ErrorCode": 0,

 "ErrorMessage": null

}

Historian | 8 - Historian REST APIs | 1282

SAMPLE cURL COMMAND curl -i -H "Accept: application/json" -i -H

 "Content-Type: application/json"

-H "Authorization: Bearer <TOKEN>” -d

 “{ \”mirrorStorageName \”:\”name\”}” -X DELETE

https://<historianservername>/historian-rest-a

pi/v1/mirrorgroup

Table 110. Query Parameters

Parameter Description Required? Values

Payload Contains the name of the ma

chine that you want to remove.

Yes Multiple

Table 111. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, ErrorCode = 0 implies the

operation was successful.

ErrorMessage String Yes For example, NULL.

The Local OPC Servers API

Using the Local OPC Servers API, you can view the list of OPC servers installed on a

specified machine.

METHOD GET

URI http://<historianservername>/v1/localopcserve

rs/<machine name>

SAMPLE QUERY PARAM GET URL http://<historianservername>/v1/localopcserve

rs/<machine name>

SAMPLE RESPONSE {

 "ErrorCode": 0,

 "ErrorMessage": null,

 "ServerIDs": [

 "ID1",

 "ID2 "

]

Historian | 8 - Historian REST APIs | 1283

}

SAMPLE cURL COMMAND curl -i -H "Accept: application/json" -H

 "Authorization: Bearer <TOKEN>”

https://<historianservername>/historian-rest-a

pi/v1/localopcservers/xyz

Table 112. Query Parameters

Parameter Description Required? Values

machine name The machine name of the OPC

server.

Yes String

Table 113. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, ErrorCode = 0 implies the

operation was successful.

ErrorMessage String Yes For example, NULL.

The Local OPC AE Servers API

Using the Local OPC AE Servers API, you can view the list of OPC Alarms and Events servers

installed on a specified machine.

METHOD GET

URI http://<historianservername>/v1/localopcaeserve

rs/<machine name>

SAMPLE QUERY PARAM GET URL http://<historianservername>/v1/localopcaeserve

rs/<machine name>

SAMPLE RESPONSE {

 "ErrorCode": 0,

 "ErrorMessage": null,

 "ServerIDs": [

 "ID1",

 "ID2 "

]

Historian | 8 - Historian REST APIs | 1284

}

SAMPLE cURL COMMAND curl -i -H "Accept: application/json" -H

 "Authorization: Bearer <TOKEN>”

https://<historianservername>/historian-rest-a

pi/v1/localopcaeservers/abc

Table 114. Query Parameters

Parameter Description Required? Values

machine name The machine name of the OPC

Alarms and Events server.

Yes String

Table 115. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, ErrorCode = 0 implies the

operation was successful.

ErrorMessage String Yes For example, NULL.

The Local OPC HDA Servers API

Using the Local OPC HDA Servers API, you can view the list of OPC HDA servers installed on

a specified machine.

METHOD GET

URI http://<historianservername>/v1/localopchdaserve

rs/<machine name>

SAMPLE QUERY PARAM GET URL http://<historianservername>/v1/localopchdaserve

rs/<machine name>

SAMPLE RESPONSE {

 "ErrorCode": 0,

 "ErrorMessage": null,

 "ServerIDs": [

 "ID1",

 "ID2 "

]

Historian | 8 - Historian REST APIs | 1285

}

SAMPLE cURL COMMAND curl -i -H "Accept: application/json" -H

 "Authorization: Bearer <TOKEN>”

https://<historianservername>/historian-rest-a

pi/v1/localopchdaservers/xyz

Table 116. Query Parameters

Parameter Description Required? Values

machine name The machine name of the OPC

HDA server.

Yes String

Table 117. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, ErrorCode = 0 implies the

operation was successful.

ErrorMessage String Yes For example, NULL.

The DHS Service Port Update API

Using the DHS Service Port Update API, you can change the port and other details of a DHS

service.

METHOD PUT

URI

https://<historianservername>/historian-rest-a

pi/v1/dhsservice/<DHS service name>

SAMPLE URI https://<historianservername>/historian-rest-a

pi/v1/dhsservice/ DataArchiver_xxx

{

 "LogicalName": "DataArchiver_xxx",

 "NodeName": "xxx",

Historian | 8 - Historian REST APIs | 1286

 "ServiceType": 2,

 "Status": 1,

 "TCPPort": 14005

}

SAMPLE RESPONSE {

 "ErrorCode": 0,

 "ErrorMessage": null,

 "Data": {

 "LogicalName": "DataArchiver_xxx",

 "NodeName": "xxx",

 "ServiceType": 2,

 "Status": 1,

 "TCPPort": 14005

 }

}

SAMPLE cURL COMMAND curl -i -H "Accept: application/json" -i -H

 "Content-Type: application/json"

-H "Authorization: Bearer <TOKEN>” -d “{ \”

 LogicalName \”:\” DataArchiver_xxx \”,

\" NodeName \": \"xxx\"\”,\" ServiceType \":

 2,\" Status\": 1, \" TCPPort \": 14005}” -X PUT

https://<historianservername>/historian-rest-a

pi/v1/dhsservice/DataArchiver_xxx

Historian | 8 - Historian REST APIs | 1287

Table 118. Query Parameters

Parameter Description Required? Values

Payload Contains the values of the attrib

utes of the data store that you

want to change.

Yes Multiple

Table 119. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, ErrorCode = 0 implies the

operation was successful.

ErrorMessage String Yes For example, NULL.

Managing Historian Model

The Add Object Type API

Using this API, you can create an object type.

METHOD POST

URI https://<historianservername>/histori

an-model/v2/objectTypes

SAMPLE QUERY PARAM POST URL https://localhost:443/historian-mod

el/v2/objectTypes

SAMPLE PAYLOAD [

{

"name":"Vehicle",

"description":"Vehicle description",

"dataVariables":[],

"containedObjectTypes":[],

"objectTypeTemplates":[],

"lastModifiedUser":"",

"lastmodifiedTime":"",

"versionNumber":0

}

]

Historian | 8 - Historian REST APIs | 1288

Table 120. Payload Parameters

Parameter Description Required? Data Type

name The object type name (must be

unique).

Yes String

description The description of the object

type.

No String

containedOb

jectTypes

The list of contained types with

details

No Array

objectType

Templates

The list of object type templates,

along with their details.

No Array

lastModified

User

The username of the user who

created the object type.

Yes String

lastModified

Time

The current time. Yes String

versionNumber The version number of the object

type. Start with 1 and increment

by 1 each time you want to modi

fy the object type.

Yes Number

Table 121. Response Parameters

Parameter Data Type Description

detail String Description of the error.

error_code Integer The error code. A value of 0 indicates that the

operation was successful.

status String The http request status.

title String The title of the error.

type String The type of the error.

The View Object Type API

Using this API, you can access an object type.

METHOD POST

Historian | 8 - Historian REST APIs | 1289

URI https://<historianservername>/histori

an-model/v2/objectTypes/info

SAMPLE QUERY PARAM POST URL https://localhost:443/historian-mod

el/v2/objectTypes/info

SAMPLE RESPONSE {

"containedObjectTypes":[],

"dataVariables":[],

"description":"Vehicle description",

"lastModifiedUser":"XYZ.admin",

"lastmodifiedTime":"2022-01-21 08:58:20",

"name":"Vehicle",

"objectTypeTemplates":[{"containedObjectType

s":[],

"dataVariables":[],

"defaultTemplate":true,

"description":"Default_Template_Vehicle",

"lastModifiedUser":"XYZ.admin",

"lastmodifiedTime":"2022-01-21 08:58:20",

"name":"Default_Template_Vehicle",

"objectType":"Vehicle",

"substituteParameters":[],

"versionNumber":3}],

"versionNumber":3

}

SAMPLE PAYLOAD {"databaseName":"XYZ","name":"Vehicle"}

Table 122. Payload Parameters

Parameter Description Required? Data Type

name The object type name (must be

unique).

Yes String

databaseName The name of the Historian serv

er.

Yes String

Historian | 8 - Historian REST APIs | 1290

Table 123. Response Parameters

Parameter Data Type Description

name String The object type name (must be unique).

description String The description of the object type.

containedObject

Types

Array The list of contained types with details

dataVariables Array The list of variables (with details) in the

object type.

objectTypeTem

plates

Array The list of object type templates, along

with their details.

lastModifiedUser String The username of the user who created

the object type.

lastModifiedTime String The current time.

versionNumber Number The version number of the object type.

Start with 1 and increment by 1 each

time you want to modify the object

type.

Table 124. objectTypeTemplates Array Parameters

Parameter Data Type Description

name String The object type name (must be unique).

description String The description of the object type.

containedObject

Types

Array The list of contained types with details

dataVariables Array The list of variables (with details) in the

object type.

lastModifiedUser String The username of the user who created

the object type.

lastModifiedTime String The current time.

versionNumber Number The version number of the object type.

Start with 1 and increment by 1 each

Historian | 8 - Historian REST APIs | 1291

Table 124. objectTypeTemplates Array Parameters (continued)

Parameter Data Type Description

time you want to modify the object

type.

ObjectType String The object type name.

substitutePara

meters

Array Blank (not applicable)

The Update Object Type API

Using this API, you can modify an object type.

METHOD PUT

URI https://<historianservername>/histori

an-model/v2/objectTypes

SAMPLE QUERY PARAM POST URL https://localhost:443/historian-mod

el/v2/objectTypes

SAMPLE RESPONSE Error code and message, specifying whether

the object type has been modified (200 for

success and other codes for failure).

HEADER • Content type: multipart/form-data

• Boundary: ----WebKitFormBoundary

KeyName

SAMPLE PAYLOAD ------WebKitFormBoundaryViBtYYvOfWhTYyhH

Content-Disposition: form-data;

 name="objectTypeInfo"; filename="blob"

Content-Type: application/json

{

"containedObjectTypes":[],

"dataVariables":

[

{

"baseType":"NUMBER",

"description":"",

Historian | 8 - Historian REST APIs | 1292

"name":"Speed",

"variableType":"Direct"

},

{

"baseType":"STRING",

"description":"",

"name":"Type",

"variableType":"InDirect"

}

],

"description":"Vehicle description",

"lastModifiedUser":"XYZ.admin",

"lastmodifiedTime":"2022-01-21 11:37:56",

"name":"Vehicle",

"objectTypeTemplates":

[

{

"containedObjectTypes":[],

"dataVariables":

[

{

"baseType":"NUMBER",

"description":"",

"name":"Speed",

"properties":

{"blockType":"AI",

"propertyDefinition":[]

},

"required":true,

"templateTagName":"",

"variableType":"DIRECT"

},

{

"baseType":"STRING",

"description":"",

"name":"Type",

"properties":

Historian | 8 - Historian REST APIs | 1293

{

"blockType":"AI",

"propertyDefinition":[]

},

"required":true,

"templateTagName":"",

"variableType":"INDIRECT"

}

],

"defaultTemplate":true,

"description":"Default_Template_Vehicle",

"lastModifiedUser":"XYZ.admin",

"lastmodifiedTime":"2022-01-21 11:37:56",

"name":"Default_Template_Vehicle",

"objectType":"Vehicle",

"substituteParameters":[],

"versionNumber":5

}

],

"versionNumber":5,

"databaseName":"XYZ",

"containedObjectTypesChanges":

[

{

"newName":"",

"oldName":"Engine"

}

],

"dataVariablesChanges":

[

{

"newName":"",

"oldName":"Color"

}

],

"objectTypeTemplatesChanges":

[

Historian | 8 - Historian REST APIs | 1294

{

"newName":"",

"oldName":"Car"

}

]

}

------WebKitFormBoundaryViBtYYvOfWhTYyhH--

Table 125. Payload Parameters

Parameter Description Required? Data Type

name The object type name (must be

unique).

Yes String

description The description of the object

type.

No String

dataVariables The list of variables in the object

type.

No Array

containedOb

jectTypes

The list of contained types with

details

No Array

objectType

Templates

The list of object type templates,

along with their details.

No Array

lastModified

User

The username of the user who

created the object type.

Yes String

lastModified

Time

The current time. Yes String

versionNumber The version number of the object

type. Start with 1 and increment

by 1 each time you want to modi

fy the object type.

Yes Number

Table 126. Response Parameters

Parameter Data Type Description

name String The object type name (must be unique).

description String The description of the object type.

Historian | 8 - Historian REST APIs | 1295

Table 126. Response Parameters (continued)

Parameter Data Type Description

containedObject

Types

Array The list of contained types with details.

dataVariables Array The list of variables (with details) in the

object type.

objectTypeTem

plates

Array The list of object type templates, along

with their details.

lastModifiedUser String The username of the user who created

the object type.

lastModifiedTime String The current time.

versionNumber Number The version number of the object type.

Start with 1 and increment by 1 each

time you want to modify the object

type.

databaseName The name of the Historian

server.

Yes

containedObject

TypeChanges

The list of changes in the

contained type.

No

dataVariables

Changes

The list of changes in the ob

ject type variables.

No

objectTypeTem

platesChanges

The list of changes in the ob

ject type templates.

No

Table 127. objectTypeTemplates Array Parameters

Parameter Description Data Type

name The object type name (must be unique). String

description The description of the object type. String

containedObject

Types

The list of contained types with details Array

Historian | 8 - Historian REST APIs | 1296

Table 127. objectTypeTemplates Array Parameters (continued)

Parameter Description Data Type

dataVariables The list of variables (with details) in the

object type.

Array

lastModifiedUser The username of the user who created

the object type.

String

lastModifiedTime The current time. String

versionNumber The version number of the object type.

Start with 1 and increment by 1 each

time you want to modify the object

type.

Number

ObjectType The object type name. String

substitutePara

meters

Blank (not applicable) Array

Table 128. dataVariables Array Parameters

Parameter Description
Re

quired?
Data Type

name The name of the object type name (must be unique). Yes String

description The description of the object type. No String

variableType The type of the variable (direct, indirect, or static). No String

baseType Not applicable No String

dbTagName Not applicable No String

Table 129. containedObjectTypes Array Parameters

Parameter Description
Re

quired?

Data

Type

name The name of the object type (must be unique). Yes String

description The description of the object type). No String

containedOb

jectType

The name of the object type that you want to use as a

contained type.

No String

Historian | 8 - Historian REST APIs | 1297

Table 129. containedObjectTypes Array Parameters (continued)

Parameter Description
Re

quired?

Data

Type

baseType The type of the contained type (ThingName indicates a

contained type).

No String

Table 130. Response Parameters

Parameter Data Type Description

detail String The description of the error.

error_code Integer The error code. A value of 0 indicates that the

operation was successful.

status String The http request status.

title String The title of the error.

type String The type of the error.

The Contained Type List API

Using this API, you can get a list of contained types in each object type.

METHOD GET

URI https://<historianservername> /historian-model/v2/ con

tainedObjectTypesMap

SAMPLE QUERY PARAM

GET URL

https://localhost:443/historian-model/v2/containedOb

jectTypesMap

Table 131. Response Parameters

Parameter Description Data Type

containedObjectTypes The list of contained types. Array

name The object type in which the contained type is used. String

The Create Object Instance API

Using this API, you can create an object instance.

Historian | 8 - Historian REST APIs | 1298

METHOD POST

URI https://<historianservername> /historian-mod

el/v2/objects

SAMPLE QUERY PARAM POST URL https://localhost:443/historian-model/v2/objects

SAMPLE PAYLOAD [

{

"containedObjects":[],

"containedType":false,

"dataVariables":[],

"databaseName":"XYZ",

"description":"",

"fullName":"",

"name":"Audi1",

"objectDataValueChanges":[],

"objectDataValues":[],

"objectType":"Vehicle",

"objectTypeTemplate":"Car",

"override":false,

"parentName":"",

"substituteParameters":[],

"v1Type":false,

"versionNumber":0

}

]

Table 132. Payload Parameters

Para

meter
Description

Re

quired?

Data

Type

con

tained

Objects

The list of contained object types. No Array

con

tained

Type

Indicates whether the object type is used as a contained

type (by default, False).

Yes Boolean

Historian | 8 - Historian REST APIs | 1299

Table 132. Payload Parameters (continued)

Para

meter
Description

Re

quired?

Data

Type

data

Vari

ables

The list of variables with details. No Array

descrip

tion

The description of the object instance. No String

fullName The full name of the object instance, which contains the

name of the original object type, followed by the contained

type name (as applicable).

No String

name The name of the object instance. Yes String

object

Data

Value

Changes

The list of changes in the object instance. No Array

Object

Type

The object type from which this instance must be created. Yes String

object

TypeTem

plate

The name of the template you want to use in the object in

stance.

Yes String

Override True or false (required, but not used in Historian). No Boolean

parent

Name

The name of the object type. No String

substi

tutePa

rameters

Not applicable No String

v1Type Indicates whether it is an Operations Hub model or a Histori

an model (by default, False, indicating a Historian model).

Yes Boolean

version

Number

The version number of the object instance. Yes Number

Historian | 8 - Historian REST APIs | 1300

Table 132. Payload Parameters (continued)

Para

meter
Description

Re

quired?

Data

Type

data

baseName

The name of the Historian system. Yes String

Table 133. Response Parameters

Parameter Data Type Description

detail String Description of the error.

error_code Integer The error code. A value of 0 indicates that the

operation was successful.

status String The http request status.

title String The title of the error.

type String The type of the error.

The Object Instance Info API

Using this API, you can view an object instance.

METHOD POST

URI https://<historianservername>/historian-mod

el/v2/objects/info

SAMPLE QUERY PARAM POST

URL

https://localhost:443/historian-model/v2/ob

jects/info

SAMPLE RESPONSE {

"containedObjects":

[

{

"alias":"Engine",

"baseType":"THINGNAME",

"containedObjectType":"Engine",

"containedObjectTypeTemplate":"Default_Template_Engine",

"description":"Engine",

"fullName":"Audi1>Engine",

Historian | 8 - Historian REST APIs | 1301

"name":"Engine",

"variableType":"ContainedAsset"

}

],

"containedType":false,

"dataVariables":

[

{

"baseType":"NUMBER",

"blockType":"AI",

"dbTagName":"Speed",

"description":"",

"name":"Speed",

"properties":[],

"required":true,

"variableType":"Direct"

},

{

"baseType":"STRING",

"blockType":"AI",

"dbTagName":"Type",

"description":"",

"name":"Type",

"properties":[],

"required":true,

"variableType":"InDirect"

},

{

"baseType":"NUMBER",

"blockType":"AI",

"dbTagName":"Color",

"description":"",

"name":"Color",

"properties":[],

"required":true,

"variableType":"Static"

}

Historian | 8 - Historian REST APIs | 1302

],

"databaseName":"XYZ",

"description":"",

"lastModifiedUser":"XYZ.admin",

"lastmodifiedTime":"2022-01-21 11:38:59",

"name":"Audi1",

"objectType":"Vehicle",

"objectTypeTemplate":"Car",

"override":false,"parentName":">",

"substituteParameters":[],

"v1Type":false,

"versionNumber":3

}

SAMPLE PAYLOAD {"name":"Audi1","databaseName":"XYZ"}

Table 134. Payload Parameters

Parameter Description
Re

quired?
Data Type

name The name of the object instance. Yes String

databaseName The name of the Historian serv

er.

No String

Table 135. Response Parameters

Parameter Description
Data

Type

contained

Objects

The list of contained object types. Array

contained

Type

Indicates whether the object type is used as a contained type. Boolean

dataVari

ables

The list of variables with details. Array

description The description of the object instance. String

fullName The full name of the object instance. String

Historian | 8 - Historian REST APIs | 1303

Table 135. Response Parameters (continued)

Parameter Description
Data

Type

name The name of the object instance. String

object

DataValue

Changes

The list of changes in the object instance. Array

ObjectType The name of the object instance from which this instance is creat

ed.

String

objectType

Template

The name of the object type template used in the object instance. String

Override True or false. Boolean

parentName The name of the parent. String

substitute

Parameters

Not applicable String

v1Type Indicates whether it is an Operations Hub model or a Historian

model (by default, False, indicating a Historian model).

Boolean

versionNum

ber

The version number of the object instance. Number

database

Name

The name of the Historian server. String

Table 136. containedObjectTypes Array Parameters

Parameter Description
Re

quired?

Data

Type

alias The name of the variable. No String

variableType The type of the variable (direct, indirect, or static). No String

name The name of the object type (must be unique). Yes String

description The description of the object type). No String

Historian | 8 - Historian REST APIs | 1304

Table 136. containedObjectTypes Array Parameters (continued)

Parameter Description
Re

quired?

Data

Type

containedObject

Type

The name of the object type that you want to use

as a contained type.

No String

containedObject

TypeTemplate

The template in the contained type that you want

to use.

No String

baseType The type of the contained type (ThingName indi

cates a contained type).

No String

Table 137. Data Variables Parameters

Para

meter
Description

Re

quired?

Data

Type

baseType The type of the contained type (ThingName indicates a con

tained type).

No String

blockType Not applicable No String

dbTagName The tag mapped with the variable (in the case of a direct or

indirect variable).

No String

descrip

tion

The description of the object instance. No String

name The name of the variable. No String

proper

ties

Not applicable No Array

required Indicates whether this variable is included in the object in

stance.

No String

variable

Type

The data type of the variable (direct, indirect, or static). No String

The Object Instance with Contained Type Variables API

Using this API, you can view the contained type variables in an object instance.

METHOD POST

Historian | 8 - Historian REST APIs | 1305

URI https://<historianservername>/historian-model/v2/types

InstancesList/objects

SAMPLE QUERY PARAM

POST URL

https://localhost:443/historian-model/v2/typesIn

stancesList/objects

SAMPLE RESPONSE [

{

"hasItems":true,

"id":"Instances_Audi1_V_",

"loaded":false,

"parentId":"Instances_Audi1",

"text":"Variables",

"type":"objectInstanceVariableRootNode"

},

{

"hasItems":false,

"id":"Instances_Audi1_V_0",

"loaded":false,

"objectFullName":"Audi1",

"parentId":"Instances_Audi1_V_",

"parentObjectName":"Audi1",

"text":"Speed",

"type":"objectInstanceVariableNode"

},

{

"hasItems":false,

"id":"Instances_Audi1_V_1",

"loaded":false,

"objectFullName":"Audi1",

"parentId":"Instances_Audi1_V_",

"parentObjectName":"Audi1",

"text":"Type",

"type":"objectInstanceVariableNode"

},

{

"hasItems":false,

"id":"Instances_Audi1_V_2",

Historian | 8 - Historian REST APIs | 1306

"loaded":false,

"objectFullName":"Audi1",

"parentId":"Instances_Audi1_V_",

"parentObjectName":"Audi1",

"text":"Color",

"type":"objectInstanceVariableNode"

},

{

"hasItems":true,

"id":"Instances_Audi10",

"loaded":false,

"objectFullName":"Audi1>Engine",

"objectType":"Engine",

"objectTypeTemplate":"Default_Template_Engine",

"parentId":"Instances_Audi1",

"parentObjectName":"Audi1",

"status":"state_new",

"text":"Engine",

"type":"objectInstanceContainedAssetNode"

},

{

"hasItems":false,

"id":"Instances_Audi10_V_",

"loaded":false,

"parentId":"Instances_Audi10",

"text":"Variables",

"type":"objectInstanceVariableRootNode"

}

]

SAMPLE PAYLOAD {"name":"Audi1","databaseName":"XYZ"}

Table 138. Payload Parameters

Parameter Description
Re

quired?
Data Type

name The name of the object instance. Yes String

Historian | 8 - Historian REST APIs | 1307

Table 138. Payload Parameters (continued)

Parameter Description
Re

quired?
Data Type

databaseName The name of the Historian sys

tem.

Yes String

Table 139. Response Parameters

Para

meter
Description

Data

Type

hasItems Indicates whether the variable is a static text or a variable (be default,

false, indicating that it is static text).

Boolean

id The sequence ID to render the model tree. String

loaded Not applicable Boolean

parentId The ID of the parent. String

text Contains the static text value or, in the case of variables, contains the

text Variables.

String

type The type of the variable:

• objectInstanceVariableRootNode: Indicates static text.

• objectInstanceVariableNode: Indicates direct, indirect, or a stat

ic variable.

• objectInstanceContainedAssetNode: Indicates a variable in a

contained type.

String

The Object Instance - Variable Information API

Using this API, you can view the variable details of an object instance.

METHOD POST

URI https://<historianservername> /historian-model/v2/ ob

jects/variables/info

SAMPLE QUERY PARAM

POST URL

https://localhost:443/historian-model/v2/objects/vari

ables/info

Historian | 8 - Historian REST APIs | 1308

SAMPLE RESPONSE {

"blockType":"AI",

"variableName":"Speed",

"variableTagName":"Audi1>Speed",

"variableType":"Direct",

"variableValue":"Audi1>Speed"

}

SAMPLE PAYLOAD {"databaseName":"XYZ","name":"Audi1>Speed"}

Table 140. Payload Parameters

Parameter Description
Re

quired?
Data Type

name The name of the object instance. Yes String

databaseName The name of the Historian sys

tem.

Yes String

Table 141. Response Parameters

Para

meter
Description

Data

Type

block

Type

Not applicable String

vari

ableName

The name of the variable. String

vari

ableTag

Name

The name of the tag associated with the variable (not applicable for a

static variable).

String

vari

ableType

The type of the variable (static, direct, or indirect). String

variabl

eValue

The value of the variable (in case of a static variable) or the associated

tag (in case of a direct or indirect variable).

String

The Historian Model API

Using this API, you can view the Historian model of a Historian system.

Historian | 8 - Historian REST APIs | 1309

METHOD POST

URI https://<historianservername>/historian-mod

el/v2/typesObjectsList

SAMPLE QUERY PARAM POST

URL

https://localhost:443/historian-model/v2/typesOb

jectsList

SAMPLE PAYLOAD {"databaseName":"XYZ"}

Table 142. Payload Parameters

Parameter Description
Re

quired?
Data Type

databaseName The name of the Historian sys

tem.

Yes String

Table 143. Response Parameters

Parameter Description
Data

Type

assetTemplates List of all the templates in the Historian model. Array

assetTemplatesIn

fo

List of the details of all the templates in the Historian mod

el.

Array

assetTypes List of all the object types in the Historian model. Array

assetTypesInfo List of the details of all the object types in the Historian

model.

Array

assets List of all the object instances in the Historian model. Array

assetsInfo List of the details of all the object types in the Historian

model.

Array

Table 144. assetTemplates Parameters

Parameter Description Data Type

defaultTemplate Indicates whether it is the default template. Boolean

description The description of the template. String

Historian | 8 - Historian REST APIs | 1310

Table 144. assetTemplates Parameters (continued)

Parameter Description Data Type

lastModified

User

The username of the user who last modified the tem

plate.

String

lastmodified

Time

The date and time when the template was last modified. Date and

time

name The name of the template. String

objectType The name of the object type associated with the tem

plate.

String

versionNumber The version number of the template. Integer

Table 145. assets Parameters

Parameter Description Data Type

assetFullName The full name of the object instance. Array

assetName The name of the object instance. String

lastModified

User

The username of the user who last modified the object in

stance.

String

lastmodified

Time

The date and time when the object instance was last mod

ified.

Date and

time

assetParent

Name

The parent name of the asset. String

containedAs

sets

List of all the contained types in the object type. Array

versionNumber The version number of the object instance. Integer

Table 146. assetsInfo Parameters

Parameter Description Data Type

containedType Indicates whether the object type is a contained type. Boolean

databaseName The name of the Historian system. String

Historian | 8 - Historian REST APIs | 1311

Table 146. assetsInfo Parameters (continued)

Parameter Description Data Type

lastModified

User

The username of the user who last modified the object in

stance.

String

lastmodified

Time

The date and time when the object instance was last

modified.

Date and

time

description The description of the object instance. String

name The name of the object instance. String

objectType The name of the object type associated with the object

instance.

String

objectTypeTem

plate

The name of the template used in the object instance. String

Override Updated or not. Boolean

ParentName The parent name of the asset. String

status Not applicable String

v1Type Not applicable Boolean

versionNumber The version number of the object instance. number

The Export Historian Model API

When you create an object type or an object instance, you can use it only in the Historian

system in which you have created it. If, however, you want to use the object type/instance

in a different Historian system, you can export it and then import it into the other Historian

system.

Using this API, you can export a Historian model, along with the object types, object

instances, variables, templates, and contained types, into another Historian system.

METHOD GET

URI http://<historianservername>/historian-model/v2/export?type

s=<true/false>&templates=<true/false>&instances=<true/

false>&databaseName=<encrypted Historian system name>

Historian | 8 - Historian REST APIs | 1312

SAMPLE QUERY

PARAM GET URL

http://localhost:443/historian-model/v2/export?types=true&tem

plates=true&instances=true&databaseName=KNQWYA

SAMPLE

RESPONSE

{

"admissionTime": 1642600209,

"jobId": 0

}

Table 147. Query Parameters

Para

meter
Description

Re

quired?
Data Type

types Indicates whether you want to include object types while

exporting the Historian model.

Yes Boolean

tem

plates

Indicates whether you want to include templates while ex

porting the Historian model.

No Boolean

in

stances

Indicates whether you want to include object instances

while exporting the Historian model.

No Boolean

data

base

Name

The Historian system from which you want to export the

Historian model.

Yes String (En

crypted)

Table 148. Response Parameters

Parameter Description Data Type

admission

Time

The timestamp in Epoch time format when the model is ex

ported.

Unix Time

Stamp

jobId The job id with which the operation started. Integer

The Export Historian Model to Historian - Job Status API

Using this API, you can view the status of exporting a Historian model to another Historian

system.

METHOD GET

URI http: //<historianservername>/historian-model/im

port-export/status/?jobId=<jobId>

Historian | 8 - Historian REST APIs | 1313

SAMPLE QUERY PARAM

GET URL

http://localhost:443/historian-model/import-export/sta

tus/?jobId=1

SAMPLE RESPONSE {

"admissionTime": 1642601025,

"completionTime": 1642601025,

"isRunning": 0,

"processing": "Completed",

"processingElement": 14,

"startTime": 1642601025,

"statusPercentage": 100

}

Table 149. Query Parameters

Para

meter
Description

Re

quired?
Data Type

jobId The job created when the export command is run. Yes Integer

Table 150. Response Parameters

Parameter Description Data Type

admissionTime The timestamp in Epoch time format when the model is

exported.

Unix Time

Stamp

completionTime The completing time of the job. Unix Time

Stamp

isRunning The status of the job. String

processing Indicates whether the elements are being processed. String

processingEle

ment

The element that is being processed. String

startTime The start time of the job. Unix Time

Stamp

statusPercent

age

The percentage of job completion. Integer

The Historian Model to Historian - Job Log API

Historian | 8 - Historian REST APIs | 1314

Using this API, you can view the job log of exporting a Historian model to another Historian

system.

METHOD GET

URI http: //<historianservername>/historian-model/im

port-export/log/?jobId=<jobId>

SAMPLE QUERY PARAM GET

URL

http://localhost:443/historian-model/import-ex

port/log/?jobId=1

SAMPLE RESPONSE [

{

"Elements": ["2022-01-19T08-08-43\t"],

"LogStringCode": 12304

},

{

"Elements": ["2022-01-19T08-08-43\t","3"],

"LogStringCode": 12309

},

{

"Elements": ["2022-01-19T08-08-43\t","2.1"],

"LogStringCode": 12310

}

]

Table 151. Query Parameters

Para

meter
Description

Re

quired?
Data Type

jobId The job created when you run the export command. Yes Integer

Table 152. Response Parameters

Parameter Description Data Type

Array of Ele

ments

List of elements that are processed. Array

LogStringCode The processing code. Integer

The Export Historian Model to Historian - Job Result API

Historian | 8 - Historian REST APIs | 1315

Using this API, you can export and retrieve a Historian model in a CSV file. You can then

import it into another Historian model.

METHOD GET

URI http: //<historianservername>/historian-model/im

port-export/result/?jobId=<jobId>

SAMPLE QUERY PARAM

GET URL

http://localhost:443/historian-model/import-export/re

sult/?jobId=1

Table 153. Query Parameters

Para

meter
Description

Re

quired?
Data Type

jobId The job created when you run the export command. Yes Integer

Table 154. Response Parameters

Para

meter
Description Data Type

CSV file Contains the exported model file

The Export Historian Model to Operations Hub API

When you create an object type or an object instance, you can use it only in the Historian

system in which you have created it. If, however, you want to use the object type/instance in

Operations Hub, you can export it and then import it into Operations Hub.

Using this API, you can export a Historian model to Operations Hub.

METHOD GET

URI http://<historianservername>/historian-model/v2/export?type

s=<true/false>&instances=<true/false>&forOpsHub=<true/

false>&databaseName=<encrypted Historian system name>

SAMPLE QUERY

PARAM GET URL

http://localhost:443/historian-model/v2/export?types=true&in

stances=true&forOpsHub=true&databaseName=KNOGEYA

SAMPLE

RESPONSE

{

"admissionTime": 1642600209,

Historian | 8 - Historian REST APIs | 1316

"jobId": 0

}

Table 155. Query Parameters

Para

meter
Description

Re

quired?
Data Type

types Indicates whether you want to include object types while

exporting the Historian model.

Yes Boolean

in

stances

Indicates whether you want to include object instances

while exporting the Historian model.

No Boolean

data

base

Name

The Historian system from which you want to export the

Historian model.

Yes String (En

crypted)

Table 156. Response Parameters

Parameter Description Data Type

admission

Time

The timestamp in Epoch time format when the model is ex

ported.

Unix Time

Stamp

jobId The job id with which the operation started. Integer

The Export Historian Model to Operations Hub Job Status API

Using this API, you can get the job status of exporting a Historian model to Operations Hub.

METHOD GET

URI http://<historianservername>/historian-model/import-ex

port/status/?jobId=<jobId>

SAMPLE QUERY PARAM

GET URL

http://localhost:443/historian-model/import-export/sta

tus/?jobId=1

SAMPLE RESPONSE {

"admissionTime": 1642601025,

"completionTime": 1642601025,

"isRunning": 0,

"processing": "Completed",

"processingElement": 14,

Historian | 8 - Historian REST APIs | 1317

"startTime": 1642601025,

"statusPercentage": 100

}

Table 157. Query Parameters

Para

meter
Description

Re

quired?
Data Type

jobId The job created when you run the export command. Yes Integer

Table 158. Response Parameters

Parameter Description Data Type

admissionTime The timestamp in Epoch time format when the model is

exported.

Unix Time

Stamp

completionTime The completion time of the job. Unix Time

Stamp

isRunning The status of the job. String

processing Indicates whether the elements are being processed. String

processingEle

ment

The element which is being processed. String

startTime The start time of the job. Unix Time

Stamp

statusPercent

age

The percentage of job completion. Integer

The Export Historian Model to Operations Hub Job Log API

Using this API, you can get the log of the job when exporting a Historian model to

Operations Hub.

METHOD GET

URI http: //<historianservername>/historian-model/im

port-export/log/?jobId=<jobId>

SAMPLE QUERY PARAM GET

URL

http://localhost:443/historian-model/import-ex

port/log/?jobId=1

Historian | 8 - Historian REST APIs | 1318

SAMPLE RESPONSE [

{

"Elements": ["2022-01-19T08-08-43\t"],

"LogStringCode": 12304

},

{

"Elements": ["2022-01-19T08-08-43\t", "3"],

"LogStringCode": 12309

},

{

"Elements": ["2022-01-19T08-08-43\t","2.1"],

"LogStringCode": 12310

}

]

Table 159. Query Parameters

Para

meter
Description

Re

quired?
Data Type

jobId The job created when you run the export command. Yes Integer

Table 160. Response Parameters

Parameter Description Data Type

Array of Ele

ments

List of elements that are processed. Array

LogStringCode The processing code. Integer

The Export Historian Model to Operations Hub Job Result API

Using this API, you can export and retrieve a Historian model in a CSV file. You can then

import it into Operations Hub.

METHOD GET

URI http://<historianservername>/historian-model/import-ex

port/result/?jobId=<jobId>

Historian | 8 - Historian REST APIs | 1319

SAMPLE QUERY PARAM

GET URL

http://localhost:443/historian-model/import-export/re

sult/?jobId=1

Table 161. Query Parameters

Para

meter
Description

Re

quired?
Data Type

jobId The job created when you run the export command. Yes Integer

Table 162. Response Parameters

Para

meter
Description Data Type

CSV file Contains the exported model. file

The Import Model to Historian API

Using this API, you can import a Historian model from one system to another.

Important:

If the name of a tag associated with a variable in a model contains a period (.), you

cannot import the tag while importing the model into a Historian system.

METHOD POST

URI http://<historianservername>/historian-model/v2/import?type

s=<true/false>&templates=<true/false>&instances=<true/

false>&databaseName=<encrypted Historian system name>

SAMPLE QUERY

PARAM GET URL

http://localhost:443/historian-model/v2/import?types=true&tem

plates=true&instances=true&databaseName=KGEYA

SAMPLE

RESPONSE

{

"admissionTime": 1642600209,

"jobId": 0

}

Historian | 8 - Historian REST APIs | 1320

Table 163. Payload Parameters

Pay

load
Description

Re

quired?
Data Type

body CSV file that you want to import Yes file

Table 164. Query Parameters

Para

meter
Description

Re

quired?
Data Type

types Indicates whether you want to import object types. Yes Boolean

templates Indicates whether you want to import templates. No Boolean

instances Indicates whether you want to import object in

stances.

No Boolean

database

Name

The Historian system name in to which you want to

import the model.

Yes String (En

crypted)

Table 165. Response Parameters

Parameter Description Data Type

admission

Time

The timestamp in Epoch time format when the model is im

ported.

Unix Time

Stamp

jobId The job id with which the operation started. Integer

The Import Historian Model to Historian - Job Status API

Using this API, you can view the job status of importing a Historian model to another

Historian system.

METHOD GET

URI http://<historianservername>/historian-model/import-ex

port/status/?jobId=<jobId>

SAMPLE QUERY PARAM

GET URL

http://localhost:443/historian-model/import-export/sta

tus/?jobId=1

SAMPLE RESPONSE {

"admissionTime": 1642601025,

Historian | 8 - Historian REST APIs | 1321

"completionTime": 1642601025,

"isRunning": 0,

"processing": "Completed",

"processingElement": 14,

"startTime": 1642601025,

"statusPercentage": 100

}

Table 166. Query Parameters

Para

meter
Description

Re

quired?
Data Type

jobId The job created when the import command is run. Yes Integer

Parameter Description Data Type

admissionTime The error in text format. Unix Time Stamp

completionTime The completed time of the job. Unix Time Stamp

isRunning The status of the job. String

processing Indicates whether the elements are processed. String

processingElement The element that is being processed. String

startTime The start time of the job. Unix Time Stamp

statusPercentage The percentage of job completion. Integer

The Import Historian Model to Historian - Job Log API

Using this API, you can view the job log of importing a Historian model into another

Historian model.

METHOD GET

URI http://<historianservername>/historian-model/im

port-export/log/?jobId=<jobId>

SAMPLE QUERY PARAM GET

URL

http://localhost:443/historian-model/import-ex

port/log/?jobId=1

SAMPLE RESPONSE [

{

Historian | 8 - Historian REST APIs | 1322

"Elements": ["2022-01-19T08-08-43\t"],

"LogStringCode": 12304

},

{

"Elements": ["2022-01-19T08-08-43\t","3"],

"LogStringCode": 12309

},

{

"Elements": ["2022-01-19T08-08-43\t","2.1"],

"LogStringCode": 12310

}

]

Table 167. Query Parameters

Para

meter
Description

Re

quired?
Data Type

jobId The job created when the import command is run. Yes Integer

Table 168. Response Parameters

Parameter Description Data Type

Array of Ele

ments

The list of elements that are processed. Array

LogStringCode The processing code. Integer

The Import Historian Model to Historian - Result API

Using this API, you can view the result of importing a Historian model into another Historian

system.

METHOD GET

URI http://<historianservername>/historian-model/import-ex

port/result/?jobId=<jobId>

SAMPLE QUERY PARAM

GET URL

http://localhost:443/historian-model/import-export/re

sult/?jobId=1

Historian | 8 - Historian REST APIs | 1323

SAMPLE RESPONSE [

{

"Elements":["2022-01-19T08-06-59\t","72","Contained

 Asset","Engine1"],

"LogStringCode":12214

},

{

"Elements":["2022-01-19T08-06-59\t","73","Contained

 Asset","cylinder1"],

"LogStringCode":12214

},

{

"Elements":["2022-01-19T08-06-59\t","74","Contained

 Asset","piston1"],

"LogStringCode":12214

}

]

Table 169. Payload Parameters

Para

meter
Description

Re

quired?
Data Type

jobId The job created when the import command is run. Yes Integer

Table 170. Response Parameters

Parameter Description Data Type

Array of Ele

ments

The list of elements that are processed. Array

LogStringCode The processing code. Integer

The Duplicate Object Instance API

Using this API, you can copy an object instance.

METHOD POST

URI http: //<historianservername>/historian-mod

el/v2/objects/clone

Historian | 8 - Historian REST APIs | 1324

SAMPLE QUERY PARAM POST

URL

http://localhost:443/historian-model/v2/ob

jects/clone

SAMPLE PAYLOAD {

"databaseName":"XYZ",

"source": "Vehicle",

"destination": "Audi",

"description": "the new object"

}

Table 171. Payload Parameters

Parameter Description
Re

quired?

Data

Type

database

Name

The name of the Historian system. Yes String

source The name of the object instance that you want to copy. Yes String

destina

tion

The name that you want to provide for the copied object

instance.

Yes String

descrip

tion

The description of the new object instance. No String

The Duplicate Object Type API

Using this API, you can copy an object type. When you copy an object type, all the templates

and variables are copied too.

METHOD POST

URI http: //<historianservername>/historian-model/v2/ob

jectTypes/clone

SAMPLE QUERY PARAM POST

URL

http://localhost:443/historian-model/v2/object

Types/clone

SAMPLE PAYLOAD {

"source": "Vehicle",

"destination": "Audi",

Historian | 8 - Historian REST APIs | 1325

"description": "the new object"

}

Table 172. Payload Parameters

Parameter Description
Re

quired?

Data

Type

source The name of the object type that you want to copy. Yes String

destina

tion

The name that you want to provide for the copied object

type.

Yes String

descrip

tion

The description of the new object type. No String

The Export Object Instance API

Using this API, you can export an object instance into another Historian system.

METHOD POST

URI http: //<historianservername>/historian-mod

el/v2/export/objects

SAMPLE QUERY PARAM POST

URL

http://localhost:443/historian-model/v2/export/ob

jects

SAMPLE PAYLOAD {

"objects":

[

"object_Instance_1",

"Object_Instance_2"

],

"objectType": "Audi",

"objectTypeTemplate": "Vehicle",

"databaseName": "XYZ"

}

Historian | 8 - Historian REST APIs | 1326

Table 173. Payload Parameters

Parameter Description
Re

quired?

Data

Type

objects The list of the object instances that you want to export. Yes Array

objectType The object type associated with the object instances

that you want to export.

Yes String

objectType

Template

The template type of the object instances that you want

to export.

No String

database

Name

The name of the Historian system. Yes String

The Export Object Type API

Using this API, you can export an object type into another Historian system.

METHOD POST

URI http://<historianservername>/historian-model/export/ob

jectTypes

SAMPLE QUERY PARAM

POST URL

http://localhost:443/historian-model/export/object

Types?databaseName= KOGEYA

SAMPLE PAYLOAD {

"objectType":

["object_type_1","object_type_2"]

}

Table 174. Payload Parameters

Parameter Description
Re

quired?
Data Type

objectType The list of object types that you want to export. Yes Array

Historian | 8 - Historian REST APIs | 1327

Table 175. Query Parameters

Para

meter
Description

Re

quired?
Data Type

data

baseName

The name of the Historian system from which you want

to export the object type.

Yes String (en

crypted)

The Delete Object Instance API

Using this API, you can delete an object instance. If there are direct variables in the object

type, you can also choose to delete the tags associated with these variables (along with

their data).

METHOD DELETE

URI http://<historianservername>/historian-mod

el/v2/objects

SAMPLE QUERY PARAM DELETE URL http://localhost:443/historian-model/v2/objects

SAMPLE PAYLOAD {

"databaseName":"XYZ",

"name": "Vehicle1",

"permanentDelete": true

}

Table 176. Payload Parameters

Para

meter
Description

Re

quired?

Data

Type

data

base

Name

The name of the Historian system. Yes String

name The name of the object instance that you want to delete. Yes String

perma

nent

Delete

Indicates whether you want to permanently delete the object

instance. If you do so, the tags are deleted as well.

Yes Boolean

The Incoming Dependencies API

Historian | 8 - Historian REST APIs | 1328

Using this API, you can view a list of object instances associated with an object type. This is

used to check if an object type contains object instances before you delete the object type.

METHOD POST

URI http://<historianservername>/historian-model/v2/object

Types/IncomingDependencies

SAMPLE QUERY PARAM

POST URL

http://localhost:443/historian-model/v2/objectTypes/ In

comingDependencies

SAMPLE PAYLOAD {

"name": "Vehicle",

"databaseName":"XYZ"

}

Table 177. Payload Parameters

Parameter Description
Re

quired?

Data

Type

name The name of the object type that you want to delete. Yes String

database

Name

The name of the Historian system associated with the

object type.

Yes String

The Delete Object Type API

Using this API, you can delete an object type. You can delete multiple object types together;

however, all the object types must belong to the same Historian system. You cannot delete

an object type if it is used in an object instance; you must first delete the object instance.

METHOD DELETE

URI http://<historianservername>/historian-mod

el/v2/objectTypes

SAMPLE QUERY PARAM DELETE

URL

http://localhost:443/historian-model/v2/object

Types

SAMPLE PAYLOAD {

"databaseName": "XYZ",

"objectTypes": ["Vehicle","Engine"]

}

Historian | 8 - Historian REST APIs | 1329

Table 178. Payload Parameters

Parameter Description
Re

quired?

Data

Type

object

Types

The list of object types that you want to delete. Yes Array

database

Name

The name of the Historian system associated with the

object types.

Yes String

Managing Collector Instances

The Create Collector Instance API

Using the Create Collector Instance API, you can create a collector instance.

METHOD POST

URI https://<historianservername>/historian-rest-a

pi/v1/collector/createnewinstance

SAMPLE URI https://<historianservername>/historian-rest-a

pi/v1/collector/createnewinstance

Payload

{

"mode":1,

"CollectorSystemName":"xyz",

"InterfaceDescription":"xyz_Simulation_<IP

 address>_2",

"DataPathDirectory":"C:\\Proficy Historian

 Data",

"CollectorDestination":"Historian",

"winUserName":"","winPassword":"",

"InterfaceSubType":"",

"DestinationHistorianUserName":"abc",

"DestinationHistorianPassword":"password",

"DestinationHistorian":"<IP address>",

"General1":"",

"General2":"",

"General3":"123",

Historian | 8 - Historian REST APIs | 1330

"General4":"",

"General5":"",

"Type":2,

"InterfaceName":"<source server>_<type of the

 collector>_<destination server>"

}

Note:

• The DestinationHistorian pa

rameter will not have a value

for offline collector configu

ration.

• To connect to MQTT des

tinations such as AWS IoT

and Google Cloud Platform

(GCP), you must provide an

encrypted password.

SAMPLE RESPONSE {

 "ErrorCode": 0,

 "ErrorMessage": null

}

SAMPLE cURL COMMAND curl -i -H "Accept: application/json" -i -H

 "Content-Type: application/json"

-H "Authorization: Bearer <TOKEN>” -d

 “{ \"mode\":1,\"CollectorSystemName\":\"xyz\",

\"InterfaceDescription\":\"xyz_Simulation_<IP

 address>_2\",\"DataPathDirectory\":\"C:\

\Proficy Historian Data\",

\"CollectorDestination\":\"Historian\",

\"winUserName\":\"\",\"winPassword\":\"\",

Historian | 8 - Historian REST APIs | 1331

\"InterfaceSubType\":

\"\",\"DestinationHistorianUserName\":\"abc\",

\"DestinationHistorianPassword\":\"password\",

\"DestinationHistorian\":\"<IP

 address>\",\"General1\":\"\",

\"General2\":\"\",\"General3\":\"xyz\",

\"General4\":\"\",\"General5\":\"\",

\"Type\":2,\"InterfaceName\":\"<source

 server>_<type of the collector>_<destination

 server>\"}” -X POST

https://<historianservername>/historian-rest-a

pi/v1/collector/createnewinstance

Table 179. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, ErrorCode = 0 implies the

operation was successful.

ErrorMessage String Yes For example, NULL.

The Get Collector Instance Details API

Using the Get Collector Instance Details API, you can view the details of a collector instance.

METHOD GET

URI https://<historianservername>/historian-rest-a

pi/v1/collector/instancedetails/<interface name>

SAMPLE QUERY PARAM GET URL https://<historianservername>/historian-rest-a

pi/v1/collector/instancedetails/<interface name>

SAMPLE RESPONSE {

"ErrorCode":0,

"ErrorMessage":null,

"Data":

{

"CloudDestination":"",

"InterfaceSubType":"",

"CollectorSystemName":"xyz",

Historian | 8 - Historian REST APIs | 1332

"Type":2,

"DefaultCompression":false,

"CloudInformationLogLevel":0,

"InterfaceDataDir":"C:\\Proficy Historian Data",

"SourceServer":"",

"Username":"",

"Password":"",

"DestinationType":"Historian",

"DestinationServer":"abc",

"DebugLogLevel":0,

"InterfaceInstallDrive":"C",

"ConnnectionString":"xyz"

}

}

SAMPLE cURL COMMAND curl -i -H "Accept: application/json" -H

 "Authorization: Bearer <TOKEN>”

https://<historianservername>/historian-rest-a

pi/v1/collector/instancedetails/xyz_Simulation_

<IP address>_2

Table 180. Query Parameters

Parameter Description Required? Values

interface

name

The interface name of the col

lector whose details you want to

view.

Yes String

Table 181. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, ErrorCode = 0 implies the

operation was successful.

ErrorMessage String Yes For example, NULL.

The Edit Collector Instance API

Using the Edit Collector Instance API, you can modify the cloud parameters of a collector

instance. The collector instance will be restarted after you make changes.

Historian | 8 - Historian REST APIs | 1333

METHOD PUT

URI https://<historianservername>/historian-rest-a

pi/v1/collector/editInstance

SAMPLE URI https://<historianservername>/historian-rest-a

pi/v1/collector/editInstance

Payload

{"InterfaceName":"<source server>_<type of the

 collector>_<destination server>",

"messageCompression":0,

"azureLogLevel":1,

"debugMode":0,

"CollectorDestination":"Predix",

"DestinationHistorian":"abc",

"mode":1,

"CloudDestinationAddress":"wss://

def.run.abc.ice.predix.io/v1/stream/messages",

"IdentityIssuer":"https://1234.predix-uaa.run.ab

c.ice.predix.io/oauth/token",

"ClientID":"xyz",

"ClientSecret":"123",

"ZoneID":"1234",

"Proxy":"http://1.2.3.4:80",

"ProxyUserName":"",

"ProxyPassword":"",

"DatapointAttribute1":"",

"DatapointAttribute2":"",

"DatapointAttribute3":"",

"DatapointAttribute4":""}

Note:

• The DestinationHistorian pa

rameter will not have a value

for offline collector configu

ration.

Historian | 8 - Historian REST APIs | 1334

• To connect to MQTT des

tinations such as AWS IoT

and Google Cloud Platform

(GCP), you must provide an

encrypted password.

SAMPLE RESPONSE {

 "ErrorCode": 0,

 "ErrorMessage": null

}

SAMPLE cURL COMMAND curl -i -H "Accept: application/json" -i -H

 "Content-Type: application/json"

-H "Authorization: Bearer <TOKEN>” -d

 “{\"InterfaceName\":\"<source server>_<type of

 the collector>_<destination server>\",

\"InterfaceName\":\"<source server>_<type

 of the collector>_<destination

 server>\",

\"messageCompression\":0,\"azureLogLevel\":1,

\"debugMode\":0,\"CollectorDestination\":

\"Predix\",\"DestinationHistorian\":\"abc\",

\"mode\":1,

\"CloudDestinationAddress\":

\"wss://wss://def.run.abc.ice.predix.io/v1/stre

am/messages\",

\"IdentityIssuer\":

\"https://1234.predix-uaa.run.abc.ice.predix.

io/oauth/token/",

\"ClientID\":\"HistQA\",\"ClientSecret\":

\"Gei321itc\",\"ZoneID\":\"1234\",

\"Proxy\":

\"http://1.2.3.4:80\",\"ProxyUserName\":

\"\",\"ProxyPassword\":\"\",

Historian | 8 - Historian REST APIs | 1335

\"DatapointAttribute1\":\"\",\"DatapointAttribut

e2\":\"\",\"DatapointAttribute3\":\"\",

\"DatapointAttribute4\":\"\"}” -X PUT

https://<historianservername>/historian-rest-a

pi/v1/collector/editInstance

Table 182. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, ErrorCode = 0 implies the

operation was successful.

ErrorMessage String Yes For example, NULL.

The Azure Log Level API

Using the Azure Log Level API, you can set the debug information log level for destination -

Azure IoT Hub. You can set a value ranging from 0 to 4.

METHOD PUT

URI https://<historianservername>/historian-rest-a

pi/v1/collector/azureloglevel

SAMPLE URI https://<historianservername>/historian-rest-a

pi/v1/collector/azureloglevel

Payload

{"InterfaceName":""InterfaceName":"<source

 server>_<type of the collector>_<destination

 server>"",

"azureLogLevel":1,}

SAMPLE RESPONSE {

 "ErrorCode": 0,

 "ErrorMessage": null

}

Historian | 8 - Historian REST APIs | 1336

SAMPLE cURL COMMAND curl -i -H "Accept: application/json" -i -H

"Content-Type: application/json" -H

 "Authorization: Bearer <TOKEN>” -d

“{\"InterfaceName\":\"<source server>_<type

 of the collector>_<destination

 server>\",\"azureLogLevel\":1}” -X PUT

https://<historianservername>/historian-rest-a

pi/v1/collector/azureloglevel

Table 183. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, ErrorCode = 0 implies the

operation was successful.

ErrorMessage String Yes For example, NULL.

The Install Component Details API

Using the Install Component Details API, you can view the install component details from

the collector machine.

METHOD GET

URI https://<historianservername>/historian-rest-a

pi/v1/

installcomponentdetails/collectorType/collectorS

ubType/machine

SAMPLE URI https://<historianservername>/historian-rest-a

pi/v1/installcomponentdetails/2/-/abc

SAMPLE RESPONSE {

"ErrorCode":0,

"ErrorMessage":null,

"Data":

{

"InterfaceInstallDrive":"C",

"InterfaceDataDir":"C:\\Proficy Historian Data",

"CertPathDir":"NONE"

Historian | 8 - Historian REST APIs | 1337

}

}

SAMPLE cURL COMMAND curl -i -H "Accept: application/json" -H

 "Authorization: Bearer <TOKEN>”

https://<historianservername>/historian-rest-a

pi/v1/installcomponentdetails/2/-/abc

Table 184. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, ErrorCode = 0 implies the

operation was successful.

ErrorMessage String Yes For example, NULL.

The Message Compression API

Using the Message Compression API, you can enable or disable message compression.

METHOD PUT

URI https://<historianservername>/historian-rest-a

pi/v1/collector/messagecompression

SAMPLE REQUEST {

"InterfaceName":"<source server>_<type of the

 collector>_<destination server>",

"messageCompression":1

}

SAMPLE RESPONSE {

"ErrorCode":0,

"ErrorMessage":null,

}

SAMPLE cURL COMMAND curl -i -H "Accept: application/json" -i -H

 "Content-Type: application/json"

-H "Authorization: Bearer <TOKEN>” -d

“{\"InterfaceName\":\"<source server>_<type of

 the collector>_<destination server>\",

\"messageCompression\":1}” -X PUT

Historian | 8 - Historian REST APIs | 1338

https://<historianservername>/historian-rest-a

pi/v1/collector/messagecompression

Table 185. Query Parameters

Parameter Description Required? Values

interface

name

The interface name of the col

lector whose message compres

sion you want to enable or dis

able.

Yes String

messagecompres

sion

Identifies whether you want to

enable or disable message com

pression. The valid values are 0

and 1.

Yes

Table 186. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, ErrorCode = 0 implies the

operation was successful.

ErrorMessage String Yes For example, NULL.

The Delete Instance API

Using the Delete Instance API, you can delete a collector instance.

METHOD PUT

URI https://<historianservername>/historian-rest-a

pi/v1/collector/deleteinstance

SAMPLE REQUEST https://<historianservername>/historian-rest-a

pi/v1/collector/deleteinstance

Payload

{

"InterfaceName":"<source server>_<type of the

 collector>_<destination server>",

"deleteTags":true

}

Historian | 8 - Historian REST APIs | 1339

SAMPLE RESPONSE {

"ErrorCode":0,

"ErrorMessage":null,

}

SAMPLE cURL COMMAND curl -i -H "Accept: application/json" -i -H

 "Content-Type: application/json"

-H "Authorization: Bearer <TOKEN>”

 -d “{\"InterfaceName\":\"<source

 server>_<type of the collector>_<destination

 server>\",\"deleteTags\":true}” -X PUT

https://<historianservername>/historian-rest-a

pi/v1/collector/deleteinstance

Table 187. Query Parameters

Parameter Description Required? Values

interface

name

The interface name of the col

lector whose details you want to

delete.

Yes String

deleteTags Identifies whether you want to

delete the tags. The valid values

are true and false.

Yes Boolean

Table 188. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, ErrorCode = 0 implies the

operation was successful.

ErrorMessage String Yes For example, NULL.

Collector Type and Subtype

The following table provides a list of collector type and subtype for each collector, which you will provide

in APIs.

Historian | 8 - Historian REST APIs | 1340

Collector Collector Type Collector Subtype

The Calculation collector 8

The CygNet collector 16 Cygnet

The File collector 4

The HAB collector 16 HAB

The iFIX Alarms and Events col

lector

11 iFixAE

The iFIX collector 1

The MQTT collector 16 MQTT

The ODBC collector 16 ODBC

The OPC Classic Alarms and

Events collector

11

The OPC Classic DA collector 3

The OPC Classic HDA collector 16 OPCHDA

The OPC UA DA collector 16 OPCUA

The OSI PI collector 10

The OSI PI distributor 13

The Server-to-Server collector 9

The Server-to-Server distributor 17

The Simulation collector 2

The Windows Performance col

lector

18

The Wonderware collector 16 Wonderware

Managing Collectors

The Start Collector API

Using the Start Collector API, you can start a collector.

Historian | 8 - Historian REST APIs | 1341

METHOD PUT

URI https://<historianservername>/historian-rest-a

pi/v1/collector/start

SAMPLE URI Sample URI for the service mode:

https://<historianservername>/historian-rest-a

pi/v1/collector/start

Payload

{

 "interfaceName":"<source server>_<type of the

 collector>_<destination server>",

 "mode":1

}

Sample URI for the command line mode:

https://<historianservername>/historian-rest-a

pi/v1/collector/start

Payload

{

 "interfaceName":"<source server>_<type of the

 collector>_<destination server>",

 "mode":2,

 “winUserName”:””,

 “winPassword”:””

}

SAMPLE RESPONSE {

 "ErrorCode": 0,

 "ErrorMessage": ""

 "Data": "Collector Start Initiated"

}

SAMPLE cURL COMMAND curl -i -H "Accept: application/json" -i -H

 "Content-Type: application/json"

Historian | 8 - Historian REST APIs | 1342

-H "Authorization: Bearer <TOKEN>” -d

“{ \”interfaceName\”:\”<source server>_<type of

 the collector>_<destination server>\”,

\"mode\": 1}” -X PUT

 https://<historianservername>/historian-rest-a

pi/v1/collector/start

Query parameters include the Payload parameter, which is a JSON file, which contains the

following properties.

Table 189. Query Parameters

Parameter Description Required? Values

interfaceName The interface name of the collec

tor.

Yes String

mode The mode to use to manage the

collector.

Yes • 1: service mode

• 2: command-line

mode

winUserName The Windows username. Yes (only if

you want to

use the com

mand-line

mode)

String

winPassword The Windows password Yes (only if

you want to

use the com

mand-line

mode)

String

Table 190. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, ErrorCode = 0 implies the

operation was successful.

ErrorMessage String Yes For example, NULL.

Data String No Indicates if the task has been initiated.

Historian | 8 - Historian REST APIs | 1343

The Stop Collector API

Using the Stop Collector API, you can stop a collector.

METHOD PUT

URI https://<historianservername>/historian-rest-a

pi/v1/collector/stop

SAMPLE URI https://<historianservername>/historian-rest-a

pi/v1/collector/stop

Payload

{

“interfaceName":"<source server>_<type of the

 collector>_<destination server>"

“winUserName”:”TestAdmin”,

“winPassword”:”TestAdminPassword”

}

SAMPLE RESPONSE {

 "ErrorCode": 0,

 "ErrorMessage": null,

 "Data": "Collector Stop Initiated"

}

SAMPLE cURL COMMAND curl -i -H "Accept: application/json" -i -H

 "Content-Type: application/json"

-H "Authorization: Bearer <TOKEN>” -d

“{ \”interfaceName\”:\”<source server>_<type of

 the collector>_<destination server>\”}”

-X PUT

 https://<historianservername>/historian-rest-a

pi/v1/collector/stop

Query parameters include the Payload parameter, which is a JSON file, which contains the

following properties.

Historian | 8 - Historian REST APIs | 1344

Table 191. Query Parameters

Parameter Description Required? Values

interfaceName The interface name of the collec

tor.

Yes String

winUserName The Windows username. Yes (only if

you want to

use the com

mand-line

mode)

String

winPassword The Windows password Yes (only if

you want to

use the com

mand-line

mode)

String

Table 192. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, ErrorCode = 0 implies the

operation was successful.

ErrorMessage String Yes For example, NULL.

Data String No Indicates if the task has been initiated.

The Restart Collector API

Using the Restart Collector API, you can restart a collector.

METHOD PUT

URI https://<historianservername>/historian-rest-a

pi/v1/collector/restart

SAMPLE URI https://<historianservername>/historian-rest-a

pi/v1/collector/restart

Payload

{

Historian | 8 - Historian REST APIs | 1345

 “interfaceName":"<source server>_<type of the

 collector>_<destination server>"

 "winUserName":"",

 "winPassword":""

}

SAMPLE RESPONSE {

 "ErrorCode": 0,

 "ErrorMessage": null,

 "Data": "Collector Restart Initiated"

}

SAMPLE cURL COMMAND curl -i -H "Accept: application/json" -i -H

 "Content-Type: application/json"

-H "Authorization: Bearer <TOKEN>” -d

“{ \”interfaceName\”:\”<source server>_<type of

 the collector>_<destination server>\”}”

-X PUT

 https://<historianservername>/historian-rest-a

pi/v1/collector/restart

Query parameters include the Payload parameter, which is a JSON file, which contains the

following properties.

Table 193. Query Parameters

Parameter Description Required? Values

interfaceName The interface name of the collec

tor.

Yes String

winUserName The Windows username. Yes String

winPassword The Windows password Yes String

Table 194. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, ErrorCode = 0 implies the

operation was successful.

ErrorMessage String Yes For example, NULL.

Historian | 8 - Historian REST APIs | 1346

Table 194. Response Parameters (continued)

Parameter Data Type Required? Description

Data String No Indicates if the task has been initiated.

The Pause Data Collection API

Using the Pause Data Collection API, you can pause the data collection of a collector.

METHOD PUT

URI https://<historianservername>/historian-rest-a

pi/v1/collector/pausecollection/{interfaceName}

SAMPLE URI https://<historianservername>/historian-rest-a

pi/v1/collector/pausecollection/RSSERVER2012-02_

Simulation

SAMPLE RESPONSE {

 "ErrorCode": 0,

 "ErrorMessage": ""

}

SAMPLE cURL COMMAND curl -i -H "Accept: application/json" -i -H

 "Content-Type: application/json"

-H "Authorization: Bearer <TOKEN>” -X PUT

 https://<historianservername>/historian-rest-a

pi/v1/collector/pausecollection/RSSERVER2012-02_

Simulation

Table 195. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, ErrorCode = 0 implies the

operation was successful.

ErrorMessage String Yes For example, NULL.

Data String No Indicates if the task has been initiated.

The Resume Data Collection API

Historian | 8 - Historian REST APIs | 1347

Using the Resume Data Collection API, you can resume the data collection of a collector.

METHOD PUT

URI https://<historianservername>/historian-rest-a

pi/v1/collector/resumecollection/{interfaceName}

SAMPLE URI https://<historianservername>/historian-rest-a

pi/v1/collector/resumecollection/RSSERVER2012-02

_Simulation

SAMPLE RESPONSE {

 "ErrorCode": 0,

 "ErrorMessage": ""

}

SAMPLE cURL COMMAND curl -i -H "Accept: application/json" -i -H

 "Content-Type: application/json"

-H "Authorization: Bearer <TOKEN>” -X PUT

 https://<historianservername>/historian-rest-a

pi/v1/collector/resumecollection/RSSERVER2012-02

_Simulation

Table 196. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, ErrorCode = 0 implies the

operation was successful.

ErrorMessage String Yes For example, NULL.

Data String No Indicates if the task has been initiated.

The Add Tag Comment API

Using the Add Tag Comment API, you can add a comment to a tag.

METHOD POST

URI https://<historianservername>/historian-rest-a

pi/v1/tags/addcomment

Historian | 8 - Historian REST APIs | 1348

SAMPLE URI https://<historianservername>/historian-rest-a

pi/v1/tags/addcomment

Payload

{

 "tagName":"rsserver2012-02.Simulation00003",

 "comment":"Retest",

 "timeStamp":"2020-04-22T00:00:00.000Z"

}

SAMPLE RESPONSE {

 "ErrorCode": 0,

 "ErrorMessage": null,

 "Data": ""

 }

SAMPLE cURL COMMAND curl -i -H "Accept: application/json"

 -i -H "Content-Type: application/json"

 -H "Authorization: Bearer

 <TOKEN>” -d “{ \”tagName\”:\”

 rsserver2012-02.Simulation00003\”,\"comment\":

\"Test10\",\"timeStamp\":

 \”2020-04-22T00:00:00.000Z \”}” -X POST

 https://<historianservername>:443/historian-re

st-api/v1/tags/addcomment

Query parameters include the Payload parameter, which is a JSON file, which contains the

following properties.

Table 197. Query Parameters

Parameter Description Required? Values

tagName The name of the tag. Yes String

timestamp The timestamp of the comment. Yes String

comment The comment. Yes String

Historian | 8 - Historian REST APIs | 1349

Table 198. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, ErrorCode = 0 implies the

operation was successful.

ErrorMessage String Yes For example, NULL.

The Get Tag Comment API

Using the Get Tag Comment API, you can view the comments added to a tag.

METHOD GET

URI https://<historianservername>/historian-rest-a

pi/v1/tags/

comments/{tagNames}/{start}/{end}

SAMPLE QUERY PARAM GET URI https://<historianservername>/historian-rest-a

pi/

v1/

tags/comments/?tagNames=rsserver2012-02.Simulati

on00003;

rsserver2012-02.Simulation00004&start=2020-04-19

T00:

00:00.000Z&end=2020-04-24T00:00:00.000Z

Note:

The query parameter supports mul

tiple tags.

SAMPLE RESPONSE {

 "ErrorCode": 0,

 "ErrorMessage": null,

 "Data": [

 {

 "TagName": "Motor Temperature",

 "ErrorCode": 0,

 "Comments": [

 {

Historian | 8 - Historian REST APIs | 1350

 "TimeStamp":

 "2020-04-22T00:00:00.000Z",

 "Comment": "Heat run test:

 Starting temperature"

 },

 {

 "TimeStamp":

 "2020-04-22T00:00:00.000Z",

 "Comment": "Heat run test:

 Temperature of the stator"

 },

 {

 "TimeStamp":

 "2020-04-22T00:00:00.000Z",

 "Comment": "Heat run test:

 Temperature of the rotor"

 },

 {

 "TimeStamp":

 "2020-04-22T00:00:00.000Z",

 "Comment": "Heat run test:

 Temperature of the shaft"

 },

 {

 "TimeStamp":

 "2020-04-22T00:00:00.000Z",

 "Comment": "Heat run test:

 Temperature of the endshield"

 }

]

 }

]

}

SAMPLE cURL COMMAND curl -i -H "Accept: application/json" -H

"Authorization: Bearer <TOKEN>”

 http://<historianservername>

Historian | 8 - Historian REST APIs | 1351

/historian-rest-api/v1/tags/comments/<tagName

s>/<start>/<end>

Query parameters include the Payload parameter, which is a JSON file, which contains the

following properties.

Table 199. Query Parameters

Parameter Description Required? Values

tagNames The names of the tag as a semi

colon-separated list. For ex

ample: HISTWIN20161.ctag1;

HISTWIN20161.ctag2

Yes String

start The start time of the query, in

ISO data format (YYYY-MM-

DDTHH:mm:ss.SSSZ).

Yes DateTime

end The end time of the query, in ISO

format (YYYY-MM-DDTHH:m

m:ss.SSSZ).

Yes DateTime

Table 200. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, ErrorCode = 0 implies the

operation was successful.

ErrorMessage String Yes For example, NULL.

The Set Debug Mode API

Using the Set Debug Mode API, you can set the debug mode of a collector.

METHOD PUT

URI https://<historianservername>/historian-rest-a

pi/v1/collector/setdebugmode

SAMPLE URI https://<historianservername>/historian-rest-a

pi/v1/collector/setdebugmode

Historian | 8 - Historian REST APIs | 1352

Payload

{

 “interfaceName":"<source server>_<type of the

 collector>_<destination server>",

 “debugMode”:255

}

SAMPLE RESPONSE {

 "ErrorCode": 0,

 "ErrorMessage": ""

}

SAMPLE cURL COMMAND curl -i -H "Accept: application/json" -i -H

 "Content-Type: application/json"

-H "Authorization: Bearer <TOKEN>” -d

“{ \”interfaceName\”:\”<source server>_<type of

 the collector>_<destination server>\”,

\”debugMode\”}” -X PUT

 https://<historianservername>/historian-rest-a

pi/v1/collector/setdebugmode

Query parameters include the Payload parameter, which is a JSON file, which contains the

following properties.

Table 201. Query Parameters

Parameter Description Required? Values

interfaceName The interface name of the collec

tor.

Yes String

debugMode The debug log level for the col

lector.

Yes • 0: Normal log lev

el

• 255: Debug log

level

Table 202. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, ErrorCode = 0 implies the

operation was successful.

Historian | 8 - Historian REST APIs | 1353

Table 202. Response Parameters (continued)

Parameter Data Type Required? Description

ErrorMessage String Yes For example, NULL.

The Buffer File Control API

Using the Buffer File Control API, you can delete or move the buffer files. It is recommended

to move the buffer files to a new folder within the same drive.

Note:

Moving files to a network shared drive is not supported.

METHOD PUT

URI https://<historianservername>/historian-rest-a

pi/v1/collector/buffercontrol

SAMPLE URI Sample URI for moving buffer files:

https://<historianservername>/historian-rest-a

pi/v1/collector/buffercontrol

Payload

{

 “interfaceName":"<source server>_<type of the

 collector>_<destination server>",

 “bufferMode”:2,

 "winUserName":"Administrator",

 "winPassword":"xxxxxxx",

 "bufferPath": "C:\\Users\\bufffiles"

}

Sample URI for deleting buffer files:

https://<historianservername>/historian-rest-a

pi/v1/collector/buffercontrol

Payload

{

Historian | 8 - Historian REST APIs | 1354

 “interfaceName":"<source server>_<type of the

 collector>_<destination server>",

 “bufferMode”:1

 "winUserName":"Administrator",

 "winPassword":"xxxxxxx",

}

SAMPLE RESPONSE Sample response for moving buffer files:

{

 "ErrorCode": 0,

 "ErrorMessage": null,

 "Data": "BufferFiles Move Initiated.

 Collector is in the Stopped state."

}

Sample response for deleting buffer files:

{

 "ErrorCode": 0,

 "ErrorMessage": null,

 "Data": "BufferFiles Delete Initiated.

 Collector is in the Stopped state."

}

SAMPLE cURL COMMAND curl -i -H "Accept: application/json" -i -H

 "Content-Type: application/json"

-H "Authorization: Bearer <TOKEN>” -d

“{ \”interfaceName\”:\”<source server>_<type of

 the collector>_<destination server>\”,

\”bufferMode \”:1,\”bufferPath \”:\”

 C:\\Users\\bufffiles\”}” -X PUT

 https://<historianservername>/historian-rest-a

pi/v1/collector/buffercontrol

Query parameters include the Payload parameter, which is a JSON file, which contains the

following properties.

Historian | 8 - Historian REST APIs | 1355

Table 203. Query Parameters

Parameter Description Required? Values

interfaceName The interface name of the collec

tor.

Yes String

bufferMode Indicates whether you want to

move or delete the files.

Yes • 1: Indicates that

the buffer files

will be deleted.

• 2: Indicates that

the buffer files

will be moved

to the location

specified in the

bufferPath para

meter.

bufferPath The directory to which you want

to move the buffer files. For

example: C:\\Data\\New

BufferFilesLocation or

C:/Data/NewBufferPathLo

cation

Note:

The double slash (\\) is

required in the JSON for

mat.

Yes (only if

you want to

move the

buffer files)

String

winUserName The Windows username. Yes (only if

you want to

use the com

mand-line

mode)

String

winPassword The Windows password Yes (only if

you want to

use the com

String

Historian | 8 - Historian REST APIs | 1356

Table 203. Query Parameters (continued)

Parameter Description Required? Values

mand-line

mode)

Table 204. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, ErrorCode = 0 implies the

operation was successful.

ErrorMessage String Yes For example, NULL.

Data String No Indicates if the task has been initiated

(and if the collector is in the stopped

state).

The Server Node Change API

Using the Server Node Change API, you can change the server node of a collector to a

machine that has Historian 8.1 installed on it.

METHOD PUT

URI https://<historianservername>/historian-rest-a

pi/v1/collector/historiannodechange

SAMPLE URI https://<historianservername>/historian-rest-a

pi/v1/collector/historiannodechange

Payload

{

 “interfaceName":"<source server>_<type of the

 collector>_<destination server>",

 “mode”:2,

 "winUserName":"TestAdministrator",

 "winPassword":"TestPassword",

 "historianNode":"VMHISTWEBAUTO",

 "historianUserName":" TestAdministrator2 ",

 "historianpassword":" TestPassword2"

Historian | 8 - Historian REST APIs | 1357

}

SAMPLE RESPONSE {

 "ErrorCode": 0,

 "ErrorMessage": ""

}

SAMPLE cURL COMMAND curl -i -H "Accept: application/json" -i -H

 "Content-Type: application/json"

-H "Authorization: Bearer <TOKEN>” -d

“{ \”interfaceName\”:\”<source server>_<type of

 the collector>_<destination server>\”,

\”userName

 winUserName\”:\”tesrt\”,\”winpPassword

 \”:\”password\”,

\”historianNode \”:\”nodename\”,\”

 historianUserName \”:\”husername\”,

\” historianpassword \”:\”hpassword\”}” -X PUT

https://<historianservername>/historian-rest-a

pi/v1/collector/ historiannodechange

Query parameters include the Payload parameter, which is a JSON file, which contains the

following properties.

Table 205. Query Parameters

Parameter Description Required? Values

interfaceName The interface name of the collec

tor.

Yes String

mode The mode to use to manage the

collector.

Yes • 1: service mode

• 2: command-line

mode

winUserName The Windows username. Yes (only if

you want to

use the com

mand-line

mode)

String

Historian | 8 - Historian REST APIs | 1358

Table 205. Query Parameters (continued)

Parameter Description Required? Values

winPassword The Windows password. Yes (only if

you want to

use the com

mand-line

mode)

String

historianNode The host name of the new His

torian destination machine. The

destination machine must have

Historian 8.1.

Yes String

historian

UserName

The Windows username of the

new Historian destination ma

chine.

Yes (only if

you want to

use the com

mand-line

mode)

String

historian

Password

The Windows password of the

new Historian destination ma

chine.

Yes (only if

you want to

use the com

mand-line

mode)

String

Table 206. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, ErrorCode = 0 implies the

operation was successful.

ErrorMessage String Yes For example, NULL.

The Get Collector Version API

Using the Get Collector Version API, you can view the version number of a collector.

METHOD GET

Historian | 8 - Historian REST APIs | 1359

URI https://<historianservername>/historian-rest-a

pi/v1/collector/version/{interfaceName}

SAMPLE QUERY PARAM GET URL https://<historianservername>/historian-rest-a

pi/v1/collector/version/?interfaceName=<source

 server>_<type of the collector>_<destination

 server>

SAMPLE RESPONSE {

 "ErrorCode": 0,

 "ErrorMessage": null,

 "Data": {

 "Version": "8.1.2068.0"

 }

}

SAMPLE cURL COMMAND curl -i -H "Accept: application/json"

 -H "Authorization: Bearer <TOKEN>”

 http://<historianservername>/historian-rest-a

pi/v1/collector/version/RSSERVER2012-02_Simulat

ion

Table 207. Query Parameters

Parameter Description Required? Values

interfaceName The interface name of the collec

tor.

Yes String

Table 208. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, ErrorCode = 0 implies the

operation was successful.

ErrorMessage String Yes For example, NULL.

Data String Yes Returns the version of the collector.

The Get Collector Status API

Using the Get Collector Status API, you can view the status of a collector.

Historian | 8 - Historian REST APIs | 1360

METHOD GET

URI https://<historianservername>/historian-rest-a

pi/v1/collector/status/{interfaceName}

SAMPLE GET URI https://<historianservername>/historian-rest-a

pi/v1/collector/status/RSSERVER2012-02_Simulat

ion

SAMPLE RESPONSE {

 "ErrorCode": 0,

 "ErrorMessage": "null"

 "Data":{

 "Status":"Running"

 }

}

SAMPLE cURL COMMAND curl -i -H "Accept: application/json" -H

 "Authorization: Bearer <TOKEN>”

https://<historianservername>/historian-rest-a

pi/v1/collector/status/RSSERVER2012-02_Simulat

ion

Table 209. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, ErrorCode = 0 implies the

operation was successful.

ErrorMessage String Yes For example, NULL.

Data String Yes Returns the status of the collector.

The Collector Manager List API

Using the Collector Manager List API, you can view the list of collector agents machines

associated with the Historian server.

METHOD GET

Historian | 8 - Historian REST APIs | 1361

URI https://<historianservername>/historian-rest-a

pi/v1/collectormanagerlist

SAMPLE QUERY PARAM GET URL https://<historianservername>/historian-rest-a

pi/v1/collectormanagerlist

SAMPLE RESPONSE {

 "ErrorCode": 0,

 "ErrorMessage": null,

 "Data": [

 {

 "Name": "CollectorManager::abc",

 "IPAddress": "[::ffff :<IP

 address>]",

 "Status": 1,

 "ComputerName": "abc "

 },

 {

 "Name": "CollectorManager::xyz",

 "IPAddress": "[::ffff:<IP

 address>]",

 "Status": 1,

 "ComputerName": "xyz"

 },

 {

 "Name": "CollectorManager::abc",

 "IPAddress": "[::ffff:<IP

 address>]",

 "Status": 1,

 "ComputerName": "abc"

 },

 {

 "Name": "CollectorManager::123",

 "IPAddress": "[::ffff:<IP

 address>]",

 "Status": 1,

 "ComputerName": "123"

 }

Historian | 8 - Historian REST APIs | 1362

]

}

SAMPLE cURL COMMAND curl -i -H "Accept: application/json" -H

 "Authorization: Bearer <TOKEN>”

https://<historianservername>/historian-rest-a

pi/v1/collectormanagerlist

Table 210. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, ErrorCode = 0 implies the

operation was successful.

ErrorMessage String Yes For example, NULL.

The Collector Mode API

Using the Collector Mode API, you can view the running mode of a collector.

METHOD GET

URI https://<historianservername>/historian-rest-a

pi/v1/collector/mode/<collector interface name>

SAMPLE QUERY PARAM GET URL https://<historianservername>/historian-rest-a

pi/v1/collector/mode/<collector interface name>

SAMPLE RESPONSE {

 "ErrorCode": 0,

 "ErrorMessage": null,

 "Data": {

 "RunningMode": "Service Mode"

 }

}

SAMPLE cURL COMMAND curl -i -H "Accept: application/json" -H

 "Authorization: Bearer <TOKEN>”

https://<historianservername>/historian-rest-a

pi/v1/collector/mode/<host name>_Simulation_<IP

 address>_2

Historian | 8 - Historian REST APIs | 1363

Table 211. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, ErrorCode = 0 implies the

operation was successful.

ErrorMessage String Yes For example, NULL.

The Collector Details API

Using the Collector Details API, you can view the details of a collector.

METHOD GET

URI https://<historianservername>/historian-rest-a

pi/v1/collector/details

SAMPLE QUERY PARAM GET URL https://<historianservername>/historian-rest-a

pi/v1/collector/details

SAMPLE RESPONSE {

"ErrorCode":0,

"ErrorMessage":null,

"Data":

[

{

"Name":"<value>",

"ComputerName":"<value>",

"Status":"Running",

"ReportRate":0,

"MaximumEventRate":0,

"MinimumEventRate":0,

"OutOfOrderEvents":0,

"Overruns":0,

"OverrunsPercent":0,

"TotalEventsCollected":0,

"TotalEventsReported":0,

"LastDataValue":"\\\"1970-01-01T00:00:00.000Z\\

\"",

"Redundency":"",

Historian | 8 - Historian REST APIs | 1364

"Comments":"<username>--test2--\\

\"2020-12-15T07:19:42.000Z\\\";",

"Version":"9.0.4326.0",

"CollectorCompression":0,

"TagsCount":0

}

]

}

SAMPLE cURL COMMAND curl -i -H "Accept: application/json" -H

 "Authorization: Bearer <TOKEN>”

https://<historianservername>/historian-rest-a

pi/v1/collector/details

Table 212. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, ErrorCode = 0 implies the

operation was successful.

ErrorMessage String Yes For example, NULL.

The Offline Collectors API

Using the Offline Collectors API, you can view a list of offline collectors.

METHOD GET

URI https://<historianservername>/historian-rest-a

pi/v1/offlinecollectors

SAMPLE QUERY PARAM GET URL https://<historianservername>/historian-rest-a

pi/v1/offlinecollectors

SAMPLE RESPONSE {

"ErrorCode": 0,

"ErrorMessage": null,

"Data": [

{

"Name": "DISTMACHINE1_Simulation",

"ComputerName": "DISTMACHINE1",

Historian | 8 - Historian REST APIs | 1365

"Status": "Stopped"

},

{

"Name": "NPI212611749M1_Simulation",

"ComputerName": "NPI212611749M1",

"Status": "Stopped"

},

{

"Name": "NPI212611749M1_Mqtt",

"ComputerName": "NPI212611749M1",

"Status": "Stopped"

}

]

}

SAMPLE cURL COMMAND curl -i -H "Accept: application/json" -H

 "Authorization: Bearer <TOKEN>”

https://<historianservername>/historian-rest-a

pi/v1/offlinecollectors

Table 213. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, ErrorCode = 0 implies the

operation was successful.

ErrorMessage String Yes For example, NULL.

Managing Data Stores

The Get Data Stores API

Using the Get Data Stores API, you can view the list of data stores in a system.

METHOD GET

URI https://<historianservername>/historian-rest-a

pi/v1/datastores?dataStoreMask=

Historian | 8 - Historian REST APIs | 1366

SAMPLE QUERY PARAM GET URL https://<historianservername>/historian-rest-a

pi/v1/datastores?dataStoreMask=*

SAMPLE RESPONSE {

 "ErrorCode": 0,

 "ErrorMessage": null,

 "Data": [

 {

 "Description": "The System Data

 Store.",

 "Id":

 "D3C23639-81CD-40F7-9CB0-37484FC5190D",

 "IsDefault": false,

 "IsSystem": true,

 "Name": "System",

 "NumberOfTags": 0,

 "State": 2,

 "DHSStorageName": "System Storage",

 "StorageType": 0,

 "Links": [

 {

Historian | 8 - Historian REST APIs | 1367

 "Rel": "self",

 "Href": "/datastore/System"

 }

]

 },

 {

 "Description": "The Scada Buffer

 Data Store.",

 "Id":

 "39B39D42-DC7A-4048-9BA8-E4BAB4644B0C",

 "IsDefault": false,

 "IsSystem": false,

 "Name": "ScadaBuffer",

 "NumberOfTags": 0,

 "State": 2,

 "DHSStorageName": "xyz",

 "StorageType": 1,

 "Links": [

 {

 "Rel": "self",

Historian | 8 - Historian REST APIs | 1368

 "Href":

 "/datastore/ScadaBuffer"

 }

]

 },

 {

 "Description": "The DHS System Data

 Store.",

 "Id":

 "56C1DFE9-D0BF-427F-B5D8-B127E38B5C11",

 "IsDefault": false,

 "IsSystem": false,

 "Name": "DHSSystem",

 "NumberOfTags": 0,

 "State": 2,

 "DHSStorageName": "xyz",

 "StorageType": 0,

 "Links": [

 {

 "Rel": "self",

Historian | 8 - Historian REST APIs | 1369

 "Href":

 "/datastore/DHSSystem"

 }

]

 },

 {

 "Description": "The User Data

 Store.",

 "Id":

 "33BA016D-B005-4702-96DB-42CF7238C8FF",

 "IsDefault": true,

 "IsSystem": false,

 "Name": "User",

 "NumberOfTags": 5,

 "State": 2,

 "DHSStorageName": "xyz",

 "StorageType": 0,

 "Links": [

 {

 "Rel": "self",

Historian | 8 - Historian REST APIs | 1370

 "Href": "/datastore/User"

 }

]

 }

]

}

 }

}

SAMPLE cURL COMMAND curl -i -H "Accept: application/json" -H

 "Authorization: Bearer <TOKEN>”

https://<historianservername>/historian-rest-a

pi/v1/datastores?dataStoreMask=*

Table 214. Query Parameters

Parameter Description Required? Values

dataStoreMask The value of the data store

mask.

No String

Table 215. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, ErrorCode = 0 implies the

operation was successful.

ErrorMessage String Yes For example, NULL.

The Get Data Stores of Storage API

Using the Get Data Stores of Storage API, you can view the list of data stores in a location.

Historian | 8 - Historian REST APIs | 1371

METHOD GET

URI https://<historianservername>/historian-rest-a

pi/v1/storage/datastores?storageName=

SAMPLE QUERY PARAM GET URL https://<historianservername>/historian-resr-a

pi/v1/storage/datastores?storageName=xx

SAMPLE RESPONSE {

 "ErrorCode": 0,

 "ErrorMessage": null,

 "Data": [

 {

 "Description": "The Scada Buffer

 Data Store.",

 "Id":

 "39B39D42-DC7A-4048-9BA8-E4BAB4644B0C",

 "IsDefault": false,

 "IsSystem": false,

 "Name": "ScadaBuffer",

 "NumberOfTags": 0,

 "State": 2,

 "DHSStorageName": "xyz",

 "StorageType": 1,

 "Links": [

Historian | 8 - Historian REST APIs | 1372

 {

 "Rel": "self",

 "Href":

 "/datastore/ScadaBuffer"

 }

]

 },

 {

 "Description": "The DHS System Data

 Store.",

 "Id":

 "56C1DFE9-D0BF-427F-B5D8-B127E38B5C11",

 "IsDefault": false,

 "IsSystem": false,

 "Name": "DHSSystem",

 "NumberOfTags": 0,

 "State": 2,

 "DHSStorageName": "xyz",

 "StorageType": 0,

 "Links": [

Historian | 8 - Historian REST APIs | 1373

 {

 "Rel": "self",

 "Href":

 "/datastore/DHSSystem"

 }

]

 },

 {

 "Description": "The User Data

 Store.",

 "Id":

 "33BA016D-B005-4702-96DB-42CF7238C8FF",

 "IsDefault": true,

 "IsSystem": false,

 "Name": "User",

 "NumberOfTags": 5,

 "State": 2,

 "DHSStorageName": "xyz",

 "StorageType": 0,

 "Links": [

Historian | 8 - Historian REST APIs | 1374

 {

 "Rel": "self",

 "Href": "/datastore/User"

 }

]

 }

]

}

SAMPLE cURL COMMAND curl -i -H "Accept: application/json" -H

 "Authorization: Bearer <TOKEN>”

https://<historianservername>/historian-rest-a

pi/v1/storage/datastores?storageName=xx

Table 216. Query Parameters

Parameter Description Required? Values

storageName The name of the location whose

data stores you want to view.

Yes String

Table 217. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, ErrorCode = 0 implies the

operation was successful.

ErrorMessage String Yes For example, NULL.

The Add Datastore API

Using the Add Datastore API, you can create a data store in a Historian server.

Historian | 8 - Historian REST APIs | 1375

Note:

This API is applicable only to an Enterprise Historian.

METHOD POST

URI https://<historianservername>/historian-rest-a

pi/v1/datastoretostorage

SAMPLE PATH PARAM GET URI https://<historianservername>/historian-rest-a

pi/v1/datastoretostorage

Payload

{

"dataStoreName": "abc",

"storageName": "storage1",

"description": "test",

"isDefault": true

}

SAMPLE RESPONSE {

 "ErrorCode": 0,

 "ErrorMessage": null

}

SAMPLE cURL COMMAND curl -i -H "Accept: application/json" -i -H

 "Content-Type: application/json"

-H "Authorization: Bearer <TOKEN>” -d

 “{ \”dataStoreName \”:\”name\”,\" storageName

 \": \"sname\",\"description

Historian | 8 - Historian REST APIs | 1376

\":\" des\",\" isDefault \":false}”

-X POST

 https://<historianservername>/historian-rest-a

pi/v1/datastoretostorage

Table 218. Query Parameters

Parameter Description Required? Values

Payload Contains the details of the data

store in the JSON format.

Yes Multiple

Table 219. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, ErrorCode = 0 implies the

operation was successful.

ErrorMessage String Yes For example, NULL.

The Delete Data Store API

Using the Delete Data Store API, you can delete a data store.

METHOD DELETE

URI https://<historianservername>/historian-rest-a

pi/v1/datastore

SAMPLE URI https://<historianservername>/historian-rest-a

pi/v1/datastore

Payload

{

"dataStoreName": "testdatastore"

}

SAMPLE RESPONSE {

Historian | 8 - Historian REST APIs | 1377

 "ErrorCode": 0,

 "ErrorMessage": null

}

SAMPLE cURL COMMAND curl -i -H "Accept: application/json" -i -H

 "Content-Type: application/json"

-H "Authorization: Bearer <TOKEN>” -d

 “{ \”dataStoreName \”:\”name\”}” -X DELETE

https://<historianservername>/historian-rest-a

pi/v1/datastore

Table 220. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, ErrorCode = 0 implies the

operation was successful.

ErrorMessage String Yes For example, NULL.

The Data Store Update API

Using the Data Store Update API, you can modify a data store.

METHOD PUT

URI https://<historianservername>/historian-rest-a

pi/v1/dataStore/<data store name>

SAMPLE URI https://<historianservername>/historian-rest-a

pi/v1/dataStore/mirror1DS1

Payload

{

 "Description": "testing",

 "IsDefault": true,

Historian | 8 - Historian REST APIs | 1378

 "IsSystem": false,

 "Name": "mirror1DS1",

 "NumberOfTags": 0,

 "State": 2,

 "DHSStorageName": "mirror1",

 "StorageType": 0,

 }

SAMPLE RESPONSE {

 "ErrorCode": 0,

 "ErrorMessage": null

}

SAMPLE cURL COMMAND curl -i -H "Accept: application/json" -i -H

 "Content-Type: application/json"

-H "Authorization: Bearer <TOKEN>” -d “{ \”

 Description\”:\”des\”,\"IsDefault \": true,

\” IsSystem \”:false, \” Name\”:\”

 mirror1DS1\”,\”NumberOfTags \”:0,\”State\”:2,

\”DHSStorageName\”:\”mirror1\”,\”StorageType

 \”:0,\}” -X PUT

 https://<historianservername>/historian-rest-a

pi/v1/dataStore/mirror1DS1

Historian | 8 - Historian REST APIs | 1379

Table 221. Query Parameters

Parameter Description Required? Values

Payload Contains the values of the attrib

utes of the data store that you

want to change.

Yes Multiple

Table 222. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, ErrorCode = 0 implies the

operation was successful.

ErrorMessage String Yes For example, NULL.

The Default Data Store Update API

Using the Default Data Store Update API, you can change the default data store.

METHOD PUT

URI https://<historianservername>/historian-rest-a

pi/v1/storage/<location name>

SAMPLE URI https://<historianservername>/historian-rest-a

pi/v1/storage/NPI212611749M1

Payload

{

 "StorageName": "NPI212611749M1",

 "StorageType": 0,

 "NumberOfDataStores": 5,

 "NumberOfArchivers": 1,

 "DataStores": [

Historian | 8 - Historian REST APIs | 1380

 "User",

 "testDS1",

 "ScadaBuffer",

 "testDS2",

 "DHSSystem"

],

 "Id":

 "9CD06AFB-1566-4CE6-99D4-B2F65857F33A",

 "IsDefault": true,

 "LastModifiedUser": null,

 "LastModifiedTime":

 "1970-01-01T00:00:00.000Z",

 "ArchiverServices": [

 "DataArchiver_NPI212611749M1",

 "DataArchiver_distamchine1"

]

 }

SAMPLE RESPONSE {

 "ErrorCode": 0,

 "ErrorMessage": null,

Historian | 8 - Historian REST APIs | 1381

 }

SAMPLE cURL COMMAND curl -i -H "Accept: application/json" -i -H

 "Content-Type: application/json"

-H "Authorization: Bearer <TOKEN>” -d

 “{ \”StorageName\”:\”name\”,\"StorageType\": 0,

\”NumberOfDataStores\”:5,\”

 NumberOfArchivers\”:1,

\”IsDefault\”:true,\”ArchiverServices\”:

 [\"DataArchiver_NPI212611749M1\",

\"DataArchiver_distamchine1"\"]}” -X PUT

https://<historianservername>/historian-rest-a

pi/v1/storage/NPI212611749M1

Table 223. Query Parameters

Parameter Description Required? Values

Payload Contains the values of the at

tributes of the default data store

that you want to change.

Yes Multiple

Table 224. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, ErrorCode = 0 implies the

operation was successful.

ErrorMessage String Yes For example, NULL.

Managing Tags

The Tags API

The Tags API retrieves the qualified tag name list by a given nameMask.

Note:

URI format supports asterisks (*) and question marks (?).

Historian | 8 - Historian REST APIs | 1382

METHOD GET

URI https://<historianservername>:443/historian-rest-api/

v1/tags/{nameMask}/{maxNumber}

SAMPLE URI https://<historianservername>:443/historian-rest-api/

v1/tags?nameMask=*&maxNumber=100

SAMPLE cURL COMMAND curl -i -H "Accept: application/json" -H "Authorization:

Bearer <TOKEN>” https://<nodename>:443/ historian-rest-

api/v1/tags?nameMask=*&maxNumber=<Number_Of_Tags>

Table 225. Query Parameters

Parameter Description Required? Values

nameMask Tagmask that searches for all

tags that match the mask and

applies the remaining criteria to

retrieve data. The mask can in

clude wildcards, such as aster

isks (*).

Optional String

maxNumber Maximum tag number provides

the limit while returning the re

sults (0 by default). This means

that for a query, if using 0, all

tags are returned.

If a negative number is used,

then 0 is used for the maxNum

ber.

If a positive number is used, then

that number of tags is returned.

In addition, an error number of

+14 notifies the user that there

are more than the requested

number of tags in the system.

Optional Integer

0 by default

Historian | 8 - Historian REST APIs | 1383

Table 226. Response Parameters

Parameter Data Type Required? Description

ErrorCode Number Yes For example, ErrorCode = 0, which

means the operation was successful.

ErrorMessage String Yes For example, NULL.

tags String Yes Includes the following:

• ALT_SENSOR

• tagName1

• tagName2

The Tagslist API

The Tags List API GET method retrieves the list of tags.

When retrieving large tag lists from Historian, you can paginate the response, allowing you

to get the next page, go the end, go back one page, and go to the beginning.

Request Parameters

You can use wildcards (*, &,?) with string parameters for pattern matching. Results are

sorted in ascending tag names. All parameters use the AND operator. The OR operator is not

supported.

All request parameters are optional.

When there are NO wildcard characters (*, &,?) with string parameters for pattern matching,

then search would be a contains search

Example: “dog” pattern will match “dog1”, “dog2”,”dogs”, “dogx”, “dog12”, “dogs are faithful”,

“1dog1” and so on. When wildcards (*,&, ?) are used in the search string parameters for

pattern matching, then they work as per the wildcard character definition.

? - Single character matching

* - Multi character matching

Eg1: “dog?” pattern will match: “dog1”, “dog2”,”dogs”, “dogx” and so on but not “dog12” or

“dogs are faithful”

Historian | 8 - Historian REST APIs | 1384

Eg2: “dog*” pattern will match “dog1”, “dog2”,”dogs”, “dogx”, “dog12”, “dogs are faithful” and

so on but not “1dog1”

Parame

ter Name
Data Type Default Description

calctype Integer -1 Returns exact match of calc type

(0,1,2).

collectiondis

abled

Boolean If ignored, all

types consid

ered.

Must be only true / false, else error

out.

collectionin

terval

Integer 0 – means all in

tervals

If collectorinterval = 0 consider

all intervals, else exact match.

collectorcom

pression

Boolean * Returns exact match of collector

compression (true/false).

collectorname String * Default * means consider all.

collectortype Integer 0 – means con

sider all collec

tor types

Returns exact match of collector

type.

comment String * Default * means consider all.

data storename String * Default * means consider all.

datatype Integer 0 – means con

sider all data

types

Returns exact match of data type.

description String * Default * means consider all.

egudescription String * Default * means consider all.

enumeratedset String * Default * means consider all.

hasalias Boolean If ignored, all

types consid

ered.

Must be only true / false, else error

out.

isstale Boolean If ignored, all

types consid

ered.

Must be only true / false, else error

out.

Historian | 8 - Historian REST APIs | 1385

Parame

ter Name
Data Type Default Description

lastmodified String 1970-01-01T00:00:00.000Z>= is applied so that last modified

tag is returned in the result set.

lastmodi

fieduser

String * Default * means consider all.

numberofele

ments

Integer 0 If 0, ignore this parameter else re

turns exact match of number of el

ements.

pageno Integer 1

Must be > 1

If invalid, no data is returned.

pagesize Integer 128

Max 512

Min 2

If out of range, returns error. Pro

vide 0 to return all tags at once

without any pagination.

sourceaddress String * Default * means consider all.

tagname String * Default * means consider all.

userdefined

typename

String * Default * means consider all.

The Tags List Pagination Parameters

When retrieving large tag lists from Historian, you can paginate the response, allowing you

to get the next page, go the end, and go back on page and to the beginning. Results with no

errors return these pagination parameters:

Parameter Value

pagesize Current page size.

pageno Current page number

totalcount Total result other than current page.

Links to URLs All URLs are part of the HTTP response headers.

Historian | 8 - Historian REST APIs | 1386

Parameter Value

• first – First page tags list URL (can be null if count is 0).

• last - Last page tags list URL (can be null if count is 0).

• prev – Previous page tags list URL (can be null if current

page is 1).

• Next - Next page tags list URL (can be null if current page

is last page).

Table 227. Sample cURL commands

METHOD GET

SAMPLE cURL COM

MAND: [lastmodi

fied]

curl -i -H "Accept: application/json" -H "Authorization:Bearer <TO

KEN>” http://<nodename>:443/historian-rest-api/v1/tagslist?last

modified=2017-05-01T00:00:00.00Z

SAMPLE cURL COM

MAND: [pageno=0]

curl -i -H "Accept: application/json" -H "Authorization:Bearer <TO

KEN>” http://<nodename>:443/historian-rest-api/v1/tagslist?

pageno=0

SAMPLE cURL COM

MAND: [pageno=1]

curl -i -H "Accept: application/json" -H "Authorization:Bearer <TO

KEN>” http://<nodename>:443/historian-rest-api/v1/tagslist?

pageno=1

SAMPLE cURL COM

MAND: [complete

tagslist]

curl -i -H "Accept: application/json" -H "Authorization:Bearer <TO

KEN>” http://<nodename>:443/historian-rest-api/v1/tagslist

Example Queries

The following request returns first page as pageno is ignored and pagesize is defaulted to

128, all tags are considered:

<baseurl>/v1/tagslist

The following request returns first page as pageno is ignored and pagesize is defaulted to

128, all tags are considered that are modified after 2017-05-01T00:00:00.00Z.

<baseurl>/v1/tagslist?lastmodified=2017-05-01T00:00:00.00Z

Example Results

Historian | 8 - Historian REST APIs | 1387

The following info is returned for each tag from the criteria provided in the request as an

array of tag info.

• tagid - String

• tagname - String

• description - String

• datatype - Integer

• collectorname - String

• collectortype - Integer

• data storename - String

• egudescription - String

• comment - String

• sourceaddress - String

• sourceaddress - String

• collectioninterval - Integer

• collectorcompression - Boolean

• lastmodifieduser - String

• enumeratedset - String

• userdefinedtypename - String

• calctype - Integer

• isstale - Boolean

• lastmodified - Long

• lastmodified - Long

• lastmodifiedString – String – In readable format

• has alias - Boolean

• numberofelements - Integer

• collectiondisabled - Boolean

Example:

{

 "TotalCount": 1031,

 "Page": 1,

 "PageSize": 4,

 "Tags": [

 {

 "Tagid": "adb70ebf-978f-46dd-ac6f-5e863cdb0739",

 "Tagname": "-anilgwxb.Constant",

Historian | 8 - Historian REST APIs | 1388

 "Description": "anilgwxb.Constant",

 "DataType": 3,

 "CollectorName": "ANILGWXB_Simulation",

 "CollectorType": 2,

 "DataStoreName": "User",

 "EngineeringUnits": "",

 "Comment": "",

 "SourceAddress": "$Constant",

 "CollectionInterval": 1000,

 "CollectorCompression": false,

 "LastModifiedUser": null,

 "EnumeratedSetName": "",

 "UserDefinedTypeName": "",

 "CalcType": 0,

 "IsStale": false,

 "HasAlias": false,

 "NumberOfElements": 0,

 "CollectionDisabled": false,

 "LastModified": 1496992712,

 "LastModifiedString": "2017-06-09T07:18:32Z"

 },

 {

 "Tagid": "88e1f448-643f-465a-95c2-d2bd08870547",

 "Tagname": "anilgwxb.Constant_1%Noise",

 "Description": "anilgwxb.Constant_1%Noise",

 "DataType": 3,

 "CollectorName": "ANILGWXB_Simulation",

 "CollectorType": 2,

 "DataStoreName": "User",

 "EngineeringUnits": "",

 "Comment": "",

 "SourceAddress": "$Constant_1%Noise",

 "CollectionInterval": 1000,

 "CollectorCompression": false,

 "LastModifiedUser": null,

 "EnumeratedSetName": "",

 "UserDefinedTypeName": "",

Historian | 8 - Historian REST APIs | 1389

 "CalcType": 0,

 "IsStale": false,

 "HasAlias": false,

 "NumberOfElements": 0,

 "CollectionDisabled": false,

 "LastModified": 1496992712,

 "LastModifiedString": "2017-06-09T07:18:32Z"

 },

<SNIP>

],

 "Links": {

 "first": "https://anilgwxb:443/historian-rest-api/v1/tagslist?pageno=1&pagesize=4",

 "last": "https://anilgwxb:443/historian-rest-api/v1/tagslist?pageno=258&pagesize=4",

 "prev": null,

 "next": "https://anilgwxb:443/historian-rest-api/v1/tagslist?pageno=2&pagesize=4"

 }

}

The Raw Data API

The Raw Data API queries raw data, such as a number of samples or the time range for a

list of tags. If the count is not zero, then the API service returns the number of raw samples

taken beginning from the start time. If the count is zero, then the service returns the raw

samples taken between the start time and the end time.

METHOD: GET, POST

URI: GET

https://<historianservername>:443/historian-rest-

api/v1/datapoints/raw/{tagNames}/{start}/{end}/{di

rection}/{count}

POST

https://<historianservername>:443/historian-rest-

api/v1/datapoints/raw/{start}/{end}/{direc

tion}/{count}

SAMPLE GET URI: Raw By Number

Historian | 8 - Historian REST APIs | 1390

Count value is a non-zero positive number, and end time is greater

than start time.

https://<historianservername>:443/his

torian-rest-api/datapoints/raw/tag

Name1/2013-10-02T11:30:00.111Z/2013-10-02T11:31:11.111Z/

0/100https://<historianservername>:443/histori

an-rest-api/datapoints/raw/tagNames=tagName1&s

tart=2013-10-02T11:30:00.111Z&end=2013-10-02T11:31:11.111Z&coun

t=100&direction=0

Raw By Time

The count value equals 0.

https://<historianservername>:443/his

torian-rest-api/datapoints/raw/tag

Name1/2013-10-02T11:30:00.111Z/2013-10-02T11:31:11.111Z/

0/0https://<historianservername>:443/histori

an-rest-api/datapoints/raw/tagNames=tagName1&s

tart=2013-10-02T11:30:00.111Z&end=2013-10-02T11:31:11.111Z&coun

t=0&direction=0

SAMPLE POST

URI:

Raw By Number

Count value is a non-zero positive number, and end time is greater

than start time.

https://<historianservername>:443/historian-rest-

api/datapoints/raw/2013-10-02T11:30:00.111Z/

2013-10-02T11:31:11.111Z/0/100https://<histori

anservername>:443/historian-rest-api/datapoints/raw/

start=2013-10-02T11:30:00.111Z&end=2013-10-02T11:31:11

.111Z&count=100&direction=0

Raw By Time

The count value equals 0.

https://<historianservername>:443/historian-rest-

api/datapoints/raw/2013-10-02T11:30:00.111Z/

2013-10-02T11:31:11.111Z/0/0https://<histori

anservername>:443/historian-rest-api/datapoints/raw/

Historian | 8 - Historian REST APIs | 1391

start=2013-10-02T11:30:00.111Z&end=2013-10-02T11:31:11

.111Z&count=0&direction=0

SAMPLE cURL

COMMAND (GET):

[Raw By Number]

curl -i -H "Accept: application/json" -H "Authorization: Bear

er <TOKEN>” http://<nodename>:443/historian-rest-api/v1/ data

points/raw/<tagName>/<start time>/<end time>/<direction>/<count>

SAMPLE cURL

COMMAND (GET):

[Raw By Time]

curl -i -H "Accept: application/json" -H "Authorization: Bear

er <TOKEN>” http://<nodename>:443/historian-rest-api/v1/ data

points/raw/<tagName>/<start time>/<end time>/<direction>/0

SAMPLE cURL

COMMAND

(POST): [Raw By

Number]

curl –X POST -i -H "Content-Type: application/json" -H "Accept:

application/json" -H "Authorization: Bearer <TOKEN>” -d “{\”tag

Names\”:\”<tagName>;<tagName>\”}” http:// <nodename>/ histori

an-rest-api/v1/ datapoints/raw/ <start time>/<end time>/<direc

tion>/<count>

SAMPLE cURL

COMMAND

(POST): [Raw By

Time]

curl –X POST -i -H "Content-Type: application/json" -H "Accept:

application/json" -H "Authorization: Bearer <TOKEN>” -d “{\”tag

Names\”:\”<tagName>;<tagName>\”}” http:// <nodename>/ histo

rian-rest-api/v1/ datapoints/raw/ start=<start time>&end=<end

time>&direction=<direction>&count=<count>

Table 228. Query Parameters

Parameter Description
Re

quired?
Values

TagNames Queries the specified tag

names.

Yes String

Start Start time of the query,

in ISO data format (such

as YYYY-MM-DDTHH:m

m:ss.SSSZ).

Yes DateTime

End End time of the query, in

ISO data format (such

as YYYY-MM-DDTHH:m

m:ss.SSSZ).

Yes DateTime

Direction Specifies the direction

(Forward or Backward

Yes Integer, with a value such as 1.

Historian | 8 - Historian REST APIs | 1392

Table 228. Query Parameters (continued)

Parameter Description
Re

quired?
Values

from the starting time)

of data sampling from

the archive. The default

value is Forward (1).

Count Count of archive values

within each calculation

interval.

Yes Integer, with a value such as 100.

Table 229. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, 0.

ErrorMessage String Yes For example, NULL.

Data String Yes The object container for the following

parameters:

DataType

DoubleFloat, which stores

decimal values up to 15

places.

ErrorCode

Value is 0, which means

the operation was suc

cessful.

TagName

Example: TagName1.

Samples

Provides TimeStamp, Val

ue, Quality, and DtatAt

tributes for each sample.

Where, DataAttributes is

Historian | 8 - Historian REST APIs | 1393

Table 229. Response Parameters (continued)

Parameter Data Type Required? Description

the detailed information

regarding the Quality.

For example,

"TimeStamp":

 "2013-10-02T11:30:00.111Z",

"Value": 34.26155",

"Quality": 3,

"DataAttributes": []

The Interpolated Data API

The Interpolated Data API queries interpolated values for a list of tags. If the start time

equals the end time, the request returns one sample.

METHOD: GET, POST

URI: GET

https://<historianservername>:443/histori

an-rest-api/v1/datapoints/interpolated/{tag

Names}/{start}/{end}/{count}/{intervalMs}

POST

https://<historianservername>:443/historian-rest-

api/v1/datapoints/interpolated/{start}/{end}/

{count}/{intervalMs}

SAMPLE GET URI: https://<historianservername>:443/histori

an-rest-api/v1/datapoints/interpolated/tag

Name1/2013-10-02T11:30:00.111111Z/2013-10-02T11:31:11.111Z/

100/10000

SAMPLE POST URI: https://<historianservername>:443/historian-rest-api/

v1/datapoints/interpolated/2013-10-02T11:30:00.111111Z/

2013-10-02T11:31:11.111Z/100/10000

SAMPLE cURL COM

MAND (GET):

curl -i -H "Accept: application/json" -H "Authorization:

Bearer <TOKEN>” http://<nodename>:443/ historian-rest-api/v1/

Historian | 8 - Historian REST APIs | 1394

datapoints/interpolated/<tagName>/<start time>/<end time>/

<count>/<intervalMS>

SAMPLE cURL COM

MAND (POST):

curl -i –X POST -H "Content-Type: application/json" -H "Ac

cept: application/json" -H "Authorization: Bearer <TOKEN>” -d

“{\”tagNames\”:\”<tagName>\”}” http://<nodename>:443/histo

rian-rest-api/v1/ datapoints/interpolated/<start time>/<end

time>/<count>/<intervalMS>

Table 230. Query Parameters

Parameter Description
Re

quired?
Values

TagName Queries the tag names

specified.

Yes String

Start Start time of the query,

in ISO data format (such

as YYYY-MM-DDTHH:m

m:ss.SSSZ).

Yes DateTime

End End time of the query, in

ISO data format (such

as YYYY-MM-DDTHH:m

m:ss.SSSZ).

Yes DateTime

Count Count of archive values

within each calculation

interval.

Yes Integer, with a value such as 100.

intervalMS Interval in milliseconds. Yes 64-bit signed integer, with a value

such as 10000.

Table 231. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, 0.

ErrorMessage String Yes For example, NULL.

Data String Yes The object container for the following

parameters:

Historian | 8 - Historian REST APIs | 1395

Table 231. Response Parameters (continued)

Parameter Data Type Required? Description

DataType

DoubleFloat, which stores

decimal values up to 15

places.

ErrorCode

Value is 0, which means

the operation was suc

cessful.

TagName

Example is TagName1.

Samples

Provides TimeStamp,

Value and Quality for

each sample. For ex

ample, TimeStamp =

2013-10-02T11:30:00.111Z,

Value = 34.26155, and

Quality = 3.

The Current Value API

The Current Value API queries the current value data and reads the current values for a list

of tags. If the start time is equal to end time, the request returns one sample.

METHOD: GET, POST

URI: GET

https://<historianservername>:443/his

torian-rest-api/v1/datapoints/raw/{tag

Names}/{start}/{end}/{direction}/{count}

POST

https://<historianservername>:443/histori

an-rest-api/v1/datapoints/currentvalue

Historian | 8 - Historian REST APIs | 1396

SAMPLE GET URI: https://<historianservername>:443/historian-rest-api/v1/dat

apoints/currentvalue?tagNames=tagName1

SAMPLE POST URI: https://<historianservername>:443/historian-rest-api/v1/dat

apoints/currentvalue

SAMPLE cURL COM

MAND (GET):

curl -i -H "Accept: application/json" -H "Authorization:

Bearer <TOKEN>” http://<nodename>:443/historian-rest-api/v1/

datapoints/currentvalue/<tagName>

SAMPLE cURL COM

MAND (POST):

curl -i –X POST -H "Content-Type: application/json" -H "Ac

cept: application/json" -H "Authorization: Bearer <TOKEN>”

-d “{\”tagNames\”:\”<tagName>\”}” http://<nodename>:443/his

torian-rest-api/v1/ datapoints/currentvalue

Table 232. Query Parameters

Parameter Description
Re

quired?
Values

TagNames Queries the specified tag

names.

Yes String

Table 233. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, 0.

ErrorMessage String Yes For example, NULL.

Data String Yes The object container for the following

parameters:

DataType

DoubleFloat, which stores

decimal values up to 15

places.

ErrorCode

Value is 0, which means

the operation was suc

cessful.

Historian | 8 - Historian REST APIs | 1397

Table 233. Response Parameters (continued)

Parameter Data Type Required? Description

TagName

Example is TagName1.

Samples

Provides TimeStamp,

Value and Quality for

each sample. For ex

ample, TimeStamp =

2014-01-01T12:00:00Z,

Value = 34.26155, and

Quality = 3.

The Calculated Data API

The Calculated Data API queries the calculated data for a list of tags. Data can be requested

using a number of samples or a time range for a list of tags. If the count is not zero, the

service returns the number of raw samples beginning from the start time. If the count is

zero, the services uses the interval, start time, and end time to calculate the required sample

number.

METHOD: GET, POST

URI: GET

https://<historianservername>:443/historian-rest-api/

v1/datapoints/calculated/{tagNames}/{start}/{end}/

{calculationMode}/{count}/{intervalMs}

POST

https://<historianservername>:443/historian-rest-api/

v1/datapoints/calculated/{start}/{end}/{calculation

Mode}/{count}/{intervalMs}

SAMPLE GET

URI:

Number of Samples

https://<historianservername>:443/histori

an-rest-api/v1/datapoints/calculated/tag

Name1/2013-10-02T11:30:00.111Z/2013-10-02T11:31:11.111Z/

1/100/1000

Historian | 8 - Historian REST APIs | 1398

Time Range for List of Tags

https://<historianservername>:443/historian-rest-

api/v1/datapoints/calculated?tagNames=tagName1&s

tart=2013-10-02T11:30:00.111Z&end=2013-10-02T11:31:11

.111Z&count=100&calculationMode=1&intervalMs=1000

SAMPLE POST

URI:

Number of Samples

https://<historianservername>:443/historian-rest-api/

v1/datapoints/calculated/2013-10-02T11:30:00.111Z/

2013-10-02T11:31:11.111Z/1/100/1000

Time Range for List of Tags

https://<historianservername>:443/his

torian-rest-api/v1/datapoints/calculat

ed?start=2013-10-02T11:30:00.111Z&end=2013-10-02T11:31:11

.111Z&count=100&calculationMode=1&intervalMs=1000

SAMPLE cURL

COMMAND

(GET):

curl -i -H "Accept: application/json" -H "Authorization: Bear

er <TOKEN>” http://<nodename>:8843/ historian-rest-api/v1/ data

points/calculated/<tagName>/<start time>/<end time>/<count>/<cal

culation mode>/<intervalMS>

SAMPLE cURL

COMMAND

(POST):

curl -i –X POST -H "Content-Type: application/json" -H "Accept:

application/json" -H "Authorization: Bearer <TOKEN>” -d “{\”tag

Names\”:\”<tagName>\”}” http://<nodename>:8843/ historian-rest-

api/v1/ datapoints/calculated/<start time>/<end time>/<count>/

<calculationmode>/<intervalMS>

Table 234. Query Parameters

Parameter Description
Re

quired?
Values

TagNames GE identifier for a loca

tion.

Yes 1000000106

Start Start time of the query,

in ISO data format (such

as YYYY-MM-DDTHH:m

m:ss.SSSZ).

Yes DateTime

Historian | 8 - Historian REST APIs | 1399

Table 234. Query Parameters (continued)

Parameter Description
Re

quired?
Values

End End time of the query, in

ISO data format (such

as YYYY-MM-DDTHH:m

m:ss.SSSZ).

Yes DateTime

Count Count of archive values

within each calculation

interval.

Yes Integer, with a value such as 100.

Calculation

Mode

Yes Integer, with a value such as 1. For

more information on the calculation

modes, refer to calculation modes

for REST API.

IntervalMS Interval in milliseconds. 64-bit signed integer, with a value

such as 1000.

Table 235. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, 0.

ErrorCode String Yes For example, NULL.

Data String Yes The object container for the following

parameters:

DataType

DoubleFloat, which stores

decimal values up to 15

places.

ErrorCode

Value is 0, which means

the operation was suc

cessful.

TagName

Historian | 8 - Historian REST APIs | 1400

Table 235. Response Parameters (continued)

Parameter Data Type Required? Description

Example is TagName1.

Samples

Provides TimeStamp,

Value and Quality for

each sample. For ex

ample, TimeStamp =

2013-10-02T11:30:00.111Z,

Value = 34.26155, and

Quality = 3.

The Sampled Data API

The Sampled Data API queries the sampled data for a list of tags. Data can be requested

using a number of samples or a time range for a list of tags. If the count is not zero, the

service returns the number of raw samples beginning from the start time. If the count is

zero, the services uses the interval, start time, and end time to calculate the required sample

number.

Note:

For the query, you can also use optional parameters such as FilterMode and

ReturnDataFields. Unused parameters can be omitted.

METHOD: GET, POST

URI: GET

https://<historianservername>:443/historian-rest-

api/v1/datapoints/sampled

POST

https://<historianservername>:443/historian-rest-

api/v1/datapoints/sampled

SAMPLE GET URI: https://<historianservername>:443/historian-rest-

api/v1/datapoints/sampled?tagNames=tagName1&s

tart=2013-10-02T11:30:00.111Z&end=2013-10-02T11:31:11

Historian | 8 - Historian REST APIs | 1401

.111Z&samplingMode=1&calculationMode=1&direction=0&coun

t=0&intervalMs=1000

SAMPLE POST URI: https://<historianservername>:443/historian-rest-api/v1/data

points/sampled

SAMPLE cURL COM

MAND (GET):

curl -i -H "Accept: application/json" -H "Authorization:

Bearer <TOKEN>” http://<nodename>:443/ historian-rest-api/v1/

datapoints/sampled/<tagName>/<start time>/<end time>/<direc

tion>/<count>/<intervalMS>

SAMPLE cURL COM

MAND (POST):

curl -i –X POST -H "Content-Type: application/json" -H "Ac

cept: application/json" -H "Authorization: Bearer <TOKEN>” -d

“{ \”tagNames\”:\”<tagName>\”, \”start\”: \”<start>\”, \”end

\”: \”<end>\”, \”samplingMode\”: <samplingMode>, \”calcula

tionMode\”: <calculationMode>, \”direction\”: <direction>,

\”count\”: <count>, \”returnDataFields\”: <returnDataFields>,

\”intervalMs\”: <intervalMs>, \”queryModifier\”: <query

Modifier>, \”filterMode\”: <filterMode>, \”filterExpres

sion\”: \”<filterExpression>\”}” http://<nodename>:443/histo

rian-rest-api/v1/datapoints/sampled

Table 236. Query Parameters

Parameter Description
Re

quired?
Values

TagNames Queries the tag names

specified.

Yes String

Start Start time of the query,

in ISO data format (such

as YYYY-MM-DDTHH:m

m:ss.SSSZ).

Yes DateTime

End End time of the query, in

ISO data format (such

as YYYY-MM-DDTHH:m

m:ss.SSSZ).

Yes DateTime

Sampling

Mode

Also known as Sam

plingModeType.

Optional Integer, with a value such as 1.

Historian | 8 - Historian REST APIs | 1402

Table 236. Query Parameters (continued)

Parameter Description
Re

quired?
Values

Calculation

Mode

Also known as Calcula

tionModeType.

Optional Integer, with a value such as 1.

Direction Specifies the direction

(Forward or Backward

from the starting time)

of data sampling from

the archive. The default

value is Forward (1).

Optional Integer, with a value such as 1.

Count The count of archive val

ues within each calcula

tion interval.

Optional Integer, with a value such as 0.

IntervalMS Interval in milliseconds. Optional 64-bit signed integer, with a value

such as 1000.

Table 237. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, 0.

ErrorCode String Yes For example, NULL.

Data String Yes The object container for the following

parameters:

DataType

DoubleFloat, which stores

decimal values up to 15

places.

ErrorCode

Value is 0, which means

the operation was suc

cessful.

TagName

Historian | 8 - Historian REST APIs | 1403

Table 237. Response Parameters (continued)

Parameter Data Type Required? Description

Example is TagName1.

Samples

Provides TimeStamp,

Value and Quality for

each sample. For ex

ample, TimeStamp =

2013-10-02T11:30:00.111Z,

Value = 34.26155, and

Quality = 3.

The Trend Data API

The Trend Data API queries the trend data for a list of tags.

Note:

For the query, you can also use optional parameters such as FilterMode and

StatisticsItemFilter. Unused parameters can be omitted.

METHOD: GET, POST

URI: GET

https://<historianservername>:443/historian-rest-

api/v1/datapoints/trend

POST

https://<historianservername>:443/historian-rest-

api/v1/datapoints/trend

SAMPLE GET URI: https://<historianservername>:443/historian-rest-api

/v1/datapoints/trend?tagNames=tagName1&start=2013-10-02T11:

30:00.111Z&end=2013-10-02T11:31:11.111Z&samplingMode=1&calculationMode=1

&direction=0&count=0&intervalMs=1000

SAMPLE POST URI: https://<historianservername>:443/historian-rest-api/v1/data

points/trend

Historian | 8 - Historian REST APIs | 1404

SAMPLE cURL COM

MAND (GET):

curl -i -H "Accept: application/json" -H "Authorization:

Bearer <TOKEN>” http://<nodename>:443/ historian-rest-api/v1/

datapoints/trend/<tagName>/<start time>/<end time>/<sampling

Mode>/<calculationMode>/<direction>/<count>/<intervalMS>

SAMPLE cURL COM

MAND (POST):

curl -i –X POST -H "Content-Type: application/json" -H "Ac

cept: application/json" -H "Authorization: Bearer <TOKEN>” -d

“{ \”tagNames\”:\”<tagName>\”, \”start\”: \”<start>\”, \”end

\”: \”<end>\”, \”samplingMode\”: <samplingMode>, \”calcula

tionMode\”: <calculationMode>, \”direction\”: <direction>,

\”count\”: <count>, \”returnDataFields\”: <returnDataFields>,

\”intervalMs\”: <intervalMs>, \”queryModifier\”: <query

Modifier>, \”filterMode\”: <filterMode>, \”filterExpres

sion\”: \”<filterExpression>\”}” http://<nodename>:443/histo

rian-rest-api/v1/datapoints/trend

Table 238. Query Parameters

Parameter Description
Re

quired?
Values

TagNames Queries the tag names

specified.

Yes String

Start Start time of the query,

in ISO data format (such

as YYYY-MM-DDTHH:m

m:ss.SSSZ).

Yes DateTime

End End time of the query, in

ISO data format (such

as YYYY-MM-DDTHH:m

m:ss.SSSZ).

Yes DateTime

Sampling

Mode

Also known as Sam

plingModeType.

Optional Integer, with a value such as 1.

Calculation

Mode

Also known as Calcula

tionModeType.

Optional Integer, with a value such as 1.

Direction Specifies the direction

(Forward or Backward

Optional Integer, with a value such as 1.

Historian | 8 - Historian REST APIs | 1405

Table 238. Query Parameters (continued)

Parameter Description
Re

quired?
Values

from the starting time)

of data sampling from

the archive. The default

value is Forward (1).

Count The count of archive val

ues within each calcula

tion interval.

Optional Integer, with a value such as 0.

IntervalMS Interval in milliseconds. Optional 64-bit signed integer, with a value

such as 1000.

Table 239. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, 0.

ErrorMessage String Yes For example, NULL.

Data String Yes The object container for the following

parameters:

TagName

Name of the tag, such as

ahistfile.Simulation00001.

TagSource

Location where tags are

being searched for.

DataType

Float, which stores deci

mal values up to 6 places.

Trend

Provides TimeStamp,

Value and Quality for

each sample. For ex

Historian | 8 - Historian REST APIs | 1406

Table 239. Response Parameters (continued)

Parameter Data Type Required? Description

ample, TimeStamp =

2016-03-15T04:53:17.000Z,

Value = 170903.6563, and

Quality = True.

The Add Single Tag API

For the Add Single Tag API, you can add a new tag to Historian, and the tag name and data

type must be provided in the payload (parameter) of the method. All other tags are optional.

If a property is provided, the respective validation is performed at the server end. If the tag

exists, then any new properties provided in the payload are applied to the existing tag.

METHOD: POST

URI: https://<historianservername>:443/historian-rest-api/v1/tags/ad

dtag

SAMPLE URI: https://<historianservername>:443/historian-rest-api/v1/tags/addtag

Payload:

{

 "Name" : "SampleTag",

 "DataType" : 3

}

SAMPLE cURL

COMMAND:

curl -i -H "Accept: application/json" -i -H "Content-Type: appli

cation/json" -H "Authorization: Bearer <TOKEN>” -d “{ \”Name\”:

\”Sampletag\”,\"DataType\":3}” -X POST https://<historianserver

name>:443/historian-rest-api/v1/tags/addtag

Table 240. Query Parameters

Parameter Description Required? Values

Payload JSON array of Property

Name and PropertyVal

ue.

Yes. "Name" and

"DataType" proper

ties are required.

Multidata types. See Pay

load Parameter (on page

1245) for a list of tag prop

Historian | 8 - Historian REST APIs | 1407

Table 240. Query Parameters (continued)

Parameter Description Required? Values

All other properties

are optional.

erties used to update a tag

configuration.

Sample Response

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, 0.

ErrorMessage String Yes For example, NULL.

The Add Bulk Tags API

For the Add Bulk Tags API, you can add new tags to Historian using an array, and the tag

names and data types must be provided in the payload (parameter) of the method. All other

tags are optional. If a property is provided, the respective validation is performed at the

server end. If the tags exist, then any new properties provided in the payload are applied to

the existing tags. The payload is be an array of tags defined.

METHOD: POST

URI: https://<historianservername>:443/historian-rest-api/v1/tags/ad

dtags

SAMPLE URI: https://<historianservername>:443/historian-rest-api/v1/tags/addtags

Payload:

[

{

 "Name" : "SampleTag1",

 "DataType" : 3

},

{

 "Name" : "SampleTag2",

 "DataType" : 3

}

]

Historian | 8 - Historian REST APIs | 1408

SAMPLE cURL

COMMAND:

curl -i -H "Accept: application/json" -i -H "Content-Type: appli

cation/json" -H "Authorization: Bearer <TOKEN>” -d “[{ \”Name\”:

\”Sampletag1\”}, { \”Name\”:\”Sampletag2\”}]” -X POST https://

<historianservername>:443/historian-rest-api/v1/tags/addtags

Table 241. Query Parameters

Parameter Description Required? Values

Payload JSON array tags with in

dividual tags of Proper

tyName and Property

Value.

Yes. "Name" and

"DataType" proper

ties are required.

All other properties

are optional.

Multidata types. See Pay

load Parameter (on page

1245) for a list of tag prop

erties used to update a tag

configuration.

Table 242. Response Parameters

Parameter Data Type Exists? Description

TagName String Yes Tag name.

ErrorCode Integer Yes For example, 0.

ErrorMessage String Yes For example, NULL.

The Update Tag Configuration API

The Update Tag Configuration API allows you to set or modify any tag property values. You

cannot, however, rename a tag using this API.

METHOD: PUT

URI: https://<historianservername>:443/historian-rest-api/v1/tags/prop

erties/tagName

SAMPLE

DELETE URI:

https://<historianservername>:443/historian-rest-api/v1/tags/properties/tagName

Payload:

{

 "PropertyName" : "PropertyValue"

}

Historian | 8 - Historian REST APIs | 1409

SAMPLE cURL

COMMAND:

curl -i -H "Accept: application/json" -i -H "Content-Type: ap

plication/json" -H "Authorization: Bearer <TOKEN>” -d “{ \”De

scription\”:\”SampleDesc\”}” -X PUT https://<historianserver

name>:443/historian-rest-api/v1/tags/properties/tagName

Table 243. Query Parameters

Parameter Description
Re

quired?
Values

tagName Tag name for which

properties need to be set

or modified.

Yes String

Payload JSON array of Property

Name and PropertyVal

ue.

At least

one prop

erty must

be provid

ed.

Multidata types. See Payload Para

meter (on page 1245) for a list of

tag properties used to update a tag

configuration.

Table 244. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, 0.

ErrorMessage String Yes For example, NULL.

The Get Tag Properties API

You can use this API to specify which properties are required for retrieval. If no property

names are provided, then all properties are retrieved. When using the Get Tag Properties

method, requesting a non-existent tag name returns an error.

METHOD: GET / POST

URI: (GET) https://<historianservername>:443/historian-rest-api/v1/tags/prop

erties/tagName

This URI returns all tag properties.

URI: (POST) https://<historianservername>:443/historian-rest-api/v1/tags/prop

erties/tagName

Historian | 8 - Historian REST APIs | 1410

Payload

{

"PropertyName1" : 1,

"PropertyName2" : 1

}

SAMPLE GET

URI:

https://<historianservername>:443/historian-rest-api/v1/tags/prop

erties/tagName

SAMPLE POST

URI:

https://<historianservername>:443/historian-rest-api/v1/tags/properties/tagName

Payload:

{

 "Description" : 1

}

SAMPLE cURL

GET COM

MAND:

curl -i -H "Accept: application/json" -i -H "Content-Type: appli

cation/json" -H "Authorization: Bearer <TOKEN>” -X GET https://

<historianservername>:443/historian-rest-api/v1/tags/proper

ties/tagName

SAMPLE cURL

POST COM

MAND:

curl -i -H "Accept: application/json" -i -H "Content-Type: appli

cation/json" -H "Authorization: Bearer <TOKEN>” -d “{ \”Descrip

tion\”: 1}” -X POST https://<historianservername>:443/histori

an-rest-api/v1/tags/properties/tagName

Table 245. Query Parameters

Parameter Description
Re

quired?
Values

tagName Tag name for which

properties need to be re

trieved.

Yes String

Payload JSON array of Property

Name and boolean (true/

false).

At least

one prop

erty must

be provid

ed.

Multi data types. See Payload Para

meter (on page 1245) for a list of

tag properties used to update a tag

configuration.

Historian | 8 - Historian REST APIs | 1411

Note:

The query payload contains all the tag properties you want returned from the server.

In the Update Tag Config method, you need to provide the actual tag property value.

However, in the Get Tag Properties method, you need to provide the property and a

value of 1 (true), to allow it to be read from the server and returned.

Table 246. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, 0.

ErrorMessage String Yes For example, NULL.

Name String Optional If no error, then the tag name of query is

returned and all requested parameters.

The Delete Tag API

The Delete Tag API provides the ability to delete an existing tag from the Historian server.

Its URI format supports question marks (?).

METHOD: DELETE

URI: https://<historianservername>:443/historian-rest-api/v1/tags/tag

Name?{permanentDelete}

SAMPLE

DELETE URI:

https://<historianservername>:443/historian-rest-api/v1/tags/tag

Name?permanentDelete=true

SAMPLE CURL

COMMAND:

curl -i -H "Authorization: Bearer <TOKEN>” -X DELETE https://

<historianservername>:443/historian-rest-api/v1/tags/tagName?per

manentDelete=<true|false>

Table 247. Query Parameters

Parameter Description
Re

quired?
Values

tagName Name of the tag to be

deleted.

Yes String

Historian | 8 - Historian REST APIs | 1412

Table 247. Query Parameters (continued)

Parameter Description
Re

quired?
Values

permanent

Delete

Deletes the tag perma

nently from the Histo

rian server if the value

passed in is true. If the

parameter is not pro

vided, then permanent

Delete is assumed to be

false.

Optional

(false is

default)

Boolean, true or false

Table 248. Response Parameters

Parameter Data Type Required? Description

ErrorCode Number Yes For example, ErrorCode=0, which means

the operation was successful.

ErrorMessage String Yes For example, NULL.

The Query Results API

The Query Results API enables you to include the number of samples required, by providing

an end point to configure query results.

The minimum number of samples should be 1000.

METHOD: PUT

URI: https://<historianservername>:443/historian-rest-api/v1/data

points/ configuration/{maxDataQueryResultSize}

SAMPLE URI: https://<historianservername>:443/historian-rest-api/v1/data

points/ configuration?maxDataQueryResultSize=6000

SAMPLE CURL

COMMAND:

curl -i -H "Accept: application/json" -H "Authorization: Bear

er <TOKEN>” https://<nodename>:443/ historian-rest-api/v1/data

points/configuration? maxDataQueryResultSize=<Number_Of_Query_Re

sults>

Historian | 8 - Historian REST APIs | 1413

Table 249. Query Parameters

Parameter Description
Re

quired?
Values

maxDataQue

ryResultSize

Maximum samples that

should be configured as

part of Query Results.

Yes Integer

Table 250. Response Parameters

Parameter Data Type Required? Description

Error Code Integer Yes For example, 0.

Error Message String Yes For example, NULL.

Maximum DataQue

ryResultSize

Integer Yes Returns the number

of samples that were

configured as part of

query. For example,

based on the sample

URI, this parameter

will be 6000.

The Tag Rename API

This API allows the administrator to rename tags.

METHOD: PUT

URI https://<historianservername>:443/historian-rest-api/v1/tags/

tagrename/oldtagname/newtagname?{truerename}

SAMPLE

URI

https://<historianservername>:443/historian-rest-api/v1/tags/

tagrename/GDW14NV2E.Simulation0000101/GDW14NV2E.Simulation0000101new

name?truerename= <true | false>

SAM

PLE CURL

COMMAND

curl -i -H "Accept: application/json" -i -H "Content-Type: appli

cation/json"-H "Authorization: Bearer <TOKEN> -X PUT https://<his

torianservername>:443/historian-rest-api/v1/tags/tagrename/<oldtag

name>/<newtagname>?truerename=<true | false>

Historian | 8 - Historian REST APIs | 1414

Table 251. Query Parameters

Parameter Description Required? Values

oldtagname Tag which is to be re

named.

Yes String

newtagname New name for the se

lected tag.

Yes String

truerename Renames the tag per

manently if the value

entered is true.

Creates an alias if

the value entered is

false.

Optional (false is de

fault)

Boolean (true or

false)

Table 252. Response Parameters

Parameter Data Type Required? Description

Error Code Integer Yes For example, 0.

Error Message String Yes For example, NULL.

Data List Yes Returns all the prop

erties of the tag.

The Write Tag API

Write Tag Data API enables you to create data for tags. You can write data to a tag for

different data types such as integer, float, array, multifield and so on. Once created, you can

view the data using other end points. Only REST API Administrator and users with write

permission can perform this operation.

Method POST

URI https://<historianservername>:443/historian-re

st-api

 /v1/datapoints/create

SAMPLE URI https://<historianservername>:443/historian-re

st-api /v1/datapoints/create

Historian | 8 - Historian REST APIs | 1415

Method POST

 Payload

 {

 "TagName": "GDW14NV2E.Simulation00015",

 "samples": [

 {

 "TimeStamp":

 "2019-09-17T15:58:00.000Z",

 "Value": "1",

 "Quality": 3

 }

]

 }

SAMPLE RESPONSE {

"ErrorCode": 0,

"ErrorMessage": ""

}

SAMPLE CURL COMMAND curl -i -H "Accept: application/json"

-i -H "Content-Type: application/json"

-H "Authorization: Bearer <TOKEN>”

-d “{ \”TagName\”:\”GDW14NV2E.Simula

tion00015\”,\"samples\":[{\"TimeStamp\":

\ "2019-09-17T15:58:00.000Z\",\"Val

ue\": \"1\",\"Quality\": 3}]}” -X POST

https://<historianservername>:443/histo

rian-rest-api/v1/datapoints/create

Historian | 8 - Historian REST APIs | 1416

Table 253. Query Parameters

Parameter Description Required? Values

Payload JSON format of

Property Name and

Property Value.

Yes Multi-data types. It

can have integer,

float, array, multifield

data types.

Table 254. Response Parameters

Parameter Data Type Required? Description

Error Code Integer Yes For example, Er

rorCode = 0, which

means the operation

was successful.

Error Message String Yes For example, NULL.

Calculation Modes for REST API

Calculation modes are used on retrieval of data that has already been collected to the archive. Calculation

modes are used when the sampling mode is set to "Calculated". The table below lists the different

calculation modes and their corresponding value that you can pass as part of the query parameters to

manage tags.

Calculation Mode Value

Average 1

StandardDeviation 2

Total 3

Minimum 4

Maximum 5

Count 6

RawAverage 7

RawStandardDeviation 8

RawTotal 9

Historian | 8 - Historian REST APIs | 1417

Calculation Mode Value

MinimumTime 10

MaximumTime 11

TimeGood 12

StateCount 13

StateTime 14

OPCAnd 15

OPCOr 16

FirstRawValue 17

FirstRawTime 18

LastRawValue 19

LastRawTime 20

TagStats 21

DeltaPos 22

DeltaNeg 23

Delta 24

Managing Alarms and Events

Overview

Historian includes Alarms and Events (A&E) archiving to provide the ability to retrieve and

store Alarms and Events Data from any OPC-compliant A&E server through the OPC Classic

Alarms and Events collector.

Alarms are generally defined as tags going into an abnormal condition. For example, an

alarm could be set on a boiler when it reaches a specified temperature. Alarms usually

have a well-defined life cycle, which is defined by the individual data sources the alarms are

collected from (iFIX, for example). They enter an alarm state, are generally acknowledged,

and then return to normal.

Events are generally defined as activities in a system that occur only once. For example, a

user logging on to a device is an event. When viewing this data in Historian, each event is

Historian | 8 - Historian REST APIs | 1418

returned as a record. The Historian REST API provide API’s to store, retrieve, backup, restore,

and delete alarms and events data.

Add Alarm or Event

Add alarm API allows you to create alarm in Historian Server.

METHOD POST

URI https://<historianservername>:443/historian-re

st-api/v1/alarms/create

SAMPLE URI https://<historianservername>:443/historian-re

st-api/v1/alarms/create

Payload

{

 "DataSource":"Simulation",

 "AlarmsInfo":[

 {

 "ItemId":"GF7DQL63E_Simulation.Simulation0000

1",

 "Source":"Simulation",

 "DataSourceName":"Simulation",

 "Tagname":"GF7DQL63E_Simulation.Simulation0000

1",

 "AlarmType":4,

 "EventCategory":"SimCategory",

 "ConditionName":"Simulation",

 "SubConditionName":"Simulation",

 "StateTransitionTime":"2022-09-21T5:58:00.000

Z",

 "StartTime":"2022-09-21T5:58:00.000Z",

 "EndTime":"2022-09-21T6:58:00.000Z",

 "AckTime":"2022-09-21T6:58:00.000Z",

 "TimeStamp":"2022-09-21T5:58:00.000Z",

 "Message":"This is simulation alarm",

Historian | 8 - Historian REST APIs | 1419

 "Severity":100,

 "Actor":"Simulator",

 "Quality":3

 }

]

}

SAMPLE CURL COMMAND curl -i -H "Accept: application/json" -i

 -H "Content-Type: application/json" -H

 "Authorization: Bearer ” -d “{

 \"DataSource\":\"Simulation\",

 \”AlarmsInfo\”:[

 {

 \”ItemId\”:

\”GF7DQL63E_Simulation.Simulation00001\”,

 \”Source\”:\”Simulation\”,

 \”DataSourceName\”:\”Simulation\”,

 \”Tagname\”:

\”GF7DQL63E_Simulation.Simulation00001\”,

 \”AlarmType\”:4,

 \”EventCategory\”:\”SimCategory\”,

 \”ConditionName\”:\”Simulation\”,

 \”SubConditionName\”:\”Simulation\”,

 \”StateTransitionTime\”:

\”2022-09-21T5:58:00.000Z\”,

 \”StartTime\”:\”2022-09-21T5:58:00.000Z\”,

 \”EndTime\”:\”2022-09-21T6:58:00.000Z\”,

 \”AckTime\”:\”2022-09-21T6:58:00.000Z\”,

 \”TimeStamp

 \”:\”2022-09-21T5:58:00.000Z\”,

 \”Message\”:\”This is simulation

 alarm\”,

Historian | 8 - Historian REST APIs | 1420

 \”Severity\”:100,

 \”Actor\”:\”Simulator\”,

 \”Quality\”:3

 }

]

}” -X PUT https://:443/historian-rest-api/v1/

 alarms/create

Table 255. Query Parameters

Parameter
Data

Type
Description

DataSource VT_

BSTR

The collector interface name associated with the alarm or event.

ItemId VT_

BSTR

The OPC ItemID of the alarm. This contains the source address of the

data access tag with which the alarm is associated. This can contain a

NULL value if an alarm is not associated with a tag.

Source VT_

BSTR

The unique identifier used by the OPC A&E Collector for the alarm or

event.

Data

SourceName

VT_

BSTR

The collector interface name associated with the alarm or event.

Tagname VT_

BSTR

The Historian tag name associated with the alarm. This value is NULL

unless the tag is also collected by Historian

AlarmType VT_

BSTR

The alarm type:

• Alarms: In Historian, the full life cycle of an alarm is stored as a

single record in the alarm archive.

• Alarm_History: The separate transitions for all alarms. One row

per transition is returned.

• Events: The simple and tracking events.

EventCate

gory

VT_

BSTR

The OPC event category of the alarm or event.

Condition

Name

VT_

BSTR

The OPC condition of the alarm. Does not apply to event data. This val

ue combined with the Source value comprises an alarm.

Historian | 8 - Historian REST APIs | 1421

Table 255. Query Parameters (continued)

Parameter
Data

Type
Description

SubCondi

tionName

VT_

BSTR

The OPC subcondition of the alarm. Does not apply to event data. This

value represents the state of the alarm.

StateTran

sitionTime

VT_

DB

Time

S

tamp

The time the state of the tag was generated.

StartTime VT_

DB

Time

S

tamp

The start time or timestamp of the alarm or event.

EndTime VT_

DB

Time

S

tamp

The end time of the alarm. Does not apply to event data.

AckTime VT_

DB

Time

S

tamp

The time the alarm was acknowledged. Does not apply to event data.

TimeStamp VT_

DB

Time

S

tamp

The time the alarm was generated.

Message VT_

BSTR

The message attached to the alarm or event.

Historian | 8 - Historian REST APIs | 1422

Table 255. Query Parameters (continued)

Parameter
Data

Type
Description

Severity VT_

I4

The severity of the alarm or event. Stored as an integer value with a

range of 1–1000.

Actor VT_

BSTR

The operator who acknowledged the alarm, or caused the tracking

event.

Quality VT_

I4

The quality of the alarm or event.

Table 256. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, ErrorCode = 0 implies the

operation was successful.

ErrorMessage String Yes For example, NULL.

Query Alarm or Event

The following table contains the query parameters for alarms and events data.

METHOD POST

URI https://<historianservername>:443/historian-re

st-api/v1/alarms/query

SAMPLE URI https://<historianservername>:443/historian-re

st-api/v1/alarms/query

Payload:

{

 "AlarmType":"4",

 "StartTime":"2022-10-30T3:30:00.000Z",

 "EndTime":"2022-10-31T4:30:00.000Z",

 "DataSourceName":"GF7DQL63E_Simulation",

 "MaxRecords":50

}

Response:

Historian | 8 - Historian REST APIs | 1423

{"ErrorCode":0,"ErrorMessage":null,"Data":[{"Des

cription":"This is a simulated

 alarm.","Source":"Simulation00001_ALM","Start

 Time":"2022-10-30T03:30:00.000Z","End

 Time":"2022-10-30T03:30:02.000Z","Condition":"S

imulated","Sub Condition":"OK","Event

 Category":"SimCategory","Severity":0,"Modified

 Time":"2022-10-30T03:30:02.000Z","Quality":3}]}

SAMPLE CURL COMMAND curl -i -H "Accept: application/json" -i -H "Con

 tent-Type: application/json" -H "Authorization:

 Bearer ” -d “{

 \”AlarmType\”:\”4\”,

 \”StartTime\”:\”2022-10-30T3:30:00.000Z\”,

 \”EndTime\”:\”2022-10-31T4:30:00.000Z\”,

 \”DataSourceName\”:\”GF7DQL63E_Simulation\”,

 \”MaxRecords\”:50

}

” -X PUT https://:443/historian-rest-api/v1/

 alarms/ query

Table 257. Query Parameters

Parameter Description
Re

quired?

Val

ues

Data

SourceName

The collector interface name associated with the alarm or

event.

false

AlarmType Classifies this AlarmInfo as an alarm or an event. Enter 1 for

an event and 4 for an alarm.

yes

StartTime The start time or time stamp of the alarm or event. yes

EndTime The end time of the alarm. This does not apply to event data. yes

MaxRecords Maximum records returned false

Historian | 8 - Historian REST APIs | 1424

Table 258. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, ErrorCode = 0 implies the

operation was successful.

ErrorMessage String Yes For example, NULL.

Delete Alarms or Events

This REST API allows to purge the alarms between time frame.

METHOD POST

URI https://<historianservername>:443/historian-re

st-api/v1/alarms/delete

SAMPLE URI https://<historianservername>:443/historian-re

st-api/v1/alarms/delete

Payload

https://<historianservername>:443/historian-re

st-api/v1/alarms/delete

Payload:

{

 "StartTime":"2022-09-21T5:58:00.000Z",

 "EndTime":"2022-09-21T6:58:00.000Z"

}

SAMPLE CURL COMMAND curl -i -H "Accept: application/json" -i -H "Con

 tent-Type: application/json" -H "Authorization:

 Bearer ” -d “{

\"StartTime\":\"2022-09-21T5:58:00.000Z\",

 \"EndTime\":\"2022-09-21T6:58:00.000Z\"

}” -X PUT https://:443/historian-rest-api/v1/

 alarms/delete

Historian | 8 - Historian REST APIs | 1425

Table 259. Query Parameters

Parameter Description Required? Values

StartTime The start time

or time stamp

of the alarm or

event.

Yes

EndTime The end time

of the alarm or

event.

Yes

Table 260. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, -26 A&E Server not con

nected

ErrorMessage String Yes For example, NULL.

Backup Alarms or Events

This REST API allows to create a copy of the alarm data in an offline file that can be restored

later. The alarms are not removed from the online system.

METHOD POST

URI https://<historianservername>:443/historian-re

st-api/v1/alarms/backup

SAMPLE URI https://<historianservername>:443/historian-re

st-api/v1/alarms/backup

Payload

{

 "BackupFileName":"C:\\Proficy Historian

 Data\\Archives\\abc.zip,

 "StartTime":"2022-09-21T5:58:00.000Z",

 "EndTime":"2022-09-21T6:58:00.000Z"

}

Historian | 8 - Historian REST APIs | 1426

SAMPLE CURL COMMAND curl -i -H "Accept: application/json" -i -H "Con

 tent-Type: application/json" -H "Authorization:

 Bearer ” -d “{

\"BackupFileName\":\"C:\\Proficy Historian

 Data\\Archives\\abc.zip\",

\"StartTime\":\"2022-09-21T5:58:00.000Z\",

 \"EndTime\":\"2022-09-21T6:58:00.000Z\"

}” -X PUT https://:443/historian-rest-api/v1/

 alarms/ backup

Table 261. Query Parameters

Parameter Description Required? Values

BackupFileName Path of the

backup file.

Yes C:\\Proficy Historian Data\\Archives\

\abc.zip

StartTime The start time

or time stamp

of the alarm or

event.

Yes

EndTime The end time

of the alarm or

event.

Yes

Table 262. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, -26 A&E Server not con

nected.

ErrorMessage String Yes For example, NULL.

Restoring Alarms or Events

Restoring alarms to a running system makes them available for query and analysis. You can

restore alarms that have been backed up previously..

METHOD POST

Historian | 8 - Historian REST APIs | 1427

URI https://<historianservername>:443/historian-re

st-api/v1/alarms/restore

SAMPLE URI https://<historianservername>:443/historian-re

st-api/v1/alarms/restore

Payload:

C:\\Proficy Historian Data\\Archives\\abc.zip

SAMPLE cURL COMMAND curl -i -H "Accept: application/json" -i

 -H "Con tent-Type: application/json" -H

 "Authorization: Bearer ” -d “C:\\Proficy

 Historian Data\\Archives\\abc.zip” -X PUT

 https://:443/historian-rest-api/v1/ alarms/

 restore

Table 263. Query Parameters

Parameter Description Required? Values

C:\\Proficy

Historian Da

ta\\Archives\

\abc.zip

Path of the re

store file.

Yes C:\\Proficy Historian Data\\Archives\

\abc.zip

Table 264. Response Parameters

Parameter Data Type Required? Description

ErrorCode Integer Yes For example, 10 invalid parameter.

ErrorMessage String Yes For example, NULL.

Swagger Documentation
You can now access Historian REST APIs using Swagger UI. This tool enables you to visualize and

interact with the API’s resources without having any of the implementation logic in place establishing a

fully interactive documentation experience using Swagger.

Install web-based clients or ensure web-based clients are installed.

This topic describes how to access the Historian REST APIs.

Historian | 8 - Historian REST APIs | 1428

1. Access a node on which Historian web-based clients are installed.

2. Access the following URL: https://<web-based client machine name>/historian-rest-api/

swagger-ui.html

Note:

To access the link, you must provide the machine name where web-based clients are

installed. https://<machinename>/historian-rest-api/swagger-ui.html

The Swagger UI appears.

3. Select Authorize. The Available authorizations window appears.

4. In the Available authorizations window, scroll down to the oauth2schema (OAuth2, password)

section, enter the following values, and then select Authorize:

Field Description

username Enter the web-based client login username. Default <machi

nename>.admin

password Enter the web-based client login password.

client_id Enter client id: historian_public_rest_api

client_secret Enter publicapisecret as client secret.

5. You can now access the REST APIs for Historian.

Chapter 9. Historian System API

Overview of the Historian System API

Overview of the Historian System API

This document is intended to help in the development of C and C++ programs that interact with Historian

at the System API level. With the System API you can develop programs that perform the following

functions:

• Create, browse, and modify tags of any data type including User Defined Data Types and array data

types.

• Read data as raw samples or using any sampling or calculation mode or filter condition or query

modifier.

• Write, delete, and replace data samples.

• Get and Set server properties such as product version, archive size, or data store configuration.

Historian has different APIs based on the programming languages. Both the System API and the User API

can be called using C or C++. The System API is used only when the User API does not meet your needs.

The User API is more widely used and has greater version compatibility.

System API programs are fully capable but they are subject to Proficy Historian security so you will need

to have an understanding of security within Historian.

Message and Alarm functions are not documented. However, for more information you can contact the

Technical Support team at GE Intelligent Platforms.

The information that you need to write a collector is not included in the System API, but you can create

programs that write data. Refer to the Collector Toolkit documentation if you need to write a collector.

Prerequisites

Programs created with the Historian System API must be run on a computer with at least the following

software installed and configured:

• Historian 5.5 Client Tools

• Visual Studio .NET 2010

The Historian Client Tools are installed when the product is installed. You will be able to install the

updates and bug fixes along with the product installation. Do not distribute Historian DLLs directly.

Historian | 9 - Historian System API | 1430

You will need a Data Archiver running locally or on another machine. That Data Archiver can be of any

version of Historian. The Historian System API has been tested with Visual Studio .NET 2010. The

Historian System API has no additional hardware requirements.

Note:

The Historian version where your program is running should be the same as the version of the

program you developed.

ihapi.h File Overview

ihapi.h File Overview

All technical information for the System API is included in a single ihapi.h header file. This document

highlights the areas of ihapi.h that might affect your programs.

System API Functions and Data Structures

#pragma pack(push,BeforeihAPI)

#pragma pack(1)

The System API uses 1 byte packing for structures:

// Setup a link dependency on the ihAPI lib

#define ihAPILIB_NAME "ihAPI55.lib"

#define ihAPIDLL_NAME L"ihAPI55.dll"

#define ihAPIDLL_VERSION 550

The version specified in the given example changes for each version of Historian. The version of your

program should match the version of Historian installed.

#ifdef _WCHAR_T_DEFINED

typedef ihPUBLIC wchar_t ihChar;

#else

typedef ihPUBLIC unsigned short ihChar;

#endif

The System API uses Unicode. Your program should use ihChar for all strings and you can find the correct

data type from ihapi.h file.

typedef struct ihTimeStruct {

MSO_ULONG Seconds;

Historian | 9 - Historian System API | 1431

MSO_ULONG Nanoseconds;

} ihTimeStruct; // (Must match MSOTimeStruct)

Timestamps are nanosecond resolution in the System API. However, only microseconds are exposed to

users.

// Error Statuses typedef enum

ihStatus { ihSTATUS_OK = 0,

 ...

} ihStatus;

There is a fixed set of error codes and you cannot add new ones. Your program can receive errors on

reads or writes or tag adds and those errors will be described with the function documentation.

 typedef enum ihQualityStatus {

ihOPCBad = 0,

...

} ihQualityStatus;

typedef enum ihQualitySubStatus {

ihOPCNonspecific = 0,

...

} ihQualitySubStatus;

Historian uses a fixed set of quality and subquality data and you cannot add new ones.

 typedef enum ihDataType {

ihDataTypeUndefined = 0,

... } ihDataType;

There are a fixed set of data types and user-defined data types. You cannot add new native data types.

 typedef enum ihSamplingMode {

 ihSamplingModeUndefined=0,

...

} ihSamplingMode;

typedef enum ihCalculationMode {

ihCalculationModeUndefined=0,

...

} ihCalculationMode;

Historian | 9 - Historian System API | 1432

To read data you should specify a sampling mode, calculation mode, a filter condition (optional), and a

query modifier (optional).

typedef ihHIDDEN struct ihBlobData {

ihVoidPtr Blob;

MSO_ULONG BlobSize;

} ihBlobData;

The blob data type is a size and a pointer in the System API

typedef struct ihTagProperties {

ihString Tagname;

...

} ihTagProperties;

A tag has a fixed set of properties as listed in this structure. Some tag properties may not exist in the

earlier versions of Historian and new properties may be added in the future. You are limited to the set

of properties available in the version of the ihapi.h shipped with this SDK and you cannot add new tag

properties.

 typedef struct ihDataProperties {

 ihTimeStruct TimeStamp;

 ihDataType ValueDataType;

 ihValue Value;

 ihQuality Quality;

 unsigned char NumberOfComments;

 ihCommentsPtr Comments;

ihGeoLocation Unsupported;

} ihDataProperties;

The given prototype is the structure for one raw data sample and it has timestamp, data type, value, and

quality. It can optionally have comments. This structure is used on both data reads and data writes.

typedef struct ihDataRecordset {

 ihDataFields Fields;

 ihDataCriteria Criteria;

 ihUNSIGNED long NumberOfResults; // (Num items in results)

 ihDataResultPtr Results; // (array. One for each matching tag)

} ihDataRecordset;

The given prototype is a collection of data samples that you get back from a data read or subscription.

Historian | 9 - Historian System API | 1433

Callback Prototypes/typedefs

typedef void (__stdcall *ihInterfaceGetCurrentValueCallbackFunction) (ihServerHandle hServer, void *UserParameter,

ihUNSIGNED long NumberOfSourceAddresses,

ihString *SourceAddresses, ihCallbackId CallbackId);

A lot of information can be communicated to your program using callback if you subscribe to changes

which is optional. The following sections describe this in more detail.

ihConfiguration Functions

extern ihC_DEC ihAPIStatus __stdcall ihConfigurationGetProperties

(ihServerHandle hServer, ihConfigurationProperties *Properties);

extern ihC_DEC void __stdcall ihConfigurationFreeProperties

(ihConfigurationProperties *Properties);

You can get information about the Data Archiver in addition to reading and writing data.

ihServer Function

extern ihC_DEC ihAPIStatus stdcall ihServerConnect(ihString ServerName, ihString Username, ihString Password,

ihString BufferFileName, ihServerHandle *hServer);

extern ihC_DEC ihAPIStatus stdcall ihServerConnectClient(ihString ServerName, ihString Username, ihString

Password, ihString BufferFileName, ihServerHandle *hServer, ihString ClientName);

extern ihC_DEC ihAPIStatus stdcall ihServerDisconnect(ihServerHandle hServer);

extern ihC_DEC ihBoolean stdcall ihServerIsConnected(ihServerHandle hServer);

You need to connect to the server before you start working.

extern ihC_DEC ihAPIStatus stdcall ihServerAdd(ihString ServerName, ihString Username, ihString Password,

ihBoolean IsDefault, ihString BufferFileName, ihServerHandle *hServer,ihULong ConnectionTimeout);

extern ihC_DEC ihAPIStatus stdcall ihServerDelete(ihString ServerName);

extern ihC_DEC ihAPIStatus stdcall ihServerOpenRecordset(ihString ServerNameMask, ihServerRecordset

*ServerRecordset);

extern ihC_DEC void stdcall ihServerCloseRecordset(ihServerRecordset *ServerRecordset);

You can set up a collection of servers with their timeouts and usernames. However, you can simply call

connect to establish a connection.

Historian | 9 - Historian System API | 1434

ihTag Functions

extern ihC_DEC ihAPIStatus stdcall ihTagAdd(ihServerHandle hServer, ihTagFields *hFields, ihTagProperties

*hTag);

extern ihC_DEC ihAPIStatus stdcall ihTagOpenRecordset(ihServerHandle hServer, ihTagFields *RequestedFields,

ihTagCriteria *Criteria, ihTagFields *CriteriaFields, ihTagRecordset *TagRecordset);

extern ihC_DEC ihAPIStatus stdcall ihTagGetProperties(ihServerHandle hServer, ihString Tagname, ihTagFields

*hFields, ihTagProperties *hTag);

You can add and browse tags using these functions

ihData Functions

extern ihC_DEC ihAPIStatus stdcall ihDataAdd(ihServerHandle hServer, ihUNSIGNED long NumberOfTags, ihString

*Tagnames, ihDataProperties *DataValues, ihAPIStatus *ErrorStatuses, ihBoolean WaitForReply, ihBoolean ErrorOnRep

You can add and delete data and subscribe to data changes

ihDataStore Functions

extern ihC_DEC ihAPIStatus stdcall ihDataStoreOpenRecordset(ihServerHandle hServer, ihString

DataStoreMask, ihDataStoreRecordset *Recordset);

You need not configure data stores, the defaults should be fine.

ihComment Functions

extern ihC_DEC ihAPIStatus stdcall ihCommentAdd (ihServerHandle hServer, ihString Tagname, ihTimeStruct

*CommentAdd, ihCommentData *ihCommentData, ihString SuppliedUser, ihString SuppliedPassword);

You can add comments to data and get them back when you read the data but this is not commonly used.

ihTime Functions

extern ihC_DEC void stdcall ihTimeLCLPartsToUTCStruct(int Year, int Month, int Day, int Hour, int Minute,

int MilliSecond, ihTimeStruct *UTCTime);

extern ihC_DEC void stdcall ihTimeUTCStructToLCLParts(int *Year, int *Month, int *Day, int *Hour, int

*Minute, int *Second, int *MilliSecond, ihTimeStruct *UTCTime);

The System API has utility functions for working with time zones and daylight saving time.

Historian | 9 - Historian System API | 1435

ihUtil Functions

extern ihC_DEC void stdcall ihUtilAnsiToUnicode(char *MBStr, ihChar *WCStr);

extern ihC_DEC void stdcall ihUtilUnicodeToAnsi(char *MBStr, ihChar *WCStr);

The System API has utility functions for converting between Unicode and ANSI strings.

System API Programming

System API Programming

To use System API you should be an experienced programmer. The section that follow list general topics

that will help you understand the best use of the System API.

Unicode

String tag names, string tag properties such as description, and string data values are all Unicode strings.

Memory

You should never free memory allocated in the API. The API provides many functions to free memory or

clear record sets and structures and you should use them as demonstrated in sample programs.

String Length

In the API you will notice that most string fields such as tag names or descriptions are just pointers and

this is because they do not have a maximum length. They must be allocated and freed.

Networking between the System API and the Data Archiver

The communication between the ihapi DLL and the Data Archiver is TCP/IP networking which sends

proprietary packet streams via Winsock calls. The details are not documented.

Multithread Programming

You can have multiple threads reading and writing data, even sharing the same connection.

Multitag Functions

In most cases you can simply act on one tag at a time when reading data or adding tags. These calls are

less frequent than writing data. But there are API calls that can handle multiple tags in one round trip and

your design should decide if they are needed for performance reasons.

Historian | 9 - Historian System API | 1436

Timestamps

You will see that the timestamp structure is in seconds and subseconds. It is implied that the time zone of

the seconds is in GMT+0 Universal Time Coordinated time zone. The System API gives utility functions to

convert timestamps to and from local time zones.

Running as a Service

You can develop programs that run as GUI programs, console programs, or services.

Timeouts and Throttles in the System API and the Data Archiver

The Data Archiver will try to protect the system against unintentional large data queries. There are Data

Archiver enforced, configurable throttles for queries that return too many samples or take too long to

execute. Use the ihArchiverMaxIntervalRetrievalCount and ihArchiverMaxQueryTime archiver options

to increase the limits if you occasionally get the ihSTATUS_DATA_RETRIEVAL_COUNT_EXCEEDED error from

intentional large queries.

On the System API side there is a configurable timeout set via ihServerSetTimeout() and defaults to 90

seconds. Data writes and setting of options must complete within this time period or the API will return

an error to the application. The Data Archiver may have queued the work and will still perform the request

even if a timeout is returned to the application.

Reads and tag browses can take longer than 90 seconds and this is because the API needs to receive

only a partial response every 90 seconds. Large reads and tag browses are streamed back to the API in

pieces as the read or browse is still being performed in the Data Archiver. If we do not receive at least

one piece every 90 seconds, a timeout error is returned to application but the Data Archiver will continue

working until it hits the limit in ihArchiverMaxQueryTime archiver option.

System API Functions

System API Connect Functions

This section provides detailed information about each available System API function. Use this information

together with the sample programs provided to develop your own applications. The System API functions

are grouped as follows:

• Connect Functions (on page 1437)

• System API Tag Functions (on page 1443)

• Read and Write Functions (on page 1455)

• Archiver Configuration Functions (on page 1469)

Historian | 9 - Historian System API | 1437

• User Defined Type Functions (on page 1488)

• Utility Factors (on page 1495)

Not every function and structure in the ihapi.h is documented or available for use in user written pro-

grams. Please limit your programs to the documented functions or contact the Technical Support team at

GE Intelligent Platforms for additional clarifications.

Connect Functions

To perform a connection you need to just use the connect functions. The API will complete the

connection and do further necessary reconnects when the Data Archiver is restarted. Your program does

not need to manage and monitor connections as it is done by the API.

Connections are subjected to Historian security, which is based on Microsoft Windows Security.

It is expected that user written programs will connect a minimal number of times for staying connected

and using that connection for all read and write calls. Connecting and disconnecting rapidly is not

efficient. The connect functions are:

ihServerConnect

This function establishes the connection with the Historian server.

ihServerConnect(

ihString ServerName,// the computer name or IP address of the Machine running the Data Archiver. You can pass

NULL or the empty string &rdquor;” to attempt connection to a Data Archiver on your local machine.

ihString Username,// The windows username to use when connecting or NULL if you want to connect as the process

owner of your program, typically the logged in user. You would specify a username if the process owner was unable to

connect or did not have sufficient Historian Security permissions.

ihString Password,// if you passed a Username you can pass the password or ”” if there is no password or

otherwise just pass NULL

ihString BufferFileName, // an optional bufferfilename if your program will be using store and forward to

deliver written data

ihServerHandle *hServer // this is an output parameter that will contain the server handle that you would use in

later read and write calls

);

Remarks

Historian | 9 - Historian System API | 1438

A server is a computer running a Data Archiver. You can specify a server by including the computer name

or IP address.

ihServerConnect() will initiate a connection, but you should really use ihServerIsConnected() (on page

1439) to determine if the connect actually completed.

If you setup a connection callback function with ihServerRegisterConnectionCallback() you will be

notified of connection changes. Your security permissions for reads and writes will be established at

connect time and are based on the user name and password provided.

Returns

Returns Status Message

ihSTATUS_OK On success.

ihSTATUS_API_TIMEOUT If the server name or IP address provided cannot

be located.

ihSTATUS_LIC_TOO_MANY_USERS If this connection would exceed your licensed num

ber of connections.

ihSTATUS_NOT_VALID_USER If the user is not allowed to connect. This can hap

pen whether you provided a username or connect

ed as the process owner. Consult the Historian

documentation for security behavior.

ihSTATUS_FAILED For any other type of error.

ihServerDisconnect

Use this function to disconnect from the Historian server.

Prototype

ihSeverDisconnect {

ihServerHandle hServer // the handle returned by a previous call to ihServerConnect

);

Remarks

You should call ihServerDisconnect() function even if the connection attempt returned an error.

Returns

Historian | 9 - Historian System API | 1439

Returns Status Message

ihSTATUS_OK On success.

ihServerIsConnected

This function returns whether the Historian server is currently connected or not. It is an indication that if

you try to read and write data the call should be successful.

Prototype

ihServerIsConnected {

ihServerHandle hServer // a server handle returned from ihServerConnect

};

Returns

Returns Status Message

ihSTATUS_OK On success.

ihSTATUS_FAILED On failure.

ihServerSetTimeout

This function is used to configure the timeout of the server connection.

Prototype

TihServerSetTimeout {

ihServerHandle hServer, // a server handle returned from ihServerConnect

int Timeout // the timeout, in seconds, to use

};

Use this to configure the timeout to a larger or smaller value. If the System API does not receive any

response, even a partial response, during the timeout value, a ihSTATUS_API_TIMEOUT will be returned from

the API call.

Set the timeout any time after connecting and the timeout stays in effect until it is changed or disconnect

is issued.

Returns

Historian | 9 - Historian System API | 1440

Returns Status Message

TRUE if you are currently successfully connected.

FALSE if you were never connected or if the connection is currently

down and being re-established.

ihServerGetTimeout

This function is used to return the messaging timeout value of the server connection identified by

ihServer.

ihServerGetTimeout {

ihServerHandle hServer, ihULong *timeout

};

Remarks

Call ihServerConnect() to make a connection, then ihServerSetTimeout() to set the timeout if you want a

non default value. You can use the ihServerGetTimeout() function to determine the timeout value that is

being used.

The returned timeout value is in seconds.

Returns

Returns Status Message

ihSTATUS_OK On success

ihSTATUS_FAILED On failure

ihServerGetVersion

This function returns the Historian server version and connection status.

Prototype

ihServerGetVersion {

ihServerHandle hServer, // a serverhandle returned from a previous call to ihServerConnect

int *Major, // output parameter to contain the major version of the Data Archiver.

For example 4 when the Data Archiver version is 4.5.

int *Minor, // output parameter to contain the minor version of the Data Archiver.

For example 5 when the Data Archiver version is 4.5.

Historian | 9 - Historian System API | 1441

int *Build, // output parameter to contain the build number of the Data Archiver. This is typically not used.

int *Revision // output parameter to contain the revision number of the Data Archiver. This is typically not used

};

You will not receive an immediate callback with the current connection status. You will be notified of the next change

 in status

Remarks

You will not receive an immediate callback with the current connection status. You will be notified of the

next change in status.

Returns

Returns Status Message

ihSTATUS_OK On success and the desired information can be

read from the output parameters.

ihSTATUS_FAILED On failure.

ihSecurityGetMembership

This function returns your membership list. Your group memberships determine your security

permissions and what calls you can make on this Proficy Historian server connection.

Prototype

ihSecurityGetMembership {

ihServerHandle hServer, // handle from previous call to ihServerConnect

ihSecurityGrpMembership *Memberships // output parameter to contain the group membership list

};

Remarks

You can optionally use this call after a successful connect to determine whether the Data Archiver

considers your membership list. You need to be completely connected, not just initiate a connection,

before this call can be used. The best way is to use ihServerIsConnected() (on page 1439) after

ihServerConnect() (on page 1437) to determine that the connection completed.

Returns

Historian | 9 - Historian System API | 1442

Returns Status Message

ihSTATUS_OK On success and the desired information can be

read from the output parameter.

ihSTATUS_API_TIMEOUT If the call could not be completed.

ihSTATUS_NOT_CONNECTED When not currently connected to the Data Archiver.

ihSTATUS_FAILED When the other three return options otherwise do

not apply.

ihServerOpenRecordset

This function returns the list of Historian servers that exist in the Windows registry.

Prototype

ihServerOpenRecordset {

ihString ServerNameMask, // typically NULL to get all servers but could be a mask

ihServerRecordset *ServerRecordset // output parameter containing the recordset

};

Remarks

Use this function to get the list of servers that exist in the Registry. This is a local call and does not need

the Data Archiver.

The default server is stored in the Registry and can be used to query instead of hardcoding a server name

in your program or prompting the user. The default server is established during product install and can be

changed anytime later

Returns

Returns Status Message

ihSTATUS_OK On success and the desired information can be

read from the output parameter.

ihSTATUS_FAILED On failure

Historian | 9 - Historian System API | 1443

ihServerCloseRecordset

This function is used to free any memory such as server names that were allocated in the System API.

Prototype

void ihServerCloseRecordset {

ihServerRecordset *ServerRecordset // recordset returned from ihServerOpenRecordset

};

Use this function to free any memory such as server names that were allocated in the System API in the

ihServerOpenRecordset() call.

Returns

void

System API Tag Functions

You need tags to exist in Historian in order to write and read data samples. A read or write call requires a

tagname as a parameter. The tag must exist before the data samples are written, the tag is not created

automatically.

You can refer to a tag in the following ways:

• A tag has a tagname.

• A tag may have aliases which are previously used names left over from tag renames.

• A tag has a tagid which is a long number and does not change. If you convert this number to

a string you can pass it in place of a tagname. If your tagnames are typically longer than 128

characters then using the tagid would be shorter.

A tagname can contain any character except the two wild card characters * and ?.

There are many tag properties as listed in the ihTagProperties data structures in the ihapi.h. All

properties are available to your application and are documented in the Historian product documentation.

A subset of import- ant properties are given in the following table. This list that applies to tags being

written to by user programs. All of the properties related to collectors are not documented in the following

table.

Historian | 9 - Historian System API | 1444

ihTagProperties

Property Type Description

Tagname ihString The tag name that shows in the tag browse.

Description ihString The description of the tag that shows in the tag browse.

DataType ihData

Type

The data type of the tag. This can be a custom type also.

FixedStringLength Un

signed

Char

Used only if data type is FixedString.

HiEngineeringU

nits

Double Used only if you are using ArchiveDead- bandPercent.

LoEngineeringU

nits

Double Used only if you are using ArchiveDead- bandPercent.

ArchiveCompres

sion

ih

Boolean

TRUE if you are using percent or absolute archive.

ArchiveDeadband

PercentRange

Float It is one way to configure the deadband instead of absolute archive.

InterfaceGeneral1 ihString Spare string field for application use.

InterfaceGeneral2 ihString Spare string field for application use.

InterfaceGeneral3 ihString Spare string field for application use.

InterfaceGeneral4 ihString Spare string field for application use.

InterfaceGeneral5 ihString Spare string field for application use.

ReadSecurity

Group

ihString Only needed if you are using tag level security.

WriteSecurity

Group

ihString Only needed if you are using tag level security.

AdministratorSe

curityGroup

ihString Only needed if you are using tag level security.

UTCBias Long You can store an offset from GMT+0 here, such as -300. But it is up to

the client programs to use it.

Historian | 9 - Historian System API | 1445

Property Type Description

ArchiveCompres

sionTimeOut

ihUn

signed

Long

--

ArchiveAbsolute

Deadbanding

ih

Boolean

--

ArchiveAbsolute

Deadband

Double --

TimeResolution ihTime

Resolu

tion

If the tag is using seconds, milliseconds or microseconds.

TagId ihTagId You can refer to tags by their tagname or their TagId

EnumeratedSet

Name

ihString If you want to retrieve using an Enumerated Set. This is optional.

DataStoreName ihString Defines what data store the tag belongs to or should be added to during

an write function. Blank means default data store.

DefaultQueryMod

ifiers

ihQuery

Modifiers

Query modifier string. This is optional.

UserDefinedType

Name

ihString If you are using custom data types.

NumberOfEle

ments

ihUn

signed

long

If you are using an array data type.

DataDensity ihTag

DataDen

sity

--

Tag Functions

ihTagAdd

Use this function to add a tag to Historian.

Prototype

Historian | 9 - Historian System API | 1446

ihTagAdd {

ihServerHandle hServer, // handle from previous call to ihServerConnect

ihTagFields *hFields, // the tag fields you are providing in the ihTagProperties

ihTagProperties *hTag // tag property values such as tagname and data type

};

Remarks

There are many tag properties but the minimum set is that you need tagname and data type. Since you do

not need to provide all properties, use the ihTagFields to indicate which properties you are providing in the

ihTagProperties

Adding a tag that already exists will update that tag to the properties that you provide.

For examples, refer to the Sample Programs included with the SDK.

Returns

Returns Description

ihSTATUS_OK On success

ihSTATUS_API_TIMEOUT If the server name or IP address provided cannot

be located.

ihSTATUS_NOT_CONNECTED If you are not currently connected.

ihSTATUS_ACCESS_DENIED If you are not allowed to add or modify tags. Pos

sibly you are not a member of the “ih Tag Admins”

group.

ihSTATUS_LIC_TOO_MANY_TAGS If adding this tag would exceed your licensed tag

count ihSTATUS_FAILED - for any other type of error.

ihSTATUS_FAILED For any other type of error.

ihTagMultiAdd

Use this function to add more than one tag in a single call to Proficy Historian.

Prototype

ihTagMultiAdd {

ihServerHandle hServer,

ihTagFields *hFields,

Historian | 9 - Historian System API | 1447

ihTagProperties *hTag,

int NumTags

};

This function takes an array of tag structures and a count. Typically, you call ihTagAdd function to add or

modify your tags. For more information on adding a single tag, refer to ihTagAdd() function. If you have

thousands of tags to add use ihTagMultiAdd() function.

Returns

Returns Description

ihSTATUS_OK On success.

ihSTATUS_API_TIMEOUT If the server name or IP address provided cannot

be located.

ihSTATUS_NOT_CONNECTED If you are not currently connected.

ihSTATUS_ACCESS_DENIED If you are not allowed to add or modify tags. Pos

sibly you are not a member of the “ih Tag Admins”

group.

ihSTATUS_LIC_TOO_MANY_TAGS If adding this tag would exceed your licensed tag

count.

ihSTATUS_FAILED For any other type of error.

ihTagDelete

Use this function to delete a tag from Historian.

Prototype

ihTagDelete {

ihServerHandle hServer, // a server handle returned from ihServerConnect

ihString Tagname, // the tag to delete

ihBoolean DeletePermanent // FALSE if you only want to make the tag not appear in tag browse.

TRUE if you want to delete the tag and its data entirely.

};

Remarks

Historian | 9 - Historian System API | 1448

You can delete a tag if it was created by mistake or if you no longer need the data. In most cases, passing

DeletePermanent=FALSE is sufficient and hides the tag from future tag lists. Only if you need to re-use the

tagname should you pass DeletePermanent=TRUE.

Returns

Returns Description

ihSTATUS_OK On success.

ihSTATUS_API_TIMEOUT If the server name or IP address provided cannot

be located.

ihSTATUS_NOT_CONNECTED If you are not currently connected.

ihSTATUS_ACCESS_DENIED If you are not allowed to add or modify tags. Pos

sibly you are not a member of the “ih Tag Admins”

group.

ihSTATUS_FAILED For any other type of error.

ihTagRename

Use this function to rename a tag in Historian.

Prototype

ihTagRename {

ihServerHandle hServer, // a server handle returned from ihServerConnect

ihString Tagname, // the current tagname

ihString NewTagname, // the new tagname

ihBoolean TrueRename // TRUE if you want to reject reads to the old tagname and want to make the

old tagname available for reuse.

};

Remarks

You can rename tags to a single, new name or keep the old name available to legacy clients. Only the

current name appears in a tag browse. Pass TRUE to permanently rename a tag.

Returns

Historian | 9 - Historian System API | 1449

Returns Description

ihSTATUS_OK On success.

ihSTATUS_API_TIMEOUT If the server name or IP address provided cannot

be located.

ihSTATUS_NOT_CONNECTED If you are not currently connected.

ihSTATUS_ACCESS_DENIED If you are not allowed to add or modify tags. Pos

sibly you are not a member of the “ih Tag Admins”

group.

ihSTATUS_FAILED For any other type of error.

ihTagFreeproperties (Tag Properties)

Use this function to correctly free one tag properties structure that was returned from an

ihTagGetProperties() call.

Prototype

void ihTagFreeProperties {

ihTagFields *hFields, // indicates which fields in the tag properties are valid

ihTagProperties *hTagProps // structure containing tag properties to be freed.

};

Use this function to correctly free one tag properties structure. You do not need to call this to free the tag

recordset returned from a browse. Use ihTagCloseRecordset() (on page 1443) instead.

Returns

Returns Description

Void Void

ihTagOpenRecordset

This function is used to browse tags that exist in the Data Archiver.

ihTagOpenRecordset {

ihServerHandle hServer, // a server handle returned from ihServerConnect

ihTagFields *RequestedFields, // indicates which tag properties you want included with the returned tags

ihTagCriteria *Criteria, // used to determine which tags to return

Historian | 9 - Historian System API | 1450

ihTagFields *CriteriaFields, // used to indicate which criteria fields should be used

ihTagRecordset *TagRecordset // output parameter that contains the returned tag recordset

};

Remarks

This is the function used to browse tags that exist in the Data Archiver. You specify a criteria and which

fields of each matching tag you want returned and a recordset of matching tags is returned. Since a tag

has many properties it is a waste of resources to return all the tag properties if for example you only want

the tagnames.

Using filtering criteria you can perform a simple wildcard search on tagname or description, or you can

get all tags of integer data type, or otherwise use any condition on any tag property. The CriteriaFields is

where you indicate which tag properties to use in the filter.

The tag recordset will contain a number of tags returned. It is possible that no tags match your criteria.

After you are finished using the tag recordset you should free it using ihTagCloseRecordset(). Do not free

any individual tag string fields.

An example of tag filtering and browsing is provided in SDK sample program.

Returns

Returns Description

ihSTATUS_OK On success and the tags are returned in the Tag

Recordset.

ihSTATUS_API_TIMEOUT The client program did not receive a portion of the

tag list before the timeout expired. Large browses

are sent back in multiple responses and the Sys

temAPI must receive at least a partial response be

fore the timeout expires. For example if there is 90

second timeout configured, a browse can take sev

eral minutes or as long as at least a part of the re

sponse is received every 90 seconds.

ihSTATUS_NOT_CONNECTED If you are not currently connected to the Data

Archiver.

Historian | 9 - Historian System API | 1451

Returns Description

ihSTATUS_ACCESS_DENIED If you are not allowed to add or modify tags. Pos

sibly you are not a member of the “ih Tag Admins”

group.

ihSTATUS_FAILED For any other type of error.

ihTagCloseRecordset

Use this function to return the recordset returned from an ihTagOpenRecordset() call.

Prototype

ihTagCloseRecordset {

ihTagRecordset *TagRecordset

};

Remarks

Use this function to return the recordset returned from an ihTagOpenRecordset() call.

Returns

Returns Description

ihSTATUS_OK Always

ihTagExists

This function checks if a given tag exists in Historian.

ihTagExists {

ihServerHandle hServer, // a server handle returned from ihServerConnect

ihString Tagname

};

Remarks

Use this function to check if a tag exists as it is easier than using ihTagOpenRecordset(). Tags that have

been deleted are usually hidden and they still exist. ihTagOpenRecordset() only returns non-deleted tags.

Returns

Historian | 9 - Historian System API | 1452

Returns Description

ihSTATUS_OK If the tag exists.

ihSTATUS_INVALID_PARAMETER On invalid input parameters.

This function is more convenient than using the ihTagOpenRecordset() function when you know the tag-

name and want to check for tag existence or get more information about a tag.

If the call succeeds and properties are returned you should call ihTagFreeProperties() to free any string

properties.

ihTagGetProperties

This function returns the properties of the tags.

ihTagGetProperties {

ihServerHandle hServer, // a server handle returned from ihServerConnect

ihString Tagname, // the tagname to locate. Wildcards are not allowed.

ihTagFields *hFields, // the fields you want returned

ihTagProperties *hTag // an output parameter containing the returned tag properties

};

Remarks

This function is more convenient than using the ihTagOpenRecordset() function when you know the tag-

name and want to check for tag existence or get more information about a tag.

If the call succeeds and properties are returned you should call ihTagFreeProperties() to free any string

properties.

Returns

Returns Description

ihSTATUS_OK If the tag exists.

ihSTATUS_INVALID_PARAMETER On invalid input parameters.

ihTagFreeProperties

This function used to free the information returned by an ihTagGetProperties() call.

Prototype

Historian | 9 - Historian System API | 1453

void ihTagFreeProperties {

ihTagFields *hFields, // the fields you want freed

ihTagProperties *hTag // contains the tag properties

};

Remarks

Use this function to free the information returned by an ihTagGetProperties() call.

Returns

Returns Description

Void Void

ihTagSetProperties

This function is used to set the tag properties.

Prototype

ihTagSetProperties {

ihServerHandle hServer, // a server handle returned from ihServerConnect

ihTagFields *hFields,

ihTagProperties *hTag

};

ihTagSubscribe

This function is used to setup a subscription to tag changes.

Prototype

ihTagSubscribe {

ihServerHandle hServer, // a server handle returned from ihServerConnect

ihString Tagname, // the tagname to monitor for changes. Wildcards are allowed

ihBoolean Subscribe // TRUE if you want to subscribe or FALSE to unsubscribe

};

Remarks

Historian | 9 - Historian System API | 1454

Use this function to setup a subscription to tag changes. A tag change would be a change to a tag

property. Data being written to a tag is not a tag change but can be monitored using ihDataSubscribe.

You must register a callback function using ihTagRegisterCallback() and that function will be called on

change.

To detect tag additions pass the wildcard * and you will be notified of all changes to all tags. Discard any

incoming subscriptions you are not interested in.

An example of tag subscriptions is provided in the SDK sample program.

ihTagRegisterCallBack

This function returns which tag properties have changed

ihTagRegisterCallBack {

ihServerHandle hServer, // a server handle returned from ihServerConnect

ihTagCallbackFunction CallbackFunction, // the function to be called

void *UserParameter

};

When your callback function is called there will be an indication of what tag property changed.

ihTagClearAllFields

This function clears the tag properties.

Prototype

void ihTagClearAllFields {

ihTagFields *Fields

};

Returns

Returns Description

Void Void

Historian | 9 - Historian System API | 1455

Read and Write Functions

Data reading and writing is a key part of Historian functionality. There are many rules and best practices

and many use cases that are not all documented here. With the following documentation you will see

how to write raw values and read them back as raw values and then how to instruct the Data Archiver to

perform calculations on the raw samples and return the result.

The method to pass filter parameters and query modifiers is shown but not the meaning of those

parameters. Store and forward buffering is available for data writes but is an advanced topic not

demonstrated here.

The Read and Write functions are:

ihDataAdd

Use this function to add data to the Data Archiver:

Prototype

ihDataAdd {

ihServerHandle hServer, // server handle returned from previous call to ihServerConnect

ihUNSIGNED long NumberOfTags, // the number of data samples being written

ihString *Tagnames, // the tagname of each sample

ihDataProperties *DataValues, // the timestamp, value, and quality of each sample

ihAPIStatus *ErrorStatuses, // output parameter for per data sample errors

ihBoolean WaitForReply, // TRUE if the call should wait for success or failure from Data Archiver.

FALSE means that you do not want to do any error checking

ihBoolean ErrorOnReplace // TRUE if you want an error returned instead of overwriting data

);

Remarks

Although the parameter is called NumberOfTags it is really NumberOfSamples. Even if you are writing

multiple samples to the same tagname you need to pass the tagname with each data sample. Every data

sample you pass needs a tagname in the Tagnames parameter and a timestamp, value, and quality in the

DataValues parameter.

The application would write data timestamps that are in GMT+0 timezone. The Data Archiver

does not do any conversion. If your timestamps are in local time and the data is retrieved in

other clients, the timestamps will not be adjusted to your time zone. The System API uses the

ihTimeLCLPartsToUTCStructEx () function to help you convert timestamps.

Historian | 9 - Historian System API | 1456

Part of your application design is to bundle multiple data samples into one write. You can send one

sample per call to ihDataAdd or send 100,000 samples or more. In most cases you can write data

periodically to make it available to clients in bundles of 1,000 to 10,000 samples per call to ihDataAdd

Part of your application design is to determine what to consider bad or uncertain quality and what sub-

quality to use. Your tags may be in a Data Archiver with many other tags from many other sources, these

include tags written by collectors or Excel Import. You must be consistent with those tags so that clients

need not have special logic for specific tags. For example, collectors use a quality of bad and a subquality

of ihOffline to indicate that collection has stopped at this time in the real world. Consider including such

a data sample and using the same quality and subquality in your program. In this way reports and trends

need not know where the data came from.

The data type you write in the ihDataProperties does not need to match the data type of the tag in the

Data Archiver. The Data Archiver will do the conversion prior to storing the data.

You should typically write with WaitForReply=TRUE so that you can check for errors and implement error

handling such as retries. If you have no error handling strategy or if you are relying on the store and for-

ward functionality to deliver data you can write with wait = FALSE. This is a rare use case. Understand that

store and forward functionality only make sure that the data reaches the Data Archiver, not that the data

is stored in the Historian archive. There could be security errors or the Archiver may be out of disk space.

The most reliable way to write data is to check for errors and even possibly to read back the data that was

written.

If you do get a per data sample error that does not mean the whole write failed. Samples that return

ihSTATUS_OK were written successfully.

If your program only writes data going forward in time, there is no risk of replacing data and you can

pass either TRUE or FALSE for the ErrorOnReplace parameter. Otherwise, pass TRUE if you do not want

accidental data overwrite or FALSE to intentionally overwrite existing data.

There are rules about writes having timestamps that are too old or too new and those are not all given

here. But, you will receive an error if your write is rejected.

Returns

If you write with WaitForReply=FALSE then the return code will be ihSTATUS_OK. When using

WaitForReply=FALSE the return value of the overall function will be ihSTATUS_OK on success and non

ihSTATUS_OK on error which means you should investigate the per data sample error returned in the

ErrorStatuses output parameter. Those errors include these values:

Historian | 9 - Historian System API | 1457

If you write with WaitForReply=FALSE then the return code will be ihSTATUS_OK. When using

WaitForReply=FALSE the return value of the overall function will be ihSTATUS_OK on success and non

ihSTATUS_OK on error which means you should investigate the per data sample error returned in the

ErrorStatuses output parameter. Those errors include these values:

Returns Status Message

ihSTATUS_OK The data sample was successfully written.

ihSTATUS_API_TIMEOUT If the client program did not receive a return code

before the timeout expired. This does not neces

sarily mean the write was not performed at the

archiver, only that the client did not receive a re

sponse.

ihSTATUS_NOT_CONNECTED If you are not currently connected to the Data

Archiver.

ihSTATUS_WRITE_IN_FUTURE If you specified a timestamp that was more than

15 minutes ahead of the Data Archiver PC clock.

The Data Archiver will not accept writes that are

too far into the future because it has no data file to

hold them.

ihSTATUS_DUPLICATE_DATA If you set ErrorOnReplace to TRUE and you would

have overwritten data.

ihSTATUS_WRITE_ARCH_OFFLINE If you wrote to a time period that has no archive.

ihSTATUS_ARCH_READONLY If the archive covering the timestamp written is set

to read only in Historian Administrator

ihSTATUS_ACCESS_DENIED If you are not allowed to write data to this tag and

timestamp. Under most conditions, writes from

user programs are allowed. But if you receive this

error consider the following scenarios:

• Your account is not a member of ihAudited

Writers or ihUnaudited Writers group.

• The tag you are writing has tag level security

enabled.

• The entire archive is set to read only in His

torian Administrator.

Historian | 9 - Historian System API | 1458

Returns Status Message

The tag you are writing has tag level security en

abled. The entire archive is set to read only in His

torian Administrator.

ihSTATUS_WRITE_OUTSIDE_ACTIVE The timestamp on the data sample is older than

the “data is read only"

ihSTATUS_INVALID_TAGNAME The tagname you wrote to does not exist in the Da

ta Archiver configuration.

ihSTATUS_FAILED For any other type of error.

ihDataDelete

This function is used to delete data. By using this function you are not actually deleting the data from the

Data Archiver but instead hiding it and marking it as deleted.

Prototype

ihDataDelete {

ihServerHandle hServer, // server handle returned from previous call to ihServerConnect

ihUNSIGNED long NumberOfTags, // the number of data samples included in the Tagnames and DataValues parameters

ihString *Tagnames, // the tagname of the data sample to be deleted

ihDataProperties *DataValues, // the list of data samples to be deleted

ihAPIStatus *ErrorStatuses // output parameter containing error codes for individual data samples

);

Remarks

Deleting data is not actually done and this function does not clear or reset an entire tag. The reason is

that the data is only hidden and not truly deleted. If you write and delete the same time range repeatedly

the Historian storage becomes very inefficient.

Use the delete function to delete individual data samples so they are not returned in raw data queries or

considered in calculation modes. Delete a small range of data if you have recalculated values and want to

discard the previous calculations. You do not need to delete data prior to data overwrite.

The return codes for a delete are much like the ones returned from a write. ihSTATUS_OK - the data

sample was successfully deleted.

Historian | 9 - Historian System API | 1459

Returns

Returns Status Message

ihSTATUS_OK The data sample was successfully deleted.

ihSTATUS_API_TIMEOUT If the client program did not receive a return code

before the timeout expired. This does not neces

sarily mean the write was not performed at the

archiver, only that the client did not receive a re

sponse.

ihSTATUS_NOT_CONNECTED If you are not currently connected to the Data

Archiver

ihSTATUS_WRITE_ARCH_OFFLINE If you wrote to a time period that has no archive.

ihSTATUS_ACCESS_DENIED If you are not allowed to write data to this tag and

timestamp. Under most conditions, writes from

user programs are allowed. But if you receive this

error consider the following scenarios:

• The tag you are writing has tag level security

enabled.

• The entire archive is set to read only in His

torian Administrator.

The tag you are writing has tag level security en

abled. The entire archive is set to read only in His

torian Administrator.

ihSTATUS_WRITE_OUTSIDE_ACTIVE The timestamp on the data sample is older than

the “data is read only"

ihSTATUS_FAILED For any other type of error.

ihDataOpenRecordset

This function is used to read values for one or more tags for a single start and end time, and sampling

mode.

Prototype

Historian | 9 - Historian System API | 1460

ihDataOpenRecordset {

ihServerHandle hServer, // server handle returned from previous call to ihServerConnect

ihDataFields *Fields, // which fields such as value and quality and comments you want returned

ihDataCriteria *Criteria, // all of the parameters for the read including the tagname and time range and

sampling mode

ihDataRecordset *DataRecordset // output parameter containing the retutned data samples or any per tag errors

);

Remarks

This function is used to read values for a single start and end time and sampling mode. This function

is typically used to read a single tagname. However, a wildcard can be passed or multiple individual

tagnames can be passed.

The list of sampling and calculation modes, filtering parameters and query modifiers are passed to this

function to indicate if you want raw samples returned or you want the Data Archiver to perform some

calculation or summarization of the data and return the results. For example you can instruct the Data

Archiver to perform hourly averages and return the results instead of returning the samples themselves.

All calculated values are returned as Double Float, regardless of the data type of the tag. Sampling

modes such as lab or interpolated will return data in the tag’s current data type, even if the data type was

changed over a period of time.

The start and end time that you enter are assumed to be in the GMT+0 time zone. If you need to convert

local time zone timestamps to UTC use the ihTimeLCLPartsToUTCStructEx() utility function. The returned

data will also be in GMT+0 timezone and you can use the ihTimeUTCStructToLCLPartsEx() function to

convert to local time in preparation for trending or reporting.

The memory holding the returned data must be freed but do not free each field directly. Simply call the

ihDataCloseRecordset() function.

For examples, refer to SDK Sample Programs.

Returns

Returns Status Message

ihSTATUS_OK The data sample was successfully read.

ihSTATUS_API_TIMEOUT The client program did not receive a portion of the

returned values before the timeout expired. Large

reads are sent back in multiple responses and the

Historian | 9 - Historian System API | 1461

Returns Status Message

SystemAPI must receive at least a partial response

before the timeout expires. For example if there is

90 second timeout configured, a read can take sev

eral minutes or more, as long as at least a part of

the response is received every 90 seconds.

ihSTATUS_NOT_CONNECTED If you are not currently connected to the Data

Archiver

ihSTATUS_ACCESS_DENIED If you are not allowed to read data:

• The tag you are reading has tag level securi

ty enabled.

• You are not a member of the ihReaders se

curity group. .

The tag you are writing has tag level security en

abled. The entire archive is set to read only in His

torian Administrator.

ihSTATUS_WRITE_OUTSIDE_ACTIVE The timestamp on the data sample is older than

the “data is read only"

ihSTATUS_FAILED For any other type of error.

ihDataCloseRecordset

This function used to free the data recordset that was allocated inside the System API in a previous read

call.

Prototype

void ihDataCloseRecordset {

ihDataRecordset *DataRecordset // the recordset to be freed. This comes from a previous call to

ihDataOpenRecordset

);

Remarks

Use this function to free the data recordset that was allocated inside the System API in a previous read

calls.

Historian | 9 - Historian System API | 1462

Returns

Returns Status Message

VOID Void

ihDataClearAllFields

This function is used to clear the set of requested data fields.

void ihDataClearAllFields {

ihDataFields *Fields // structure to be cleared

);

Remarks

Use this function to clear the set of requested data fields (timestamp,value,quality and so on) in

preparation for doing a read. After

clearing, you should set the fields that you want returned.

Returns

Returns Status Message

VOID Void

ihDataSubscribe

This function is used to subscribe or unsubscribe the data changes for a tag or tags in the Data Archiver.

Prototype

ihDataSubscribe {

ihServerHandle hServer, // server handle returned from previous call to ihServerConnect

ihChar *Tagname, // the tagname or wildcard of tagnames to subscribe

ihUNSIGNED long MinimumElapsedTime, // the fastest rate in milliseconds that you want data returned or 0 to return

 every data change

ihBoolean Subscribe // TRUE to setup a subscription or FALSE to stop receiving changes from an existing subscription

);

Remarks

Historian | 9 - Historian System API | 1463

Use this function to subscribe or unsubscribe to data changes for a tag or tags in the Data Archiver.

 Subscriptions will be delivered within a few seconds of data change and are delivered to you as

DataRecordset structures through the callback you previously registered with ihDataRegisterCallback()

callback function. You must register a callback first if you want to receive changes. This

ihDataSubscribe() function indicates the tags you want to monitor.

You can subscribe to one tag by passing a specific tagname or pass a * or other wildcard to get changes

for multiple tags. If you need to monitor multiple individual tag names, then call ihDataSubscribe()

function once for each tag.

Most applications will pass a 0 for minimum elapsed time indicating they want all data changes. But you

can specify a minimum rate. However, you may not be notified of every change. As you are notified, you

should receive the data, possibly queuing the data change, and return from the callback.

Subscriptions stay in place even after the connection lost to archiver. However, once you call

ihServerDisconnect() all subscriptions are cleared. It is not necessary to unsubscribe before calling

disconnect but it is suggested.

For Examples, refer Sample Programs section.

Returns Status Message

ihSTATUS_OK if the data was successfully read.

ihSTATUS_API_TIMEOUT if the client program did not receive a portion of the

returned values before the timeout expired. Large

reads are sent back in multiple responses and the

SystemAPI must receive at least a partial response

before the timeout expires. For example, if there is

90 second timeout configured, a read can take sev

eral minutes or more, as long as at least a part of

the response is received every 90 seconds.

ihSTATUS_NOT_CONNECTED if you are not currently connected to the Data

Archiver.

ihSTATUS_FAILED For any other type of error.

ihDataGetCurrentValue

Use this function to get the current values of the one or more tags.

Prototype

Historian | 9 - Historian System API | 1464

ihDataGetCurrentValue {

ihServerHandle hServer,

ihDataFields *Fields,

unsigned long NumberOfTags,

ihChar **Tagnames,

ihDataProperties *DataValues,

ihAPIStatus *ErrorStatuses

);

Remarks

The ihDataGetCurrentValue function returns timestamp, value, quality, and comments. You can choose to

return any of these values using the ihDataFields.

Values are returned based on the tag data type. You should free the returned values using

ihDataFreeCurrentValue() function. Do not free the memory in your program.

You can have per tag errors. For example, if the tag does not exist or you are not allowed to read it.

Returns

Returns Status Message

ihSTATUS_OK The data sample was successfully read.

ihSTATUS_ACCESS_DENIED If you are not allowed to add or modify tags, or you

are not a member of the ihReaders security group.

ihSTATUS_FAILED If the tag does not exist.

ihDataFreeCurrentValue

Use this function to free the memory in your program for the current value of the selected tags.

Prototype

ihDataFreeCurrentValue {

ihUNSIGNED long NumberOfRecords,

ihDataProperties *DataValues

);

Remarks

Historian | 9 - Historian System API | 1465

Use this function to free what is returned from ihDataGetCurrentValue() function. Do not free the memory

any other way.

Returns

Returns Status Message

VOID Void

ihDataSubscribe

Use this function to subscribe or unsubscribe to data changes for a tag or tags in the Data Archiver.

Subscriptions will be delivered within a few seconds of data change and are delivered to you as

DataRecordset structures through the callback you previously registered with ihDataRegisterCallback()

callback function. You must register a callback first if you want to receive changes. This

ihDataSubscribe() function indicates the tags you want to monitor.

You can subscribe to one tag by passing a specific tagname or pass a * or other wildcard to get changes

for multiple tags. If you need to monitor multiple individual tag names, then call ihDataSubscribe()

function once for each tag.

Most applications will pass a 0 for minimum elapsed time indicating they want all data changes. But you

can specify a minimum rate. However, you may not be notified of every change. As you are notified, you

should receive the data, possibly queuing the data change, and return from the callback.

Subscriptions stay in place even after the connection lost to archiver. However, once you call ihServer-

Disconnect() all subscriptions are cleared. It is not necessary to unsubscribe before calling disconnect

but it is suggested.

For Examples, refer to the Sample Programs section.

Returns Status Message

ihSTATUS_OK The data sample was successfully read.

ihSTATUS_API_TIMEOUT The client program did not receive a portion of the

returned values before the timeout expired. Large

reads are sent back in multiple responses and the

SystemAPI must receive at least a partial response

before the timeout expires. For example if there is

90 second timeout configured, a read can take sev

Historian | 9 - Historian System API | 1466

Returns Status Message

eral minutes or more, as long as at least a part of

the response is received every 90 seconds.

ihSTATUS_NOT_CONNECTED If you are not currently connected to the Data

Archiver

ihSTATUS_FAILED For any other type of error.

ihDataOpenMultiRecordset

This function is used if you need to do a single read but use different sampling or calculation modes or

different start and end times.

ihDataOpenMultiRecordset {

ihServerHandle hServer,

ihUNSIGNED long NumberOfRequests,

ihDataFields *Fields,

ihDataCriteria *Criteria,

ihDataRecordset *DataRecordset

);

Remarks

This function can be used if you need to do a single read but use different sampling or calculation modes

or different start and end times. You do not need to use this function simply to read multiple tags.

After checking the return value of the API call you can check the return value of each included query.

Returns

Returns Status Message

ihSTATUS_OK The data sample was successfully read.

ihSTATUS_API_TIMEOUT The client program did not receive a portion of the

returned values before the timeout expired. Large

reads are sent back in multiple responses and the

SystemAPI must receive at least a partial response

before the timeout expires. For example if there is

90 second timeout configured, a read can take sev

Historian | 9 - Historian System API | 1467

Returns Status Message

eral minutes or more, as long as at least a part of

the response is received every 90 seconds.

ihSTATUS_NOT_CONNECTED If you are not currently connected to the Data

Archiver

ihSTATUS_ACCESS_DENIED If you are not allowed to read data.

• The tag you are reading has tag level securi

ty enabled.

• You are not a member of the ihReaders se

curity group

ihSTATUS_DATA_RETRIEVAL_COUNT_EXCEEDED If the read exceeded the Max Query Time or Max

Query Intervals configured in Historian Administra

tor.

ihSTATUS_FAILED For any other type of error.

ihDataCloseMultiRecordset

This function is used to free the multiple recordsets returned from a ihDataOpenMultipleRecordset() call.

Prototype

void ihDataCloseMultiRecordset {

ihUNSIGNED long NumberOfRequests,

ihDataRecordset *DataRecordsetd

);

Remarks

Use this function to properly free the multiple recordsets that were allocated inside the System API in a

previous read call.

Returns

Returns Status Message

VOID Void

Historian | 9 - Historian System API | 1468

ihArchiver options

ihArchiverFreeOption Function

Prototype

ihArchiveFreeOption{

ihChar *OptionValue // the string returned from ihArchiveGetOption()

);

Remarks

Use this function to free the memory inside the structure. Do not free the fields in your code.

Returns

Returns Status Message

VOID Void

ihArchiverGetOption

This function retrieves an Archiver option from the data store.

ihArchiverGetOption {

ihServerHandle hServer,// server handle returned from previous call to ihServerConnect

ihOptionEx *Option, // the option and data store name

ihChar **OptionValue // output parameter containing the option value

);

This function retrieves an Archiver option from a data store. You can indicate the data store in the

ihOptionEx structure. You can pass NULL as the data store name to use the default data store.

You can get an option value to confirm it is set as requested by your application, or you can use this call to

verify that a set option call was successful.

ihArchiverSetOption

This function sets an Archiver option from a data store.

ihArchiverGetStatistics

This function is used to get performance statistics from the Data Archiver.

Historian | 9 - Historian System API | 1469

ihArchiverGetStatistics(

ihServerHandle hServer,

ihArchiveStatistics *Statistics

);

This returns the performance statistics about data writes, failed writes, and disk space usage.

Returns Status Message

ihSTATUS_OK If the option was successfully read

ihSTATUS_API_TIMEOUT If the option could not be read and you can try

again later

ihSTATUS_NOT_CONNECTED If you are not currently connected to the Data

Archiver

ihSTATUS_FAILED For any other type of error.

Archiver Configuration Functions

You can add and configure tags as part of Data Archiver configuration but there are other options that can

be configured.

A subset of all the options and their meanings is given in this section, and the rest are listed in the ihapi.h

file.

Most options are set as per data store and some are applicable for the overall Data Archiver.

Menu ihOptions

Option Description

ihArchiveDefaultPath The default path for new archive creations.

ihArchiveActiveHours Set to a larger number if you need to write data with timestamps in the past old

er than the "data is read only after” setting in Historian Administrator.

ihArchiveDefaultSize The default size for new archives, when you are not using ihArchiveDuration for

time based archives.

ihArchiveAutomatic

Create,

TRUE if new archives should be created or FALSE if old archives should be

reused instead.

Historian | 9 - Historian System API | 1470

Option Description

ihArchiveAutomatic

FreeSpace

The amount of disk space to be left free.

ihArchiveOverwrite

Old

TRUE if you should overwrite old archives instead of refusing incoming data.

ihArchiveDefault

BaseFileName

The default base file name which typically matches the computer name but you

can update this if you move the Data Archiver to a new computer.

ihArchiveDefault

BaseArchiveName

The default base file name which typically matches the computer name but you

can update this if you move the Data Archiver to a new computer.

ihArchiveDefault

BackupPath

The default location for archive backups; typically this location is the same loca

tion as the online archives.

ihArchiveCreateOf

flineArchive

Set to TRUE if you need to write data with a timestamp before the first archive

so that an archive gets created.

ihMessageOnDataUp

date

Set to TRUE if you want an audit trail message for every data sample that is

overwritten.

ihArchiverNumRead

Threads

Increase from default if you need more read threads so that you can perform

parallel reads.

ihSecurityUseLocal

Groups

Set to FALSE if you want to use domain security groups.

ihArchiverMaxInter

valRetrievalCount

Increase this number if you typically do large queries that return error ihS

TATUS_DATA_RETRIEVAL_COUNT_EXCEEDED.

ihArchiverMaxQuery

Time

Increase this number if you typically do large queries that return error ihS

TATUS_DATA_RETRIEVAL_COUNT_EXCEEDED.

ihArchiverMaintain

AutoRecoveryFiles

Set to FALSE if you do not want to use this feature.

ihArchiverAllowData

Overwrites

Set to FALSE if you don’t want to allow accidental or intentional data overwrites.

ihArchiverTargetPri

vateBytes

Leave as 0 for system managed unless you have a specific target.

ihArchiverNumWrite

Threads

Leave as default value.

Historian | 9 - Historian System API | 1471

Option Description

ihSecurityStrict

ClientAuthentication

True to only permit SSPI-based authentication.

ihSecurityStrictCol

lectorAuthentication

True to only permit collector connections from 5.0 and above.

ihArchiveTotalDura

tion

Number of Hours that the archives for a DataStore can span (only used for

trending DataStores).

ihArchiveDuration

Type

The type of archive duration. It is the integer value of ihArchiveDurationType.

ihArchiveDuration Number of Units of time an archive can hold. Defined by ihArchiveDurationType.

StructFieldsInBrows

esByDefault

TRUE if you want each field of a structure to appear as its own tag during tag

browse. Useful for legacy clients that are not aware of structures.

ihOptionMax The highest option number for this version of historian. Use this to check for in

valid option values.

Archiver Configuration Functions

ihArchiveOpenRecordset

This function is used to get the list of archives listed in the server.

Prototype

ihArchiveOpenRecordset

(

ihServerHandle hServer,

ihArchiveCriteria *Criteria,

ihArchiveRecordset *ArchiveRecordset

);

Remarks

Use the criteria if you only want a specific archive or archives from a specific data store. Otherwise you

can get all archives and loop through them to see their start and end times and sizes for example.

Historian | 9 - Historian System API | 1472

Call ihArchiveCloseRecordset() to free the memory when you are done. Do not free memory in your

program.

Returns

Returns Status Message

ihSTATUS_OK On success.

ihSTATUS_API_TIMEOUT If the option could not be read. You can try again

later.

ihSTATUS_NOT_CONNECTED If you are not currently connected to the Data

Archiver.

ihSTATUS_FAILED For any other type of error.

ihArchiveCloseRecordset

This function is used to free up the memory associated with the ArchiveRecordset.

Prototype

ihArchiveCloseRecordset(

ihArchiveRecordset *ArchiveRecordset

);

Remarks

Use this function to free the memory associated with the ArchiveRecordset that was returned from

ihArchiveOpenRecordset(). Do not free the fields in your code.

Returns

Returns Status Message

Void Void

ihArchiveGetOption

This function retrieves an Archiver option from the data store. This option controls the behavior of the

Data Archiver for writes, security and timeouts.

Prototype

Historian | 9 - Historian System API | 1473

ihArchiveGetOption {

ihServerHandle hServer, ihOptionEx *Option, ihChar **OptionValue

);

Remarks

This function retrieves an Archiver option from a data store. You can indicate the data store in the

ihOptionEx structure. You can pass NULL as the data store name to use the default data store. You can

get an option value to confirm it is set as requested by your application, or you can use this call to verify

that a set option call was successful.

Returns

Returns Status Message

ihSTATUS_OK On success.

ihSTATUS_API_TIMEOUT If the option could not be read. You can try again

later.

ihSTATUS_NOT_CONNECTED If you are not currently connected to the Data

Archiver.

ihSTATUS_FAILED For any other type of error.

ihArchiveSetOption

This function sets an Archiver option from a data store

Prototype

ihArchiveSetOption {

ihServerHandle hServer, ihOptionEx *Option, ihChar *OptionValue

);

Remarks

This function sets an Archiver option from a data store. You can indicate the data store in the ihOptionEx

structure. You can pass NULL as the data store name to use the default data store.

Historian | 9 - Historian System API | 1474

The list of possible options in ihapi.h is listed in the Archiver Configuration Functions. Set an option value

when the default does not meet the needs of your application or to confirm that no other application has

changed it. Archive option changes are audited in the Historian messages and you can see them using

ihMessageOpenRecordset call.

Returns

Returns Status Message

ihSTATUS_OK On success.

ihSTATUS_API_TIMEOUT If the option could not be read. You can try again

later.

ihSTATUS_NOT_CONNECTED If you are not currently connected to the Data

Archiver.

ihSTATUS_FAILED For any other type of error.

ihArchiverFreeOption

This function is used to free the memory inside the structure returned from an ihArchiveGetOption().

Prototype

ihArchiveFreeOption{

ihChar *OptionValue // the string returned from ihArchiveGetOption()

);

Remarks

Use this function to free the memory inside the structure. Do not free the fields in your code.

Returns

Returns Status Message

Void Void.

ihArchiveGetProperties

This function retrieves the properties for an archive in a data store identified by the ArchiveDescriptor.

Historian | 9 - Historian System API | 1475

Prototype

ihArchiveGetProperties (

ihServerHandle hServer,

ihArchiveDescriptor *ArchiveDescriptor,

ihArchiveProperties *Archive

);

Remarks

You can pass NULL as the data store name to use the default data store.

The ihArchiveProperties contains information such as the StartTime and EndTime and size of the

archive.

Make sure to free the archive properties using ihArchiveFreeProperties() function.

Returns

Returns Status Message

ihSTATUS_OK On success.

ihSTATUS_API_TIMEOUT If the option could not be read. You can try again

later.

ihSTATUS_NOT_CONNECTED If you are not currently connected to the Data

Archiver.

ihSTATUS_FAILED For any other type of error.

ihArchiveSetProperties

This function sets the properties for an archive.

Prototype

ihArchiveSetProperties {

ihServerHandle hServer,

ihArchiveProperties *Archive

);

Historian | 9 - Historian System API | 1476

Remarks

This is the only archive property set by a user program to make the archive read only.

Returns Status Message

ihSTATUS_OK On success.

ihSTATUS_API_TIMEOUT If the option could not be read. You can try again

later.

ihSTATUS_NOT_CONNECTED If you are not currently connected to the Data

Archiver.

ihSTATUS_FAILED For any other type of error.

ihArchiveFreeProperties

This function is used to free up the memory associated with the ArchiveProperties returned from an

ihArchiveGetProperties call.

Prototype

ihArchiveFreeProperties {

ihArchiveProperties *ArchiveProperties

);

Remarks

Use this function to free the memory. Do not free the memory by calling operating system functions.

Returns

Returns Status Message

Void Void.

ihArchiveGetStatistics

This function is used to get performance statistics from the Data Archiver of a particular data store.

Prototype

ihArchiveGetStatistics {

ihServerHandle hServer, ihString DataStoreName, ihArchiveStatistics *Statistics

Historian | 9 - Historian System API | 1477

);

Remarks

This returns the performance statistics about data writes, failed writes, and disk space usage. To get the

performance of a particular data store you need pass the data store name.

Returns

Returns Status Message

ihSTATUS_OK On success.

ihSTATUS_API_TIMEOUT If the option could not be read. You can try again

later.

ihSTATUS_NOT_CONNECTED If you are not currently connected to the Data

Archiver.

ihSTATUS_FAILED For any other type of error.

ihArchiveBackupResponse

This function is used by the Alarm Archiver only.

Prototype

ihArchiveBackupResponse

(

ihServerHandle hServer, ihCallbackId CallbackId, ihAPIStatus Status, ihBoolean FinalMessage

);

Remarks

None

Returns

None

ihArchiveRemoveResponse

This function is used by the Alarm Archiver only.

Prototype

Historian | 9 - Historian System API | 1478

ihArchiveRemoveResponse {

ihServerHandle hServer, ihCallbackId CallbackId, ihAPIStatus Status, ihBoolean FinalMessage

);

Remarks

None

Returns

None

ihConfigurationGetProperties

This function returns the configuration properties such as the Data Archiver version.

Prototype

ihConfigurationGetProperties {

ihServerHandle hServer, // server handle returned from previous call to ihServerConnect

ihConfigurationProperties *Properties // output parameter to contain the properties

);

ihConfigurationFreeProperties

This function is used to free the memory inside the structure.

Prototype

void ihConfigurationFreeProperties {

ihConfigurationProperties *Properties // pointer to the structure filled in by

ihConfigurationGetProperties

);

Remarks

Use this function to free the memory inside the structure. Do not free the fields within your code.

Returns

Returns Status Message

Void Void.

Historian | 9 - Historian System API | 1479

Archiver Backup/Restore Functions

You can use Archive Backup/Restore functions to backup archive data.

There are synchronous and asynchronous calls for loading archives, making a backup and removing

an archive. The synchronous functions are typically used for smaller archives because the operation

completes in a few seconds. The asynchronous functions are typically used for larger archives because

the operation can takes longer, one minute or more, to complete.

Archive Backup/Restore functions are as follows:

ihArchiveBackup

This function is used to back up archive (.iha) files. If you are storing alarms and events data in Historian,

an IHA backup also backs up any alarms.

Prototype

ihArchiveBackup {

ihServerHandle hServer, // server handle returned from previous call to ihServerConnect

ihArchiveDescriptor *ArchiveDescriptor,

ihString BackupFileName

);

Remarks

This function is used to back up the archive (.iha) files residing on the server specified. The

ArchiveDescriptor specifies the archive name that you want to add and the DataStore name to which it

should be added. The BackupFileName has the backup of the IHA file with the name and the file location

that you specified. For example: C:\Program Files\Historian Data\Archives\myarchive.iha.

Returns

Returns Status Message

ihSTATUS_OK If the option was successfully read.

ihSTATUS_ACCESS_DENIED If you are not allowed to perform the operations.

For most options you need to be a member of the

ihArchiveAdmins group

Historian | 9 - Historian System API | 1480

Returns Status Message

ihSTATUS_API_TIMEOUT If the option could not be read. You can try again

later.

ihSTATUS_NOT_CONNECTED If you are not currently connected to the Data

Archiver.

ihSTATUS_FAILED For any other type of error.

ihArchiveBackupEx

This function is used to back up the archive (.iha) files and process Windows messages at the same time.

Prototype

ihArchiveBackupEx {

ihServerHandle hServer,// server handle returned from previous call to ihServerConnect

ihArchiveDescriptor *ArchiveDescriptor,

ihString BackupFileName, long hWnd);

Remarks

This function is used to back up the archive (.iha) files residing on the server specified. The

ArchiveDescriptor specifies the archive name that you want to add and the DataStore name to which it

should be added. The BackupFileName has the backup of the IHA file with the name and the file location

that you specified. For example: C:\Program Files\Historian Data\Archives\myarchive.iha.

Returns

Returns Status Message

ihSTATUS_OK If the option was successfully read.

ihSTATUS_ACCESS_DENIED If you are not allowed to perform the operations.

For most options you need to be a member of the

ihArchiveAdmins group

ihSTATUS_API_TIMEOUT If the option could not be read. You can try again

later.

Historian | 9 - Historian System API | 1481

Returns Status Message

ihSTATUS_NOT_CONNECTED If you are not currently connected to the Data

Archiver.

ihSTATUS_FAILED For any other type of error.

ihArchiveRegisterBackupCallBack

This function is used to register a callback which should be called after the ihArchiveBackup() function

completes. Archive backup can take several minutes. By using this callback, your System API program

can know that the backup is complete.

Prototype

ihArchiveRegisterBackupCallBack {

ihServerHandle hServer, // server handle returned from previous call to ihServerConnect

ihArchiveBackupCallbackFunction CallbackFunction,

void *UserParameter

);

Remarks

The register callback will be performed when the Archive backup is completed on Historian.

Returns

Returns Status Message

ihSTATUS_OK If the option was successfully read.

ihSTATUS_ACCESS_DENIED If you are not allowed to perform the operations.

For most options you need to be a member of the

ihArchiveAdmins group

ihSTATUS_API_TIMEOUT If the option could not be read. You can try again

later.

ihSTATUS_NOT_CONNECTED If you are not currently connected to the Data

Archiver.

ihSTATUS_FAILED For any other type of error.

Historian | 9 - Historian System API | 1482

ihArchiveRemove

This function is used to delete or unload an archive file. You can unload a file if you no longer need it at

the current time but may need it later or in another archive. You can delete a file if you do not expect to

need it again or if you have made a backup.

Prototype

ihArchiveRemove {

ihServerHandle hServer, // server handle returned from previous call to ihServerConnect

ihArchiveDescriptor *ArchiveDescriptor,

ihBoolean ShouldDeleteFile

)

Remarks

This function is used to delete or unload the archive file residing on the server specified. The

ArchiveDescriptor specifies the archive name that you want to add and the DataStore name to which it

should be added. ShouldDeleteFile determines whether the file should be deleted or not.

The following are the scenarios which you can use with ihArchiveRemove() function:

If Should

DeleteFile is:

ZipReg

istry enabled

Zip suc

cessful
Then...

TRUE YES YES Archive file is deleted.

TRUE YES NO The archive file is not deleted but un

loaded.

FALSE YES YES The archive file is not deleted.

FALSE YES NO The archive file is not deleted.

Returns

Returns Status Message

ihSTATUS_OK If the option was successfully read.

Historian | 9 - Historian System API | 1483

Returns Status Message

ihSTATUS_ACCESS_DENIED If you are not allowed to perform the operations.

For most options you need to be a member of the

ihArchiveAdmins group

ihSTATUS_API_TIMEOUT If the option could not be read. You can try again

later.

ihSTATUS_NOT_CONNECTED If you are not currently connected to the Data

Archiver.

ihSTATUS_FAILED For any other type of error.

ihArchiveRemoveEx

This function is used to delete or unload the archive files and process Windows messages at the same

time.

Prototype

ihArchiveRemoveEx {

ihServerHandle hServer, // server handle returned from previous call to ihServerConnect

ihArchiveDescriptor *ArchiveDescriptor,

ihBoolean ShouldDeleteFile,

long hWnd

);

Remarks

This function is used to delete or unload the archive file residing on the server specified. The

ArchiveDescriptor specifies the archive name that you want to add and the DataStore name to which it

should be added. ShouldDeleteFile determines whether the file should be deleted or not.

The following are the scenarios which you can use with ihArchiveRemoveEX() function:

If Should

DeleteFile is:

ZipReg

istry enabled

Zip suc

cessful
Then...

TRUE YES YES Archive file is deleted.

Historian | 9 - Historian System API | 1484

If Should

DeleteFile is:

ZipReg

istry enabled

Zip suc

cessful
Then...

TRUE YES NO The archive file is not deleted but un

loaded.

FALSE YES YES The archive file is not deleted.

FALSE YES NO The archive file is not deleted.

Returns

Returns Status Message

ihSTATUS_OK If the option was successfully read.

ihSTATUS_ACCESS_DENIED If you are not allowed to perform the operations.

For most options you need to be a member of the

ihArchiveAdmins group

ihSTATUS_API_TIMEOUT If the option could not be read. You can try again

later.

ihSTATUS_NOT_CONNECTED If you are not currently connected to the Data

Archiver.

ihSTATUS_FAILED For any other type of error.

ihArchiveRegisterRemoveCallback

This function allows you to register a callback for removing an archive. This callback function is called

when you remove the archive from Proficy Historian.

Prototype

ihArchiveRegisterRemoveCallback {

ihServerHandle hServer, // server handle returned from previous call to ihServerConnect

ihArchiveRemoveCallbackFunction CallbackFunction,

void *UserParamter

);

Remarks

Historian | 9 - Historian System API | 1485

To register a function as a callback, you must have a callback or a function with the same signature as

ihArchiveRemoveCallback function, and then pass it to ihArchiveRegisterRemoveCallback.

Returns

Returns Status Message

ihSTATUS_OK If the option was successfully read.

ihSTATUS_ACCESS_DENIED If you are not allowed to perform the operations.

For most options you need to be a member of the

ihArchiveAdmins group

ihSTATUS_API_TIMEOUT If the option could not be read. You can try again

later.

ihSTATUS_NOT_CONNECTED If you are not currently connected to the Data

Archiver.

ihSTATUS_FAILED For any other type of error.

ihArchiveAdd

This function is used to create a new archive or load an existing one.

Prototype

ihArchiveAdd {

ihServerHandle hServer, // server handle returned from previous call to ihServerConnect

ihArchiveDescriptor *ArchiveDescriptor,

ihString FileLocation, ihBoolean ShouldCreateFile,

ihUNSIGNED long FileSize

);

Remarks

This function is used to create or load the archive file residing on the server specified. The

ArchiveDescriptor specifies the archive name that you want to add and the DataStore name to which it

should be added. Then, specify the FileLocation. To determine whether the file should be created or not

with the specified FileSize, use ShouldCreateFile.

Historian | 9 - Historian System API | 1486

Returns

Returns Status Message

ihSTATUS_OK If the option was successfully read.

ihSTATUS_ACCESS_DENIED If you are not allowed to perform the operations.

For most options you need to be a member of the

ihArchiveAdmins group

ihSTATUS_API_TIMEOUT If the option could not be read. You can try again

later.

ihSTATUS_NOT_CONNECTED If you are not currently connected to the Data

Archiver.

ihSTATUS_FAILED For any other type of error.

ihArchiveAddEx

This function is used to create a new archive or load an existing one.

Prototype

ihArchiveAddEx {

ihServerHandle hServer, // server handle returned from previous call to ihServerConnect

ihArchiveDescriptor *ArchiveDescriptor,

ihString FileLocation,

ihBoolean ShouldCreateFile,

ihUNSIGNED long FileSize,

long hWnd

);

Remarks

This function is used to create or load the archive file residing on the server specified. The

ArchiveDescriptor specifies the archive name that you want to add and the DataStore name to which it

Historian | 9 - Historian System API | 1487

should be added. Then, specify the FileLocation. To determine whether the file should be created or not

with the specified FileSize, use ShouldCreateFile.

Returns

Returns Status Message

ihSTATUS_OK If the option was successfully read.

ihSTATUS_ACCESS_DENIED If you are not allowed to perform the operations.

For most options you need to be a member of the

ihArchiveAdmins group

ihSTATUS_API_TIMEOUT If the option could not be read. You can try again

later.

ihSTATUS_NOT_CONNECTED If you are not currently connected to the Data

Archiver.

ihSTATUS_FAILED For any other type of error.

ihArchiveRegisterLoadCallback

This function allows you to register a callback for adding an archive file. That registered callback is called

when you add the archive file in Historian. It can take several minutes to load large archive files, so by

using callbacks your System API program can be notified when the archives finish loading.

Prototype

ihArchiveRegisterLoadCallback {

ihServerHandle hServer, // server handle returned from previous call to ihServerConnect

ihArchiveLoadCallbackFunction CallbackFunction,

void *UserParameter

);

Remarks

You need to have a callback or a function with the same signature as ihArchiveLoadCallback function, and

then pass it to ihArchiveRegisterLoadCallback to register that function as a callback.

Returns

Historian | 9 - Historian System API | 1488

Returns Status Message

ihSTATUS_OK If the option was successfully read.

ihSTATUS_ACCESS_DENIED If you are not allowed to perform the operations.

For most options you need to be a member of the

ihArchiveAdmins group

ihSTATUS_API_TIMEOUT If the option could not be read. You can try again

later.

ihSTATUS_NOT_CONNECTED If you are not currently connected to the Data

Archiver.

ihSTATUS_FAILED For any other type of error.

User Defined Type Functions

User defined data types should be added to the Data Archiver before they can be used in tags. The User

defined type functions are as follows:

ihUserDefinedTypeAdd

This function is used to add a user defined type.

Prototype

ihUserDefinedTypeAdd(

ihServerHandle hServer, // server handle returned from previous call to ihServerConnect

ihUserDefinedTypeProperties *UserDefinedType, // structure containing the user defined type

ihString *ErrorMsg // output parameter to contain any error string if there is error. The memory, if there is an error,

will be allocated in the System API and should be freed using ihUserDefinedTypeFreeError

);

Remarks

If the set already exists, it is overwritten by this new set. You need to be an ihTagAdmin to add or modify

a set. The memory, if there is an error, will be allocated in the System API and should be freed using

ihUserDefinedTypeFreeErrorMessage.

Returns

Historian | 9 - Historian System API | 1489

Returns Status Message

ihSTATUS_OK On success.

ihSTATUS_API_TIMEOUT If the server name or IP address provided cannot

be located.

ihSTATUS_NOT_CONNECTED If you are not currently connected.

ihSTATUS_ACCESS_DENIED If you are not allowed to add or modify the user de

fined types, perhaps you are not a member of the

ihTagAdmins group.

ihSTATUS_FAILED For any other type of error.

ihUserDefineTypeDelete

This function is used to delete a user defined type.

Prototype

ihUserDefinedTypeDelete(

ihServerHandle hServer, // server handle returned from previous call to ihServerConnect

ihString UserDefinedTypeName, // the name of the user defined type. Any characters can be used other than * or ?

ihString *ErrorMsg // output parameter to contain any error string if there is error. The memory, if there is an error,

will be allocated in the System API and should be freed using ihUserDefinedTypeFreeError

);

Remarks

You need to be an ihTagAdmin to be able to delete a User Defined type. The memory, if there is an error,

will be allocated in the System API and should be freed using ihUserDefinedTypeFreeErrorMessage.

Returns Status Message

ihSTATUS_OK On success.

ihSTATUS_API_TIMEOUT If the server name or IP address provided cannot

be located.

ihSTATUS_NOT_CONNECTED If you are not currently connected.

Historian | 9 - Historian System API | 1490

Returns Status Message

ihSTATUS_ACCESS_DENIED If you are not allowed to add or modify the user de

fined types, perhaps you are not a member of the

ihTagAdmins group.

ihSTATUS_FAILED For any other type of error.

ihUserDefinedTypeRename

This function is used to rename the existing user defined type name.

Prototype

ihUserDefinedTypeRename(

ihServerHandle hServer, // server handle returned from previous call to ihServerConnect

ihString UserDefinedTypeName, // the current name of the user defined type

ihString NewUserDefinedTypeName // the new name

);

Remarks

After you rename, the old name is available for reuse.

Returns

Returns Status Message

ihSTATUS_OK On success.

ihSTATUS_API_TIMEOUT If the server name or IP address provided cannot

be located.

ihSTATUS_NOT_CONNECTED If you are not currently connected.

ihSTATUS_ACCESS_DENIED If you are not allowed to add or modify the user de

fined types, perhaps you are not a member of the

ihTagAdmins group.

ihSTATUS_FAILED For any other type of error.

Historian | 9 - Historian System API | 1491

ihUserDefinedTypeExists

Use this function to check whether the user defined type exists or not.

Prototype

ihUserDefinedTypeExists(

ihServerHandle hServer, // server handle returned from previous call to ihServerConnect

ihString UserDefinedTypeName // the name to check

);

Returns Status Message

ihSTATUS_OK On success.

ihSTATUS_API_TIMEOUT If the server name or IP address provided cannot

be located.

ihSTATUS_NOT_CONNECTED If you are not currently connected.

ihSTATUS_ACCESS_DENIED If you are not allowed to add or modify the user de

fined types, perhaps you are not a member of the

ihTagAdmins group.

ihSTATUS_FAILED For any other type of error.

ihUserDefinedTypeSetProperties

This function is used to set the user defined type properties.

Prototype

ihUserDefinedTypeSetProperties(

ihServerHandle hServer, // server handle returned from previous call to ihServerConnect

ihUserDefinedTypeProperties *UserDefinedType, // the name and properties to set

ihString *ErrorMsg // output parameter to contain any error string if there is error. The memory, if there is a

an error, will be allocated in the System API and should be freed using ihUserDefinedTypeFreeError

);

Historian | 9 - Historian System API | 1492

Remarks

You need to be an ihTagAdmin to set the properties. The memory, if there is an error, will be allocated in the

System API and should be freed using ihUserDefinedTypeFreeErrorMessage.

Returns

Returns Status Message

ihSTATUS_OK On success.

ihSTATUS_API_TIMEOUT If the server name or IP address provided cannot

be located.

ihSTATUS_NOT_CONNECTED If you are not currently connected.

ihSTATUS_ACCESS_DENIED If you are not allowed to add or modify the user de

fined types, perhaps you are not a member of the

ihTagAdmins group.

ihSTATUS_FAILED For any other type of error.

ihUserDefinedTypeGetProperties

This function returns the user defined type properties.

Prototype

ihUserDefinedTypeGetProperties(

ihServerHandle hServer, // server handle returned from previous call to ihServerConnect

ihString UserDefinedTypeName , // the name of the custom data type

ihUserDefinedTypeProperties *UserDefinedType // output parameter containing the returned properties. The return

);

Remarks

You need to be an ihTagAdmin to get the properties.

Returns

Historian | 9 - Historian System API | 1493

Returns Status Message

ihSTATUS_OK On success.

ihSTATUS_API_TIMEOUT If the server name or IP address provided cannot

be located.

ihSTATUS_NOT_CONNECTED If you are not currently connected.

ihSTATUS_ACCESS_DENIED If you are not allowed to add or modify the user de

fined types, perhaps you are not a member of the

ihTagAdmins group.

ihSTATUS_FAILED For any other type of error.

ihUserDefinedTypeFreeProperties

This function is used to free the memory allocated by the ihUserDefinedTypeGetProperties() call.

Prototype

void ihUserDefinedTypeFreeProperties(

ihUserDefinedTypeProperties *UserDefinedTypeProps // properties as returned from an

ihUserDefinedTypeGetProperties call

);

Remarks

You need to call this once to free all memory in the recordset. Do not free the memory in your program.

Returns

Returns Status Message

Void Void.

ihUserDefinedTypeOpenRecordset

This function is used to return the list of user defined types.

Prototype

ihUserDefinedTypeOpenRecordset(

Historian | 9 - Historian System API | 1494

ihServerHandle hServer, // server handle returned from previous call to ihServerConnect

ihString Mask, // * or specific set name or some other mask to specify the list

ihUserDefinedTypeRecordset *RecordSet // output parameter to contain the returned list. The list should be

freed with ihUserDefinedTypeFreed when done using the ihUserDefinedTypeCloseRecordset()

);

Remarks

You need to specify the user defined type set name to open the recordset. This function call should be

freed after the retrieval using ihUserDefinedTypeCloseRecordset.

Returns

Returns Status Message

ihSTATUS_OK On success.

ihSTATUS_API_TIMEOUT If the server name or IP address provided cannot

be located.

ihSTATUS_NOT_CONNECTED If you are not currently connected.

ihSTATUS_ACCESS_DENIED If you are not allowed to add or modify the user de

fined types, perhaps you are not a member of the

ihTagAdmins group.

ihSTATUS_FAILED For any other type of error.

ihUserDefinedTypeCloseRecordset

This function used to free the user defined type recordset that was allocated inside the System API in a

previous read call.

Prototype

void ihUserDefinedTypeCloseRecordset(

ihUserDefinedTypeRecordset *Recordset // recordset to be freed

);

Returns

Historian | 9 - Historian System API | 1495

Returns Status Message

Void Void.

ihUserDefinedTypeFreeErrorMessage

This function is used to free the memory from the previous error message call.

Prototype

ihUserDefinedTypeFreeErrorMessage(

ihString ErrorMsg // string to be freed as returned from a previous call

);

Returns

Returns Status Message

Void Void.

Utility Functions

Utility functions help you to make use of the other System API calls such as data read and write and

connect. Utility Functions are as follows:

ihTimeLCLPartsToUTCStructEx

This function returns timestamps that can be used in read and write functions.

ihTimeLCLPartsToUTCStructEx {

ihServerHandle hServer, // server handle returned from previous call to ihServerConnect or just pass

ihINVALID_HANDLE if not using server time zone

int Year, // the 4 digit year such as 1998 or 2004 in the local time zone

int Month, // the month 1 (January) to 12 (December) in the local time zone

int Day, // the day 1 to 31 in the local time zone

int Hour, // the hour 0 to 23 in the local time zone

int Minute, // the minute 1 to 59 in the local time zone

int Second, // the second 1 to 59 in the local time zone

int MilliSecond, // the millisecond 0 to 999 in the local time zone

ihTimeZones TimeZoneFlag, // client or server or explicit timezone

Historian | 9 - Historian System API | 1496

int TimeZoneBiasExplicit, // only used if TimeZoneFlag is explicit

int DaylightSavingsTime, // TRUE if you want to use the Daylight Saving Time setting in Control Panel,

FALSE if you want to never use Daylight Saving Time.

ihTimeStruct *Time // the output parameter containing the converted timestamp

);

Remarks

Use this function to return timestamps to be used in data read and write functions for start and end time

of queries. The function takes a server handle however, you need not be connected to the server unless

you specify the TimeZoneFlag as server time zone. If you are just using timestamps in local time zone you

can use ihTimeLCLPartsToUTCStruct().

Returns

Returns Status Message

ihuSTATUS_OK On success.

ihTimeUTCStructToLCLPartsEx

This function is used to convert the timestamps returned by System API into your local time zone.

void ihTimeUTCStructToLCLPartsEx {

ihServerHandle hServer, // server handle returned from previous call to ihServerConnect or just pass

ihINVALID_HANDLE if not using server time zone

int *Year, // output parameter to contain the 4 digit year

int *Month, // output parameter to contain the month 1 to 12

int *Day, // output parameter to contain the day 1 to 31

int *Hour, // output parameter to contain the hour 0 to 23

int *Minute, // output parameter to contain the minute 0 to 59

int *Second, // output parameter to contain the second 0 to 59

int *MilliSecond, // output parameter to contain the milliseconds 0 to 999

ihTimeZones TimeZoneFlag, // client or server or explicit timezone

int TimeZoneBiasExplicit, // only used if TimeZoneFlag is explicit

int DaylightSavingsTime, // TRUE if you want to use the Daylight Saving Time setting in Control Panel,

FALSE if you want to never use Daylight Saving Time.

ihTimeStruct *UTCTime // the timestamp to be converted

);

Historian | 9 - Historian System API | 1497

Remarks

Use this function to convert timestamps returned by the System API into your local time zone for

display. The function takes a server handle however, you need not be connected to the server unless

you specify the TimeZoneFlag as server time zone. If you are just using client time zone you can use

ihTimeUTCStructToLCLParts().

Returns

Returns Status Message

Void Void.

ihTimeCurrentUTCStruct

This function returns the current time stamp as UTC. You can add and subtract seconds from this time to

read and write data with timestamps relative to now.

Prototype

void ihTimeCurrentUTCStruct {

ihTimeStruct *UTCTime // output parameter containing the current time

);

Remarks

Use this function to get the current time so that you can use it in other System API functions such as the

end time of a query or the timestamp of a data write.

Returns

Returns Status Message

Void Void.

ihUtilAnsiToUnicode

This function is used to convert Unicode string to ANSI format which can be used by API applications and

other programs.

Prototype

ihUtilAnsiToUnicode {

char *MBStr, // the non Unicode string

Historian | 9 - Historian System API | 1498

ihChar *WCStr // the output buffer to contain the converted Unicode string

);

Remarks

Use this function if you want to convert any Unicode string returned by the System API to ANSI format

that can be used by other API application and programs.

You must allocate the buffer for the Unicode string. Allocate a large enough buffer as System API does

not validate the length.

Returns

Returns Status Message

Void Void.

ihUtilUnicodeToAnsi

This function is used to convert ANSI strings to Unicode in order to pass them into System API functions.

Prototype

ihUtilUnicodeToAnsi {

char *MBStr,ihChar *WCStr

);

Remarks

Use this function to convert ANSI strings to Unicode for passing them into the System API connect or

read or write functions and so on.

You must allocate the buffer for the ANSI string. Allocate a large enough buffer as System API does not

validate the length.

Returns

Returns Status Message

Void Void.

ihUtilErrorDesc

This function returns a string for a numeric error code. The string is not translated into other languages.

Historian | 9 - Historian System API | 1499

ihUtilErrorDesc {

ihStatus ErrorNum, // the error number

ihString ErrorDesc, // the output parameter to contain the string

int Len // the length of the output buffer

);

Remarks

This utility function returns an English language string for a numeric error code if you don’t want to

provide your own.

Returns

Returns Status Message

Void Void.

Time Functions

ihTimeLCLPartsToUTCStruct

Use this function to convert Local Date/Time Parts to Universal Time Coordinated Structure.

Prototype

ihTimeLCLPartsToUTCStruct {

int Year,

int Month,

int Day,

int Hour,

int Minute,

int Second,

int MilliSecond,

ihTimeStruct *UTCTime};

Remarks

The System API functions that read and write data require timestamps to be in GMT+0 timezone. This

function can be used to convert your local timestamps into a format that can be passed into other System

API functions such as ihDataAdd.

Historian | 9 - Historian System API | 1500

Enter your timestamp in the first 6 parameters and the converted timestamp gets returned in the UTC

Time parameter. The time that you enter should be in the timezone of the system that is running your

program. If you need additional control of the time zone and Daylight Saving Time parameters then use

the ihTimeLCLPartsToUTCStructEx function.

Returns

Returns Status Message

Void Void.

ihTimeUTCStructToLCLParts

Use this function to convert Universal Time Coordinated (UTC) time zone structure to Local Date/Time

parts.

ihTimeUTCStructToLCLParts {

int *Year,

int *Month,

int *Day,

int *Hour,

int *Minute,

int *Second,

int *MilliSecond,

ihTimeStruct *UTCTime

};

Remarks

Enter your timestamp in as the UTCTime parameter and the converted timestamp is returned in the first

6 parameters. For example the samples returned from an ihDataOpenRecordset have timestamps that can

be converted with this function.

The hours and minutes and seconds will be returned in the timezone of the system running your program.

If you need additional control over the time zone or Daylight Saving Time parameters then use the

ihTimeUTCStructToLCLPartsEx function.

Returns

Returns Status Message

ihSTATUS_OK On Success.

Historian | 9 - Historian System API | 1501

Returns Status Message

ihSTATUS_FAILED

ihTimeUTCStructToFileTime

Use this function to convert UTC structure to FILETIME.

Prototype

ihTimeUTCStructToFileTime {

ihTimeStruct *UTCTime,

void *FileTime

};

Remarks

Use this function to convert Historian UTC timestamps into a FILETIME that could be passed into other

Microsoft Windows functions.

Returns

Returns Status Message

ihSTATUS_OK On success.

ihSTATUS_FAILED For any other type of error.

ihTimeLCLFileTimeToUTCStruct

Use this function to convert FILETIME (LOCAL) to UTC structure.

Prototype

ihTimeLCLFileTimeToUTCStruct {

void *FileTime, ihTimeStruct *UTCTime

};

Remarks

If you got a FILETIME from some Microsoft Windows call, use this function to convert it to a format that

can be used by other System API functions. The FILETIME is assumed to be in UTC timezone. If the

FILETIME is in local time then use the ihTimeLCLFileTimeToUTCStruct function.

Returns

Historian | 9 - Historian System API | 1502

Returns Status Message

1 On success.

0 Any type of error.

Query Modifiers Functions

ihQueryModifiersAssign

Use this function to clear the previously assigned modifiers and then set new modifiers.

Prototype

ihQueryModifiersAssign {

ihQueryModifiers *Modifiers, int NumModifiers, ...

};

Returns

This function would not be called by a user program.

Returns Status Message

Void Void.

ihQueryModifiersClear

Use this function to clear the modifiers.

Prototype

ihQueryModifiersClear {

 ihQueryModifiers *Modifiers

};

Remarks

This function would not be called by a user program.

Returns

Returns Status Message

Void Void.

Historian | 9 - Historian System API | 1503

ihQueryModifiersSet

Use this function to add a modifier to a mask of modifiers.

Prototype

ihQueryModifiersSet {

ihQueryModifiers *Modifiers, ihQueryModifier Modifier

};

Remarks

Use this function to add a querymodifer to a mask of modifiers that would then be passed into a data read

call. The set of available modifiers is available in the ihQueryModifier enumeration.

Returns

Returns Status Message

Void Void.

ihQueryModifiersIsSet

Use this function to check whether the specified modifier is already present in the modifier mask.

Prototype

ihQueryModifiersIsSet {

ihQueryModifiers *Modifiers, ihQueryModifier Modifier

};

Remarks

You can use this function to prepare a query modifier mask which can then be passed to a data read call.

Returns

Returns Status Message

True The modifier has already been added to the task.

False Otherwise.

Historian | 9 - Historian System API | 1504

ihQueryModifierOpenRecordset

Use this function to get a list of possible query modifiers from the destination archiver. Older versions of

Historian might support fewer modifiers than the version your program is running on.

Prototype

ihQueryModifierOpenRecordset {

ihServerHandle hServer, ihQueryModiferRecordset *QueryModiferRecordset

};

Remarks

You should use this function if your program can be communicating with older Data Archivers to ensure

your query modifier is available.

Free the returned recordset using the ihQueryModifierCloseRecordset function.

Returns

Returns Status Message

ihSTATUS_OK On success.

ihSTATUS_FAILED For any other type of error.

ihQueryModifierCloseRecordset

Use this function to free memory returned from ihQueryModifierOpenRecordset.

Prototype

ihQueryModifierCloseRecordset { ihQueryModiferRecordset *RecSet };

Remarks

Use this function and do not call any Microsoft Windows functions to free the memory.

Returns

Returns Status Message

Void Void

Historian | 9 - Historian System API | 1505

ihDataCriteriaFromString

Use this function to build a data criteria from the criteria string.

Prototype

ihDataCriteriaFromString {

ihServerHandle hServer, ihDataCriteria *Criteria, ihString CriteriaString

};

Remarks

This function would not be called by a user program.

Returns

Returns Status Message

None None

DataStore Functions

ihDataStoreAdd

Use this function to create additional data stores if your license allows it.

Prototype

ihDataStoreAdd { ihServerHandle hServer,

ihString DataStoreName,

ihBoolean IsDefault,

ihString Description,

ihDataStorageType StorageType

};

Remarks

Some data stores are created automatically when the Data Archiver is started. Use this function if you

need to create additional ones. The number of data stores is licensed on your key.

Returns

Historian | 9 - Historian System API | 1506

Returns Status Message

ihSTATUS_OK On success.

ihSTATUS_NOT_PERMITTED If adding the data store would exceed your li

censed count.

ihSTATUS_FAILED For any other type of error.

ihDataStoreDelete

Use this function to delete a data store on the specified Data Archiver.

Prototype

ihDataStoreDelete {

ihServerHandle hServer, ihString DataStoreName

};

Remarks

You can only delete a data store if all tags have been removed from it. You cannot delete the System data

store.

Returns

Returns Status Message

ihSTATUS_OK On success.

ihSTATUS_FAILED For any other type of error.

ihDataStoreRename

Use this function to rename an existing data store.

Prototype

ihDataStoreRename {

ihServerHandle hServer, ihString DataStoreName, ihString NewDataStoreName

};

Remarks

Historian | 9 - Historian System API | 1507

Once the data store is renamed it can only be referred to by its new name.

You must be a member of the ihArchive Admin security group to perform renames.

Returns

Returns Status Message

ihSTATUS_OK On success.

ihSTATUS_FAILED For any other type of error.

ihDataStoreOpenRecordset

Use this function to get the details of the configured data stores on the specified Data Archiver.

Prototype

ihDataStoreOpenRecordset {

ihServerHandle hServer, ihString DataStoreMask, ihDataStoreRecordset *Recordset

};

Remarks

You can specify a name mask or just pass NULL or ”r;*” to get all data stores.

Free the returned list using the ihDataStoreCloseRecordset function.

Returns

Returns Status Message

ihSTATUS_OK On success.

ihSTATUS_FAILED For any other type of error.

ihDataStoreCloseRecordset

Use this function to free the memory in the list returned from ihDataStoreOpenRecordset.

Prototype

ihDataStoreCloseRecordset {

ihDataStoreRecordset *Recordset

};

Historian | 9 - Historian System API | 1508

Remarks

Use this function to free the memory, do not use Microsoft Windows calls to free the memory.

Returns

Returns Status Message

Void Void

ihDataStoreSetProperties

Use this function to set or change properties of an existing data store. You use ihArchiverSetOption to set

options and use this function to indicate a data store is the default or to set the description.

Prototype

ihDataStoreSetProperties {

ihServerHandle hServer,

ihString DataStoreName,

ihBoolean IsDefault,

ihString Description,

ihDataStorageType StorageType

};

Remarks

Most data store configuration will be done by setting options but this function is available if you need to

change the default data store.

Returns

Returns Status Message

ihSTATUS_OK On success.

ihSTATUS_API_TIMEOUT If the servername or IP address provided cannot be

located.

ihSTATUS_NOT_CONNECTED If you are not currently connected.

ihSTATUS_ACCESS_DENIED If you are not allowed to add or modify tags. Possi

bly you are not a member of the ”r" ih Tag Admins”

group.

Historian | 9 - Historian System API | 1509

Returns Status Message

ihSTATUS_LIC_TOO_MANY_TAGS If adding this tag would exceed your licensed tag

count.

ihSTATUS_FAILED For any other type of error.

Security Functions

ihSecurityGroupOpenRecordset

Use this function to get the list of security groups that exist in the operating system where the Data

Archiver is running. This can be a different list than where your client program is running.

All security groups would be returned, not just the specific ihSecurity Admins, ihTag Admins, and so on.

You must free the returned recordset using the ihSecurityGroupCloseRecordset call.

Prototype

ihSecurityGroupOpenRecordset {

ihServerHandle hServer, ihSecurityGroups *Grps

};

Remarks

To know the list of security groups while setting up a tag to use tag level security, use this function call to

give you the name of any groups that exist at the archiver. And when you assign that name to a tag read

security group, then the Data Archiver will check that group when the tag is read. This is why you need the

list of groups at the Data Archiver and not at the client PC, because the Data Archiver should be able to

access the group and its members.

All security groups would be returned, not just the specific ih Security Admins, ih Tag Admins, and so on.

You must free the returned recordset using the ihSecurityGroupCloseRecordset call.

Returns

Returns Status Message

ihSTATUS_OK On success.

ihSTATUS_FAILED For any other type of error. Other errors on their re

spective Network or Security failures.

Historian | 9 - Historian System API | 1510

ihSecurityGroupCloseRecordset

Use this function to free the list returned from a ihSecurityGroupOpenRecordset call.

Prototype

ihSecurityGroupCloseRecordset {

ihSecurityGroups *Grps

};

Remarks

Use this function instead of freeing the memory via operating system calls.

Returns

Returns Status Message

Void Void

ihSecurityGetOption

Use this function to get the value of security options from the specified Data Archiver.

Prototype

ihSecurityGetOption {

ihServerHandle hServer, ihOption Option, ihChar **OptionValue

};

Remarks

You could get the value of security related options such as ihSecurityStrictClientAuthentication or

ihSecurityStrictCollectorAuthentication.

You need to be a member of ih Readers security group to be able to get

options.

Returns

Returns Status Message

ihSTATUS_OK On success.

Historian | 9 - Historian System API | 1511

Returns Status Message

ihSTATUS_FAILED For any other type of error. Other errors on their re

spective Network or Security failures.

ihSecurityFreeOption

Use this function to free the memory returned by a previous ihSecurityGetOption call.

Prototype

ihSecurityFreeOption{

ihChar *OptionValue

};

Remarks

Use this function to free the option value. Do not free the memory using operating system calls.

Returns

Returns Status Message

Void Void

ihSecurityGetmemberships

Use this function on an established connection to determine what Proficy Historian security groups that

the Data Archiver considers you a member of. This will determine what permissions you have within

Historian.

Prototype

ihSecurityGetmemberships {

ihServerHandle hServer, ihSecurityGrpMembership *Memberships

};

Remarks

Group memberships are established at connect time. If groups are created or your account is added to

groups then you need to disconnect and connect again to get the correct level of permissions.

Returns

Historian | 9 - Historian System API | 1512

Returns Status Message

ihSTATUS_OK On success.

ihSTATUS_FAILED For any other type of error. Other errors on their re

spective Network or Security failures.

Sample Programs

Sample Programs

Sample programs are provided with the API, demonstrating how to perform common tasks. The following

sample programs are supplied with the System API:

• ihCopyData.cpp – demonstrates copying all the tags and data from Server1 to Server2 including

UserDefinedType tags then subscribes to tag and data changes.

• ihPlotLike.cpp - shows how to determine the default server and reading multiple tags in one call.

Note:

No guidance is given regarding application conversion from other products or APIs. It is assumed

that the reader is familiar with the Historian features and functionality.

Chapter 10. Historian User API

Historian User API Overview

About the Historian User API

The Historian User API provides high-speed read/write access to Historian data and read access to

Historian tags. There is no access to archives, alarms, events, or messages.

Use this API to develop applications that read and write data to the Historian server when the Historian

SDK and Historian OLE DB do not meet your project requirements for performance or programming

language.

You can connect the Historian API to a local Historian server in the same manner as to a remote Historian

server by simply providing the name of the server. This name must be the computer name or the IP

address of the target Historian server, and the server must have a TCP/IP connectivity. If you use the

computer name of the server rather than the IP address, the IP address must be available to the client

through DNS, a WINS server, or through the local host table.

Note:

At this time, the Historian User API supports single-byte strings only.

The Historian Client Access API is a .NET Core assembly that interacts with Historian from any .NET Core

applications. Since the API uses .NET Core, you can use it on any operating system. The required DLLs are

available in the DotNetCoreCAAPI folder in the ISO. This folder also contains a sample program, which

you can use a starting point to build an application.

Note:

You can still use the old Client Access API, which is a .NET assembly. You can use this API

only on Windows. It is installed when you install Historian Client Tools. By default, the Install

Wizard places both the API and Client Access .dlls in GAC (Global Assembly Cache). It is

recommended that you add Historian Client Access API references from the INSTALLPATH

directory since global assembly cache is part of the run-time environment.

The applications that call into the User API are limited by the security access granted at the server level.

Historian | 10 - Historian User API | 1514

Prerequisites

You must run the programs you create with the Historian User API on a machine with the following

software installed and configured:

• Historian 5.5 or greater

• Historian 5.5 or greater Client Tools

The Historian User API has been tested with Visual Studio .NET 2003, 2005, and 2008.

The Historian User API has no additional hardware requirements.

Historian allows you to develop both 32-bit and 64-bit User API programs.

Note:

To build a 32-bit User API program on a 64-bit operating system, you must rename

ihuapi32.lib to ihuapi.lib and include it in your program.

Connect Functions

Connect Functions Overview

This group of functions provides a means to connect to and disconnect from an Historian server. A

minimal number of properties are exposed.

Connect Functions

• ihuConnect (on page 1514)

• ihuConnectEx (on page 1516)

• ihuDisconnect (on page 1517)

• ihuSetConnectionParameters (on page 1517)

• ihuRestoreDefaultConnectionParameters (on page 1519)

• ihuServerRegisterCallbacks (on page 1519)

• ihuBrowseCollectors (on page 1520)

ihuConnect

Use the ihuConnect function to connect to a Historian server. The function provides a server handle to be

used in subsequent calls.

Historian | 10 - Historian User API | 1515

Prototype

ihuConnect {

 in MSO MSO Char * server,

 in MSO MSO Char * username, in MSO MSO Char * password, out long * serverhandle

};

Remarks

The inputs to the function are server, username, and password. Each has a default value if NULL is passed.

• server: If NULL is passed, then the connection attempt is to the local machine.

• username and password: If NULL is passed, then the username that owns the process is used. Most

of the time this is the same as the user logged into the operating system. However, in the case of a

program running as a service, you can specify a username and password that the process should

use.

The output of this function is a server handle.

Server handles are valid only during the lifetime of the process. They should not be saved to a file and

reused.

You do not need to call ihuConnectEx more than one time for a username and password. If the connection

to the server was lost and restored, the handle can be used after reconnection. If the server was not

available at connect time, a handle is still returned, which you can use as soon as the connection

becomes available. Reconnects are performed inside the API. The application should wait and retry reads

and writes with the returned server handle. Reads and writes succeed after the underlying connection is

re-established.

You should still call ihuDisconnect with the returned server handle, even if an error is returned.

A connection to the server consumes a Client Access License (CAL) only if you have not already accessed

the server from your current IP address. There is no way to connect without consuming a CAL.

Returns

The ihuConnect function returns the following values:

• ihuSTATUS_OK

• ihuSTATUS_FAILED

• ihuSTATUS_API_TIMEOUT

Historian | 10 - Historian User API | 1516

• ihuSTATUS_NOT_VALID_USER

• ihuSTATUS_LIC_TOO_MANY_USERS

ihuConnectEx

Use the ihuConnectEx function to connect to a server with store and forward support.

Prototype

ihuErrorCode IHUAPI ihuConnectEx (

MSO Char * server,

MSO Char * username,

MSO Char * password,

MSO Char * buffername,

unsigned long MaxMegMemory,

unsigned long MinMegDiskFree,

long * serverhandle

);

Remarks

The inputs to this function are:

• server: If NULL is passed, then the connection attempt is to the local machine.

• username and password: If NULL is passed, then the username that owns the process is used. Most

of the time this is the same as the user logged into the operating system. However, in the case of a

program running as a service, you can specify a username and password that the process should

use.

• buffername: The target filename and location to store buffered data. The buffer file name must be

unique.

• MaxMegMemory: Maximum memory in MB. Buffered data is stored in this memory until it is full and is

later stored to disk.

• MinMegDiskFree: Minimum free disk space in MB.

The output of this function is a server handle.

Server handles are valid only during the lifetime of the process. They should not be saved to a file and

reused.

There is no need to call ihuConnectEx more than one time for a username and password. If the connection

to the server was lost and restored, the handle can be used after reconnection. If the server was not

Historian | 10 - Historian User API | 1517

available at connect time, a handle is still returned, which you can use as soon as the connection

becomes available. Reconnects are performed inside the API. The application should wait and retry reads

and writes with the returned server handle. Reads and writes succeed after the underlying connection is

re-established.

You should still call ihuDisconnect with the returned server handle, even if an error is returned.

A connection to the server consumes a Client Access License (CAL) only if you have not already accessed

the server from your current IP address. There is no way to connect without consuming a CAL.

Returns

The ihuConnectEx function returns the following values:

• ihuSTATUS_OK

• ihuSTATUS_FAILED

• ihuSTATUS_API_TIMEOUT

• ihuSTATUS_NOT_VALID_USER

• ihuSTATUS_LIC_TOO_MANY_USERS

ihuDisconnect

Use the ihuDisconnect function to release connection resources.

Prototype

ihuDisconnect {

in long serverhandle

};

Returns

The ihuDisconnect function returns the following values:

• ihuSTATUS_OK

ihuSetConnectionParameters

Use the ihuSetConnectionParameters function to set the socket connection timeout.

Historian | 10 - Historian User API | 1518

Prototype

ihuSetConnectionParameters {

in IHU_CONNECTION_PARAMETERS*Params

};

Remarks

The input to the function is IHU_CONNECTION_PARAMETERS structure to pass in a connection timeout:

/* Client-side, global connection parameters */

typedef struct {

int Size; // Structure size in bytes

int TCPConnectionWindow; // Max time to establish a TCP connection with server in seconds (default 5s)

} IHU_CONNECTION_PARAMETERS;

The default connection timeout is 5 seconds. There is no maximum value, but it is not recommended

to set the value to longer than 60 seconds. If you increase the timeout, server connection attempts take

more time to return if the server is unavailable.

Sample Code

If an archiver is too busy to process connections, you can set a longer timeout by using the following

code:

IHU_CONNECTION_PARAMETERS params;

params.Size = sizeof(IHU_CONNECTION_PARAMETERS);

params.TCPConnectionWindow = 30; // extend window to 30s

ihuSetConnectionParameters(¶ms);

Note:

This code applies only to the connections made from your program. You must make this call each

time you run your program.

Returns

The ihuSetConnectionParameters function returns the following values:

• ihuSTATUS_OK

• ihuSTATUS_FAILED

Historian | 10 - Historian User API | 1519

ihuRestoreDefaultConnectionParameters

Use the ihuRestoreDefaultConnectionParameters function to reset all connection parameters (for example,

the socket connection timeout) to default values.

Prototype

ihuRestoreDefaultConnectionParameters {

 void,

};

Remarks

The example code resets the connection timeout to 5 seconds.

Returns

IhuSTATUS_OK

ihuServerRegisterCallbacks

Use the ihuServerRegisterCallbacks function if you want your program to be notified of changes in

buffering or connection state. For example, your program can be notified of connection loss or that

buffering is full.

Prototype

ihuErrorCode IHUAPI ihuServerRegisterCallbacks (

long hServer,

void *UserParameter,

long *RegisterCallbacksStatus,

void *BufferCallbackFunction,

void *ConnectionCallbackFunction

);

Remarks

The inputs to this function are:

• hServer: Server handle from the connection. Callbacks are as per server handle, so you can have

callbacks for some connections and not for others, or specific callbacks for different handles.

• UserParameter: NULL or an integer value that you want passed to you in the callback.

• RegisterCallbacksStatus: Callback setup success or failure.

Historian | 10 - Historian User API | 1520

• BufferCallbackFunction: Callback function for buffer state changes.

• ConnectionCallbackFunction: Callback function for connection state changes.

Returns

ihuServerRegisterCallbacks returns the following values:

• ihuSTATUS_OK

• ihuSTATUS_FAILED

ihuBrowseCollectors

Use the ihuBrowseCollectors function to browse collectors that are connected to the archiver.

Prototype

ihuErrorCode IHUAPI ihuBrowseCollectors (

long hServer,

MSO Char *InterfaceNameMask

IHU_COLLECTOR **Collectors,

int *NumOfCollectors

);

Remarks

The inputs to the function are:

• hServer: Server handle for the server to be browsed.

• *InterfaceNameMask: Pass * for all interfaces, or the interface name or detailed mask for efficiency.

The outputs of the function are:

• **Collectors: Returns a list of interfaces/collectors.

• *NumOfCollectors: Returns the number of interfaces found.

Returns

The ihuBrowseCollectors function returns the following values:

• ihuSTATUS_OK

• ihuSTATUS_FAILED

Historian | 10 - Historian User API | 1521

Archiver Functions

Archiver Functions Overview

This group of functions provides a means to read and write a set of archiver properties. A minimum of

properties (only those related to reads, writes, and tag browses) are available. See the code comments in

the Historian User API header (ihuapi.h) for more details.

Archiver Functions

• ihuGetArchiverProperty (on page 1523)

• ihuSetArchiverProperty (on page 1521)

ihuSetArchiverProperty

Use the ihuSetArchiveProperty function to change the value of specific Historian server options.

Prototype

ihuSetArchiverProperty

(long serverhandle,

MSO Char *ArchiveProperty,

MSO Char *PropertyValue)

The following properties are supported:

Table 265. Archiver Properties

Property

Read/

Write

Ac

cess

Values Description

ARCHIVER_

PROP_

CREATE

OFFLIN

EARCHIVES

Read/

Write

1, 0 When set to 0. (false) writes before the start time of the earliest archive

are not enabled. Set to 1 only when you are migrating legacy data, and set

the value back to 0 after migration is complete. Leaving this value set to 1

can cause excessive archive creation, especially when data is sent to the

archiver out of order.

ARCHIVER_

PROP_CON

Read-

Only

A large value that changes when the tag configuration changes. Typical

ly used to cache configuration properties such as a set of tags. You can

Historian | 10 - Historian User API | 1522

Table 265. Archiver Properties (continued)

Property

Read/

Write

Ac

cess

Values Description

FIGSERIAL

NUMBER

determine when your cache is out of date by comparing your saved serial

number with the current serial number.

ARCHIVER_

PROP_AC

TIVEHOURS

Read/

Write

1-232800

hours

(30

years)

The number of hours before the present time that the archive data became

read-only. When migrating legacy data, you might need to set a large val

ue.

SECURI

TY_PROP_

STRICT

CLIENTAU

THENTI

CATION

Read/

Write

1. 0 Enables or disables strict client authentication. Set to 1 (true) by default

for new Historian installations. When set to 1, only version 4.7 or later

clients can access the Historian server.

SECURI

TY_PROP_

STRICT

COLLEC

TORAUTHEN

TICATION

Read/

Write

1. 0 Enables or disables strict collector authentication. Set to 1 (true) by de

fault for new Historian installations. When set to 1, only version 4.7 or later

collectors can access the Historian server.

Returns

The ihuSetArchiverProperty returns the following values:

• ihuSTATUS_INVALID_PARAMETER

• ihuSTATUS_OK

• ihuSTATUS_ACCESS_DENIED

To change this property... You must be a member of this group...

ARCHIVER_PROP_CREATEOFFLINEARCHIVES ihArchive Admins or ihSecurity Admins

ARCHIVER_PROP_ACTIVEHOURS ihArchive Admins

Historian | 10 - Historian User API | 1523

To change this property... You must be a member of this group...

SECURITY_PROP_STRICTCLIENTAUTHENTICATION ihArchive Admins

SECURITY_PROP_STRICTCOLLECTORAUTHENTICATION ihArchive Admins

ihuGetArchiverProperty

Use the ihuGetArchiverProperty function to read the value of certain archiver properties.

Prototype

ihuGetArchiverProperty {

 in long serverhandle,

 in MSO Char *ArchiveProperty,

 out MSO Char *PropertyValue

};

Remarks

To read properties, you must be a member of the ih Readers security group. There is no need for you to

be a member of the ih Security Admins or ih Archive Admins groups, unless you want to change property

values.

Returns

• ihuSTATUS_OK

• ihuSTATUS_INVALID_PARAMETER

• ihuSTATUS_ACCESS_DENIED

Tag Functions

Tag Functions Overview

Tag functions provide browse, add, modify, and delete access to the configured tags on a server. You

can retrieve the properties for each tag with User API calls. For example, you can retrieve user-defined

collection parameters for a tag before collection, or retrieve user-configured display parameters to

prepare for plotting.

You can retrieve string and numeric tag properties. Every tag property is classified as string or numeric

(double float). For example, Boolean properties are converted to double float and time data type

properties are converted to string.

Historian | 10 - Historian User API | 1524

You can add, delete, or modify tags using the User API.

You can browse tags in three different ways. The simplest mode uses ihuFetchTagCache to filter by

tagname. To filter by additional properties, such as data type or collector name, use ihuFetchTagCacheEx.

Finally, to browse in multiple browser windows at the same time, for example, to compare the tags on one

server with those on another server, use ihuFetchTagCacheEx2 or ihuFetchTagCacheEx3.

Tag Functions

• ihuCreateTagCacheContext (on page 1527)

• ihuFetchTagCache (on page 1527)

• ihuFetchTagCacheEx (on page 1528)

• ihuFetchTagCacheEx2 (on page 1528)

• ihuFetchTagCacheEx3 (on page 1529)

• ihuGetTagNameCacheIndex (on page 1530)

• ihuGetTagNameCacheIndexEx2 (on page 1530)

• ihuGetNumericTagPropertyByTagname (on page 1531)

• ihuGetNumericTagPropertyByIndex (on page 1531)

• ihuGetNumericTagPropertyByIndexEx2 (on page 1532)

• ihuGetStringTagPropertyByTagname (on page 1533)

• ihuGetStringTagPropertyByTagnameEx2 (on page 1533)

• ihuGetStringTagPropertyByIndex (on page 1534)

• ihuGetStringTagPropertyByIndexEx2 (on page 1535)

• ihuTagAdd (on page 1535)

• ihuTagDelete (on page 1536)

• ihuTagRename (on page 1537)

• ihuTagCacheCriteriaClear (on page 1539)

• ihuTagCacheCriteriaClearEx2 (on page 1539)

• ihuTagCacheCriteriaSetStringProperty (on page 1540)

• ihuTagCacheCriteriaSetStringPropertyEx2 (on page 1540)

• ihuTagCacheCriteriaSetNumericProperty (on page 1541)

• ihuTagCacheCriteriaSetNumericPropertyEx2 (on page 1541)

• ihuTagClearProperties (on page 1542)

• ihuTagSetStringProperty (on page 1542)

• ihuTagSetNumericProperty (on page 1542)

• ihuCloseTagCache (on page 1542)

• ihuCloseTagCacheEx2 (on page 1543)

Historian | 10 - Historian User API | 1525

Tag Property Value Types

The following table lists the current set of tag properties that are exposed, and indicates

whether they are numeric or string. Use ihuGetNumericTagPropertyByIndex (on page 1531)

and ihuGetNumericTagPropertyByTagname (on page 1531) to retrieve numeric properties, and

ihuGetStringTagPropertyByIndex (on page 1534) and ihuGetStringTagPropertyByTagname (on page

1533) to retrieve string properties.

Table 266. Tag Property Value Types

Property Value Type

ihuTagPropTagname String

ihuTagPropDescription String

ihuTagPropEngineeringUnits String

ihuTagPropComment String

ihuTagPropDataType Numeric

ihuTagPropFixedStringLength Numeric

ihuTagPropInterfaceName String

ihuTagPropSourceAddress String

ihuTagPropCollectionType Numeric

ihuTagPropCollectionInterval Numeric

ihuTagPropCollectionOffset Numeric

ihuTagPropLoadBalancing Numeric

ihuTagProptime stampType Numeric

ihuTagPropHighEngineeringUnits Numeric

ihuTagPropLowEngineeringUnits Numeric

ihuTagPropInputScaling Numeric

ihuTagPropHighScale Numeric

ihuTagPropLowScale Numeric

ihuTagPropCollectorCompression Numeric

ihuTagPropCollectorDeadbandPercentRange Numeric

Historian | 10 - Historian User API | 1526

Table 266. Tag Property Value Types (continued)

Property Value Type

ihuTagPropArchiveCompression Numeric

ihuTagPropArchiveDeadbandPercentRange Numeric

ihuTagPropSpare1 String

ihuTagPropSpare2 String

ihuTagPropSpare3 String

ihuTagPropSpare4 String

ihuTagPropSpare5 String

ihuTagPropReadSecurityGroup String

ihuTagPropWriteSecurityGroup String

ihuTagPropAdministratorSecurityGroup String

ihuTagPropLastModified (not currently imple

mented)

String

ihuTagPropLastModifiedUser String

ihuTagPropInterfaceType Numeric

ihuTagPropStoreMilliseconds Numeric

ihuTagPropUTCBias Numeric

ihuTagPropNumberOfCalculationDependencies Numeric

ihuTagPropCalculationDependencies (only

the first dependency is returned)

String

ihuTagPropAverageCollectionTime Numeric

ihuTagPropCollectionDisabled Numeric

ihuTagPropArchiveCompressionTimeout Numeric

ihuTagPropCollectorCompressionTimeout Numeric

ihuTagPropDataDensity Numeric

Historian | 10 - Historian User API | 1527

Table 266. Tag Property Value Types (continued)

Property Value Type

Note:

Tag data density categories are min

imum (1), medium (4), and maxi

mum (7).

ihuTagPropNumberOfElements

Note:

If the NumberOfElements value is -1,

the tag is an array tag.

Numeric

ihuCreateTagCacheContext

Use the ihuCreateTagCacheContext function to create tag cache context to use in the ihuFetchTagCacheEx2

or ihuFetchTagCacheEx3 functions.

Prototype

void * IHUAPI ihuCreateTagCacheContext {

};

ihuFetchTagCache

Use this function to fetch a current set of tags and properties from the Historian server and place them

into an API cache for subsequent queries, such as ihuGetNumericTagPropertyByTagname (on page

1531).

Prototype

ihuFetchTagCache {

 in long serverhandle,

 in MSO Char * tagmask,

 out int * NumTagsFound

};

Historian | 10 - Historian User API | 1528

Remarks

The function retrieves properties for each tag received.

There is a single API tag cache. You must free the previous tag cache before you do another fetch from

the same or a different server. Keep this in mind when you access the tag cache from multiple threads

in the same application. Alternatively, use the ihuCreateTagCacheContext and ihuFetchTagCacheEx2 or

ihuFetchTagCacheEx3 functions.

Returns

• ihuSTATUS_OK

• ihuSTATUS_INVALID_PARAMETER

ihuFetchTagCacheEx

Use the ihuFetcTagCacheEx function to fetch a current set of tags and properties from the Historian server

and place them into an API cache for subsequent queries, such as ihuGetNumericTagPropertyByTagname.

Prototype

ihuFetchTagCacheEx {

 in long serverhandle,

 out int * NumTagsFound,

};

Remarks

This function uses the criteria set up by ihuTagCacheCriteriaSetStringProperty and

ihuTagCacheCriteriaSetNumericProperty for tag browsing.

Returns

• ihuSTATUS_OK

• ihuSTATUS_INVALID_PARAMETER

ihuFetchTagCacheEx2

Use the ihuFetchTagCacheEx2 function to fetch a current set of tags and properties from the Historian

server and place them into an API cache for subsequent queries.

Historian | 10 - Historian User API | 1529

Prototype

ihuFetchTagCacheEx2 {

void * tagCacheContext,

long serverhandle,

MSO Char * tagmask,

int * NumTagsFound

};

Remarks

This function uses the criteria specified in ihuTagCacheCriteriaSetStringProperty and

ihuTagCacheCriteriaSetNumericProperty for tag browsing.

Returns

• ihuSTATUS_OK

• ihuSTATUS_INVALID_PARAMETER

ihuFetchTagCacheEx3

Use the ihuFetchTagCacheEx3 function to fetch a current set of tags and properties from the Historian

server and place them into an API cache for subsequent queries.

Prototype

ihuFetchTagCacheEx3 {

void * tagCacheContext,

long serverhandle,

int * NumTagsFound

};

Remarks

This function uses the criteria specified in ihuTagCacheCriteriaSetStringProperty and

ihuTagCacheCriteriaSetNumericProperty for tag browsing.

Returns

• ihuSTATUS_OK

• ihuSTATUS_INVALID_PARAMETER

Historian | 10 - Historian User API | 1530

ihuGetTagNameCacheIndex

Use the ihuGetTagNameCacheIndex function to find the index of the specified tagname in the cache. You can

use the index for fast access in subsequent get property by index calls. This call only queries the API tag

cache. It does not access the archiver.

Prototype

ihuGetTagnameCacheIndex {

 in MSO Char *Tagname

 out unsigned int *CacheIndex

};

Remarks

The value returned in CacheIndex is a zero-based index suitable to be passed into the get property by index

functions. The index is valid only if the function returns a success error code.

Returns

• ihuSTATUS_OK

• ihuSTATUS_INVALID_TAGNAME

ihuGetTagNameCacheIndexEx2

Use the ihuGetTagNameCacheIndexEx2 function to find the index of the specified tagname in the cache. You

can use the index for fast access in subsequent get property by index calls. This call only queries the API

tag cache. It does not access the archiver.

Prototype

ihuGetTagnameCacheIndexEx2 {

Void *TagCacheContext,

MSO Char *Tagname

unsigned int *CacheIndex

};

Remarks

The value returned in CacheIndex is a zero-based index suitable to be passed into the get property by index

functions. The index is valid only if the function returns a success error code.

Historian | 10 - Historian User API | 1531

Returns

• ihuSTATUS_OK

• ihuSTATUS_INVALID_TAGNAME

ihuGetNumericTagPropertyByTagname

Use the ihuGetNumericTagPropertyByTagname function to retrieve the value of a specified numeric tag

property from the API tag cache for a specified tag. This call queries the cache, but not the archiver. The

tag property may have changed since the cache was fetched.

Prototype

ihuGetNumericTagPropertyByTagname {

 in MSO Char *Tagname,

 in ihuTagProperties TagProperty,

 out double *Value

};

Remarks

The get by tagname function is slower than the get by index function because it loops through all

tags in the cache to find the requested tag. To retrieve multiple properties for a tag, consider calling

ihuGetTagnameCacheIndex to get the cache index of a tag so that you can use the get by index functions.

Returns

• ihuSTATUS_OK

• ihuSTATUS_INVALID_PARAMETER

• ihuSTATUS_INVALID_TAGNAME

ihuGetNumericTagPropertyByIndex

Use the ihuGetNumericTagPropertyByIndex function to retrieve the value of a specified numeric tag

property from the API tag cache at a specified cache index. This call queries the cache, but not the

archiver. The tag property may have changed since the cache was fetched.

Prototype

ihuGetNumericTagPropertyByIndex {

 in int Index,

 in ihuTagProperties TagProperty,

Historian | 10 - Historian User API | 1532

 out double *Value

};

Remarks

Use the get property by index functions after you locate tags with ihuGetTagnameCacheIndex, or when you

want to iterate through all tags in the cache.

The index is zero-based.

Tags are returned from the cache in no particular order.

Returns

• ihuSTATUS_OK

• ihuSTATUS_INVALID_PARAMETER

• ihuSTATUS_INVALID_TAGNAME

ihuGetNumericTagPropertyByIndexEx2

Use the ihuGetNumericTagPropertyByIndexEX2 function to retrieve the value of a specified numeric tag

property from the API tag cache at a specified cache index. This call queries the cache, but not the

archiver. The tag property may have changed since the cache was fetched.

Prototype

ihuGetNumericTagPropertyByIndexEx2 {

void * TagCacheContext,

int Index,

ihuTagProperties TagProperty,

double *Value

};

Remarks

Use the get property by index functions when you do not know the tagname.

The index is zero-based.

Tags are returned from the cache in no particular order.

Historian | 10 - Historian User API | 1533

Returns

• ihuSTATUS_OK

• ihuSTATUS_INVALID_PARAMETER

• ihuSTATUS_INVALID_TAGNAME

ihuGetStringTagPropertyByTagName

Use the ihuGetStringTagPropertyByTagname function to retrieve the value of a specified string tag property

from the API tag cache for a specified tag. This call queries the cache, but not the archiver. The tag

property may have changed since the cache was fetched.

Prototype

ihuGetStringTagPropertyByTagname {

 in MSO Char *Tagname,

 in ihuTagProperties TagProperty,

 in int valuelength,

 out MSO Char *Value

};

Remarks

The get by tagname function is slower than the get by index function because it loops through all

tags in the cache to find the requested tag. To retrieve multiple properties for a tag, consider calling

ihuGetTagnameCacheIndex to get the cache index of a tag so that you can use the get by index functions.

Returns

• ihuSTATUS_OK

• ihuSTATUS_INVALID_PARAMETER

• ihuSTATUS_INVALID_TAGNAME

ihuGetStringTagPropertyByTagNameEx2

Use the ihuGetStringTagPropertyByTagnameEx2 function to retrieve the value of a specified string tag

property from the API tag cache for a specified tag. This call queries the cache, but not the archiver. The

tag property may have changed since the cache was fetched.

Historian | 10 - Historian User API | 1534

Prototype

ihuGetStringTagPropertyByTagnameEx2 {

void * TagCacheContext, MSO

Char * Tagname,

ihuTagProperties TagProperty,

MSO Char * Value,

int valuelength,

};

Remarks

The get by tagname function is slower than the get by index function because it loops through all

tags in the cache to find the requested tag. To retrieve multiple properties for a tag, consider calling

ihuGetTagnameCacheIndex to get the cache index of a tag so that you can use the get by index functions.

Returns

• ihuSTATUS_OK

• ihuSTATUS_INVALID_PARAMETER

• ihuSTATUS_INVALID_TAGNAME

ihuGetStringTagPropertyByIndex

Use the ihuGetStringTagPropertyByIndex function to retrieve the value of a specified string tag property

from the API tag cache at a specified cache index. This call queries the cache, but not the archiver. The

tag property may have changed since the cache was fetched.

Prototype

ihuGetStringTagPropertyByIndex {

 in int Index,

 in ihuTagProperties TagProperty,

 out MSO Char *Value,

 in int valuelength,

};

Remarks

Use the get property by index functions after you locate tags with ihuGetTagnameCacheIndex, or when you

want to iterate through all tags in the cache.

Historian | 10 - Historian User API | 1535

The index is zero-based.

Returns

• ihuSTATUS_OK

• ihuSTATUS_INVALID_PARAMETER

• ihuSTATUS_INVALID_TAGNAME

ihuGetStringTagPropertyByIndexEx2

Use the ihuGetStringTagPropertyByIndexEx2 function to retrieve the value of a specified string tag

property from the API tag cache at a specified cache index. This call queries the cache, but not the

archiver. The tag property may have changed since the cache was fetched.

Prototype

ihuGetStringTagPropertyByIndexEx2 {

void * TagCacheContext,

int Index,

ihuTagProperties TagProperty,

MSO Char * Value,

int valueLength,

};

Remarks

Use the get property by index functions when you do not know the tag name, or when you want to iterate

through all tags in the cache.

The index is zero-based.

Returns

• ihuSTATUS_OK

• ihuSTATUS_INVALID_PARAMETER

• ihuSTATUS_INVALID_TAGNAME

ihuTagAdd

Use the ihuTagAdd function to add or modify tags.

Historian | 10 - Historian User API | 1536

Prototype

ihuTagAdd {

 in long serverhandle,

};

Remarks

This function uses serverhandle as a parameter.

Tag names that contain question marks (?) or asterisks (*) are not added to the server.

To modify a tag, you must add it again with new properties. Whenever you change or copy a tag name, the

old and new tag names and time stamps are recorded in the audit trail.

Returns

• ihuSTATUS_OK: Success

• ihuSTATUS_INVALID_PARAMETER: Invalid input parameters

• ihuSTATUS_LIC_TOO_MANY_TAGS: Added tags exceed the licensed tag count

• ihuSTATUS_ACCESS_DENIED: You do not have rights to add tags

ihuTagDelete

Use the ihuTagDelete function to delete tags from the server.

Prototype

ihuTagDelete {

 in long serverhandle,

 in MSO Char * tagname,

};

Remarks

This function uses serverhandle and tagname as parameters.

Returns

• ihuSTATUS_OK: Success

• ihuSTATUS_INVALID_PARAMETER: Invalid input parameters

• ihuSTATUS_ACCESS_DENIED: You do not have rights to delete tags

Historian | 10 - Historian User API | 1537

ihuTagDeleteEx

You can use the ihuTagDeleteEx function to permanently delete a tag by passing TRUE as a parameter.

Prototype

ihuTagDeleteEx {

 in long serverhandle,

 in MSO Char * tagname,

 BOOL DeletePermanent

};

Remarks

Use DeletePermanent to create a new tag with a previously used name. The ihuTagDeleteEx function uses

the following parameters:

• serverhandle: The Historian server from which to fetch tags

• tagname: Name of the tag to be deleted, which must be returned in a tag browse

• DeletePermanent: Permanently deletes a tag when set to TRUE

Note:

After you permanently delete a tag, you can no longer query its data, and the tag name is available

for reuse.

Returns

• ihuSTATUS_OK: Success

• ihuSTATUS_INVALID_PARAMETER: Invalid input parameters

• ihuSTATUS_ACCESS_DENIED: You do not have rights to delete tags

Note:

You must be a member of the ihTag Admin security group to delete tags.

ihuTagRename

Use the ihuTagRename function to rename tags.

Historian | 10 - Historian User API | 1538

Prototype

ihuTagRename {

 in long serverhandle,

 in MSO Char * OldTagName,

 in MSO Char * NewTagName,

};

Remarks

This function uses the following parameters:

• serverhandle: The Historian 4.0 server from which to fetch tags

• OldTagname: Name of the tag to be renamed

• NewTagname: New tag name

Note:

When you use this function to update or modify tag names, the tag properties are not modified.

If you modify a renamed tag property, be aware that all the tag properties for the alias are also

updated.

Returns

• ihuSTATUS_OK: Success

• ihuSTATUS_INVALID_PARAMETER: Invalid input parameters

• ihuSTATUS_ACCESS_DENIED: You do not have rights to rename tags

ihuTagRenameEx

You can use the ihuTagRenameEx function to permanently rename a tag by passing TRUE as a parameter.

Prototype

ihuTagRenameEx {

 in long serverhandle,

 in MSO Char * OldTagName,

 in MSO Char * NewTagName,

BOOL TrueRename,

};

Historian | 10 - Historian User API | 1539

Remarks

You can permanently rename tags that you do not want to read and write with their previous names. This

function uses the following parameters:

• serverhandle: The Historian 4.0 server from which to fetch tags

• OldTagname: Name of the tag to be renamed

• NewTagname: New tag name

• TrueRename: Permanently renames a tag when set to TRUE.

Returns

• ihuSTATUS_OK: Success

• ihuSTATUS_INVALID_PARAMETER: Invalid input parameters

• ihuSTATUS_ACCESS_DENIED: You do not have rights to rename tags

Note:

You must be a member of the ihTag Admin security group to rename tags.

ihuTagCacheCriteriaClear

Use the ihuTagCacheCriteriaClear function to clear any cached criteria before you set up tag browse

criteria.

Prototype

void IHUAPI ihuTagCacheCriteriaClear();

};

ihuTagCacheCriteriaClearEx2

Use the ihuTagCacheCriteriaClear function to clear any cached criteria before you set up tag browse

criteria.

Prototype

void IHUAPI ihuTagCacheCriteriaClearEx2

(

void * TagCacheContext,

};

Historian | 10 - Historian User API | 1540

ihuTagCacheCriteriaSetStringProperty

Use the ihuTagCacheCriteriaSetStringProperty function to set up tag browse criteria before you call

ihuFetchTagCacheEx.

Prototype

ihuTagCacheCriteriaSetStringProperty {

 in ihuTagProperties TagProperty,

 in MSO Char *Value,

};

Remarks

This function fetches a current set of tags and properties from the Historian server and places them into

an API cache for subsequent queries, such as ihuGetNumericTagPropertyByTagname.

Returns

• ihuSTATUS_OK

• ihuSTATUS_INVALID_PARAMETER

• ihuSTATUS_INVALID_TAGNAME

ihuTagCacheCriteriaSetStringPropertyEx2

Use the ihuTagCacheCriteriaSetStringPropertyEx2 function to set up tag browse criteria before you call

ihuFetchTagCacheEx.

Prototype

ihuTagCacheCriteriaSetStringPropertyEx2 {

void * TagCacheContext,

ihuTagProperties TagProperty,

MSO Char *Value,

};

Remarks

This function fetches a current set of tags and properties from the Historian server and places them into

an API cache for subsequent queries, such as ihuGetNumericTagPropertyByTagname.

Historian | 10 - Historian User API | 1541

Returns

• ihuSTATUS_OK

• ihuSTATUS_INVALID_PARAMETER

• ihuSTATUS_INVALID_TAGNAME

ihuTagCacheCriteriaSetNumericProperty

Use the ihuTagCacheCriteriaSetNumericProperty function to set up tag browse criteria.

Prototype

ihuTagCacheCriteriaSetNumericProperty {

 in ihuTagProperties TagProperty,

 in double Value,

};

Returns

• ihuSTATUS_OK

• ihuSTATUS_INVALID_PARAMETER

• ihuSTATUS_INVALID_TAGNAME

ihuTagCacheCriteriaSetNumericPropertyEx2

Use the ihuTagCacheCriteriaSetNumericPropertyEx2 function to set up tag browse criteria.

Prototype

ihuTagCacheCriteriaSetNumericPropertyEx2 {

void * TagCacheContext,

ihuTagProperties TagProperty,

double Value,

};

Returns

• ihuSTATUS_OK

• ihuSTATUS_INVALID_PARAMETER

• ihuSTATUS_INVALID_TAGNAME

Historian | 10 - Historian User API | 1542

ihuTagClearProperties

Use the ihuTagClearProperties function to clear tag properties before you add tags to a server.

Prototype

void IHUAPI ihuTagClearProperties()

};

ihuTagSetStringProperty

Use the ihuTagSetStringProperty function to set string tag properties before you call ihuTagAdd.

Prototype

ihuTagSetStringProperty {

 in ihuTagProperties TagProperty,

 in MSO Char *Value,

};

Returns

• ihuSTATUS_OK

ihuTagSetNumericProperty

Use the ihuTagSetNumericProperty function to set numeric tag properties before you call ihuTagAdd.

Prototype

ihuTagSetNumericProperty {

 in ihuTagProperties TagProperty,

 in double.Value,

};

Returns

• ihuSTATUS_OK

ihuCloseTagCache

Use the ihuCloseTagCache function to free the API cache from memory. Be sure to close the tag cache

when not in use to free memory and prevent accidental usage.

Historian | 10 - Historian User API | 1543

Prototype

ihuCloseTagCache {

};

Returns

• ihuSTATUS_OK in all cases

ihuCloseTagCacheEx2

Use the ihuCloseTagCacheEx2 function to free the API cache from memory. Be sure to close the tag cache

when not in use to free memory and prevent accidental usage.

Prototype

ihuCloseTagCache {

void * TagCacheContext

};

Returns

• ihuSTATUS_OK in all cases

Write Functions

Write Functions Overview

The write functions are designed for high-performance data write access to the archiver. Groups of data

samples are built up in the application and then sent as a whole into the API for transmission to the

server. Write errors can be returned to the application, which can then implement its own error handling.

Or, the program can write without a wait if there is no error handling.

The application is responsible for all error handling, including retrying failed writes.

Write Functions

• ihuWriteData (on page 1543)

• ihuWriteComment (on page 1546)

ihuWriteData

Use the high-performance ihuWriteData function to write multiple samples for multiple tags.

Historian | 10 - Historian User API | 1544

Prototype

ihuWriteData {

 in long serverhandle,

 in int number_of_samples,

 in IHU_DATA_SAMPLE *data_values,

 in ihuErrorCode *error_returns ,

 in bool wait_for_reply,

 in bool error_on_replace

};

Important:

You cannot write more than 100,000 samples in each call to this function. It is recommended that

you write 1,000 to 10,000 samples per call.

Remarks

The Historian archiver has the following strict data-write rules that apply to all applications and collectors:

1. No application is allowed to write data with a time stamp older than now minus the "Data is read

only after" active hours setting. Such writes fail.

2. No application is allowed to write data with a time stamp before the start time of the first archive,

even if the write satisfies the previous rule.

3. No application can write data to a read-only archive.

4. No application can write data with a time stamp more than 15 minutes in the future.

The write function has two Boolean parameters to control optional behavior:

• wait_for_reply: When set to TRUE, write operations are blocked until the values are acknowledged

by the archiver. This allows you to check the error returns to reach a degree of confidence that the

data was written successfully. You cannot check error codes unless you wait for the reply.

If it is important to return control to your program so that collection can be performed, consider

setting wait_for_reply=FALSE. You might also want to set wait_for_reply=FALSE if you have no

specific error-handling strategy, or if you are using data readbacks to verify write success.

If you are using store and forward in the User API, set wait_for_reply=FALSE.

Historian | 10 - Historian User API | 1545

Note:

If you set wait_for_reply=FALSE, you must pass a NULL error array for the ihuErrorCode

*error_returns value.

• error_on_replace: This parameter has no effect on performance. Use it to specify how the archiver

behaves when an existing archived sample has the same time stamp as a new sample being

written. Set error_on_replace=TRUE to discard the new sample and return an error that you can see

when wait_ for_reply=TRUE. Set error_on_replace=FALSE to overwrite the existing sample with the

new sample.

Time Stamps

You can use this function to specify a time stamp or pass a time stamp of 0 seconds to use the current

system time on the written sample. Pass a time stamp structure where seconds=0, and do not pass NULL.

All samples in the group with a 0 time stamp specified use the system time at the time of the write as a

time stamp. Values are in microseconds.

Values

Values to be written are not required to have matching data types as the Historian tags. The archiver

converts written data types to tag data types if needed.

Qualities

You are required to specify the data quality and subquality for the sample when you use this function.

There are no default values.

Note:

Although the IHU_DATA_SAMPLE function has a field for comments, you cannot call it to write a

comment. Use the ihuWriteComment (on page 1546) function instead.

Error Handling

The User API does not provide store and forward or retry functionality for failed writes. That is the

responsibility of the application. You can write User API programs that perform retries or use store and

forward.

If you get a timeout back from a write, the write may be waiting in a write queue on the data archiver.

Historian | 10 - Historian User API | 1546

Security

Historian has audited and unaudited write security groups and a security administration group.

To perform writes, you must be a member of one of these groups. Otherwise, you get an

ihuSTATUS_ACCESS_DENIED error.

Returns

This function returns ihuSTATUS_OK when values are successfully written.

Errors are returned on timeouts, when you are not a member of the necessary security group, or when

tags are not found.

Important:

The User API passes through any timestamps it is given without adjusting for time offsets. The

application is responsible to account for time differences between clients and archivers running

on different machines.

ihuWriteComment

Use the ihuWriteComment function to write a single comment to a single data sample.

Prototype

ihuWriteComment {

 in long serverhandle,

 in MSO Char *Tagname,

 in IHU_timestamp *time stamp,

 in MSO Char *Comment,

 in MSO Char *SuppliedUser,

 in MSO Char *SuppliedPassword

};

Remarks

Comments can be written with any time stamp that is valid for a data write. See ihuWriteDatafunction (on

page 1543) for details on valid time stamps. If there is an existing raw sample for the specified tag and

time stamp, the comment is attached with no loss of data values stored with that sample. Otherwise, a

new raw sample with no value is created to hold the comment.

If a time stamp with 0 seconds is passed in, the current time is used.

Historian | 10 - Historian User API | 1547

Currently, comments written with the User API must be string text.

The SuppliedUser and SuppliedPassword parameters are optional and can be NULL. If set, values must be a

valid username and password with write permissions, or the comment write fails.

Returns

• ihuSTATUS_OK on success, error otherwise.

Query Modifiers Functions

Query Modifiers Functions Overview

You can use query modifier functions to specify various ways to retrieve data from Historian. For example,

you can use ONLYGOOD to request only good-quality data, or INCLUDEREPLACED to retrieve replaced values.

Query Modifier Functions

• ihuBrowseQueryModifiers (on page 1547)

• ihuClearQueryModifiers (on page 1548)

• ihuRetrieveCalculatedDataEx2 (on page 1548)

• ihuSetQueryModifiers (on page 1549)

ihuBrowseQueryModifiers

Use the ihuBrowseQueryModifiers function to return a list of all supported query modifiers from the

Historian Server. Various versions of the Historian Data Archiver may support different sets of modifiers.

Prototype

ihuBrowseQueryModifiers (

 long serverhandle,

 IHU_QUERY_MODIFIER **QueryModifiers,

 int *NumberOfModifiers

);

Remarks

The NumberOfModifiers parameter returns a total count of modifiers. The QueryModifiers parameter

returns a list of supported query modifiers.

Historian | 10 - Historian User API | 1548

Returns

• ihuSTATUS_OK

• ihuSTATUS_INVALID_PARAMETER

ihuClearQueryModifiers

Use the ihuClearQueryModifiers function to clear any previously set query modifiers so that they are not

used in subsequent reads.

Prototype

ihuErrorCode ihuClearQueryModifiers(void)

Remarks

Use ihuSetQueryModifiers() to set a modifier string to be used in all reads. Call ihuClearQueryModifiers()

to stop using that modifier.

Returns

• ihuSTATUS_OK

• ihuSTATUS_OUT_OF_MEMORY

ihuRetrieveCalculatedDataEx2

Use the ihuRetrieveCalculatedDataEx2 function with the ihuStateCount and ihuStateTime calculation

modes to return calculated data based on the raw samples stored in the archive.

You can request data by specifying a number of samples or an interval. Set one to a nonzero value and

the other to 0. To split the duration, divide the time from start to finish into evenly spaced time intervals.

Prototype

ihuRetrieveCalculatedDataEx2

(long serverhandle,

IHU_TIMESTAMP StartTime,

IHU_TIMESTAMP EndTime,

ihuCalculationMode CalculationMode,

ihuDataType StateDataType,

ihuValue StateValue,

unsigned long NumberOfSamples,

Historian | 10 - Historian User API | 1549

IHU_DATA_INTERVAL Interval,

IHU_RETRIEVED_DATA_RECORDS_EX *DataRecords)

Returns

This function returns ihuSTATUS_OK when values are retrieved successfully, and returns the following

errors:

• Read timeouts

• User is not a member of the iH Readers security group

• Tag not found

ihuSetQueryModifiers

Use the ihuSetQueryModifiers function to define query modifier criteria for all subsequent data reads.

Prototype

ihuSetQueryModifiers (

long serverhandle,

MSO Char *CriteriaString

)

Returns

• ihuSTATUS_OK

• ihuSTATUS_INVALID_PARAMETER

• ihuSTATUS_OUT_OF_MEMORY

Read Functions

Read Functions Overview

You can use read functions to retrieve raw, sampled, and calculated values stored in the Historian server

for usage in reporting, plotting, or data analysis applications.

In most cases, multiple tags can be read in a single function call.

Most of the read functions serve the general purpose of retrieving raw, sampled or calculated data.

Additionally, targeted functions are exposed to provide easy access to current tag values or values

interpolated to a specific date and time stamp.

Historian | 10 - Historian User API | 1550

Comments, if they exist, are returned with retrieved data. See the sample programs for more information.

You can combine read functions with write functions to read back newly written data, which is the most

secure way to verify successful data writes.

Read Functions

• ihuReadCurrentValue (on page 1550)

• ihuReadInterpolatedValue (on page 1551)

• ihuReadInterpolatedValueEx (on page 1552)

• ihuReadRawDataByTime (on page 1553)

• ihuReadRawDataByTimeEx (on page 1554)

• ihuReadMultiTagRawDataByCountEx (on page 1557)

• ihuReadRawDataByCount (on page 1555)

• ihuReadRawDataByCountEx (on page 1556)

• ihuReadMultiTagRawDataByCount (on page 1557)

• ihuReadMultiTagRawDataByCountEx (on page 1557)

• ihuRetrieveSampledData (on page 1558)

• ihuRetrieveSampledDataEx (on page 1559)

• ihuRetrieveSampledDataEx2 (on page 1560)

• ihuRetrieveCalculatedData (on page 1561)

• ihuRetrieveCalculatedDataEx (on page 1562)

• ihuRetrieveCalculatedDataEx3 (on page 1563)

ihuReadCurrentValue

Use the ihuReadCurrentValue function to return the current tag value. The current tag value has a specific

definition in Historian, but is generally the last raw sample sent to the archiver for that tag.

Prototype

ihuReadCurrentValue {

 in long serverhandle,

 in int number_of_tags,

 in/out IHU_DATA_SAMPLE *pSamples,

 out ihuErrorCode *error_returns

};

Historian | 10 - Historian User API | 1551

Remarks

You can retrieve current values for multiple tags with one call. A single sample for each requested tag is

returned.

For each tag, set only the tagname field in IHU_DATA_SAMPLE. All other fields are set by the function.

Data is returned based on the data type of the tag.

Returns

The ihuReadCurrentValue function returns errors in two ways. The function has a return code, and each

tag name has an error code. Check function-level errors before you examine tag-level errors.

Both are ihuSTATUS_OK when the current value is successfully retrieved.

The ihuReadCurrentValue function can return errors on read timeouts or when the user is not a member of

the ih Readers security group.

For example, each tag can return an error in cases where tags are not found or have no raw samples.

ihuReadInterpolatedValue

Use the ihuReadInterpolatedValue function to return the value of a tag interpolated to a specified date and

time.

Prototype

ihuReadInterpolatedValue {

 in long serverhandle,

 in int number_of_tags,

 in/out IHU_DATA_SAMPLE * pSamples,

 out ihuErrorCode * error_returns

};

Remarks

You can retrieve values for multiple tags with one call. A single sample for each requested tag is returned.

For each tag, set only the tagname and time stamp fields in IHU_DATA_SAMPLE. All other fields are set by the

function. The time stamp in the first requested tag is used for all tags.

Data is returned based on the data type of the tag.

Historian | 10 - Historian User API | 1552

The data quality returned is either ihuOPCGood or ihuOPCBad, and the substatus is always

ihuOPCNonspecific.

You must specify a time stamp in IHU_DATA_SAMPLE for the first requested tag, for example:

//you only need to populate the time stamp in the first sample

lRet = IHU_timestamp_FromParts(2003,

7,

22,

11,

0,

0,

0,

&(pSamples[0].timestamp));

lRet= ihuReadInterpolatedValue (serverhandle, // handle from connect

number_of_tags, // number of tags, one sample per tag

pSamples, // allocated by caller, value set by API

error_returns); // error code per tag

For an example, refer to the ReportLike sample program.

Returns

The ihuReadInterpolatedValue function returns errors in two ways. The function has a return code, and

each tag name has an error code. Check function-level errors before you examine tag-level errors.

Both are ihuSTATUS_OK when the current value is successfully retrieved.

The ihuReadInterpolatedValue function returns errors on read timeouts or when the user is not a member

of the ih Readers security group.

For example, each tag can return an error in cases where tags are not found or have no raw samples.

ihuReadInterpolatedValueEx

Use the ihuReadInterpolatedValueEx function to return the number of samples of a tag interpolated to a

given date and time with filters and query modifiers by using pszFilterExpression and CriteriaString.

Prototype

ihuErrorCode IHUAPI ihuReadInterpolatedValueEx

(

Historian | 10 - Historian User API | 1553

long serverhandle, // [in] used for communication with server

int number_of_tags, // [in] the number of tags to retrieve

IHU_DATA_SAMPLE *pSamples, // [in/out] user fills tagname and timestamp and the API fills other fields

MSO_Char *pszFilterExpression, // [in] Filter Expression e.g. Tag > 20

IHU_FILTER_MODE FilterMode, // [in] Filter Modes

MSO_Char *CriteriaString, // [in] QueryModifiers to use with data reads

ihuErrorCode *error_returns // [out] populated with per tag error

);

Remarks

To skip filtering, you can pass NULL to pszFilterExpression and ihuExactTime to FilterMode, or you can use

ihuReadInterpolatedValue() (on page 1551).

Pass NULL to CriteriaString if you do not use a QueryModifier.

You can retrieve values for multiple tags with one call. A single sample for each requested tag is returned.

For each tag, set only the tagname and time stamp fields in IHU_DATA_SAMPLE. All other fields are set by the

function. The time stamp in the first requested tag is used for all tags.

Data is returned based on the data type of the tag.

The data quality returned is either ihuOPCGood or ihuOPCBad, and the substatus is always

ihuOPCNonspecific.

If you want to specify a time stamp, you must do so in IHU_DATA_SAMPLE for the first requested tag.

Returns

The ihuReadInterpolatedValueEx function returns errors on:

• Read timeouts

• User is not a member of the ih Readers security group

• Tag not found

• Filter criteria or query modifiers cannot be set

ihuReadRawDataByTime

Use the ihuReadRawDataByTime function to return multiple raw samples for a single tag in a specified time

range.

Historian | 10 - Historian User API | 1554

Prototype

ihuReadRawDataByTime {

 in long serverhandle,

 in MSO Char * tagname,

 in IHU_timestamp * StartTime,

 in IHU_timestamp * EndTime,

 out int * number_of_samples,

 out IHU_DATA_SAMPLE **data_values

};

Remarks

The time stamp, value, and quality of each raw sample are returned.

Returns

The ihuReadRawDataByTime function returns ihuSTATUS_OK when values are successfully retrieved.

Errors are returned on read timeouts, when the user is not a member of the ih Readers security group, or if

the tag is not found.

ihuReadRawDataByTimeEx

Use the ihuReadRawDataByTimeEx function to return multiple raw samples for a single tag in a specified

time range with filters and query modifiers by using pszFilterExpression and CriteriaString.

Prototype

ihuReadRawDataByTimeEx {

long serverhandle, // [in] the serverhandle

MSO_Char *tagname, // [in] the single tagname to fetch data for

MSO_Char *pszFilterExpression, // [in] Filter Expression e.g. Tag > 20

IHU_FILTER_MODE FilterMode, // [in] Filter Modes

MSO_Char *CriteriaString, // [in] QueryModifiers to use with data reads

IHU_TIMESTAMP * StartTime, // [in] Start time of query

IHU_TIMESTAMP * EndTime, // [in] End Time of query

int * number_of_samples, //[out] the number of samples returned

IHU_DATA_SAMPLE **data_values // [out] the returned data samples, unlimited number

};

Historian | 10 - Historian User API | 1555

Remarks

To skip filtering, you can pass NULL to pszFilterExpression and ihuExactTime to FilterMode, or you can use

ihuReadRawDataByTime().

Pass NULL to CriteriaString if you do not use a QueryModifier.

The time stamp, value, and quality of each raw sample are returned.

Returns

The ihuReadRawDataByTimeEx function returns ihuSTATUS_OK on success, or returns errors on:

• Read timeouts

• User is not a member of the ih Readers security group

• Tag not found

• Filter criteria or query modifiers cannot be set

ihuReadRawDataByCount

Use the ihuReadRawDataByCount function to return the requested number of raw samples for a single tag

going forward or backward in time from a specified time stamp. In cases where the number of samples

available is less than the value specified in the number_of_samples parameter, the function stops returning

data.

Prototype

ihuReadRawDataByCount {

 in long serverhandle,

 in MSO Char *tagname,

 in IHU_timestamp * StartTime,

 in/out int * number_of_samples,

 in int TimeForward,

 out IHU_DATA_SAMPLE **data_values

};

Remarks

The time stamp, value, and quality of each raw sample are returned.

Historian | 10 - Historian User API | 1556

Returns

The ihuReadRawDataByCount function returns ihuSTATUS_OK when values are successfully retrieved.

Errors are returned on read timeouts, when the user is not a member of the ih Readers security group, or if

the tag is not found.

ihuReadRawDataByCountEx

Use the ihuReadRawDataByCountEx function to return the requested number of raw samples for a single

tag going forward or backward in time from a specified time stamp by using pszFilterExpression and

CriteriaString. In cases where the number of samples available is less than the value specified in the

number_of_samples parameter, the function stops returning data.

Prototype

ihuReadRawDataByCountEx {

long serverhandle, // [in] the serverhandle

MSO_Char *tagname, // [in] the single tagname to fetch data for

MSO_Char *pszFilterExpression, // [in] Filter Expression e.g. Tag > 20

IHU_FILTER_MODE FilterMode, // [in] Filter Modes

MSO_Char *CriteriaString, // [in] QueryModifiers to use with data reads

IHU_TIMESTAMP * StartTime, // [in] Start time of query

IHU_TIMESTAMP * EndTime, // [in] End time of query

int * number_of_samples, // [in/out] the number of samples to return and actually returned

int TimeForward, // [in] TRUE if search should be in forward time order

IHU_DATA_SAMPLE **data_values // [out] the returned data samples, unlimited number

};

Remarks

To skip filtering, you can pass NULL to pszFilterExpression and ihuExactTime to FilterMode, or you can use

ihuReadRawDataByCount() (on page 1555).

Pass NULL to CriteriaString if you do not use a QueryModifier.

The time stamp, value, and quality of each raw sample are returned.

Returns

The ihuReadRawDataByCountEx function returns ihuSTATUS_OK when values are successfully retrieved, and

returns errors on:

Historian | 10 - Historian User API | 1557

• Read timeouts

• User is not a member of the ih Readers security group

• Tag not found

• Filter criteria or query modifiers cannot be set

ihuReadMultiTagRawDataByCount

Use the ihuReadMultiTagRawDataByCount function to return up to the requested number of raw samples for

multiple tags.

Prototype

ihuErrorCode IHUAPI ihuReadMultiTagRawDataByCount (

long serverhandle,

int number_of_tags,

IHU_ TIMESTAMP *StartTime,

int *number_of_samples, BOOL TimeForward,

ihuErrorCode **error_returns, IHU_RETRIEVED_RAW_VALUES *pSamples

);

Remarks

The ihuReadMultiTagRawDataByCount function returns per-tag and overall errors.

Returns

The ihuReadMultitagRawDataByCount function returns ihuSTATUS_OK when values are successfully retrieved.

Errors are returned on read timeouts, when the user is not a member of the ih Readers security group, or if

the tag is not found.

ihuReadMultiTagRawDataByCountEx

Use the ihuReadMultiTagRawDataByCountEx function to return up to a requested number of multiple

raw samples for multiple tags with filters and query modifiers by using pszFilterExpression and

CriteriaString.

Prototype

ihuErrorCode IHUAPI ihuReadMultiTagRawDataByCountEx (

long serverhandle, // [in] the serverhandle

int number_of_tags, // [in] the number of tags to retrieve

Historian | 10 - Historian User API | 1558

IHU_TIMESTAMP * StartTime, // [in] Start time of query

IHU_TIMESTAMP * EndTime, // [in] End time of query

MSO_Char *pszFilterExpression, // [in] Filter Expression e.g. Tag > 20

MSO_Char *CriteriaString, // [in] QueryModifiers to use with data reads

IHU_FILTER_MODE FilterMode, // [in] Filter Modes

int * number_of_samples, // [in/out] the number of samples to return and actually returned

BOOL TimeForward, // [in] TRUE if search should be in forward time order ihuErrorCode ** error_returns, // [out]

 populated with per tag error

IHU_RETRIEVED_RAW_VALUES *pSamples // [in/out] the returned data samples, unlimited number memory is allocated

);

Remarks

To skip filtering, you can pass NULL to pszFilterExpression and ihuExactTime to FilterMode, or you can use

ihuReadMultiTagRawDataByCount() (on page 1557).

Pass NULL to CriteriaString if you do not use a QueryModifier.

The ihuReadMultiTagRawDataByCount function returns per-tag and overall errors.

Returns

The ihuReadRawDataByCountEx function returns ihuSTATUS_OK when values are successfully retrieved, and

returns errors on:

• Read timeouts

• User is not a member of the ih Readers security group

• Tag not found

• Filter criteria or query modifiers cannot be set

ihuRetrieveSampledData

Use the ihuRetrieveSampledData function to return sampled data based on the raw samples stored in the

archive. Interpolated, Trend, and Lab are example SamplingMode values.

Prototype

ihuRetrieveSampledData {

 in long serverhandle,

 in IHU_timestamp StartTime,

 in IHU_timestamp EndTime,

Historian | 10 - Historian User API | 1559

 in ihuSamplingMode SamplingMode,

 in unsigned long NumberOfSamples,

 in unsigned long IntervalMilliseconds,

 in/out IHU_RETRIEVED_DATA_RECORDS *DataRecords

};

Remarks

To request data, you can specify a number of samples or a time interval. Set one parameter to a non-zero

value and the other to 0. To split the duration, divide the time from start to finish into evenly spaced time

intervals.

Returns

The ihuRetrieveSampledData function returns ihuSTATUS_OK when values are successfully retrieved.

Errors are returned on read timeouts, when the user is not a member of the ih Readers security group, or if

the tag is not found.

ihuRetrieveSampledDataEx

Use the ihuRetrieveSampledDataEx function to return sampled data based on the raw samples stored in

the archive. Interpolated, Trend, and Lab are example SamplingMode values. Use this function with hybrid

sampling modes such as TrendToRaw or InterpolatedToRaw to return the sampling mode that was actually

used.

Prototype

ihuRetrieveSampledDataEx {

long serverhandle, // [in] which server to fetch from

IHU_TIMESTAMP StartTime, // [in] Start time for the query

IHU_TIMESTAMP EndTime, // [in] End time for the query

ihuSamplingMode SamplingMode, // [in] The requested sampling mode

unsigned long NumberOfSamples, // [in] 0 or num samples to return

IHU_DATA_INTERVAL Interval, // [in] 0 or sampling interval in units provided by IntervalType

IHU_RETRIEVED_DATA_RECORDS_EX *DataRecords // [in/out] - caller fills in tagnames of the structures and API will

};

Historian | 10 - Historian User API | 1560

Remarks

To request data, you can specify a number of samples or a time interval. Set one parameter to a non-zero

value and the other to 0. To split the duration, divide the time from start to finish into evenly spaced time

intervals.

If you are not using hybrid sampling modes, use ihuRetrieveSampledData() (on page 1558).

Returns

The ihuReadRawDataByTimeEx function returns ihuSTATUS_OK when values are successfully retrieved, and

returns errors on:

• Read timeouts

• User is not a member of the ih Readers security group

• Tag not found

ihuRetrieveSampledDataEx2

Use the ihuRetrieveSampledDataEx2 function to return sampled data based on the raw samples stored

in the archive with filters and query modifiers by using pszFilterExpression and CriteriaString.

Interpolated, Trend, and Lab are example SamplingMode values. Use this function with hybrid sampling

modes such as TrendToRaw or InterpolatedToRaw to return the sampling mode that was actually used.

Prototype

ihuRetrieveSampledDataEx2 {

long serverhandle, // [in] which server to fetch from

IHU_TIMESTAMP StartTime, //[in] Start time for the query

IHU_TIMESTAMP EndTime, //[in] End time for the query

ihuSamplingMode SamplingMode, //Sampling Modes

MSO_Char *pszFilterExpression, // [in] Filter Expression e.g. Tag > 20

IHU_FILTER_MODE FilterMode, // [in] Filter Modes

MSO_Char *CriteriaString, // [in] QueryModifiers to use with data reads

unsigned long NumberOfSamples, //[in] 0 or number of samples to return

IHU_DATA_INTERVAL Interval, // [in] 0 or sampling interval in units provided by IntervalType

IHU_RETRIEVED_DATA_RECORDS_EX *DataRecords //[in/out] - you fill in tagnames of the structures and API will fil

};

Historian | 10 - Historian User API | 1561

Remarks

To request data, you can specify a number of samples or a time interval. Set one parameter to a non-zero

value and the other to 0. To split the duration, divide the time from start to finish into evenly spaced time

intervals.

To skip filtering, you can pass NULL to pszFilterExpression and ihuExactTime to FilterMode, or you can use

ihuRetrieveSampledData() (on page 1558).

Pass NULL to CriteriaString if you do not use a QueryModifier.

Returns

The ihuRetrieveSampledDataEx2 function returns ihuSTATUS_OK when values are successfully retrieved, and

returns errors on:

• Read timeouts

• User is not a member of the ih Readers security group

• Tag not found

• Filter criteria or query modifiers cannot be set

ihuRetrieveCalculatedData

Use the ihuRetrieveCalculatedData function to return calculated data based on the raw samples stored in

the archive. Average, Minimum, and Count are example CalculationMode values.

Prototype

ihuRetrieveCalculatedData {

 in long serverhandle,

 in IHU_timestamp StartTime,

 in IHU_timestamp EndTime,

 in ihuCalculationMode CalculationMode,

 in unsigned long NumberOfSamples,

 in unsigned long IntervalMilliseconds,

 in/out IHU_RETRIEVED_DATA_RECORDS *DataRecords

};

Historian | 10 - Historian User API | 1562

Remarks

To request data, you can specify a number of samples or a time interval. Set one parameter to a non-zero

value and the other to 0. To split the duration, divide the time from start to finish into evenly spaced time

intervals.

Returns

The ihuRetrieveCalculatedData function returns ihuSTATUS_OK when values are successfully retrieved.

Errors are returned on read timeouts, when the user is not a member of the ih Readers security group, or if

the tag is not found.

ihuRetrieveCalculatedDataEx

Use the ihuRetrieveCalculatedDataEx function to return calculated data based on the raw samples stored

in the archive. Average, Minimum, and Count are example CalculationMode values.

Prototype

ihuRetrieveCalculatedDataEx {

long serverhandle, // [in] which server to fetch from

IHU_TIMESTAMP StartTime, //[in] Start time of query

IHU_TIMESTAMP EndTime, //[in] End time of query

ihuCalculationMode CalculationMode, //[in] Calculation Mode

unsigned long NumberOfSamples, //[in] Number of samples to be returned

IHU_DATA_INTERVAL Interval, // [in] Interval in Milliseconds

IHU_RETRIEVED_DATA_RECORDS_EX *DataRecords //[in/out] - you fill in tagnames of the structures and API will fil

};

Remarks

To request data, you can specify a number of samples or a time interval. Set one parameter to a non-zero

value and the other to 0. To split the duration, divide the time from start to finish into evenly spaced time

intervals.

Returns

The ihuReadRawDataByTimeEx2 function returns ihuSTATUS_OK when values are successfully retrieved, and

returns errors on:

Historian | 10 - Historian User API | 1563

• Read timeouts

• User is not a member of the ih Readers security group

• Tag not found

ihuRetrieveCalculatedDataEx3

Use the ihuRetrieveCalculatedDataEx3 function to return sampled data based on the raw samples stored

in the archive with filters and query modifiers by using pszFilterExpression and CriteriaString. Average,

Minimum, and Count are example CalculationMode values.

Prototype

ihuRetrieveCalculatedDataEx3 {

long serverhandle, // [in] which server to fetch from

IHU_TIMESTAMP StartTime, // [in] Start time of query

IHU_TIMESTAMP EndTime, // [in] End time of query

ihuCalculationMode CalculationMode, //[in] Calculation Mode

MSO_Char *pszFilterExpression, // [in] Filter Expression e.g. Tag > 20

IHU_FILTER_MODE FilterMode, // [in] Filter Modes

MSO_Char *CriteriaString, // [in] QueryModifiers to use with data reads

ihuDataType StateDataType, // DataType of the StateValue to compare for ihuStateCount calculation mode

ihuValue StateValue, // Value to compare for ihuStateCount calculation mode unsigned long NumberOfSamples,

 IHU_DATA_INTERVAL Interval, // [in] Interval in Milliseconds

IHU_RETRIEVED_DATA_RECORDS_EX *DataRecords // [in/out] - you fill in tagnames of the structures and API will fil

};

Remarks

To request data, you can specify a number of samples or a time interval. Set one parameter to a non-zero

value and the other to 0. To split the duration, divide the time from start to finish into evenly spaced time

intervals.

To skip filtering, you can pass NULL to pszFilterExpression and ihuExactTime to FilterMode, or you can use

ihuRetrieveCalculatedData() (on page 1561).

Pass NULL to CriteriaString if you do not use a QueryModifier.

Returns

The ihuRetrieveCalculatedDataEx3 function returns ihuSTATUS_OK when values are successfully retrieved,

and returns errors on:

Historian | 10 - Historian User API | 1564

• Read timeouts

• User is not a member of the ih Readers security group

• Tag not found

• Filter criteria or query modifiers cannot be set

Utility Functions

Utility Functions Overview

Utility functions ease programming. Time stamp conversion functions are necessary to produce the time

stamps needed in most API functions.

Utility Functions

• IHU_timestamp_FromParts (on page 1564)

• IHU_timestamp_ToParts (on page 1565)

• ihuServerGetTime (on page 1566)

IHU_timestamp_FromParts

Use the IHU_timestamp_FromParts function to use supplied time parts (date, hour, minutes, seconds, and

so on) to produce a UTC time stamp in the format needed by the Historian User API read and write calls.

Prototype

IHU_timestamp_FromParts {

 in int Year,

 in int Month,

 in int Day,

 in int Hour,

 in int Minute,

 in int Second,

 in long Subsecond,

 out IHU_timestamp *time stamp

};

Remarks

The time parts passed in are assumed to be in the local time zone of the machine where you make the

call.

Historian | 10 - Historian User API | 1565

During UTC conversion, the Use Daylight Saving Time setting of your local machine is used.

Returns

The IHU_timestamp_FromParts function returns ihuSTATUS_OK on success, or an error code on failure.

IHU_timestamp_ToParts

Use the IHU_timestamp_ToParts function to convert UTC time stamps to the following human-readable

parts:

• Year

• Month

• Date

• Hour

• Minute

• Second

• Subsecond

You can use this function to convert the time stamps of retrieved data samples.

Prototype

IHU_timestamp_ToParts {

 in IHU_timestamp time stamp

 out int *Year,

 out int *Month,

 out int *Day,

 out int *Hour,

 out int *Minute,

 out int *Second,

 out long *Subsecond,

};

Remarks

The time parts produced are in the local time zone of the machine where you make the call.

During conversion from UTC, the Use Daylight Saving Time setting of your local machine is used.

Historian | 10 - Historian User API | 1566

Returns

The IHU_timestamp_ToParts function returns ihuSTATUS_OK on success, or an error code on failure.

ihuServerGetTime

Use the ihuServerGetTime function to return the current time on the Historian server.

Prototype

ihuErrorCode IHUAPI ihuServerGetTime

(

 long serverhandle,

 IHU_TIMESTAMP *CurrentTime

)

Remarks

The ihuServerGetTime function has the following inputs and outputs:

• hServer: Server handle from the connection

• CurrentTime: Current time on the server in the local time zone

Returns

The ihuServerGetTime function returns ihuSTATUS_OK on success, or an error code on failure.

Enumerated Sets Functions

Enumerated Sets Functions Overview

You can use the enumerated sets functions to create, modify, delete, and browse enumerated sets, and

assign tags to those sets.

When you query tag data by using these functions, the string state name value is returned by default. To

retrieve the numeric value, use ihuEnumeratedSetRawValue.

When you write to a tag by using these functions, write the numeric value.

Use these functions to retrieve all the enumerated sets that match the setname mask criteria. If you want

to retrieve all sets, pass * as the mask.

Historian | 10 - Historian User API | 1567

Enumerated Sets Functions

• ihuGetEnumeratedSets (on page 1567)

• ihuEnumeratedSetAdd (on page 1567)

• ihuEnumeratedSetRawValue (on page 1568)

• ihuEnumeratedSetsFree (on page 1569)

• ihuEnumeratedSetRename (on page 1570)

• ihuEnumeratedSetDelete (on page 1570)

• ihuEnumeratedStateAdd (on page 1571)

• ihuEnumeratedStateModify (on page 1572)

• ihuEnumeratedStateDelete (on page 1572)

ihuGetEnumeratedSets

Use the ihuGetEnumeratedSets function to retrieve all the enumerated sets that match the setname mask

criteria. To retrieve all sets, pass * as the mask.

Prototype

ihuErrorCode IHUAPI ihuGetEnumeratedSets (

in long serverhandle,

in MSO Char *EnumeratedSetMask,

out long *numberofrecords,

out ihuEnumeratedSetRecordSet

*EnumeratedSetRecordSet)

Remarks

The ihuGetEnumeratedSets function returns the number of enumerated set records, plus the enumerated

sets.

Returns

The ihuGetEnumeratedSets function returns ihuSTATUS_OK on success, or errors if invalid input parameters

are found or if out-of-memory issues occur during dynamic memory allocation.

ihuEnumeratedSetAdd

Use the ihuEnumeratedSetAdd function to add enumerated sets. You can specify sets that have states, or

add states later on.

Historian | 10 - Historian User API | 1568

Prototype

ihuEnumeratedSetAdd

(in long serverhandle,

in ihuEnumeratedSetProperties

*EnumeratedSet)

Remarks

Any existing set with a name that matches the specified set name is overwritten by the new set.

Returns

The ihuEnumeratedSetAdd function returns ihuSTATUS_OK on success, or returns errors on:

• Invalid input parameters

• Out-of-memory issues during dynamic memory allocation

• User not a member of ihTag Admin group

Note:

Set the Administrator parameter to the ihTag Admin security group to assign the highest

precedence to this parameter.

ihuEnumeratedSetRawValue

Use the ihuEnumeratedSetRawValue function to specify whether to return string or numeric values returned

when reading tags by using enumerated sets. By default, string values are retrieved for tags associated

with enumerated sets. To retrieve numeric values, set SetRawValue to TRUE. If string values are unavailable,

raw values are retrieved.

Prototype

ihuEnumeratedSetRawValue (

in long serverhandle,

in BOOL SetRawValue

)

Remarks

Override the default value of FALSE only to return numeric values. The value persists until the function is

called again or your program exits.

Historian | 10 - Historian User API | 1569

Returns

The ihuEnumeratedSetRawValue function returns ihuSTATUS_OK on success, or returns errors on:

• Invalid input parameters

• User not a member of ihTag Admin group

Note:

Set the Administrator parameter to the ihTag Admin security group to assign the highest

precedence to this parameter.

ihuEnumeratedSetsFree

Use the ihuEnumeratedSetsFree function to clear the enumerated set buffers after you call

ihuGetEnumeratedSets().

Prototype

ihuEnumeratedSetsFree (

in long serverhandle,

ihuEnumeratedSetRecordSet

in *EnumeratedSetRecordSet)

Remarks

When you use the ihuEnumeratedSetsFree function, memory is cleared from the enumerated set buffers.

Returns

The ihuEnumeratedSetsFree function returns ihuSTATUS_OK on success, or returns errors on:

• Invalid input parameters

• User not a member of ihTag Admin group

Note:

Set the Administrator parameter to the ihTag Admin security group to assign the highest

precedence to this parameter.

Historian | 10 - Historian User API | 1570

ihuEnumeratedSetRename

Use the ihuEnumeratedSetRename function to rename an enumerated set.

Prototype

ihuEnumeratedSetRename (

in long serverhandle,

in MSO Char *oldEnumeratedSetName,

in MSO Char *newEnumeratedSetName)

Remarks

You must be an administrator of a set to rename it.

Returns

The ihuEnumeratedSetRename function returns ihuSTATUS_OK on success, or returns errors on:

• Invalid input parameters

• Out-of-memory issues during dynamic memory allocation

• No set name that matches OldEnumeratedSetName value

• User not a member of ihTag Admin group

Note:

Set the Administrator parameter to the ihTag Admin security group to assign the highest

precedence to this parameter.

ihuEnumeratedSetDelete

Use the ihuEnumeratedSetDelete function to delete an enumerated set.

Prototype

ihuEnumeratedSetDelete (

in long serverhandle,

in MSO Char *EnumeratedSetName)

Remarks

You must be an administrator of a set to delete it.

Historian | 10 - Historian User API | 1571

Returns

The ihuEnumeratedSetDelete function returns ihuSTATUS_OK on success, or returns errors on:

• Invalid input parameters

• Out-of-memory issues during dynamic memory allocation

• No set name that matches EnumeratedSetName value

• User not a member of ihTag Admin group

Note:

Set the Administrator parameter to the ihTag Admin security group to assign the highest

precedence to this parameter.

ihuEnumeratedStateAdd

Use the ihuEnumeratedStateAdd function to add a state to an existing enumerated set.

Prototype

ihuEnumeratedStateAdd (

in long serverhandle,

in MSO Char *EnumSetName,

in ihuEnumeratedSetState *EnumState)

Remarks

When you add a state to an existing enumerated set, the data type of the new state matches the data type

of other states in the set.

Any existing state with a name that matches the specified state name is overwritten by the new state.

Returns

The ihuEnumeratedStateAdd function returns ihuSTATUS_OK on success, or returns errors on:

• Invalid input parameters

• Out-of-memory issues during dynamic memory allocation

• No set name that matches EnumSetName value

• User not a member of ihTag Admin group

Historian | 10 - Historian User API | 1572

Note:

Set the Administrator parameter to the ihTag Admin security group to assign the highest

precedence to this parameter.

ihuEnumeratedStateModify

Use the ihuEnumeratedStateModify function to modify a state in an enumerated set.

Prototype

ihuEnumeratedStateModify (

 in long serverhandle,

 in MSO Char *EnumeratedSetName,

 in MSO Char *EnumeratedStateName,

 ihuEnumeratedSetState

 in *EnumStateToModify)

Remarks

You can modify state values and names, but not data types. To change a state name, pass the old and

new names as string values inside the EnumStateToModify parameter.

Returns

The ihuEnumeratedStateModify function returns ihuSTATUS_OK on success, or returns errors on:

• Invalid input parameters

• No set name that matches EnumeratedSetName value

• No state name that matches EnumeratedStateName value

• User not a member of ihTag Admin group

Note:

Set the Administrator parameter to the ihTag Admin security group to assign the highest

precedence to this parameter.

ihuEnumeratedStateDelete

Use the ihuEnumeratedStateDelete function to delete a state from an enumerated set.

Historian | 10 - Historian User API | 1573

Prototype

ihuEnumeratedStateDelete

(in long serverhandle,

in MSO Char *EnumeratedSetName,

in MSO Char *EnumeratedStateName

)

Remarks

When only one state is available in a set, you cannot delete the state. The only way to delete the state is to

delete the set. There is no need to delete each state before you delete a set.

You must be an administrator of a set to delete its associated states.

Returns

The ihuEnumeratedStateDelete function returns ihuSTATUS_OK on success, or returns errors on:

• Invalid input parameters

• No set name that matches EnumeratedSetName value

• No state name that matches EnumeratedStateName value

• Out-of-memory issues during dynamic memory allocation

• User not a member of ihTag Admin group

Note:

Set the Administrator parameter to the ihTag Admin security group to assign the highest

precedence to this parameter.

User-Defined Type Functions

User-Defined Type Functions Overview

You can use the user-defined type functions to create, modify, delete, and browse user-defined data types

that contain multiple fields. You must add user-defined data types to the Data Archiver before you can use

them in tags.

Historian | 10 - Historian User API | 1574

User-Defined Type Functions

• ihuUserDefinedTypeAdd (on page 1574)

• ihuUserDefinedTypeDelete (on page 1574)

• ihuUserDefinedTypeRename (on page 1575)

• ihuUserDefinedTypeExists (on page 1576)

• ihuGetUserDefinedTypes (on page 1576)

• ihuUserDefinedTypeSetProperties (on page 1577)

• ihuUserDefinedTypeFreeProperties (on page 1577)

ihuUserDefinedTypeAdd

Use the ihuUserDefineTypeAdd function to create or add MultiField type tags. The user-defined

type you pass to this function can have multiple fields defined, or you can add fields later by using

ihUserDefinedTypeSetProperties() (on page 1577).

You can also use this function to modify user-defined data types. To modify an existing type, add a user-

defined data type with the same name.

Prototype

ihuUserDefinedTypeAdd

(

long serverhandle, // [in] connected server handle

ihuUserDefinedTypeProperties *InUserDefinedType //[in] UserDefined type that needs to be added / modified

)

Remarks

Existing types are overwritten by new types with the same names. You must be a member of the ihTag

Admin group to add or modify a type.

Returns

• ihuSTATUS_OK: on success

• ihuSTATUS_INVALID_PARAMETER: NULL value or invalid server handle

• ihuSTATUS_FAILED: on any error

ihuUserDefinedTypeDelete

Use the ihuUserDefinedTypeDelete function to delete a user-defined type that you no longer use.

Historian | 10 - Historian User API | 1575

Prototype

ihuUserDefinedTypeDelete

(

long serverhandle, // [in] connected server handle

MSO_Char * UserDefinedTypeName //[in] UserDefined type name to be deleted

)

Remarks

You must be a member of the ihTag Admin group to delete a type.

Returns

• ihuSTATUS_OK: on success

• ihuSTATUS_INVALID_PARAMETER: NULL value or invalid server handle

• ihuSTATUS_FAILED: on any error

ihuUserDefinedTypeRename

Use the ihuUserDefinedTypeRename function to rename a user-defined type.

Prototype

ihuUserDefinedTypeRename

(

long serverhandle, // [in] connected server handle

MSO_Char * UserDefinedTypeName, //[in] UserDefined type name which needs to be renamed

MSO_Char *NewUserDefinedTypeName //[in] new UserDefined type name

)

Remarks

You must be a member of the ihTag Admin group to rename a type.

Returns

• ihuSTATUS_OK: on success

• ihuSTATUS_INVALID_PARAMETER: NULL value or invalid server handle

• ihuSTATUS_FAILED: on any error

Historian | 10 - Historian User API | 1576

ihuUserDefinedTypeExists

Use the ihuUserDefinedTypeExists function to check whether a specific user-defined type exists.

Prototype

ihuUserDefinedTypeExists

(

long serverhandle, // [in] connected server handle

MSO_Char * UserDefinedTypeName // [in] UserDefined type name

)

Returns

• ihuSTATUS_OK: if the type exists

• ihuSTATUS_INVALID_PARAMETER: NULL value or invalid server handle

• ihuSTATUS_FAILED: if the type does not exist or the server cannot be reached

ihuGetUserDefinedTypes

Use the ihuGetUserDefinedTypes function to return a list of user-defined types and their values. After you

call this function, you must call ihuUserDefinedTypeFreeProperties() to release memory allocations.

Prototype

ihuGetUserDefinedTypes

(

long serverhandle, // [in] connected server handle

MSO_Char *StructSetMask, //[in] Pass * to get the all the Structure or pass the name of the structure you want

long *numberofrecords, //[out] Number of records

ihuUserDefinedTypeRecordSet *RecordSet //[out] returns the records for the UserDefined defined types

)

Remarks

You must be a member of the ihReader group to get a list of user-defined types. The list is returned in the

RecordSet parameter.

Historian | 10 - Historian User API | 1577

Returns

• ihuSTATUS_OK: on success

• ihuSTATUS_INVALID_PARAMETER: NULL value passed for StructSetMask or RecordSet or numberofrecords

• ihuSTATUS_FAILED: on any error

ihuUserDefinedTypeSetProperties

Use the ihuUserDefinedTypeSetProperties function to set user-defined type properties after you add types

by using ihuUserDefinedTypeAdd() (on page 1574).

Prototype

ihuUserDefinedTypeSetProperties

(

long serverhandle, // [in] connected server handle

ihuUserDefinedTypeProperties *UserDefinedType //[in] UserDefined type that needs to be added / created

)

Remarks

You must be a member of the ihTag Admin group to set type properties.

Returns

• ihuSTATUS_OK: on success

• ihuSTATUS_INVALID_PARAMETER: invalid server handle or NULL property pointer value passed

• ihuSTATUS_FAILED: on any error

ihuUserDefinedTypeFreeProperties

Use the ihuUserDefinedTypeFreeProperties function to free the memory allocated by the

ihuGetUserDefinedTypes() (on page 1576) function.

Prototype

ihuUserDefinedTypeFreeProperties

(

ihuUserDefinedTypeRecordSet *UserDefinedTypeRecordSet //[in] UserDefinedTypeRecordSet that needs to be fr

)

Historian | 10 - Historian User API | 1578

Remarks

Call the ihuUserDefinedTypeFreeProperties function once to release all memory in the recordset returned

by ihuGetUserDefinedTypes(). Do not free the memory in your program.

Returns

Void

Publish Functions

Publish Functions Overview

You can use the publish functions to manage the data forwarding of local Historian server tags to one or

more remote destination servers by using the Server-to-Server Distributors. When you publish a tag, you

initiate continuous transmission of its historical data values to a destination server.

Publish Functions

• ihuPublishAddTag (on page 1578)

• ihuPublishRemoveTag (on page 1579)

• ihuPublishTagCloseCache (on page 1579)

• ihuPublishGetTagPropertiesToCache (on page 1580)

• ihuPublishTagGetNumericPropertyByTagname (on page 1581)

• ihuPublishTagGetNumericPropertyByIndex (on page 1581)

• ihuPublishTagGetStringPropertyByTagname (on page 1582)

• ihuPublishTagGetStringPropertyByIndex (on page 1582)

• ihuPublishSetTagProperties (on page 1583)

• ihuPublishTagSetNumericProperty (on page 1584)

• ihuPublishTagSetStringProperty (on page 1584)

• ihuPublishTagClearProperties (on page 1585)

• ihuPublishGetDestinationServer (on page 1585)

• ihuPublishSetDestinationServer (on page 1586)

ihuPublishAddTag

Use the ihuPublishAddTag function to publish a tag to a destination server. When you publish, a tag is

created in the destination server.

Historian | 10 - Historian User API | 1579

Prototype

ihuPublishAddTag (

long hSourceServer,

MSO Char *InterfaceName,

MSO Char *SourceTagname,);

Remarks

After you publish a tag, any new data for the SourceTagname is written to the DestinationTagname.

The tag is added to the destination server with default parameters that you can modify by using

ihuPublishGetTagPropertiesToCache (on page 1580) and ihuPublishSetTagProperties (on page 1583).

Returns

The ihuPublishAddTag function returns ihuSTATUS_OK on success, or an error if the tag was not added to

the destination server.

ihuPublishRemoveTag

Use the ihuPublishRemoveTag function to prevent tag publishing by a specified collector.

Prototype

ihuPublishRemoveTag

(long hServer,

 MSO Char *DestinationTagname,

 MSO Char *SourceTagname);

Remarks

The ihuPublishRemoveTag function does not remove the tag from the source server but marks it as deleted

in the destination server. To completely stop data collection, you must disable collection.

Returns

The ihuPublishRemoveTag function returns ihuSTATUS_OK on success.

ihuPublishTagCloseCache

Use the ihuPublishTagCloseCache function to close a cache returned by the

ihuPublishGetTagPropertiesToCache function.

Historian | 10 - Historian User API | 1580

Prototype

ihuPublishTagCloseCache

(void);

Remarks

To avoid memory leaks, close the cache.

Returns

The ihuPublishTagCloseCache function returns ihuSTATUS_OK on success.

ihuPublishGetTagPropertiesToCache

Use the ihuPublishGetTagPropertiesToCache function to retrieve a list of tags published by the specified

Server-to-Server Distributor. Be sure to match tags with the exact tag name or a name with a specified

wildcard mask.

Note:

A separate published tag properties cache exists for each process thread. To avoid confusion

and unexpected results, ensure that all cache-related function calls are invoked on the same

thread. When threads are mixed, two or more distinct caches are referenced, which enables

concurrent access to multiple different cached results at the cost of additional memory.

Prototype

ihuPublishGetTagPropertiesToCache

(long hServer,

 MSO Char *DistributorName,

 MSO Char *DestinationTagnameOrMask,

 out int *NumTagsFound

);

Remarks

The ihuPublishGetTagPropertiesToCache function returns the number of tags found in the NumTagsFound

parameter.

Use this function to retrieve tags before you get and set string or numeric tag properties by using the

ihuPublishTagGetNumericPropertyByTagname or ihuPublishTagSetStringProperty and similar functions.

Historian | 10 - Historian User API | 1581

Returns

The ihuPublishGetTagPropertiesToCache function returns ihuSTATUS_OK on success, even if no tags are

found. The function returns errors if any out-of-memory issues occur during dynamic memory allocation.

ihuPublishTagGetNumericPropertyByTagname

Use the ihuPublishTagGetNumericPropertyByTagname function to retrieve a numeric tag property, such

as the deadband for a tag. The tag is identified by name within the cache previously populated by

ihuPublishGetTagPropertiesToCache (on page 1580).

Prototype

ihuPublishTagGetNumericPropertyByTagname

(MSO Char *Tagname,

ihuTagProperties TagProperty,

*Value);

Remarks

The ihuPublishTagGetNumericPropertyByTagname function returns the numeric tag property value.

Returns

The ihuPublishTagGetNumericPropertyByTagname function returns ihuSTATUS_OK on success, or returns an

error if any out-of-memory issues occur during dynamic memory allocation.

ihuPublishTagGetNumericPropertyByIndex

Use the ihuPublishTagGetNumericPropertyByIndex function to retrieve a single numeric tag property from

the cache.

Prototype

ihuPublishTagGetNumericPropertyByIndex

(

 int Index,

 ihuTagProperties TagProperty,

 double *Value);

Historian | 10 - Historian User API | 1582

Remarks

The ihuPublishTagGetNumericPropertyByIndex function returns the numeric tag property retrieved. The

index is zero-based.

Returns

The ihuPublishTagGetNumericPropertyByIndex function returns ihuSTATUS_OK on success, or returns an

error if any out-of-memory issues occur during dynamic memory allocation.

ihuPublishTagGetStringPropertyByTagname

Use the ihuPublishTagGetStringPropertyByTagname function to retrieve a single string tag property by

tagname from the cache.

Prototype

ihuPublishTagGetStringPropertyByTagname

(

 MSO Char *Tagname,

 ihuTagProperties TagProperty,

 MSO Char *Value,

 int ValueLength);

Remarks

The ihuPublishTagGetStringPropertyByTagname function returns a single string tag property by tagname

from the cache.

Returns

The ihuPublishTagGetStringPropertyByTagname function returns ihuSTATUS_OK on success, or returns an

error if any out-of-memory issues occur during dynamic memory allocation.

ihuPublishTagGetStringPropertyByIndex

Use the ihuPublishTagGetStringPropertyByIndex function to retrieve a single string tag property from the

cache. The index is zero-based.

Prototype

ihuPublishTagGetStringPropertyByIndex (

 int Index,

Historian | 10 - Historian User API | 1583

 ihuTagProperties TagProperty, MSO Char *Value,

 int ValueLength);

Remarks

The ihuPublishTagGetStringPropertyByIndex function returns the string tag property from the cache. The

index is zero-based.

Returns

The ihuPublishTagGetStringPropertyByIndex function returns ihuSTATUS_OK on success, or returns an error

if any out-of-memory issues occur during dynamic memory allocation.

ihuPublishSetTagProperties

Use the ihuPublishSetTagProperties function to define properties such as the deadband for a

published tag. Before you call this function, set properties by using ihuPublishTagSetStringProperty or

ihuPublishTagSetNumericProperty.

A separate collection of tag properties is available for each process thread, similar to the published

tag properties cache. To avoid confusion, be sure to invoke this function on the same thread as

ihuPublishTagSetNumericProperty, ihuPublishTagSetStringProperty, and ihuPublishTagClearProperties.

Prototype

ihuPublishSetTagProperties (

 long hServer,

 MSO Char *InterfaceName,

 MSO Char *DestinationTagname,

);

Remarks

After you add a tag by using the ihuPublishAddTag function, use the ihuPublishSetTagProperties function

to set tag properties.

Returns

The ihuPublishSetTagProperties function returns ihuSTATUS_OK on success, or returns an error if any out-

of-memory issues occur during dynamic memory allocation.

Historian | 10 - Historian User API | 1584

ihuPublishTagSetNumericProperty

Use the ihuPublishTagSetNumericProperty function to define a numeric tag property before you invoke

ihuPublishSetTagProperties (on page 1583).

Prototype

ihuPublishTagSetNumericProperty

(

 ihuTagProperties TagProperty,

 double Value

);

Remarks

The ihuPublishTagSetNumericProperty function returns the numeric tag property.

Returns

The ihuPublishTagSetNumericProperty function returns ihuSTATUS_OK on success, or errors on invalid input

parameters or if any out-of-memory issues occur during dynamic memory allocation.

ihuPublishTagSetStringProperty

Use the ihuPublishTagSetStringProperty function to define a string tag property before you invoke

ihuPublishSetTagProperties (on page 1583).

Prototype

ihuPublishTagSetStringProperty (

 ihuTagProperties TagProperty,

 MSO Char *Value

);

Remarks

The ihuPublishTagSetStringProperty function returns the string tag property.

Returns

The ihuPublishTagSetStringProperty function returns ihuSTATUS_OK on success, or errors on invalid input

parameters or if any out-of-memory issues occur during dynamic memory allocation.

Historian | 10 - Historian User API | 1585

ihuPublishTagClearProperties

Use the ihuPublishTagClearProperties function to clear any previously defined tag properties.

Prototype

ihuPublishTagClearProperties

(

 void

);

Remarks

The ihuPublishTagClearProperties function clears previously defined tag properties.

Returns

The ihuPublishTagClearProperties function returns ihuSTATUS_OK on success, or returns an error if any

out-of-memory issues occur during dynamic memory allocation.

ihuPublishGetDestinationServer

Use the ihuPublishGetDestinationServer function to retrieve the name of the destination Historian server

configured for a specific distributor.

Prototype

ihuPublishGetDestinationServer (

long hServer,

MSO Char *InterfaceName,

MSO Char **DestinationServer);

Remarks

The ihuPublishGetDestinationServer function returns the destination Historian server name.

Returns

The ihuPublishGetDestinationServer function returns ihuSTATUS_OK on success, or returns an error if any

out-of-memory issues occur during dynamic memory allocation.

Historian | 10 - Historian User API | 1586

ihuPublishSetDestinationServer

Use the ihuPublishSetDestinationServer function to define the destination Historian server for a specific

collector.

Prototype

ihuPublishSetDestinationServer (

 long hServer,

 MSO Char *InterfaceName,

 MSO Char *DestinationServer

);

Remarks

The ihuPublishSetDestinationServer function returns the Historian server name that is defined for the

specified collector. The new name is assigned without a collector restart, and can be used at any time the

distributor is restarted.

Returns

The ihuPublishSetDestinationServer function returns ihuSTATUS_OK on success, or returns an error if any

out-of-memory issues occur during dynamic memory allocation.

Historian User API Error Codes

Error Codes

You might encounter the following error codes while you use the Historian User API:

Table 267. Historian API Error Codes

Code Message Description

100 ihuSTATUS_FAILED Generic failure.

101 ihuSTATUS_API_TIMEOUT Server machine name not found, or server found but archiver service

not running.

102 ihuSTATUS_NOT_CONNECTED Not currently connected to a Historian server.

103 ihuSTATUS_INTERFACE_

NOT_FOUND

Interface not found.

Historian | 10 - Historian User API | 1587

Table 267. Historian API Error Codes (continued)

Code Message Description

104 ihuSTATUS_NOT_SUPPORTED Reserved.

105 ihuSTATUS_DUPLICATE_DA

TA

ihuWriteData was called with error_on_replace = TRUE and the sup

plied data would have overwritten existing data.

106 ihuSTATUS_DUPLICATE_DA

TA

Server found, but invalid username or password.

107 ihuSTATUS_ACCESS_DENIED Access denied by the Historian server. Check username and pass

word or security group membership.

108 ihuSTATUS_WRITE_IN_FU

TURE

Write time stamp is too far in the future.

109 ihuSTATUS_WRITE_ARCH_

OFFLINE

There is no archiver to hold the write time stamp.

110 ihuSTATUS_ARCH_READONLY The destination archive to hold the write time stamp is marked as

read-only.

111 ihuSTATUS_WRITE_OUT

SIDE_ACTIVE

The write time stamp is before the active hours (now − "data is read

only after") setting.

112 ihuSTATUS_WRITE_NO_

ARCH_AVAILABLE

No archive is available to hold the write time stamp.

113 ihuSTATUS_INVALID_TAG

NAME

Tagname used is not valid. Tagname does not exist in the Historian

server.

114 ihuSTATUS_LIC_TOO_

MANY_TAGS

Exceeded tag license count on the server.

115 ihuSTATUS_LIC_TOO_

MANY_USERS

Exceeded user license count on the server.

116 ihuSTATUS_LIC_INVALID_

LIC_DLL

An invalid license DLL is installed.

117 ihuSTATUS_NO_VALUE No value has been passed to the function.

118 ihuSTATUS_NOT_LICENSED Your Historian installation is not licensed.

Historian | 10 - Historian User API | 1588

Table 267. Historian API Error Codes (continued)

Code Message Description

119 ihuSTATUS_CALC_CIRC_

REFERENCE

Reserved.

120 ihuSTATUS_DUPLICATE_IN

TERFACE

Reserved.

121 ihuSTATUS_BACKUP_EX

CEEDED_SPACE

Reserved.

122 ihuSTATUS_INVALID_SERV

ER_VERSION

You are attempting to use this API on an invalid version of Historian.

123 ihuSTATUS_DATA_RETRIE

VAL_COUNT_EXCEEDED

You requested too many samples in one read request.

124 ihuSTATUS_INVALID_PARA

METER

Generic failure when an invalid value is passed into the User API.

Historian User API Sample Programs

Sample Programs Overview

Sample programs are provided with the Historian User API to demonstrate how to perform common

tasks. The following sample programs are supplied with the User API:

• CollectorLike.c: Shows an example of a program that writes thousands of samples per second to

Historian tags.

• CollectorLikeSAF.c: Shows an example of callbacks and store and forward in the User API.

• PlotLike.cpp: Shows an example of a program that retrieves calculated and interpolated data

suitable for plotting.

• ReportLike.cpp: Shows how to retrieve raw data samples from Historian.

• MigrationLike.c: Shows how to transfer legacy historical data into Historian.

• QueryModifiers.c: Shows how to retrieve data using query modifiers.

• Blobdatatype.c: Shows how to create tags of blob (binary object) data type and read and write

data.

• ByTag: Shows how to read and write data for a tag by using its tag ID instead of its tag name.

Historian | 10 - Historian User API | 1589

No guidance is provided on how to convert applications from other products or APIs, including the

Historian SDK.

To work with these samples, you must be familiar with Historian features and functionality. Refer to

the Historian product documentation. This is especially important if you are using security groups with

Historian, since the applications that call into the User API are limited by the security access granted at

the server level.

Compiling the Samples

Only a release build configuration is provided. A debug configuration is not provided because the release

mode configuration produces a program database and has compiler optimizations turned off, so that you

can easily step through the sample code in the debugger.

Review the sample program source code for additional details.

Note:

The sample programs provided in this help document are for review only. Compilable source code

is included in the Historian User API installation directory.

CollectorLike

This sample demonstrates how to read string and numeric tag properties and write groups of data

samples to multiple tags. Data is sent to the archiver until a key is pressed. Sample code is provided for

writing data of various data types and data qualities. Tips are included for achieving optimal performance.

This sample program also demonstrates how to iterate through all archiver tags to find tags that belong

to the collector.

PlotLike

This sample program demonstrates how to read numeric tag properties and read evenly spaced sampled

or calculated data suitable for plotting. Percent good data quality indicators are described. Any comments

retrieved are printed to the program window. Finally, an example is provided for how to write a comment in

cases where your trending application allows users to enter comments.

ReportLike

This sample program demonstrates how raw samples are retrieved, one tag per call, by timespan and by

number of samples. Comments are retrieved if they exist. The retrieved samples can be used in custom

quality calculations or to implement calculation modes not available in Historian. An example of how to

Historian | 10 - Historian User API | 1590

calculate a raw maximum is provided. The program has a loop that fetches the current value of a tag until

a key is pressed.

MigrationLike

This sample program demonstrates how to migrate data from a legacy system into Historian. Tips

are provided for the most efficient sequence to use to send data to minimize archive disk space and

migration time. This sample program also demonstrates how to add tags to the Historian server.

Chapter 11. Historian SDK

Object Model Overview

Historian SDK Overview

The Historian Software Development Kit (SDK) is a COM object designed to simplify access to Historian

services and data for the purposes of application development.

This object provides the following functionality to developers:

• Browsing Available Historian Servers

• Browsing and Configuring Tags

• Browsing, Adding, and Modifying Data

• Browsing, Adding, and Modifying Alarms and Events

• Browsing and Adding Messages and Alerts

• Controlling the Archiving Functions of the System

• Controlling the Collection and Interface Functions of the System

• Adherence to Historian Security Constraints

If you need to create customized programming for the Historian server, use the Historian Software

Development Kit (SDK) with Visual Basic or any application that provides a VBA programming interface,

such as iFIX, Microsoft Excel or Microsoft Word. After you install Client Tools, the Historian SDK is

available in the System32 folder is automatically registered. To use the SDK, set up a project reference

with the Historian SDK.

You can use the Historian SDK under any Win32 platform using a development language that supports

Microsoft COM/DCOM. The SDK relies on the run-time version of the Historian API. You must install the

Historian API prior to the installation of the SDK on any client that accesses the Historian system through

the SDK. For instructions, refer to installing Client Tools (on page 150).

The Historian SDK is a COM DL(ihSDK.dll) that must be instantiated prior to use. A single instance of the

SDK may connect and converse with many Historian servers simultaneously. You can create multiple

instances of the SDK, however, the developer must maintain this collection and respond to events from

the appropriate instance.

The following table lists general information regarding SDK naming and dependencies.

Historian | 11 - Historian SDK | 1592

SDK DLL ihSDK.dll

Class Name iHistorian_SDK

Version 5.0.0.x

Dependencies ihAPI50.dll

The following diagram describes the object model employed by the Historian SDK. For more information

on the individual objects, refer to the SDK Object Reference.

Working with Comments

Comments are retrieved with a data query. To retrieve comments, request all fields from the

DataValue object and then perform a DataRecordset.QueryRecordset. The comments will be

contained in the DataValue.Comments collection. Comments are stored to the archive using the

DataRecordset.WriteRecordset method. Store comments to the DataValue object first by calling the

DataValue.AddComment method.

Historian | 11 - Historian SDK | 1593

Adding Data

Use the DataValue object to insert data by setting the value, quality, and timestamp before calling the

WriteRecordset method.

Sample SDK Program

A sample program for the SDK is included in the Samples\SDK folder when you install Historian. Refer to

this sample for more detailed examples than the ones that appear in this Help system.

Note:

The SDK sample is designed to work on Visual Basic 6 (VB6).

Connect the SDK to the Server

After instantiation of the SDK, connect to one or more servers by providing a valid user name and

password for the target Historian server domain. The SDK does not support any other functions until you

make a successful connection and authentication. The authenticated user also controls which functions

may be performed through the SDK and potentially what data may be accessed.

The following example displays the Visual Basic code for instantiation of the SDK and connection to the

target server.

Dim MyServer as Object

'Instantiate The SDK

Set MyServer = CreateObject("iHistorian_SDK.Server")

'Attempt Connection

If Not MyServer.Connect("USGB014", "Fred", "000") Then

Err.Raise 1, "Failed To Connect To USGB014" End If

In the example above, "MyServer" does not receive events from the Historian server.

In order to receive events, Dim WithEvents MyServer As iHistorian_SDK.Server

'Instantiate The SDK

Set MyServer = New iHistorian_SDK.Server

'Attempt Connection

If Not MyServer.Connect("USGB014", "Fred", "000") Then

Err.Raise 1, "Failed To Connect To USGB014" End If

Historian | 11 - Historian SDK | 1594

Note:

After each session, disconnect each Server connection prior to exiting the application.

Working with Blob Data

Historian is capable of storing many different data types, such as Floating Point, Integer, String, Binary,

and BLOB (undetermined binary data type, such as an Excel spreadsheet, a PDF file, or a Word file). The

source of the data defines the ability of Historian to collect specific data types.

The following example demonstrates how to read and write a file into Historian. It contains a sample

script for adding, writing, and reading a tag of BLOB data type. You will need to change the server name,

folder, and file names as appropriate.

Dim MyServer As Server

Private Function Connect1() As Boolean

If Not MyServer Is Nothing Then

MyServer.Disconnect

End If

Set MyServer = Nothing

Set MyServer = New Server

Connect1 = MyServer.Connect("FRIEDENTHAL")

End Function

Private Function AddTag(Tagname As String) As Boolean

Dim Tags As TagRecordset

Dim NewTag As Tag

Set Tags = MyServer.Tags.NewRecordset

Set NewTag = Tags.Add(Tagname)

NewTag.DataType = Blob

AddTag = Tags.WriteRecordset

End Function

Private Function WriteBlob(Tagname As String, TimeStamp As Date, ByteArray() As Byte, FileName As String) As Boolean

Historian | 11 - Historian SDK | 1595

Dim Data As DataRecordset

Dim NewValue As DataValue

Set Data = MyServer.Data.NewRecordset

Set NewValue = Data.Add(Tagname, TimeStamp)

NewValue.Value = ByteArray

NewValue.DataQuality = Good

'Store the file name as a comment

NewValue.AddComment FileName

WriteBlob = Data.WriteRecordset

End Function

Private Function ReadBlob(Tagname As String, TimeStamp As Date, ByteArray() As Byte, FileName As String) As Boolean

Dim Data As DataRecordset

Dim NewValue As DataValue

Set Data = MyServer.Data.NewRecordset

With Data.Criteria

.Tagmask = Tagname

.StartTime = DateAdd("s", -1, TimeStamp)

.EndTime = DateAdd("s", 1, TimeStamp)

.SamplingMode = RawByTime

End With

With Data.Fields

.AllFields

End With

ReadBlob = Data.QueryRecordset

ByteArray = Data.Item(1).Item(1).Value

FileName = Data.Item(1).Item(1).Comments.Item(1).Comment

End Function

Function ReadFile(FileName$, fileDirectory$) As Variant

Dim ByteArray() As Byte

Dim FileLen As Long

Historian | 11 - Historian SDK | 1596

Dim MyByte As Byte

Dim i As Long

Dim fName As String

fName = fileDirectory + FileName

Open fName For Binary Access Read As #1 ' Open file for reading.

FileLen = LOF(1) - 1

ReDim ByteArray(FileLen)

For i = 0 To FileLen

Get #1, , MyByte

ByteArray(i) = MyByte

Next

Close #1

ReadFile = ByteArray

End Function

Function WriteFile(fName, ByteArray() As Byte)

Dim FileLen As Long

Dim i As Long

FileLen = UBound(ByteArray)

Open fName For Binary Access Write As #1

For i = 0 To FileLen - 1

Put #1, , ByteArray(i)

Next

Close #1

End Function

Private Sub RunTest()

Dim ByteArray() As Byte

Dim i As Integer

Dim TheTime As Date

Dim FileName As String

FileName = "iHvbs.log"

Const ReadFileDirectory = "C:\"

Const WriteFileDirectory = "C:\Temp\"

ReDim ByteArray(0 To 9)

Historian | 11 - Historian SDK | 1597

If Not Connect1() Then

MsgBox "Did Not Connect"

Exit Sub

End If

If Not AddTag("TestBlob2") Then

MsgBox "Did Not Add Tag"

Exit Sub

End If

'Read the input file

ByteArray = ReadFile(FileName, ReadFileDirectory)

TheTime = Now

'Write the file to Historian

If Not WriteBlob("TestBlob2", TheTime, ByteArray, FileName) Then

MsgBox "Did Not Write Blob"

Exit Sub

End If

Erase ByteArray

FileName = ""

'Read back the file from Historian

If Not ReadBlob("TestBlob2", TheTime, ByteArray, FileName) Then

MsgBox "Did Not Read Blob"

Exit Sub

End If

FileName = WriteFileDirectory + FileName 'copy file to the write directory

WriteFile FileName, ByteArray

End Sub

Private Sub CommandButton1_Click()

End Sub

Historian | 11 - Historian SDK | 1598

Working with Archives

You can backup, restore, and create archives using the SDK. To restore an archive, you add an existing

archive file to the archives collection using the Add method.

Example

The following code shows an example of how to restore an archive.

Dim myarchives As iHistorian_SDK.Archives

Dim myarchive As iHistorian_SDK.Archive

Dim i As Long

Set myarcives = DefaultServer.Archives

Set myarchive = myarchives.Add("MY_SERVER_archive001", "d:\program

 files\Historian\Archives\MY_SERVER_archive001_Backup.IHA", 100)

If myarchive Is Nothing Then

MsgBox "An Error Occured Trying To Restore The Archive." + Chr(10) + Chr(10) + _

"The Details Of The Error Follow:" + Chr(10) + DefaultServer.Archives.LastError, vbCritical, "Historian"

Err.Raise 1,, "Error Restoring Archive: " + DefaultServer.Archives.LastError

Else

MsgBox "success"

End If

SDK Reference

Object Summary

This section contains the Historian objects that are available in the Historian Software Development Kit.

Alarms Object

You can use Historian to store data for alarms and events. From the SDK, you can add and query these

alarms and events. This class is slightly different from other SDK classes in that you will mostly be

accessing lower level functionality to add and query alarms and events. By following the directions below,

you should be able to perform these tasks fairly easily.

Add Historian Type Library to the Project

As previously mentioned, access to methods for alarms and events is lower level. You must add the

Historian COM 1.1 Type library to your project. In Visual Basic, in the Project menu, select References, and

then add the library. You can now access the lower level alarms and events methods.

Historian | 11 - Historian SDK | 1599

Query by Alarms and Events

For instructions on querying alarms and events, see the documentation for the AlarmRecordSet function.

Add Alarms and Events

You can add alarms and events to Historian by using the AlarmInfo object. In general, adding alarms or

events is easy; declare a new AlarmInfo object, fill it up with the required details, and then run the Add

function on the AlarmInfo object. In practice, you must be aware of the lifecycle of your alarm.

Create a new AlarmInfo Object

To create a new AlarmInfo object, use the CreateObject method as follows:

Dim myAlarmInfo As AlarmInfo

 Set myAlarmInfo = CreateObject("Historian_API.AlarmInfo")

Alarm or Event?

Historian distinguishes between alarms and events. Alarms follow a lifecycle as described below, while

events are generally one-shot deals. Example events include Set Point Events, Login Events, or other audit

trail events. Alarms are generally characterized by a tag going into and out of an abnormal condition. You

must identify your AlarmInfo object as an alarm or event by setting the AlarmType field.

Alarm:myAlarmInfo.AlarmType = ihALARM_CONDITION

 Event: myAlarmInfo.AlarmType = ihALARM_TRACKING

Alarm Life Cycle

As previously mentioned, Alarms generally follow a lifecycle. To avoid bad quality alarms in the archive,

when adding alarms, ensure that you follow the lifecycle rules below.

Note:

For each lifecycle phase, you must create and add a new AlarmInfo object. Or, if you prefer to use

the same AlarmInfo object for each lifecycle phase, you can use the CleartheAlarmInfo object

after you have added it.

myAlarmInfo.AddMyServer myAlarmInfo.Clear

New Alarm

To instantiate a new alarm, specify the start time in the AlarmInfo object.

Historian | 11 - Historian SDK | 1600

myAlarmInfo.StartTime= Now

State Change

If the alarm changes states (from HI to HIHI for example), you must specify only the new subcondition

(along with the other required fields mentioned below).You can optionally specify the starttime field as the

original start time (when the alarm first went to HI), but it is not mandatory.

Important:

Do not specify a new start time. If you do so, a new alarm will be created instead.

myAlarmInfo.SubConditionName= "HIHI"

Wrong:'myAlarmInfo.StartTime= Now

OK:'myAlarmInfo.StartTime=AlarmStartTime

Acknowledge an Alarm

To acknowledge an alarm, set the Acked field in the AlarmInfo to True, and also specify the time of the

acknowledgement by populating the AckTime alarm field. In addition, you must populate the starttime

field with the start time of the alarm (when it first went into an alarm condition, not the last state change).

myAlarmInfo.Acked= TRUE

 myAlarmInfo.AckTime = Now

 myAlarmInfo.StartTime = AlarmStartTime

Return to Normal

When your alarm condition has ended, specify the endtime in the AlarmInfo Object. Similar to the state

change and acknowledgements, you can optionally specify the start time of the alarm in the starttime

alarm field.

myAlarmInfo.EndTime= Now myAlarmInfo.StartTime = AlarmStartTime

Associating Alarms and Events with Tag Data

The easiest way to associate alarms and events with tag data is to specify the TagName in the AlarmInfo.

Historian will sort out everything behind the scenes. However, if you are adding alarms before the

associated tag actually exist in Historian, this avenue will not work. You must populate the ItemId field

with the source address of the future tag, and populate the DataSourceName field with the collector name

of the tag. When the tag is added to the system, the alarms will be correctly linked.

Historian | 11 - Historian SDK | 1601

myAlarmInfo.Tagname = TheTagName

Or

myAlarmInfo.DataSourceName = MyCollector.Name myAlarmInfo.ItemId = TheSourceAddress

AlarmInfoFields

The following table lists the AlarmInfo fields. The fields that are marked as required must be filled in for

every call to add. In addition, populate the correct fields based on the current state in the lifecycle of your

alarm (see above).

FieldName Data Type
Required for

Alarms or Events?
Description

AlarmType Long Both Classifies this AlarmInfo as an alarm

or an event. Enter 1 for an event and 4

for an alarm.

ItemID String None The ItemID of the alarm or event. This

contains the source address of the da

ta access tag that the alarm is asso

ciated with. This can be NULL if the

alarm is not associated with a tag.

Source String Both This is the unique identifier used for

the alarm or event.

DataSourceName String Both The collector interface name associat

ed with the alarm or event.

Tagname String None The Historian Tag Name associated

with the alarm.

EventCategory String None The event category of the alarm or

event.

ConditionName String Alarms The condition of the alarm. This does

not apply to event data. This, com

bined with the source, comprises an

alarm.

Historian | 11 - Historian SDK | 1602

FieldName Data Type
Required for

Alarms or Events?
Description

SubConditionName String Alarms The sub-condition of the alarm. This

does not apply to event data. This is

the state of the alarm.

StartTime Date None The start time or time stamp of the

alarm or event.

EndTime Date None The end time of the alarm. This does

not apply to event data.

AckTime Date None The time the alarm was acknowl

edged. This does not apply to event

data.

Timestamp Date Both The time stamp of the alarm or event.

Message String None The message attached to the alarm or

event.

Acked Boolean None Stores the acknowledgement status

of the alarm. If the alarm is acknowl

edged, this will be set to TRUE.

Severity Long None The severity of the alarm or event.

This is stored as an integer value with

a range of 1-1000.

Actor String The operator who acknowledged the

alarm, or caused the tracking event.

Quality Long Alarms The quality of the alarm or event. 0 for

bad, 3 for good.

Example

Dim MyServer As iHistorian_SDK.Server

Set MyServer = GetServer

Dim myAlarmInfo As AlarmInfo

Set myAlarmInfo = CreateObject("iHistorian_API.AlarmInfo")

Dim AlarmStartTime As Date

AlarmStartTime = Now

Historian | 11 - Historian SDK | 1603

' New Alarm myAlarmInfo.AlarmType = ihALARM_CONDITION

myAlarmInfo.ConditionName = "SampleCondition"

myAlarmInfo.DataSourceName = "SampleDataSource"

myAlarmInfo.Message = "Sample Alarm"

myAlarmInfo.Source = "SampleSource"

myAlarmInfo.StartTime = AlarmStartTime

myAlarmInfo.SubConditionName = "HI"

myAlarmInfo.Timestamp = Now

myAlarmInfo.Quality = 3

myAlarmInfo.Add MyServer

myAlarmInfo.Clear

' State Change myAlarmInfo.AlarmType = ihALARM_CONDITION

myAlarmInfo.ConditionName = "SampleCondition"

myAlarmInfo.DataSourceName = "SampleDataSource"

myAlarmInfo.Message = "Sample Alarm State II"

myAlarmInfo.Source = "SampleSource"

' Not required, but pointing out the start time of the alarm doesn't hurt

myAlarmInfo.StartTime = AlarmStartTime

myAlarmInfo.SubConditionName = "HIHI"

myAlarmInfo.Timestamp = Now

myAlarmInfo.Quality = 3

myAlarmInfo.Add MyServer

myAlarmInfo.Clear

' Ack the HIHI state

myAlarmInfo.Acked = True

myAlarmInfo.AckTime = Now

myAlarmInfo.AlarmType = ihALARM_CONDITION

myAlarmInfo.ConditionName = "SampleCondition"

myAlarmInfo.DataSourceName = "SampleDataSource"

myAlarmInfo.Source = "SampleSource"

myAlarmInfo.StartTime = AlarmStartTime

myAlarmInfo.SubConditionName = "HIHI"

myAlarmInfo.Timestamp = Now

myAlarmInfo.Quality = 3

myAlarmInfo.Add MyServer myAlarmInfo.Clear

' Return to Normal

myAlarmInfo.AlarmType = ihALARM_CONDITION

Historian | 11 - Historian SDK | 1604

myAlarmInfo.ConditionName = "SampleCondition"

myAlarmInfo.DataSourceName = "SampleDataSource"

myAlarmInfo.EndTime = Now

myAlarmInfo.Source = "SampleSource"

' Not required, but pointing out the start time of the alarm doesn't hurt

myAlarmInfo.StartTime = AlarmStartTime

myAlarmInfo.Timestamp = Now

myAlarmInfo.Quality = 3

myAlarmInfo.Add MyServer

myAlarmInfo.Clear

Archive Object

The Archive object contains the configuration and status information for a single archive file on the

Historian server.

Archives Object

The Archives object provides access to Historian archive configuration information and performance

statistics. It also provides functionality to add, delete, and modify Historian archives.

Alarms.PurgeAlarmsById

The following sample is used to develop an SDK sample for purging alarms by their alarm IDs.

Dim Alarms() As String

Dim AlarmIds() As Long

Dim i As Long

Dim numberOfAlarms As Long

Dim AlarmsObj As iHistorian_SDK.Alarms

Dim Status As Boolean

i = 0

numberOfAlarms = 0

Status = False

If CheckConnection = True Then

 Set AlarmsObj = ConnectedServer.Alarms

 If TextAlarmIds.Text = "" Then

 MsgBox "Alarms cannot be empty", vbCritical, "Historian"

 Exit Sub

End If

Historian | 11 - Historian SDK | 1605

Trim (TextAlarmIds.Text)

'Multiple alarms are separated by semicolon

Alarms() = Split(TextAlarmIds.Text, ";")

numberOfAlarms = UBound(Alarms)

If numberOfAlarms <> 0 Then

ReDim AlarmIds(0 To numberOfAlarms) As Long

 For i = 0 To numberOfAlarms

 If Alarms(i) <> "" Then

 AlarmIds(i) = CLng(Alarms(i))

 End If

 Next

 Status = AlarmsObj.PurgeAlarmsById(AlarmIds())

 If Status <> True Then

 MsgBox "An error occurred while deleting the alarms. See the Historian Alerts for more details.", vbCritical,

 "Historian"

 Else

 MsgBox "Successfully deleted the alarms.", vbInformation, "Historian"

 End If

 TextAlarmIds.Text = ""

 Else

 MsgBox "Please enter Alarm Ids followed by ';'", vbCritical, "Historian"

 End If

 Else

 MsgBox "Not connected", vbCritical, "Historian"

 End If

Collector Object

The Collector object contains the configuration and status information for a single collector connected to

the Historian Server.

Collectors Object

The Collectors Object provides access to the Historian Collector configuration information and

performance statistics. It also provides functionality to add, delete, and modify Historian Collectors.

Data Objects
Data Object

Historian | 11 - Historian SDK | 1606

The Data object provides access to Historian data and provides functionality to add, delete,

and modify data samples in the Historian archives.

DataComments Object

The DataComments object contains a collection of comments attached to a specific

DataValue record.

DataCriteria Object

The DataCriteria object sets the criteria for the retrieval of DataValue records into a

DataRecordset Object. For example, you may want values between a certain start and end

time.

DataFields Object

The DataFields object identifies which DataValue fields a DataRecordset query retrieves. For

example, you may not want to retrieve comments with your data.

DataRecordset Object

The RecordSet contains a collection of DataValue records. Use the DataRecordset object to

add, delete, or modify data samples.

To add, modify, or delete a DataValue record:

1. Create a DataRecordset Object.

2. Add, delete, or modify the DataValue Records.

3. Perform a WriteRecordset operation to save the changes to the Historian archives.

DataValue Object

TheDataValue object contains data for a single tag and timestamp. It also contains a data

quality and one or more comments attached to the specific data value. You can modify

the Value, DataQuality, and Comments properties and commit them to the Historian server

by using the WriteRecordset Method of the DataRecordsetObject. You cannot modify the

timestamp.

Message Objects
Message Object

The Message object provides access to a single message retrieved from the Historian

server.

MessageCriteria Object

Historian | 11 - Historian SDK | 1607

The MessageCriteria object sets the criteria for retrieval of message records into a

MessageRecordset object.

MessageFields Object

The MessageFields object identifies which message fields the MessageRecordset query

retrieves.

MessageRecordset Object

The MessageRecordset contains a collection of messages from the Historian Server. Use

the Mes- sageRecordset Object to add and retrieve messages. To add new messages,

create a MessageRecordset, add the appropriate messages, and then perform the

WriteRecordset operation to store the changes in the Historian archives.

Messages Object

The Messages object contains Historian messages and provides functionality for adding

new messages to the Historian Server. For example, you may want only alerts or you may

want messages associated with a certain user.

OPC Objects
OPCBrowse Object

The OPCBrowse object allows you to retrieve hierarchical areas from OPC AE servers.

OPCFilters Object

Returns whether Auto-Reconnect logic is Enabled/Disabled.

Option Object

This object acts a simple container for providing a name and values for a named parameter.

The possible option values are found in Options.bas.

Server Objects
Server Object

Use the Server object to establish and maintain a connection to a specific Historian server.

All other configuration and data access objects are subordinate to the Server object.

ServerManager Object

The ServerManager object permits you to browse the available servers registered on

the client. The ServerManager object also provides functionality for adding new server

connections and for setting the default login information.

Historian | 11 - Historian SDK | 1608

Tag Objects
Tag Object

The Tag object contains configuration information for a single tag. You can modify

properties of the Tag object and save them to the Historian server by using the

WriteRecordset method of the TagRecordset object.

TagCriteria Object

The TagCriteria object sets the criteria for retrieval of Tag records into a TagRecordset

object.

TagDependencies Object

TheTagDependencies object represents a list of Historian Tags which trigger a given

calculation when their values change.

TagFields Object

TheTagFields object identifies which tag fields are retrieved in a TagRecordset query.

TagRecordset Object

The TagRecordset object is a collection of tag records that contain tag configuration

information.

To add, modify, or delete tags:

1. Create a TagRecordset object.

2. Add, delete, and modify tag records.

3. Perform a WriteRecordset operation to save the changes to the Historian tag

database.

Tags Object

TheTags object contains Historian tag configuration information and provides functionality

for adding, deleting, and modifying this configuration.

The following figure describes the Tags object.

Historian | 11 - Historian SDK | 1609

UserCalcFunction Object

The UserCalcFunction object contains the definition of a user function that can be stored in the

Calculation library.

Property Reference A-B

The following list contains the Historian properties that are available in the Historian Software

Development Kit in the alphabetical order.

A

ActualDataStores Property (Server Object)

Returns the actual data stores currently configured on the Historian Server.

Syntax

object.ActualDataStores

Parameters

None

Remarks

ActualDataStores is a read-only property of type Long.

ActualTags Property (Server Object)

Historian | 11 - Historian SDK | 1610

Returns the number of tags currently configured on the Server. This number is less than or

equal to the number of licensed tags.

Syntax

object.ActualTags

Parameters

None

Remarks

ActualTags is a read-only property of type Long.

ActualUsers Property (Server Object)

Returns the number of users currently connected to the Server. This number is less than or

equal to the number of licensed users.

Syntax

object.ActualUsers

Parameters

None

Remarks

ActualUsers is a read-only property of type Long.

AdministratorSecurityGroup Property (Tag Object)

Returns or sets the name of the security group controlling configuration changes for the

Tag. Changes to tag properties are not committed until you call the WriteRecordset method

of the TagRecordset object.

Syntax

object.AdministratorSecurityGroup[= String]

Parameters

None

AdministratorSecurityGroup Property (TagCriteria Object)

Historian | 11 - Historian SDK | 1611

Sets the administrator security group for which the TagRecordset query searches.

Syntax

object.AdministratorSecurityGroup[= String]

Parameters

None

AdministratorSecurityGroup Property (TagFields Object)

Determines whether the TagRecordset query returns the AdministratorSecurityGroup field.

Parameters

object.AdministratorSecurityGroup[= Boolean]

Parameters

None

AdministratorSecurityGroup Property (UserDefinedType Object)

Returns or sets the name of the Administrator Security Group that controls the definition

of a User Defined Type. You can create, modify or delete types if you have Administration

Security Group permission to do so. If there is no assigned group then the name will be

empty.

Syntax

object.MyAdministratorSecurityGroup

Parameters

None

Returns

String

AdministratorSecurityGroupSet Property (TagCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

Historian | 11 - Historian SDK | 1612

object.AdministratorSecurityGroupSet[= Boolean]

Parameters

None

AdministratorSecurityGroupUpdated Property (Tag Object)

A flag to indicate whether this property has been set or not.

Syntax

object.AdministratorSecurityGroupUpdated[= Boolean]

Parameters

None

Alarms Property (Server Object)

Returns the Alarms object for the current server. Use the Alarms object to query Alarms and

Events data of the server.

Syntax

object.Alarms

Parameters

None

Remarks

Alarms is a read-only property of type Alarms.

AllAlerts Property (MessageCriteria Object)

Causes the MessageRecordset query to include all alert topic messages.

Syntax

object.AllAlerts[= Boolean]

Parameters

None.

Example

Historian | 11 - Historian SDK | 1613

MyMessages.Criteria.AllAlerts = True

AllMessages Property (MessageCriteria Object)

Specifies that all message topic messages (non-alerts) should be returned by the

MessageRecordset query.

Syntax

object.AllMessages[= Boolean]

Parameters

None

Example

MyMessages.Criteria.AllMessages = True

ArchiveAbsoluteDeadband Property (Tag Object)

Returns or sets the Absolute Deadband value for this tag to be used in the Archiver.

Syntax

object.ArchiveAbsoluteDeadband[= Double]

Parameters

None

ArchiveAbsoluteDeadband Property (TagCriteria Object)

Sets the ArchiveAbsoluteDeadband to search for in the TagRecordset query.

Syntax

object.ArchiveAbsoluteDeadband[= Double]

Parameters

None

ArchiveAbsoluteDeadband Property (TagFields Object)

Determines whether the ArchiveAbsoluteDeadband field should be returned in the

TagRecordset query.

Historian | 11 - Historian SDK | 1614

Syntax

object.ArchiveAbsoluteDeadband[= Boolean]

Parameters

None

ArchiveAbsoluteDeadbandSet Property (TagCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.ArchiveAbsoluteDeadbandSet[= Boolean]

Parameters

None

ArchiveAbsoluteDeadbandUpdated Property (Tag Object)

A flag to indicate whether this property has been set or not.

Syntax

object.ArchiveAbsoluteDeadbandUpdatedSet[= Boolean]

Parameters

None

ArchiveAbsoluteDeadbanding Property (Tag Object)

Returns or sets whether this tag is using Absolute Deadbanding in the Archiver or not.

Syntax

object.ArchiveAbsoluteDeadbandingSet[= Boolean]

Parameters

None

ArchiveAbsoluteDeadbanding Property (TagCriteria Object)

Sets the ArchiveAbsoluteDeadbanding to search for in the TagRecordset query.

Historian | 11 - Historian SDK | 1615

Syntax

object.ArchiveAbsoluteDeadbandingSet[= Boolean]

Parameters

None

ArchiveAbsoluteDeadbandSet Property (TagCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.ArchiveAbsoluteDeadbandsetSet[= Boolean]

Parameters

None

ArchiveAbsoluteDeadbandUpdated Property (Tag Object)

A flag to indicate whether this property has been set or not.

Syntax

object.ArchiveAbsoluteDeadbandupdated[= Boolean]

Parameters

None

ArchiveAbsoluteDeadbanding Property (Tag Object)

Returns or sets whether this tag is using Absolute Deadbanding in the Archiver or not.

Syntax

object.ArchiveAbsoluteDeadbanding[= Boolean]

Parameters

None

ArchiveAbsoluteDeadbanding Property (TagCriteria Object)

Sets the ArchiveAbsoluteDeadbanding to search for in the TagRecordset query.

Historian | 11 - Historian SDK | 1616

Syntax

object.ArchiveAbsoluteDeadbanding[= Boolean]

Parameters

None

ArchiveAbsoluteDeadbanding Property (TagFields Object)

Determines whether the ArchiveAbsoluteDeadbanding field should be returned in the

TagRecordset query.

Syntax

object.ArchiveAbsoluteDeadbanding[= Boolean]

Parameters

None

ArchiveAbsoluteDeadbandingSet Property (TagCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.ArchiveAbsoluteDeadbandingSet[= Boolean]

Parameters

None

ArchiveAbsoluteDeadbandingUpdated Property (Tag Object)

A flag to indicate whether this property has been set or not.

Syntax

object.ArchiveAbsoluteDeadbandingUpdated[= Boolean]

Parameters

None

ArchiveAllowDataOverwrites Property (Archives Object)

Returns whether or not a Data Archiver should allow overwriting of an existing data.

Historian | 11 - Historian SDK | 1617

ArchiveBaseFileName Property (Archives Object)

Returns a default string that an archive file names must be based on.

ArchiveCompression Property (Tag Object)

Returns or sets the archive compression for the Tag. Changes to tag properties are not

committed until you call the WriteRecordset method of the TagRecordset object.

Syntax

object.ArchiveCompression[= Boolean]

Parameters

None

ArchiveCompression Property (TagCriteria Object)

Sets the archive compression value for which the TagRecordset query searches.

Syntax

object.ArchiveCompression[= Byte]

Parameters

None

ArchiveCompression Property (TagFields Object)

Determines whether the TagRecordset query returns the ArchiveCompression field.

Syntax

object.ArchiveCompression[= Boolean]

Parameters

None

ArchiveCompressionSet Property (TagCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.ArchiveCompressionSet[= Boolean]

Historian | 11 - Historian SDK | 1618

Parameters

None

ArchiveCompressionTimeout Property (Tag Object)

Gets or sets the value of the Archive Compression Timeout. This is the amount of time after

which a value will be written to the archive regardless of compression.

Syntax

object.ArchiveCompressionTimeout[= Long]

Parameters

None

ArchiveCompressionTimeout Property (TagCriteria Object)

Sets the Archive Compression Timeout value to search for in the TagRecordset query.

Syntax

object.ArchiveCompressionTimeout[= Long]

Parameters

None

ArchiveCompressionTimeout Property (TagFields Object)

Determines whether the TagRecordset query returns the ArchiveCompressionTimeout field.

Syntax

object.ArchiveCompressionTimeout[= Boolean]

Parameters

None

ArchiveCompressionTimeoutSet Property (TagCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.ArchiveCompressionTimeoutSet[= Boolean]

Historian | 11 - Historian SDK | 1619

Parameters

None

ArchiveCompressionTimeoutUpdated Property (Tag Object)

A flag to indicate whether this property has been set or not.

Syntax

object.ArchiveCompressionTimeoutUpdated[= Boolean]

Parameters

None

ArchiveCompressionUpdated Property (Tag Object)

A flag to indicate whether this property has been set or not.

Syntax

object.ArchiveCompressionUpdated[= Boolean]

Parameters

None

ArchiveCreateOfflineArchives Property (Archives Object)

Returns whether a Data Archiver should accept data before starting an old archive.

ArchiveDeadbandPercentRange Property (Tag Object)

Returns or sets the deadband in percent of engineering unit range for archive compression

for the Tag. Changes to tag properties are not committed until you call the WriteRecordset

method of the TagRecordset object.

Syntax

object.ArchiveDeadbandPercentRange[= Single]

Parameters

None

ArchiveDeadbandPercentRange Property (TagCriteria Object)

Historian | 11 - Historian SDK | 1620

Sets the archive compression deadband for which the TagRecordset query searches.

Syntax

object.ArchiveDeadbandPercentRange[= Single]

Parameters

None

ArchiveDeadbandPercentRange Property (TagFields Object)

Determines whether the TagRecordset query returns the ArchiveDeadbandPercentRange

field.

Syntax

object.ArchiveDeadbandPercentRange[= Boolean]

Parameters

None

ArchiveDeadbandPercentRangeSet Property (TagCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.ArchiveDeadbandPercentRangeSet[= Boolean]

Parameters

None

ArchiveDeadbandPercentRangeUpdated Property (Tag Object)

A flag to indicate whether this property has been set or not.

Syntax

object.ArchiveDeadbandPercentRangeUpdated[= Boolean]

Parameters

None

ArchiveMaxMemoryBufferSize Property (Archives Object)

Historian | 11 - Historian SDK | 1621

Returns memory size of Data Archiver queues.

ArchiveUseClientLoginUser Property (Archives Object)

Returns whether a Data Archiver requires users to enter a user name and password details

in the client application.

Remarks

Set to FALSE to require a username and password.

ArchiverClustered Property (Server Object)

A flag to indicate whether this property has been set or not.

Syntax

object.ArchiverClustered

Parameters

None

Remarks

ArchiverClustered is a read-only property of type Boolean.

ArchiverDemoMode Property (Server Object)

Returns whether the server is currently running in demo-license mode. Demo mode is

restricted to 100 tags and a single user connection.

Syntax

object.ArchiverDemoMode

Parameters

None

Remarks

ArchiverDemoMode is a read-only property of type Boolean.

Archives Property (Server Object)

Historian | 11 - Historian SDK | 1622

Returns the Archives Object for the current server. The Archives Property does not return

the Archives Object unless the authenticated user is a member of the Historian archive

Administrators group.

Syntax

object.Archives

Parameters

None

Remarks

Archives is a read-only property of type Archives.

Example

Dim MyServer As New iHistorian_SDK.Server

 Dim MyArchives As iHistorian_SDK.Archives ' Connect to the local server

 If Not MyServer.Connect("", "", "")

 Then err.Raise 1, , "Failed to connect to the local server" End If

 ' We are connected, try to instantiate the Archives object Set MyArchives =

 MyServer.Archives

 If MyArchives Is Nothing Then err.Raise 1, , "User is not able to manage archives" End If

Archiving Property (Archives Object)

Returns the Archiving status of the current archive.

Syntax

object.Archiving[= Boolean]

Parameters

None

ArchivingOptions Property (Archives Object)

Exposes the ArchivingOptions collection to control the behavior of the Historian Archiver.

Historian | 11 - Historian SDK | 1623

Table 268. Archiving Options

Option Description

ArchiveSizeIncrement Sets the size increments of the archive file (De

fault=100MB). This option is specific to a data

store.

ArchiveDefaultPath Specifies the default path that the archives are

created in. This option is specific to a data store.

ArchiveActiveHours Specifies the hours before now that the data be

comes Read-Only. This option is specific to data

store.

ArchiveDefaultSize Specifies the create archive default size in MB.

This option is specific to a data store.

ArchiveAutomaticCreate Specifies whether the system automatically cre

ates archives when all empty archives are filled.

This option is specific to a data store.

ArchiveAutomaticFreeSpace The amount of free space required on the drive

of the default path after creating an archive of de

fault size. This option is specific to a data store.

ArchiveOverwriteOld Determines whether or not old archives are

cleared and re-used when no other empty space is

available. This option is specific to a data store.

ArchiveBackupPath Specifies the default path for backup archives.

This option is specific to a data store.

ArchiveBaseName Specifies the default string archive names should

be based on. This option is specific only to a data

store.

ArchiveBaseFileName Returns a default string that an archive file names

must be based on. This option is specific to a data

store.

ArchiveCreateOfflineArchives Returns whether a Data Archiver should accept

data before starting an old archive. This option is

specific to a data store.

Historian | 11 - Historian SDK | 1624

Table 268. Archiving Options (continued)

Option Description

ArchiveUseClientLoginUser Returns whether a Data Archiver requires users

to enter a user name and password details in the

client application. This option is specific to a data

store.

ArchiveAllowDataOverwrites Returns whether or not a Data Archiver should al

low overwriting of an existing data. This option is

specific to a data store.

ArchiveDuration Number of Units of time an archive can hold. De

fined by ArchiveDurationType. This option is spe

cific to a data store.

ArchiveTotalDuration Number of Hours that the archives for a DataS

tore can span. (This is only meaningful for Scada

Buffer DataStores) This option is specific to a da

ta store.

ArchiveDurationType The type of archive duration.

• ArchiveDurationBySize

• ArchiveDurationDaily

• ArchiveDurationHourly

This option is specific to a data store.

ArchiveUseCaching Indicates whether the archive should use caching

or not. Set it to 1 to use caching and to 0 if you do

not want to use caching. This option is specific to

a data store.

ArchiveCacheSize This is for internal use.

ArchiverServerMemoryLoad How much server memory the Historian Data

Archive is consuming. This option is specific to

the data archiver.

ArchiverEquipmentDelimiter This is for internal use.

Historian | 11 - Historian SDK | 1625

Table 268. Archiving Options (continued)

Option Description

ArchiverServerMemoryLoad How much server memory the Historian Data

Archive is consuming. This option is specific to

the data archiver.

ArchiverEquipmentDelimiter This is for internal use.

MessageOnDataUpdate How much server memory the Historian Data

Archive is consuming. This option is specific to

the data archiver.

ArchiveMaxMemoryBufferSize The maximum buffer memory (MB). This option is

specific to the data archiver.

ArchiverTargetPrivateBytes The memory size of the archiver. If it is 0, it means

that it is managed by server. Otherwise, enter a

number in megabytes of memory. This option is

specific to the data archiver.

CollectorIdleTime The number of seconds before a collector is con

sidered idle. If this number is set to 270 seconds

and no data for any tags is received for 270 sec

onds then the collector is considered idle. This op

tion is specific to the data archiver.

MaximumQueryIntervals Specifies the maximum number of samples per

tag that Historian can return from a non-raw data

query. Use this setting to throttle query results for

non-raw data queries. This setting does not apply

to filtered data queries or raw data queries. This

option is specific to the data archiver.

MaximumQueryTime Specifies the maximum time that a data or mes

sage query can take before it is terminated. Use

this setting to limit query time and provide bal

anced read access to the archiver. This applies to

all query types. This option is specific to the data

archiver.

Syntax

Historian | 11 - Historian SDK | 1626

object.ArchivingOptions(OptionName) [= Variant]

Parameters

Name OptionName Data type String Description The name of an archiving option.

Example

MyServer.DataStores.DataStoreUpdate("MYDATASTORE", True, "", "") Then

maintain auto recovery files

MyServer.MaintainAutoRecoveryFiles =TRUE

AreaCount Property (OPCBrowse Object)

Returns the number of Areas under a browse position. When a browse operation occurs,

the server returns all areas and sources under the BrowsePosition. AreaCount gives you the

number of Areas, which you can use to iterate the AreaNames and FullAreaNames arrays.

Syntax

object.AreaCount

Parameters

None

Remarks

AreaCount is a read-only property returned as type Long.

AreaNames Property (OPCBrowse Object)

Returns an area name for an AE server. See FullAreanames property for details.

Syntax

object.AreaNames(Index)

Parameters

Index. Integer. The index into the area nae array

Remarks

Historian | 11 - Historian SDK | 1627

AreaNames is a read-only String property returned as a variant for script compatibility.

Areas Property (OPCFilters Object)

Returns a list of the Areas selected for collection. This list is only applied when

isAreaFiltering (true) has been called.

Syntax

object.Areas

Parameters

None

AuditMessage Property (Server Object)

Returns or sets the E-signature audit message. Setting the audit message to an empty string

will use the system default message.

Syntax

object.AuditMessage[= String]

Parameters

None

AutoReconnectRateSeconds Property (OPCFilters Object)

If AutoReconnect logic is enabled (isAutoReconnectOn(true)) this property represents the

rate in seconds that the Alarm Collector with attempt to determine if the server is still alive.

Syntax

object.AutoReconnectRateSeconds[= Long]

Parameters

None

B

BrowsePosition Property (OPCBrowse Object)

Returns the current value of the browse position in the hierarchy.

Syntax

Historian | 11 - Historian SDK | 1628

object.BrowsePosition[= Variant]

Parameters

None

Remarks

This is used for subsequent browse calls to get the leaf under the current position.

BrowseRoot Property (OPCBrowse Object)

Returns the root name of the OPC area hierarchy.

Syntax

object.BrowseRoot

Parameters

None

Remarks

BrowseRoot is a read-only property of type String.

Property Reference C-D
CalcType Property (Tag Object)

Returns or sets the CalcType for the tag. The CalcType is used to determine whether the tag

is a Python Expression tag or a Raw tag.

Name Description Value

RawTag A tag is not a Python Expression Tag 0

PythonExprTag A tag that uses a Python Expression to transform

raw data into derived values.

2

Syntax

object.CalcType [=ihTagCalcType]

Parameters

None

Historian | 11 - Historian SDK | 1629

CalcType Property (TagCriteria Object)

Returns or sets the CalcType for the tag. The CalcType is used to determine whether the tag

is a Python Expression tag or a Raw tag.

Name Description Value

RawTag A tag is not a Python Expression Tag 0

PythonExprTag A tag that uses a Python Expression to transform

raw data into derived values.

2

Syntax

object.CalcType [=ihTagCalcType]

Parameters

None

CalcType Property (TagFields Object)

Determines whether the CalcType field should be returned in the TagRecordset query.

Syntax

object.CalcType [= Boolean]

Parameters

None

CalcTypeList Property (Tags Object)

Returns a list of valid calculation types available on a tag in Historian.

Syntax

object.CalcType

Parameters

None

CalcTypeSet Property (TagCriteria Object)

A flag to indicate whether or not the CalcType property has been set or not.

Historian | 11 - Historian SDK | 1630

Syntax

object.CalcTypeSet [= Boolean]

Parameters

None

CalcTypeUpdated Property (Tag Object)

A flag to indicate whether or not the CalcType property has been set.

Syntax

object.CalcTypeUpdated [= Boolean]

Parameters

None

Calculation Property (Tag Object)

Returns or sets the calculation for the Tag. Changes to tag properties are not committed

until you call the WriteRecordset method of the TagRecordset object.

Syntax

object.Calculation[= String]

Parameters

None

Calculation Property (TagCriteria Object)

Sets the calculation to search for in the TagRecordset query.

Syntax

object.Calculation[= String]

Parameters

None

Calculation Property (TagFields Object)

Determines whether the TagRecordset query returns the Calculation field.

Historian | 11 - Historian SDK | 1631

Syntax

object.Calculation[= Boolean]

Parameters

None

CalculationDependencies Property (Tag Object)

Returns a collection of tagnames that the calculation is dependent upon. Use the

CalculationDependencies property with unsolicited tags only.

Syntax

object.CalculationDependencies

Parameters

None

Remarks

CalculationDependencies is a read-only property of type TagDependencies.

CalculationDependencies Property (TagFields Object)

Determines whether the CalculationDependencies field should be returned in the

TagRecordset query.

Syntax

object.CalculationDependencies[= Boolean]

Parameters

None

CalculationDependenciesUpdated Property (Tag Object)

Returns whether or not the Calculation Dependencies have been updated. & Boolean true if

the dependencies have been updated, false otherwise.

Syntax

object.CalculationDependenciesUpdated

Historian | 11 - Historian SDK | 1632

Parameters

None

CalculationExecutionTime Property (Tag Object)

Returns the average time, in milliseconds, it takes to execute a calculation formula for the

tag.

Syntax

object.CalculationExecutionTime

Parameters

None

Remarks

CalculationExecutionTime is a read-only property of type Long.

CalculationExecutionTime Property (TagFields Object)

Determines whether the CalculationExecutionTime field should be returned in the

TagRecordset query.

Syntax

object.CalculationExecutionTime[= Boolean]

Parameters

None

CalculationMode Property (DataCriteria Object)

Returns or sets the type of calculation to perform on archive data retrieved in the

DataRecordset query. CalculationMode only applies to a Calculated SamplingMode.

The table below defines the available Calculation Modes:

Name Description Value

Average Retrieves the time-weighted average for each cal

culation interval.

1

Historian | 11 - Historian SDK | 1633

Name Description Value

StandardDeviation Retrieves the time-weighted standard deviation for

each calculation interval.

2

Total Retrieves the time- weighted rate total for each cal

culation interval. A rate total would be appropriate

for totalizing a continuous measurement.

Time weighting is necessary due to the fact that

compressed data is not evenly spaced in time. A

factor must be applied to the totalized value to con

vert into the appropriate engineering units. Given

the fact that this is a rate total, a base rate of Units/

Day is assumed. If the actual units of the continu

ous measurement were Units/Minute, it would be

necessary to multiply the results by 1440 Minutes /

Day to convert the totalized number into the appro

priate engineering units.

3

Minimum Retrieves the minimum value for each calculation

interval.

4

Maximum Retrieves the maximum value for each calculation

interval.

5

Count Retrieves the count of archive values found within

each calculation interval.

6

RawAverage Retrieves the arithmetic average of archive values

for each calculation interval.

7

RawStandardDeviation Retrieves the arithmetic standard deviation of

archive values for each calculation interval.

8

RawTotal Retrieves the arithmetic total of archive values for

each calculation interval.

9

MinimumTime Retrieves the timestamp of the minimum value

found within each calculation interval. It may be a

raw or an interpolated value. The minimum must be

a good data quality sample.

10

Historian | 11 - Historian SDK | 1634

Name Description Value

MaximumTime Retrieves the timestamp of the maximum value

found within each calculation interval. It may be a

raw or an interpolated value. The maximum must

be a good data quality sample.

11

TimeGood Retrieves the amount of time (in milliseconds) dur

ing the interval when the data is of good quality and

the filter condition is met.

12

StateCount Retrieves the amount of time a tag has transitioned

to another state from a previous state during a time

interval.

13

OPCAnd Retrieves the OROPCQAND, bit-wise AND operation

of all the 16-bit OPC qualities of the raw samples

stored in the specified interval.

16

OPCOr Retrieves the OPCQOR, bit-wise OR operation of all

the 16-bit OPC qualities of the raw samples stored

in the specified interval.

16

Syntax

object.CalculationMode[= iHistorian_SDK.ihCalculationMode]

Parameters

None

CalculationModeList Property (Data Object)

This function returns a list of the available Calculation modes for a data request.

Syntax

object.CalculationModeList

Parameters

None

CalculationModeSet Property (DataCriteria Object)

Historian | 11 - Historian SDK | 1635

A flag to indicate whether this property has been set or not.

Syntax

object.CalculationModeSet[= Boolean]

Parameters

None

CalculationSet Property (TagCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.CalculationSet[= Boolean]

Parameters

None

CalculationUpdated Property (Tag Object)

A flag to indicate whether this property has been set or not.

Syntax

object.CalculationUpdated[= Boolean]

Parameters

None

CanAdministerConfiguration Property (Archives Object)

Returns whether the current user is authorized to perform configuration changes to Archives

or Archiving options.

Syntax

object.CanAdministerConfiguration

Parameters

None

Remarks

Historian | 11 - Historian SDK | 1636

CanAdministerConfiguration is a read-only property of type Boolean.

Example

' Check Security If Not MyServer.Archives.CanAdministerConfiguration Then err.Raise 1, "Security",

"You Are Not Authorized To Make Configuration Changes" End If

CanAdministerConfiguration Property (Collectors Object)

Returns whether the current user is authorized to perform configuration changes to

Collectors.

Syntax

object.CanAdministerConfiguration

Parameters

None

Remarks

CanAdministerConfiguration is a read-only property of type Boolean.

Example

' Check Security If Not MyServer.Archives.CanAdministerConfiguration Then err.Raise 1, "Security",

 "You Are Not Authorized To Make Configuration Changes" End If

CanAdministerSecurity Property (Server Object)

Returns whether the current user is authorized to perform tag security changes.

Syntax

object.CanAdministerSecurity

Parameters

None

Remarks

CanAdministerSecurity is a read-only property of type Boolean.

Example

Historian | 11 - Historian SDK | 1637

Dim MyServer As New iHistorian_SDK.Server ' Connect to the local server If Not MyServer.Connect("", "",

 "") Then

err.Raise 1, , "Failed to connect to local server" End If If Not

 MyServer.Tags.CanAdministerConfiguration Then

err.Raise 1, , "Cannot administer security" End If

CanAdministerSecurity Property (Tags Object)

Returns whether the current user is authorized to security configuration changes.

Syntax

object.CanAdministerSecurity

Parameters

None

Remarks

CanAdministerSecurity is a read-only property of type Boolean.

CanAudit Property (Server Object)

Returns whether E-signatures are enabled on the hardware key.

Syntax

object.CanAudit

Parameters

None

Remarks

CanAudit is a read-only property of type Boolean.

CanCalculate Property (Server Object)

Returns whether the Calculation collector is enabled on the hardware key.

Syntax

object.CanCalculate

Parameters

Historian | 11 - Historian SDK | 1638

None

Remarks

CanCalute is a read-only property of type Boolean.

CanRead Property (Data Object)

Returns whether the current user is authorized to read data from the server.

Syntax

object.CanRead

Parameters

None

Remarks

CanRead is a read-only property of type Boolean.

Example

' Check Security If Not MyData.CanRead Then err.Raise 1, , "You are not authorized to read data from

 this server" End If

CanRead Property (Messages Object)

Returns whether the current user is authorized to read messages from the server.

Syntax

object.CanRead

Parameters

None

Remarks

CanRead is a read-only property of type Boolean.

Example

' Check Security If Not MyData.CanRead Then err.Raise 1, , "You are not authorized to read messages

 from this server" End If

Historian | 11 - Historian SDK | 1639

CanReplicate Property (Server Object)

Returns whether ServerToServer collector is enabled on the hardware key.

Syntax

object.CanRelpicate

Parameters

None

Remarks

CanReplicate is a read-only property of type Boolean.

CanSupportRedundantCollectors Property (Server Object)

Returns whether Collector Redundancy is enabled on the hardware key.

Syntax

object.CanSupportRedundantCollectors

Parameters

None

Remarks

CanSupportRedundantCollectors is a read-only property of type Boolean.

CanWrite Property (Data Object)

Returns whether the current user is authorized to write data to the server.

Syntax

object.CanWrite

Parameters

None

Remarks

CanWrite is a read-only property of type Boolean.

Historian | 11 - Historian SDK | 1640

Example

' Check Security If Not MyData.CanWrite Then err.Raise 1, , "You are not authorized

to write data to this server" End If

CanWrite Property (Messages Object)

Returns whether the current user is authorized to write messages to the Server.

Syntax

object.CanWrite

Parameters

None

Remarks

CanWrite is a read-only property of type Boolean.

Example

' Check Security If Not MyMessages.CanWrite Then err.Raise 1, , "You are not

authorized to write data to this server" End If

CollectionDisabled Property (Tag Object)

Gets or sets whether the collection status of this tag.

Syntax

object.CollectionDisabled[= Boolean]

Parameters

None

CollectionDisabled Property (TagFields Object)

Determines whether the CollectionDisabled field should be returned in the TagRecordset

query.

Syntax

object.CollectionDisabled[= Boolean]

Historian | 11 - Historian SDK | 1641

Parameters

None

CollectionDisabledUpdated Property (Tag Object)

A flag to indicate whether this property has been set or not.

Syntax

object.CollectionDisabledUpdated[= Boolean]

Parameters

None

CollectionInterval Property (Tag Object)

Returns or sets the collection interval (in milliseconds) for a Tag. For polled collection, the

interval schedules evenly spaced samples of the data from the data source. For unsolicited

collection, the collection interval establishes the MINIMUM time allowed in between reports

of unsolicited values from the data source. Changes to tag properties are not committed

until you call the WriteRecordset method of the TagRecordset object.

Syntax

object.CollectionInterval[= Long]

Parameters

None

CollectionInterval Property (TagCriteria Object)

Sets the collection interval to search for in the TagRecordset Query.

Syntax

object.CollectionInterval[= Long]

Parameters

None

CollectionInterval Property (TagFields Object)

Determines whether the TagRecordset query returns the CollectionInterval field.

Historian | 11 - Historian SDK | 1642

Syntax

object.CollectionInterval[= Boolean]

Parameters

None

CollectionIntervalSet Property (TagCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.CollectionIntervalSet[= Boolean]

Parameters

None

CollectionIntervalUpdated Property (Tag Object)

A flag to indicate whether this property has been set or not.

Syntax

object.CollectionIntervalUpdated[= Boolean]

Parameters

None

CollectionOffset Property (Tag Object)

Returns or sets the collection offset (in milliseconds) for a tag. The collection offset only

applies to polled type collection as used to schedule sampling of data at a specific time of

day. The collection offset is applied from midnight to determine the time of the first sample.

The collection interval is then used to schedule subsequent samples.

For example, with a collection interval of 60,000ms and a collection offset of 30,000ms,

data would be collected one per minute on the half minute. To collect data once per day

at a specific time, the collection interval should be set to one day, 1440 * 60 * 1000 =

86,400,000ms, and the collection offset should be set to the time in milliseconds from

midnight (for example, 6am = 6 * 3600 * 1000 = 21,600,000 ms).

Historian | 11 - Historian SDK | 1643

Changes to tag properties are not committed until you call the WriteRecordset method of

the TagRecordset object.

Syntax

object.CollectionOffset[= Long]

Parameters

None

CollectionOffset Property (TagCriteria Object)

Sets the collection offset to search for in the TagRecordset query.

Syntax

object.CollectionOffset[= Long]

Parameters

None

CollectionOffset Property (TagFields Object)

Sets Determines whether the TagRecordset query returns the CollectionOffset field.

Syntax

object.CollectionOffset[= Boolean]

Parameters

None

CollectionOffsetSet Property (TagCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.CollectionOffset[= Boolean]

Parameters

None

CollectionOffsetUpdated Property (Tag Object)

Historian | 11 - Historian SDK | 1644

A flag to indicate whether this property has been set or not.

Syntax

object.CollectionOffsetupdated[= Boolean]

Parameters

None

CollectionType Property (Tag Object)

Returns or sets the type of collection used to acquire data for the Tag. Changes to tag

properties are not committed until you call the WriteRecordset method of the TagRecordset

object.

The following table lists the available types of collection:

Name Description Value

Unsolicited New values are reported by the source. 1

Polled New values are polled from the source. 2

Syntax

object.CollectionType[= ihCollectionType]

Parameters

None

CollectionType Property (TagCriteria Object)

Sets the collection type to search for in the TagRecordset query.

Syntax

object.CollectionType[= ihCollectionType]

Parameters

None

CollectionType Property (TagFields Object)

Determines whether the TagRecordset query returns the CollectionType field.

Historian | 11 - Historian SDK | 1645

Syntax

object.CollectionType[= Boolean]

Parameters

None

CollectionTypeList Property (Tags Object)

Returns a list of the valid Collection types available in Historian.

Syntax

object.CollectionTypeList

Parameters

None

CollectionTypeSet Property (TagCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.CollectionTypeSet[= Boolean]

Parameters

None

CollectionTypeUpdated Property (Tag Object)

A flag to indicate whether this property has been set or not.

Syntax

object.CollectionTypeUpdated[= Boolean]

Parameters

None

CollectorCompression Property (Tag Object)

Returns or sets whether collector compression is enabled for the Tag. Specify the deadband

in the CollectorDeadbandPercentRange property.

Historian | 11 - Historian SDK | 1646

Changes to tag properties are not committed until you call the WriteRecordset method of

the TagRecordset object.

Syntax

object.CollectorCompression[= Boolean]

Parameters

None

CollectorCompression Property (TagCriteria Object)

Sets the collector compression status to search for in the TagRecordset query.

Changes to tag properties are not committed until you call the WriteRecordset method of

the TagRecordset object.

Syntax

object.CollectorCompression[= Boolean]

Parameters

None

CollectorCompression Property (TagFields Object)

Determines whether the TagRecordset query returns the CollectorCompression field.

Syntax

object.CollectorCompression[= Boolean]

Parameters

None

CollectorCompressionSet Property (TagCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.CollectorCompressionSet[= Boolean]

Parameters

Historian | 11 - Historian SDK | 1647

None

CollectorCompressionTimeout Property (Tag Object)

Gets or sets the value of the Collector Compression Timeout. This is the amount of time

after which a value will be sent to the Archiver regardless of compression.

Syntax

object.CollectorCompressionTimeout[= Long]

Parameters

None

CollectorCompressionTimeout Property (TagCriteria Object)

Sets the Collector Compression Timeout value to search for in the TagRecordset query.

Syntax

object.CollectorCompressionTimeout[= Long]

Parameters

None

CollectorCompressionTimeout Property (TagFields Object)

Determines whether the TagRecordset query returns the CollectorCompressionTimeout

field.

Syntax

object.CollectorCompressionTimeout[= Boolean]

Parameters

None

CollectorCompressionTimeoutSet Property (TagCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.CollectorCompressionTimeoutSet[= Boolean]

Historian | 11 - Historian SDK | 1648

Parameters

None

CollectorCompressionTimeoutUpdated Property (Tag Object)

A flag to indicate whether this property has been set or not.

Syntax

object.CollectorCompressionTimeoutUpdated[= Boolean]

Parameters

None

CollectorCompressionUpdated Property (Tag Object)

A flag to indicate whether this property has been set or not.

Syntax

object.CollectorCompressionTimeoutUpdated[= Boolean]

Parameters

None

CollectorCompressionUpdated Property (Tag Object)

A flag to indicate whether this property has been set or not.

Syntax

object.CollectorCompressionTimeoutUpdated[= Boolean]

Parameters

None

CollectorConditionEventList Property (OPCFilters Object)

Returns a list of the Condition Event Categories available for filtering on the Alarm Collector.

Syntax

object.CollectorConditionEventList

Historian | 11 - Historian SDK | 1649

Parameters

None

CollectorDeadbandPercentRange Property (Tag Object)

Returns or sets the deadband in percent of engineering unit range for collector

compression for the Tag. You must enable CollectorCompression before setting the

CollectorDeadbandPercentRange.

Changes to tag properties are not committed until you call the WriteRecordset method of

the TagRecordset object.

Syntax

object.CollectorDeadbandPercentRange[= Single]

Parameters

None

CollectorDeadbandPercentRange Property (TagCriteria Object)

Sets the collector compression deadband to search for in the TagRecordset query.

Syntax

object.CollectorDeadbandPercentRange[= Single]

Parameters

None

CollectorDeadbandPercentRange Property (TagFields Object)

Determines whether the TagRecordset query returns the CollectorDeadbandPercentRange

field.

Syntax

object.CollectorDeadbandPercentRange[= Boolean]

Parameters

None

CollectorDeadbandPercentRangeSet Property (TagCriteria Object)

Historian | 11 - Historian SDK | 1650

A flag to indicate whether this property has been set or not.

Syntax

object.CollectorDeadbandPercentRangeSet[= Boolean]

Parameters

None

CollectorDeadbandPercentRangeUpdated Property (Tag Object)

A flag to indicate whether this property has been set or not.

Syntax

object.CollectorDeadbandPercentRangeUpdated[= Boolean]

Parameters

None

CollectorGeneral1 Property (Tag Object)

Returns or sets the general1 (or spare) configuration field for the tag. Changes to tag

properties are not committed until the WriteRecordset method of the TagRecordset object is

called.

Syntax

object.CollectorGeneral1[= String]

Parameters

None

Example

MyTag.CollectorGeneral1 = "Model2:123"

CollectorGeneral1 Property (TagCriteria Object)

Sets the general1 (spare) field value to search for in the TagRecordset query.

Syntax

object.CollectorGeneral1[= String]

Historian | 11 - Historian SDK | 1651

Parameters

None

Example

With MyRecordset.Criteria .TagName = "*.F_CV" .CollectorGeneral1 = "Model" End With

CollectorGeneral1 Property (TagFields Object)

Determines whether the CollectorGeneral1 field should be returned in the TagRecordset

query.

Syntax

object.CollectorGeneral1[= Boolean]

Parameters

None

Example

With MyRecordset.Fields .Clear .TagName = True .Description = True .CollectorGeneral1

= True .CollectorGeneral2 = True .CollectorGeneral3 = True .CollectorGeneral4 =

True .CollectorGeneral5 = True End With

CollectorGeneral1Set Property (TagCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.CollectorGeneral1Set[= Boolean]

Parameters

None

CollectorGeneral1Updated Property (Tag Object)

A flag to indicate whether this property has been set or not.

Syntax

object.CollectorGeneral1Updated[= Boolean]

Historian | 11 - Historian SDK | 1652

Parameters

None

CollectorGeneral2 Property (Tag Object)

Returns or sets the general2 (or spare) configuration field for the tag. Changes to tag

properties are not committed until you call the WriteRecordset method of the TagRecordset

object.

Syntax

object.CollectorGeneral2[= String]

Parameters

None

CollectorGeneral2 Property (Tagcriteria Object)

Sets the general2 (spare) field value to search for in the TagRecordset query.

Syntax

object.CollectorGeneral2[= String]

Parameters

None

CollectorGeneral2 Property (TagFields Object)

Determines whether the CollectorGeneral2 field should be returned in the TagRecordset

query.

Syntax

object.CollectorGeneral2[= Boolean]

Parameters

None

Example

Historian | 11 - Historian SDK | 1653

With MyRecordset.Fields .Clear .TagName = True .Description = True .CollectorGeneral1 =

 True .CollectorGeneral2 = True

.CollectorGeneral3 = True .CollectorGeneral4 = True .CollectorGeneral5 = True End With

CollectorGeneral2Set Property (TagCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.CollectorGeneral2[= Boolean]

Parameters

None

CollectorGeneral2Updated Property (Tag Object)

A flag to indicate whether this property has been set or not.

Syntax

object.CollectorGeneral2Updated[= Boolean]

Parameters

None

CollectorGeneral3Updated Property (Tag Object)

Returns or sets the general3 (or spare) configuration field for the tag. Changes to tag

properties are not committed until you call the WriteRecordset method of the TagRecordset

object.

Syntax

object.CollectorGeneral3[= String]

Parameters

None

CollectorGeneral3 Property (TagCriteria Object)

Sets the general3 (spare) field value to search for in the TagRecordset query.

Syntax

Historian | 11 - Historian SDK | 1654

object.CollectorGeneral3[= String]

Parameters

None

CollectorGeneral3 Property (TagFields Object)

Determines whether the CollectorGeneral3 field should be returned in the TagRecordset

query.

Syntax

object.CollectorGeneral3[= Boolean]

Parameters

None

Example

With MyRecordset.Fields .Clear .TagName = True .Description = True .CollectorGeneral1 = True

.CollectorGeneral2 = True .CollectorGeneral3 = True .CollectorGeneral4 = True .CollectorGeneral5 = True

 End With

CollectorGeneral3Set Property (TagCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.CollectorGeneral3Set[= Boolean]

Parameters

None

CollectorGeneral3Updated Property (Tag Object)

A flag to indicate whether this property has been set or not.

Syntax

object.CollectorGeneral3Updated[= Boolean]

Parameters

Historian | 11 - Historian SDK | 1655

None

CollectorGeneral4 Property (Tag Object)

Returns or sets the general4 (or spare) configuration field for the tag. Changes to tag

properties are not committed until you call the WriteRecordset method of the TagRecordset

object.

Syntax

object.CollectorGeneral4[= String]

Parameters

None

CollectorGeneral4 Property (TagCriteria Object)

Sets the general4 (spare) field value to search for in the TagRecordset query.

Syntax

object.CollectorGeneral4[= String]

Parameters

None

CollectorGeneral4 Property (TagFields Object)

Determines whether the CollectorGeneral4 field should be returned in the TagRecordset

query.

Syntax

object.CollectorGeneral4[= Boolean]

Parameters

None

Example

With MyRecordset.Fields .Clear .TagName = True .Description = True .CollectorGeneral1 = True

.CollectorGeneral2 = True .CollectorGeneral3 = True .CollectorGeneral4 = True .CollectorGeneral5 = True

 End With

Historian | 11 - Historian SDK | 1656

CollectorGeneral4Set Property (TagCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.CollectorGeneral4Set[= Boolean]

Parameters

None

CollectorGeneral4Updated Property (Tag Object)

A flag to indicate whether this property has been set or not.

Syntax

object.CollectorGeneral4Updated[= Boolean]

Parameters

None

CollectorGeneral5 Property (Tag Object)

Returns or sets the general5 (or spare) configuration field for the tag. Changes to tag

properties are not committed until you call the WriteRecordset method of the TagRecordset

object.

Syntax

object.CollectorGeneral5[= String]

Parameters

None

CollectorGeneral5 Property (TagCriteria Object)

Sets the general5 (spare) field value to search for in the TagRecordset query.

Syntax

object.CollectorGeneral5[= String]

Parameters

Historian | 11 - Historian SDK | 1657

None

CollectorGeneral5 Property (TagFields Object)

Determines whether the CollectorGeneral5 field should be returned in the TagRecordset

query.

Syntax

object.CollectorGeneral5[= Boolean]

Parameters

None

CollectorGeneral5Set Property (TagCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.CollectorGeneral5Set[= Boolean]

Parameters

None

CollectorName Property (Tag Object)

Returns or sets the name of the Collector responsible for collecting data for the Tag.

Changes to tag properties are not committed until you call the WriteRecordset method of

the TagRecordset object.

Syntax

object.CollectorName[= String]

Parameters

None

CollectorName Property (TagFields Object)

Determines whether the CollectorName field should be returned in the TagRecordset query.

Syntax

object.CollectorName[= Boolean]

Historian | 11 - Historian SDK | 1658

Parameters

None

CollectorNameSet Property (TagCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.CollectorNameSet[= Boolean]

Parameters

None

CollectorNameUpdated Property (Tag Object)

A flag to indicate whether this property has been set or not.

Syntax

object.CollectorNameUpdated[= Boolean]

Parameters

None

CollectorOptions Property (Collector Object)

Exposes the CollectorOptions collection to control the behavior of a specific collector.

The following table describes each of the options:

Table 269. Options

Option Capability

CollectorCanBrowseSource TRUE if the collector supports browse.

CollectorMaxMemoryBufferSize Specifies the size in megabytes of the memory

buffer assigned to the store and forward function.

Source Address Yes

CollectorMaxDiskBufferSize Specifies the minimum free disk space that must

be available on the computer and cannot be used

for store and forward function.

Historian | 11 - Historian SDK | 1659

Table 269. Options (continued)

Option Capability

CollectorRateOutputAddress Specifies the address in the source database into

which the collector will write the current value of

the events per minute output.

CollectorStatusOutputAddress Specifies the address in the source database into

which the collector will write the current value of

the collector status (running, stopped, unknown,

etc.).

CollectorAdjustForTimeDifference TRUE if you want to adjust collector timestamps

to match the server clock.

CollectorStartDelay A delay, in seconds, after collector startup before

collection starts.

CollectorSourceTimesLocal If you are using source timestamps, set this to

TRUE if the source timestamps are in local time.

CollectorMakeTagChangesOnline Set to TRUE if you want tag changes to take effect

without restarting collector.

Syntax

object.CollectorOptions(OptionName) [= Variant]

Parameters

OptionName - Variant - The name of a collection

CollectorSimpleEventList Property (OPCFilters Object)

Returns a list of the Simple Event Categories available for filtering on the Alarm Collector.

Syntax

object.CollectorSimpleEventList

Parameters

None

CollectorSupportsAreaFiltering Property (OPCFilters Object)

Historian | 11 - Historian SDK | 1660

Returns whether or not Area Filtering is supported by the Alarm Collector. This can only be

determined if the collector is connected to the Alarm Server.

Syntax

object.CollectorSupportsAreaFiltering

Parameters

None

CollectorSupportsCategoryFiltering Property (OPCFilters Object)

Returns whether or not Category Filtering is supported by the Alarm Collector. This can only

be determined if the collector is connected to the Alarm Server.

Syntax

object.CollectorSupportsCategoryFiltering

Parameters

None

CollectorSupportsCategoryFiltering Property (OPCFilters Object)

Returns whether or not Category Filtering is supported by the Alarm Collector. This can only

be determined if the collector is connected to the Alarm Server.

Syntax

object.CollectorSupportsCategoryFiltering

Parameters

None

CollectorSupportsEventFiltering Property (OPCFilters Object)

Returns whether or not Event Filtering is supported by the Alarm Collector. This can only be

determined if the collector is connected to the Alarm Server.

Syntax

object.CollectorSupportsEventFiltering

Parameters

Historian | 11 - Historian SDK | 1661

None

CollectorSupportsSeverityFiltering Property (OPCFilters Object)

Returns whether or not Severity Filtering is supported by the Alarm Collector. This can only

be determined if the collector is connected to the Alarm Server.

Syntax

object.CollectorSupportsSeverityFiltering

Parameters

None

CollectorSupportsSourceFiltering Property (OPCFilters Object)

Returns whether or not Source Filtering is supported by the Alarm Collector. This can only be

determined if the collector is connected to the Alarm Server.

Syntax

object.CollectorSupportsSourceFiltering

Parameters

None

CollectorTrackingEventList Property (OPCFilters Object)

Returns a list of the Tracking Event Categories available for filtering on the Alarm Collector.

Syntax

object.CollectorTrackingEventList

Parameters

None

CollectorType Property (Collector Object)

Returns or sets Collector Type property for the Collector.

Syntax

object.CollectorType[= String]

Historian | 11 - Historian SDK | 1662

Parameters

None

Example

' Print Out The CollectorType configured for the collector

 Debug.Print MyCollector.CollectorType

CollectorType Property (Tag Object)

Returns or sets the type of Collector responsible for collecting data for the Tag. Changes

to tag properties are not committed until you call the WriteRecordset method of the

TagRecordset object.

Syntax

object.CollectorType[= String]

Parameters

None

CollectorType Property (TagCriteria Object)

Sets the collector type to search for in the TagRecordset query.

Syntax

object.CollectorType[= String]

Parameters

None

CollectorType Property (TagFields Object)

Determines whether the CollectorType field should be returned in the TagRecordset query.

Syntax

object.CollectorType[= Boolean]

Parameters

None

CollectorTypeList Property (Collectors Object)

Historian | 11 - Historian SDK | 1663

Returns a list of Collector Types available. These types may be used in other SDK functions.

Syntax

object.CollectorTypeList

Parameters

None

Example

'Get a List of the Available Collector Types Dim ListArray As Variant Dim I As Integer

ListArray = MyCollectors.CollectorTypeList For I = LBound(ListArray) To UBound(ListArray)

Debug.Print "Historian has a " + ListArray(I, 2) + " collector" Next I

CollectorTypeSet Property (TagCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object..CollectorTypeSet[= Boolean]

Parameters

None

CollectorTypeUpdated Property (Tag Object)

A flag to indicate whether this property has been set or not.

Syntax

object.CollectorTypeUpdated[= Boolean]

Parameters

None

Examples

Body text goes here.

Column Header Column Header

Table text Table text

Historian | 11 - Historian SDK | 1664

Column Header Column Header

Table text Press Tab to add rows.

CollectorVersion Property (Collector Object)

Returns the collector version. This version information is available for collectors of version

5.0 and later

Syntax

Object.CollectorVersion

Parameters

None

Sample Code

Public ConnectedServer As iHistorian_SDK.Server

Dim MyCollector As iHistorian_SDK.Collector

Dim CollectorName As String

Dim ServerName As String

Private Sub BTNGetVersion_Click()

On Error GoTo errc

 If Not ConnectedServer Is Nothing Then

 ConnectedServer.Disconnect

 Set ConnectedServer = Nothing

 Set ConnectedServer = CreateObject("iHistorian_SDK.Server")

 Else

 Set ConnectedServer = CreateObject("iHistorian_SDK.Server")

 End If

 If Not ConnectedServer.Connect(ServerName, "", "") Then

 MsgBox "Connect To Server: " + ServerName + " Failed."

 Else

 Set MyCollector = ConnectedServer.Collectors.Item(CollectorName)

 If MyCollector.Running = True Then

 MsgBox "Collector version: " + MyCollector.CollectorVersion

 Else

 MsgBox "Collector version: Unknown"

 End If

Historian | 11 - Historian SDK | 1665

 End If

Exit Sub

errc:

 MsgBox Err.Number

End Sub

Comment Property (Collector Object)

Returns or sets the Comment property for this collector.

Syntax

object.Comment[= String]

Parameters

None

Comment Property (DataComments Object)

Returns the comment associated with the DataValue.

Syntax

object.Comment

Parameters

None

Remarks

Comment is a read-only property of type Variant.

Comment Property (Tag Object)

Returns or sets the comment associated with the Tag. Changes to tag properties are not

committed until you call the WriteRecordset method of the TagRecordset object.

Syntax

object.Comment[= String]

Parameters

None

Historian | 11 - Historian SDK | 1666

Comment Property (TagCriteria Object)

Sets the comment to search for in the TagRecordset query.

Syntax

object.Comment[= String]

Parameters

None

Comment Property (TagFields Object)

Determines whether the Comment field should be returned in the TagRecordset query.

Syntax

object.Comment[= Boolean]

Parameters

None

CommentSet Property (TagCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.CommentSet[= Boolean]

Parameters

None

CommentTimestamp Property (DataComments Object)

Returns the time that the comment was added to the archive.

Syntax

object.CommentTimestamp

Parameters

None

Historian | 11 - Historian SDK | 1667

Remarks

CommentTimestamp is a read-only property of type Date.

Example

Debug.Print "Comment added at: " + _ Format$(MyValue.Comme

CommentSet Property (TagCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.CommentSet[= Boolean]

Parameters

None

CommentUpdated Property (Tag Object)

A flag to indicate whether this property has been set or not.

Syntax

object.CommentUpdated[= Boolean]

Parameters

None

Comments Property (DataFields Object)

Determines whether the Comments field should be returned in the DataRecordset query.

Syntax

object.Comments[= Boolean]

Parameters

None

Comments Property (DataValue Object)

Returns the collection of comments that applies to the DataValue.

Historian | 11 - Historian SDK | 1668

Syntax

object.Comments

Parameters

None

Remarks

Comments is a read-only property of type Collection.

CommentsUpdated Property (DataValue Object)

This property is for internal use only.

Syntax

object.CommentsUpdated

Parameters

None

ComputerName Property (Collector Object)

Returns or sets the name of the computer that the collector executes on.

Syntax

object.ComputerName[= String]

Parameters

None

Remarks

ComputerName is a read-only property of type String.

ConditionCollectionCompareValue Property

Returns or Contains compare value against the value of the triggertag.

Syntax

object.ConditionCollectionCompareValue [= String]

Historian | 11 - Historian SDK | 1669

Parameters

None

ConditionCollectionCompareValue Property

Returns or Contains compare value against the value of the triggertag.

Syntax

object.ConditionCollectionCompareValue [= String]

Parameters

None

ConditionCollectionComparison Property

Contains the condition collection for a tag.

Syntax

object.ConditionCollectionComparison [= Enum]

Parameters

None

ConditionCollectionEnabled Property

Sets the condition collection for a tag.

Syntax

object.ConditionCollectionEnabled [= Boolean]

Parameters

None

ConditionCollectionMarkers Property

Returns or Sets if the end of the markers to be stored when the condition becomes FALSE. If

FALSE, a bad data marker is not inserted when the condition becomes false.

Syntax

object.ConditionCollectionMarkers [= Boolean]

Historian | 11 - Historian SDK | 1670

Parameters

None

ConditionCollectionTriggertag Property

Contains a trigger tag from the list of tags associated with the collector.

Syntax

object.ConditionCollectionTriggertag [= String]

Parameters

None

Connected Property (Server Object)

Returns the authentication status of the current server connection. True means you are

connected to the server.

Syntax

object.Connected

Parameters

None

Remarks

Connected is a read-only property of type Boolean.

ConnectionOptions Property (Server Object)

Returns the collection of options for the current connection. To set individual options refer

to the following table.

TimeOption
Converts timestamps to and

from the local time zone
String = Local

Converts timestamps to and from the server time

zone.

String = Server

Converts Timestamps To/From Explicit. The time

zone is specified in the TimeZoneBias option.

String = Explicit

Historian | 11 - Historian SDK | 1671

TimeOption
Converts timestamps to and

from the local time zone
String = Local

TimeZoneBias Converts timestamps to and from a specific offset

from GMT (minutes)

Long

AdjustDayLightSavings Converts timestamps by adjusting for daylight sav

ings

Boolean

Syntax

object.ConnectionOptions(OptionName) [= Variant]

Parameters

Name Data Type Description

OptionName Variant The name of a connection option

None

Remarks

ConnectionOptions is a read-only property of type Collection of Options.

Count Property (TagDependencies Object)

This function returns the current number of Dependent Tags configured.

Syntax

object.Count

Parameters

None

Count Property (DataStores Object)

Gets the number of items in the collection.

Syntax

object.Count

Parameters

Historian | 11 - Historian SDK | 1672

None

Remarks

Count is a read-only property of type Collection.

Count Property (EnumeratedStates Object)

Returns the number of items in the EnumeratedStates collection.

Syntax

object.Count

Parameters

None

Remarks

Long

Criteria Property (DataRecordset Object)

Returns the Criteria object used to identify which DataValues the Historian server returns

when a DataRecordset query is executed.

The following procedure describes the steps involved in specifying criteria of a

DataRecordset Query.

1. Specify the sampling mode.

A sampling mode must be set to determine how values are retrieved from the

Historian archive. Depending on the sampling mode, you may also need to modify

the Direction and NumberOfSamples. The following table lists the available Sampling

Modes and their explanations.

Name Description Value

CurrentValue Retrieves the current value. The time

frame criteria are ignored.

1

Interpolated Retrieves evenly spaced interpolated

values based on NumberOfSamples

and the time frame criteria.

2

Historian | 11 - Historian SDK | 1673

Name Description Value

Trend Retrieves the raw minimum and raw

maximum value for each specified

interval. Use the Trend sampling

mode to maximize performance

when retrieving data points for plot

ting. A start time, end time, and an in

terval or number of samples must be

specified.

3

RawByTime Retrieves raw archive values (com

pressed) based on time frame crite

ria.

4

RawByNumber Retrieves raw archive values (com

pressed) based on the StartTime cri

teria, the NumberOfSamples, and Di

rection criteria.

NOTE: The EndTime criteria is ig

nored for this Sampling mode.

5

Calculated Retrieves evenly spaced calculated

values based on NumberOfSamples,

the time frame criteria, and the Cal

culationMode criteria.

6

2. Supply tags for query. You can specify tags in one of two ways:

a. Supply a Tagmask that searches for all tags that match the mask and apply

the remaining criteria to retrieve data. The mask can include wildcards.

b. Supply an array of strings representing the list of tags to retrieve data for by

using the Tags() property of the DataCriteria object.

a. Supply time frame for query.

To supply a time frame for the query, set the StartTime and EndTime

properties or set the StartTimeShortcut and EndTimeShortcut properties.

3. Specify the Calculation Mode.

For the calculated SamplingMode, you must also specify the Calculation Mode.

Historian | 11 - Historian SDK | 1674

The following table describes the available calculation modes.

Table 270. Enumeration: ihCalculationMode

Name Description Value

Equal Filter condition is True, when the Fil

terTag is equal to the comparison

value.

1

NotEqual Filter condition is True, when the Fil

terTag is NOT equal to the compari

son value.

2

LessThan Filter condition is True, when the Fil

terTag is less than the comparison

value.

3

GreaterThan Filter condition is True, when the Fil

terTag is greater than the compari

son value.

4

LessThanEqual Filter condition is True, when the Fil

terTag is less than or equal to the

comparison value.

5

GreaterThanEqual Filter condition is True, when the Fil

terTag is greater than or equal to the

comparison value.

6

The filter eliminates archive data from retrieval or calculations that occur within the time

period that the specified filter criterion is True. FilterMode determines exactly how changes

in state of the FilterTag are interpreted for retrieval of data.

Name Description Value

ExactTime Retrieves data for the exact times

that the filter condition is True.

1

BeforeTime Retrieves data from the time of the

last False filter condition up to the

time of the True condition.

2

Historian | 11 - Historian SDK | 1675

Name Description Value

AfterTime Retrieves data from the time of the

True filter condition up to the time of

next False condition.

3

BeforeAndAfterTime Retrieves data from the time of the

last False filter condition up to the

time of next False condition.

4

Syntax

object.Count

Parameters

None

Remarks

Criteria is a read-only property of type DataCriteria.

Criteria Property (MessageRecordset Object)

Use this property to specify which Messages to return from the Historian server when a

MessageRecordset query executes.

A Topic may be optionally supplied to limit the Message queries to specific message topics.

The following table provides a list of message topics.

Name Description Value

Connections Provides messages about client con

nections.

1

Security Provides messages and alerts about

login attempts and attempts to ac

cess restricted resources.

2

ConfigurationAudit Provides messages about configura

tion changes and audit trail.

3

ServiceControl Provides messages and alerts re

garding startup and shutdown of the

system and specific services.

4

Historian | 11 - Historian SDK | 1676

Name Description Value

Performance Provides messages and alerts re

garding system and archive perfor

mance.

5

You can also optionally supply a time frame for the query. To do this, either set the

StartTime and EndTime properties or set the StartTimeShortcut and EndTimeShortcut

properties, or a combination of both.

All other fields of the MessageCriteria are evaluated by exact match if set.

Syntax

object.Criteria

Parameters

None

Remarks

Criteria is a read-only property of type MessageCriteria.

Criteria Property (TagRecordset Object)

Use this property to specify which Tags to return from the Historian server when a

TagRecordset query is executed.

You can supply the Tagname and Description as a mask including wildcards to return all

matching tags. All other fields of the TagCriteria object are tested for exact match if they are

supplied or set.

Syntax

object.Criteria

Parameters

None

Remarks

Criteria is a read-only property of type TagCriteria.

CurrentValue Property (Tag Object)

Historian | 11 - Historian SDK | 1677

Returns the current value of the Tag as a DataValue object. The DataValue object contains

properties for the Value, TimeStamp, and DataQuality of the current value.

Syntax

object.CurrentValue

Parameters

None

Remarks

CurrentValue is a read-only property of type DataValue.

D

Data Property (Server Object)

Returns the Data object for the current server. Use the Data object to build queries for

collected data.

Syntax

object.Data

Parameters

None

DataStores Property (Server Object)

Returns the collection of the available data stores.

Syntax

object.DataStores

Parameters

None

Remarks

DataStores

DataQuality Property (DataFields Object)

Historian | 11 - Historian SDK | 1678

Determines whether the DataQuality field should be returned in the DataRecordset query.

Syntax

object.DataQuality[= Boolean]

Parameters

None

DataQuality Property (DataValue Object)

Returns or sets the quality of the DataValue.

The table below defines the possible values for DataQuality:

Name Data Type Description

Good The quality of the value is GOOD. 1

Bad The quality of the value is BAD. 2

Unknown The quality of the value is UN

KNOWN.

3

Syntax

object.DataQuality[= ihDataQuality]

Parameters

None

DataQualityUpdated Property (DataValue Object)

This property is for internal use only.

Syntax

object.DataQualityUpdated[= Boolean]

Parameters

None

DataStore Property (Archive Object)

Returns the data store name of the specified Archive.

Historian | 11 - Historian SDK | 1679

Syntax

object.DataStore

Parameters

None

Remarks

String

DataQualityUpdated Property (DataValue Object)

This property is for internal use only.

Syntax

object.DataQualityUpdated[= Boolean]

Parameters

None

DataTimestamp Property (DataComments Object)

Returns the timestamp of the DataValue the comment is associated with.

Syntax

object.DataTimestamp

Parameters

None

Remarks

DataTimeStamp is a read-only property of type Date.

Example

Debug.Print "Commented point at: " + _ Format$(MyValue.Com

DataType Property (DataComments Object)

Returns the data type of the associated data.

Historian | 11 - Historian SDK | 1680

Syntax

object.DataType

Parameters

None

DataType Property (Tag Object)

Returns or sets the data type of the Tag. Changes to tag properties are not committed until

you call the WriteRecordset method of the TagRecordset object.

The table below lists the available data types.

Name Description Value

Scaled Tag scaled between high engineering

units and low engineering units.

1

Float Tag stored as single precision float

ing point.

2

DoubleFloat Tag stored as double precision float

ing point.

3

Integer Tag stored as 2-byte integer. 4

DoubleInteger Tag stored as 4-byte integer. 5

FixedString Tag stored as fixed length UNICODE

string.

6

VariableString Tag stored as variable length UNI

CODE string.

7

Blob Tag stored as binary large object. 8

Syntax

object.DataType[= ihDataType]

Parameters

None

DataType Property (DataComments Object)

Historian | 11 - Historian SDK | 1681

Sets the data type to search for in the TagRecordset query.

Syntax

object.DataType[= ihDataType]

Parameters

None

DataType Property (TagFields Object)

Determines whether the DataType field should be returned in the TagRecordset query.

Syntax

object.DataType = Boolean]

Parameters

None

DataTypeList Property (Tags Object)

Returns the list of Historian data types.

Syntax

object.DataTypeList

Parameters

None

Remarks

DataTypeList is a read-only property of type Variant.

DataTypeSet Property (TagCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.DataTypeSet[= Boolean]

Parameters

Historian | 11 - Historian SDK | 1682

None

DataTypeUpdated Property (Tag Object)

A flag to indicate whether this property has been set or not.

Syntax

object.DataTypeUpdated[= Boolean]

Parameters

None

DefaultCollectionInterval Property (Collector Object)

Returns or sets the Default Collection Interval property for the Collector.

Syntax

object.DefaultCollectionInterval[= Long]

Parameters

None

Example' Print Out The DefaultCollectionInterval configured for the collector Debug.Print

DefaultCollectionInterval Property (Collector Object)

Returns or sets the Default Collection Interval property for the Collector.

Syntax

object.DefaultCollectionInterval[= Long]

Parameters

None

Example

' Print Out The DefaultCollectionInterval configured for the collector Debug.Print

DefaultCollectionType Property (Collector Object)

Returns or sets the Default Collection Type for the given collector. This can be either Polled

or Solicited.

Historian | 11 - Historian SDK | 1683

Syntax

object.DefaultCollectionType[= iHistorian_SDK.ihCollectionType]

Parameters

None

Example

 ' Print Out The DefaultCollectionType configured for the collectorDebug.Print

 MyCollector.DefaultCollectorAbsoluteDeadband

DefaultCollectorAbsoluteDeadbanding Property (Collector Object)

Returns or sets the Default Collector Absolute Deadbanding for the Collector. This specifies

if the compression applied to newly added tags from the collector use absolute or relative

compression.

Syntax

object.DefaultCollectorAbsoluteDeadbanding[= Boolean]

Parameters

None

Example

' Print Out The DefaultCollectorAbsoluteDeadbanding configured for the collector DebugPr

DefaultCollectorCompression Property (Collector Object)

Returns or sets whether the collector uses Compression by default.

Syntax

object.DefaultCollectorCompression[= Boolean]

Parameters

None

Example

' Print Out The DefaultCollectorCompression configured for the collector Debug.Print MyColl

DefaultCollectorCompressionDeadband Property (Collector Object)

Historian | 11 - Historian SDK | 1684

Returns or sets the Default Collector Compression Deadband for the given collector. This is

default compression value to be applied to newly added tags from the collector.

Syntax

object.DefaultCollectorCompressionDeadband[= Single]

Parameters

None

Example

' Print Out The DefaultCollectorCompressionDeadband configured for the collector Debug.Print MyC

DefaultCollectorCompressionTimeout Property (Collector Object)

Returns or sets the Default Collector Compression Timeout for the Collector. This specifies

the amount of time after which a value will be sent to the archiver by the collector even if it

would have been compressed.

Syntax

object.DefaultCollectorCompressionTimeout[= Long]

Parameters

None

Example

' Print Out The DefaultCollectorCompressionTimeout configured for the collector Debug

DefaultLoadBalancing Property (Collector Object)

Returns or sets whether the collector uses Load Balancing by default.

Syntax

object.DefaultLoadBalancing[= Boolean]

Parameters

None

Example

' Print Out The DefaultLoadBalancing configured for the collector Debug.Print MyCo

DefaultServer Property (ServerManager Object)

Historian | 11 - Historian SDK | 1685

Returns or sets a reference to the default Server Object.

Syntax

object.DefaultServer

Parameters

None

DefaultSpikeInterval Property (Collector Object)

Returns or sets the Default Spike Interval property for the Collector.

Syntax

object.DefaultSpikeInterval[= Long]

Parameters

None

Example

' Print Out The DefaultSpikeInterval configured for the collector Debug.Print

 MyCollector.DefaultSpikeInter

DefaultSpikeLogic Property (Collector Object)

Returns or sets the Default Collector Spike Logic property for the Collector.

Syntax

object.DefaultSpikeLogic[= Boolean]

Parameters

None

Example

' Print Out The DefaultSpikeLogic configured for the collector Debug.Print

 MyCollector.DefaultSpikeLogic

DefaultSpikeMultiplier Property (Collector Object)

Returns or sets the Default Spike Multiplier property for the Collector.

Syntax

object.DefaultSpikeMultiplier[= Double]

Historian | 11 - Historian SDK | 1686

Parameters

None

Example

' Print Out The DefaultSpikeMultiplier configured for the collector Debug.Pri

DefaultTagPrefix Property (Collector Object)

Returns or sets the Default Tag Prefix property for the Collector.

Syntax

object.DefaultTagPrefix[= String]

Parameters

None

Example

' Print Out The DefaultTagPrefix configured for the collector Debug

DefaultTimestampType Property (Collector Object)

Returns or sets the Default Timestamp Type for the given collector. The Timestamps may be

assigned by either the Data Source or the Collector itself.

Syntax

object.DefaultTimestampType[= iHistorian_SDK.ihTimeStampType]

Parameters

None

Example

' Print Out The DefaultTimestampType configured for the collector Debug.Print

 MyCollector.DefaultTimestampType

Definition Property (UserCalcFunction Object)

Returns the definition of the specified UserCalcFunction.

Syntax

object.Definition[= String]

Historian | 11 - Historian SDK | 1687

Parameters

None

Description Property (Collector Object)

Returns or sets the description for the given collector.

Syntax

object.Description[= String]

Parameters

None

Example

' Print Out The Description configured for the collector Debug.P

Description Property (EnumeratedSets Object)

Returns or sets the description or comments for an enumerated set.

Syntax

object.Description

Parameters

None

Returns

String

Description Property (EnumeratedState Object)

Returns or defines the description or comments for a state.

Syntax

object.Description

Parameters

None

Remarks

Historian | 11 - Historian SDK | 1688

String. Returns the description or comments for each state.

Description Property (Tag Object)

Returns or sets the description of the Tag. Changes to tag Properties are not committed

until you call the WriteRecordset method of the TagRecordset object.

Syntax

object.Description[= String]

Parameters

None

Description Property (TagCriteria Object)

Sets the description or description mask to search for in the TagRecordset query. The

description may include wildcard characters.

Syntax

object.Description[= String]

Parameters

None

Description Property (TagFields Object)

Determines whether the Description field should be returned in the TagRecordset query.

Syntax

object.Description[= Boolean]

Parameters

None

Description Property (UserDefinedTypeFields Object)

Returns or sets the description or comments for a field in a User Defined Type.

Syntax

object.Description

Parameters

None

Historian | 11 - Historian SDK | 1689

Returns

String

DescriptionSet Property (TagCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.DescriptionSet[= Boolean]

Parameters

None

DescriptionUpdated Property (Tag Object)

A flag to indicate whether this property has been set or not.

Syntax

object.DescriptionUpdated[= Boolean]

Parameters

None

Direction Property (DataCriteria Object))

Sets the direction (forward or backward) of sampling data from the archive by the

DataRecordset query. This parameter is only used for "RawByNumber" Sampling Mode.

The following table details the available sampling directions.

Name Description Value

Forward Data sampled from the start time for

ward in time.

1

Backward Data sampled from the start time

backwards in time.

2

Syntax

object.Direction[= iHistorian_SDK.ihSamplingDirection]

Parameters

Historian | 11 - Historian SDK | 1690

None

DirectionSet Property (DataCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.DescriptionSet[= Boolean]

Parameters

None

Property Reference E-F

EndTime Property (Archive Object)

Returns the end time of the specified archive. This represents the latest timestamp for any

tag contained in the archive.

Syntax

object.EndTime

Parameters

None

Remarks

EndTime is a read-only property of type Date.

EndTime Property (DataCriteria Object)

Returns or sets the end of the time range to retrieve data for in the DataRecordset query.

Syntax

object.EndTime[= Date]

Parameters

None

EndTime Property (MessageCriteria Object)

Establishes the end time of the MessageRecordset query.

Historian | 11 - Historian SDK | 1691

Syntax

object.EndTime[= Date]

Parameters

None

EndTimeSet Property (DataCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.EndTimeSet[= Boolean]

Parameters

None

EndTimeSet Property (MessageCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.EndTimeSet[= Boolean]

Parameters

None

EndTimeShortcut Property (DataCriteria Object)

Returns or sets the end of the time range to retrieve data for in the DataRecordset query.

Shortcuts are strings that define absolute or relative times. The time shortcuts are the

following:

Value Description

(N)ow The current time (absolute).

(T)oday Today at midnight (absolute).

(Y)esterday Yesterday at midnight (absolute).

(D)ays Number of Days (relative).

Historian | 11 - Historian SDK | 1692

Value Description

(M)in Number of Minutes (relative).

(H)our Number of Hours (relative).

(W)eek Number of Weeks (relative).

(BOM) Beginning of this month at Midnight (absolute).

(EOM) Last Day of this month at Midnight (absolute).

(BOY) First Day of this year at Midnight (absolute).

(EOY) Last Day of this year at Midnight (absolute).

Syntax

object.EndTimeShortcut[= String]

Parameters

None

Example

With MyRecordset.Criteria .Tagmask = "*.F_CV" ' Start two days Ago at 8am in the morning

.StartTimeShortcut = "Today-2d+8h" ' End this morning at 8am .EndTimeShortcut = "Today+8h" End With

EndTimeShortcut Property (MessageCriteria Object)

Establishes the end time of the MessageRecordset query by specifying a time shortcut

string versus a date. The time shortcuts are the following:

Value Description

(N)ow The current time (absolute).

(T)oday Today at midnight (absolute).

(Y)esterday Yesterday at midnight (absolute).

(D)ays Number of Days (relative).

(M)in Number of Minutes (relative).

(H)our Number of Hours (relative).

(W)eek Number of Weeks (relative).

Historian | 11 - Historian SDK | 1693

Value Description

(BOM) Beginning of this month at Midnight (absolute).

(EOM) Last Day of this month at Midnight (absolute).

(BOY) First Day of this year at Midnight (absolute).

(EOY) Last Day of this year at Midnight (absolute).

Syntax

object.EndTimeShortcut[= String]

Parameters

None

Example

' Set A End Time For Now MyMessages.Criteria.EndTimeShortcut = "Now"

EndTimeShortcutSet Property (MessageCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.EndTimeShortcutSet[= Boolean]

Parameters

None

EngineeringUnits Property (Tag Object)>

Returns or sets the engineering unit description of the Tag. Changes to tag properties are

not committed until you call the WriteRecordset method of the TagRecordset object.

Syntax

object.EngineeringUnits[= String]

Parameters

None

EngineeringUnits Property (TagCriteria Object)

Historian | 11 - Historian SDK | 1694

Sets the engineering unit description to search for in the TagRecordset query.

Syntax

object.EngineeringUnits[= String]

Parameters

None

EngineeringUnits Property (TagFields Object)

Determines whether the EngineeeringUnits field should be returned in the TagRecordset

query.

Syntax

object.EngineeringUnits[= Boolean]

Parameters

None

EngineeringUnitsSet Property (TagCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.EngineeringUnits[= Boolean]

Parameters

None

EngineeringUnitsUpdated Property (Tag Object)

A flag to indicate whether this property has been set or not.

Syntax

object.EngineeringUnitsUpdated[= Boolean]

Parameters

None

ErrorList Property (Server Object)

Historian | 11 - Historian SDK | 1695

Returns a collection of error messages accumulated during the current session of the

Server object. Each message includes a timestamp indicating the time the error was

generated and each includes an error message translated into the locale of the client, when

possible.

Syntax

object.ErrorList

Parameters

None

Remarks

ErrorList is a read-only property of type Collection of String.

Example

ErrorTrap: Dim I As Long ' Loop through the ErrorList and print to the debug window

For I = 1 To MyServer.ErrorList.count Debug.Print MyServer.ErrorList(I) Next I

F

FailoverOnBadQuality Property (Collector Object)

Returns or sets whether the collector should automatically failover when the watchdog tag

quality goes to BAD.

Syntax

object.FailoverOnBadQuality[= Boolean]

Parameters

None

FailoverOnCollectorStatus Property (Collector Object)

Returns or sets whether the collector should automatically failover when the currently active

collector status goes to UNKNOWN.

Syntax

object.FailoverOnCollectorStatus[= Boolean]

Historian | 11 - Historian SDK | 1696

Parameters

None

FailoverOnNonZeroValue Property (Collector Object)

Returns or sets whether the collector should automatically failover when the watchdog tag

value goes to non-zero.

Syntax

object.FailoverOnNonZeroValue[= Boolean]

Parameters

None

FailoverOnValue Property (Collector Object)

Returns or sets whether the collector should automatically failover based on the value of

the watchdog tag. Set the FailoverOnNonZeroValue property or FailoverOnValueUnchanged

property to indicate the exact criteria.

Syntax

object.FailoverOnValue[= Boolean]

Parameters

None

FailoverOnValueUnchanged Property (Collector Object)

Returns or sets whether the collector should automatically failover when the watchdog tag

value remains unchanged. Use the WatchdogValueMaxUnchangedPeriod property to specify

the time period.

Syntax

object.FailoverOnValueUnchanged[= Boolean]

Parameters

None

Fields Property (DataRecordset Object)

Historian | 11 - Historian SDK | 1697

Returns the DataFields object which contains the information on which fields are returned in

the DataRecordSet

Syntax

object.Fields

Parameters

None

Fields Property (MessageRecordset Object)

Returns the Fields object that is used to identify which Message fields to return from the

Historian server when a MessageRecordset query executes.

Syntax

object.Fields

Parameters

None

Remarks

Fields is a read-only property of type MessageFields.

Fields Property (TagRecordset Object)

Returns the Fields object that is used to identify which Tag fields to return from the Historian

server when a TagRecordset query executes.

Syntax

object.Fields

Parameters

None

Remarks

Fields is a read-only property of type TagFields.

FileName Property (Archive Object)

Historian | 11 - Historian SDK | 1698

Returns or sets the file name of the specified archive. The filename must be specified in the

context of the Historian server drives and directories.

Changing the file name of an archive moves the archive from one file location to another.

Syntax

object.FileName[= String]

Parameters

None

Example

Dim I As Long ' List The FileName and FileSize Of Each Archive With MyArchives

For I = 1 To .Item.count Debug.Print .Item(I).Name, .Item(I).FileName, .Item(I).FileSizeCurrent

Next I End With ' Move The Archive To A New Directory,

Path Context Of Server On Error GoTo ErrorTrap MyArchive.FileName = NewArchiveFilename ErrorTrap:

Debug.Print "

FileSizeCurrent Property (Archive Object)

Returns the number of MB used in the specified archive file. This number is less than or

equal to the file size on disk.

Changing the file name of an archive moves the archive from one file location to another.

Syntax

object.FileSizeCurrent

Parameters

None

Remarks

FileSizeCurrent is a read-only property of type Long.

Example

Dim I As Long ' List The FileName and FileSizeCurrent Of Each Archive With MyArchives

For I = 1 To .Item.count Debug.Print .Item(I).Name, .Item(I).FileName, .Item(I).FileSizeCurrent

Next I End With

Historian | 11 - Historian SDK | 1699

FileSizeTarget Property (Archive Object)

Returns or sets the target file size for the specified archive file in MB.

Syntax

object.FileSizeTarget[= Long]

Parameters

None

Remarks

FileSizeCurrent is a read-only property of type Long.

Example

Debug.Print "Target File Size for archive " & MyArchive.FileSizeTarget

FilterComparisonMode Property (DataCriteria Object)

Returns or sets the type of comparison to be made on the FilterComparisonValue to apply

appropriate filter to the DataRecordset query. If a FilterTag and FilterComparisonValue

are supplied the query attempts to filter out time periods from the results where the filter

condition is False. The FilterComparisonMode defines how archive values for the FilterTag

should be compared to the FilterComparisonValue to establish the state of the filter

condition.

The table below defines the available Filter Comparison Modes:

Value Description Value

Equal Filter condition is True when the FilterTag is equal to

the comparison value.

1

NotEqual Filter condition is True when the FilterTag is NOT

equal to the comparison value.

2

LessThan Filter condition is True when the FilterTag is less

than the comparison value.

3

GreaterThan Filter condition is True when the FilterTag is greater

than the comparison value.

4

Historian | 11 - Historian SDK | 1700

Value Description Value

LessThanEqual Filter condition is True when the FilterTag is less

than or equal to the comparison value.

5

GreaterThanEqual Filter condition is True when the FilterTag is greater

than or equal to the comparison value.

6

Syntax

object.FilterComparisonMode[= iHistorian_SDK.ihFilterComparisonMode]

Parameters

None

FilterComparisonModeList Property (Data Object)

This function returns a list of the available Filter Comparison modes for a data request.

Syntax

object.FilterComparisonModeList

Parameters

None

FilterComparisonModeSet Property (DataCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.FilterComparisonModeSet[= Boolean]

Parameters

None

FilterComparisonValue Property (DataCriteria Object)

Sets the value to compare the filter tag with when applying the appropriate filter to the

DataRecordset query.

Syntax

Historian | 11 - Historian SDK | 1701

object.FilterComparisonValue[= Variant]

Parameters

None

FilterComparisonValue Property (DataCriteria Object)

Sets the value to compare the filter tag with when applying the appropriate filter to the

DataRecordset query.

Syntax

object.FilterComparisonValue[= Variant]

Parameters

None

FilterComparisonValueSet Property (DataCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.FilterComparisonValueSet[= Boolean]

Parameters

None

FilterMode Property (DataCriteria Object)

Returns or sets the type of time filter applied to the DataRecordset query. If a FilterTag

and FilterComparisonValue are supplied the query attempts to filter time periods from

the results where the filter condition equals False. The FilterMode defines how time

periods before and after transitions in the filter condition should be handled. For example,

"AfterTime" indicates that the filter condition should be True starting at the timestamp of

the archive value that triggered the True condition and leading up to the timestamp of the

archive value that triggered the False condition.

Use the filter query to directly retrieve data for a particular lot number or batch of material.

In this scenario, you must know whether the batch number was written into the archive at

the beginning of the batch or at the end of the batch. If the batch number is written at the

Historian | 11 - Historian SDK | 1702

beginning of the batch, use the "AfterTime" filter mode. If the batch number is written at the

end of the batch, use the "BeforeTime" filter mode.

The table below defines the available Filter Modes:

Name Description Value

ExactTime Retrieves data for the exact times that the filter con

dition is True.

1

BeforeTime Retrieves data from the time of the last False filter

condition up until the time of the True condition.

2

AfterTime Retrieves data from the time of the True filter condi

tion up until the time of next False condition

3

BeforeAndAfterTime Retrieves data from the time of the last False filter

condition up until the time of next False condition.

4

Syntax

object.FilterMode[= iHistorian_SDK.ihFilterMode]

Parameters

None

FilterModeList Property (Data Object)

This function returns a list of the available Filtering modes for a data request.

Syntax

object.FilterModeList

Parameters

None

FilterModeSet Property (DataCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.FilterModeSet[= Boolean]

Historian | 11 - Historian SDK | 1703

Parameters

None

FilterTag Property (DataCriteria Object)

Returns or sets the tagname used to define the filter applied to the DataRecordset query.

You can only specify a single tag (no wildcards).

Syntax

object.FilterTag[= String]

Parameters

None

FilterTagSet Property (DataCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.FilterTagSet[= Boolean]

Parameters

None

FullAreaNames Property (OPCBrowse Object)

Returns the fully-qualified area name for an AE server. When a browse operation occurs, the

server returns all areas and sources under the BrowsePosition. The areas are akin to nodes

(they can be set to the next browse position to traverse the tree). Sources are like leaves,

and do not have children.

After a browse, the areas and leaves are populated in arrays, and the LeafName and

AreaName properties allow you to access those arrays by index. The fully-qualified area

name should be used to set the Browse Position. The Areanames property is used to display

the individual areas.

Syntax

object.FullAreaNames(Index)

Parameters

Historian | 11 - Historian SDK | 1704

Index - Integer - The index into the full area name array.

Remarks

FullAreaNames is a read-only String property returned as a variant for script compatibility.

FullLeafNames Property (OPCBrowse Object)

Returns the fully-qualified leaf name (source) for an AE server. When a browse operation

occurs, the server returns all areas and sources under the BrowsePosition. The areas are

akin to nodes (they can be set to the next browse position to traverse the tree). Sources are

like leaves, and do not have children.

After a browse, the areas and leaves are populated in arrays, and the LeafName and

AreaName properties allow you to access those arrays by index.

Syntax

object.FullLeafNames(Index)

Parameters

Index - Integer - The index into the full leaf name array.

Remarks

FullLeafNames is a read-only String property returned as a variant for script compatibility.

Property Reference G-H

G

General1 Property (Collector Object)

Returns or sets the general fields of the specified collector. The general fields control the

behavior of specific collector types. Refer to the documentation of a specific collector type

to interpret the meaning of the general collector fields for that collector type.

Syntax

object.General1[= String]

Parameters

None

Historian | 11 - Historian SDK | 1705

Example

MyCollector.General1 = "CanUseOPCTime=True"

General2 Property (Collector Object)

Returns or sets the general fields of the specified collector. The general fields control the

behavior of specific collector types. Refer to the documentation of a specific collector type

to interpret the meaning of the general collector fields for that collector type.

Syntax

object.General2[= String]

Parameters

None

General3 Property (Collector Object)

Returns or sets the general fields of the specified collector. The general fields control the

behavior of specific collector types. Refer to the documentation of a specific collector type

to interpret the meaning of the general collector fields for that collector type.

Syntax

object.General3[= String]

Parameters

None

General4 Property (Collector Object)

Returns or sets the general fields of the specified collector. The general fields control the

behavior of specific collector types. Refer to the documentation of a specific collector type

to interpret the meaning of the general collector fields for that collector type.

Syntax

object.General4[= String]

Parameters

None

General5 Property (Collector Object)

Historian | 11 - Historian SDK | 1706

Returns or sets the general fields of the specified collector. The general fields control the

behavior of specific collector types. Refer to the documentation of a specific collector type

to interpret the meaning of the general collector fields for that collector type.

Syntax

object.General4[= String]

Parameters

None

H

Handle Property (Server Object)

Returns the internal identifier for the current server.

Syntax

object.Handle

Parameters

None

Remarks

Handle is a read-only property of type Long.

HeartbeatOutputAddress Property (Collector Object)

Returns or sets the address in the data source that the collector sends heartbeat

information to. The collector will write a 1 to this address once per minute.

Syntax

object.HeartbeatOutputAddress[= String]

Parameters

None

Example

'Print Out The Heartbeat Output Address configured for the collector DebugPrint

 MyCollector.HeartbeatOutputAddress

Historian | 11 - Historian SDK | 1707

HiEngineeringUnits Property (Tag Object)

Returns or sets the high engineering unit range of the Tag. Changes to tag properties are not

committed until you call the WriteRecordset method of the TagRecordset object.

Syntax

object.HiEngineeringUnits[= Double]

Parameters

None

HiEngineeringUnits Property (TagCriteria Object)

Sets the high engineering unit range to search for in the TagRecordset query.

Syntax

object.HiEngineeringUnits[= Double]

Parameters

None

HiEngineeringUnits Property (TagFields Object)

Determines whether the HiEngineeringUnits field should be returned in the TagRecordset

query.

Syntax

object.HiEngineeringUnits[= Boolean]

Parameters

None

HiEngineeringUnitsSet Property (TagCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.HiEngineeringUnitsSet[= Boolean]

Parameters

Historian | 11 - Historian SDK | 1708

None

HiEngineeringUnitsUpdated Property (Tag Object)

A flag to indicate whether this property has been set or not.

Syntax

object.HiEngineeringUnitsUpdated[= Boolean]

Parameters

None

HiScale Property (Tag Object)

Sets the high scale value used for input scaling on the Tag. Changes to tag properties are

not committed until you call the WriteRecordset method of the TagRecordset object.

Syntax

object.HiScale[= String]

Parameters

None

HiScale Property (TagCriteria Object)

Sets the high input scale range value to search for in the TagRecordset query.

Syntax

object.HiScale[= String]

Parameters

None

HiScale Property (TagFields Object)

Determines whether the HiScale field should be returned in the TagRecordset query.

Syntax

object.HiScale[= Boolean]

Parameters

Historian | 11 - Historian SDK | 1709

None

HiScaleSet Property (TagCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.HiScaleSet[= Boolean]

Parameters

None

HiScaleUpdated Property (Tag Object)

A flag to indicate whether this property has been set or not.

Syntax

object.HiScaleUpdated[= Boolean]

Parameters

None

HighPart Property (QueryModifiers Object)

Returns or sets the HighPart of the query modifier. Use the Server.CriteriaFromStrings

method to determine the HighPart and LowPart of a query modifier.

Syntax

object.HighPart

Parameters

None

Remarks

Long

HighSeverity Property (OPCFilters Object)

Gets/Sets the High Severity filter in the Alarm Collector. Only events with a severity less than

or equal to HighSeverity will be collected.

Historian | 11 - Historian SDK | 1710

Syntax

object.HighSeverity[= Long]

Parameters

None

Property Reference I-J

I

Id Property (DataStore Object)

Returns or sets the ID (GUID) of a data store. This is a read-only property.

Syntax

object.Id

Parameters

None

Remarks

String. This is a read-only property.

ImportErrors Property (Alarms Object)

Returns a list of Import Error messages.

Syntax

object.ImportErrors

Parameters

None

ImportErrors Property (DataRecordset Object)

Returns a list of Import Error messages.

Syntax

object.ImportErrors

Historian | 11 - Historian SDK | 1711

Parameters

None

ImportErrors Property (MessageRecordset Object)

Returns a list of Import Errors.

Syntax

object.ImportErrors

Parameters

None

ImportErrors Property (TagRecordset Object)

Returns a list of tag import errors.

Syntax

object.ImportErrors

Parameters

None

InputScaling Property (Tag Object)

Returns or sets whether input scaling is enabled for the Tag. Changes to tag properties are

not committed until you call the WriteRecordset method of the TagRecordset object.

Syntax

object.InputScaling[= Boolean]

Parameters

None

InputScaling Property (TagCriteria Object)

Sets the input scaling to search for in the TagRecordset query.

Syntax

object.InputScaling[= Boolean]

Historian | 11 - Historian SDK | 1712

Parameters

None

InputScaling Property (TagFields Object)

Determines whether the InputScaling field should be returned in the TagRecordset query.

Syntax

object.InputScaling[= Boolean]

Parameters

None

InputScalingSet Property (TagCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.InputScalingSet[= Boolean]

Parameters

None

InputScalingUpdated Property (Tag Object)

A flag to indicate whether this property has been set or not.

Syntax

object.InputScalingUpdated[= Boolean]

Parameters

None

IsSystem Property (DataStore Object)

Indicates or sets that data store is the single-system data store and therefore, cannot be

modified.

Syntax

object.IsSystem

Historian | 11 - Historian SDK | 1713

Parameters

None

InterfaceAbsoluteDeadband Property (Tag Object)

Returns or sets the Absolute Deadband value for this tag to be used in the Collector.

Syntax

object.InterfaceAbsoluteDeadband[= Double]

Parameters

None

InterfaceAbsoluteDeadband Property (TagCriteria Object)

Sets the InterfaceAbsoluteDeadband to search for in the TagRecordset query.

Syntax

object.InterfaceAbsoluteDeadband[= Double]

Parameters

None

InterfaceAbsoluteDeadband Property (TagFields Object)

Determines whether the InterfaceAbsoluteDeadband field should be returned in the

TagRecordset query.

Syntax

object.InterfaceAbsoluteDeadband[= Double]

Parameters

None

InterfaceAbsoluteDeadbandSet Property (TagCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.InterfaceAbsoluteDeadbandSet[= Boolean]

Historian | 11 - Historian SDK | 1714

Parameters

None

InterfaceAbsoluteDeadbandUpdated Property (Tag Object)

A flag to indicate whether this property has been set or not.

Syntax

object.InterfaceAbsoluteDeadbandUpdated[= Boolean]

Parameters

None

InterfaceAbsoluteDeadbanding Property (Tag Object)

Returns or sets whether this tag is using Absolute Deadbanding in the Collector or not.

Syntax

object.InterfaceAbsoluteDeadbanding[= Boolean]

Parameters

None

InterfaceAbsoluteDeadbanding Property (TagCriteria Object)

Sets the InterfaceAbsoluteDeadbanding to search for in the TagRecordset query.

Syntax

object.InterfaceAbsoluteDeadbanding[= Boolean]

Parameters

None

InterfaceAbsoluteDeadbanding Property (TagFields Object)

Determines whether the InterfaceAbsoluteDeadbanding field should be returned in the

TagRecordset query.

Syntax

object.InterfaceAbsoluteDeadbanding[= Boolean]

Historian | 11 - Historian SDK | 1715

Parameters

None

InterfaceAbsoluteDeadbandingSet Property (TagCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.InterfaceAbsoluteDeadbandingSet[= Boolean]

Parameters

None

InterfaceAbsoluteDeadbandingUpdated Property (Tag Object)

A flag to indicate whether this property has been set or not.

Syntax

object.InterfaceAbsoluteDeadbandingUpdated[= Boolean]

Parameters

None

IsActiveRedundantCollector Property (Collector Object)

Returns whether this collector is currently the active collector in a redundant set of

collectors.

Syntax

object.IsActiveRedundantCollector

Parameters

None

Remarks

IsActiveRedundantCollector is a read-only property of type Boolean.

IsAudited Property (Data Object)

Returns whether or not this data has an Audit Trail associated with it.

Historian | 11 - Historian SDK | 1716

Syntax

object.IsAudited

Parameters

None

IsAudited Property (Server Object)

Returns or sets whether the point verification feature is enabled. With point verification

enabled, the system will prompt for a username and password upon any request to change

data or configuration.

Syntax

object.IsAudited[= Boolean]

Parameters

None

IsCurrent Property (Archive Object)

Returns whether or not the specified archive is the newest archive where new data currently

flows into.

Syntax

object.IsCurrent

Parameters

None

Remarks

IsCurrent is a read-only property of type Boolean.

Example

'Find The Current Archive, Then Initiate A Backup With MyArchives

For I = 1 To .Item.count If .Item(I).IsCurrent Then

If Not .Item(I).Backup(BackupFilename) Then err.Raise 1, "Backup", "Backup Failed" End If

End If Next I End With

Historian | 11 - Historian SDK | 1717

IsDefaultServer Property (Server Object)

Returns and/or determines if the current server is the default server. You can create an

instance of the Server object and connect it without supplying a server name, username, or

password. In this case, the default server and associated user information establishes the

default connection.

Syntax

object.IsDefaultServer

Parameters

None

IsDeleted Property (DataValue Object)

This function returns a Boolean which indicates whether or not this DataValue has been

deleted or not.

Syntax

object.IsDeleted

Parameters

None

IsDeleted Property (Tag Object)

Returns whether or not this tag has been deleted.

Syntax

object.IsDeleted

Parameters

None

Modified Property (DataValue Object)

This function returns Boolean which indicates whether or not any of this DataValue's fields

have been modified.

Syntax

Historian | 11 - Historian SDK | 1718

object.IsModified

Parameters

None

IsModified Property (Tag Object)

Returns whether or not this tag has been modified.

Syntax

object.IsModified

Parameters

None

IsNew Property (DataComments Object)

Returns whether or not this Comment is new or not.

Syntax

object.IsNew

Parameters

None

IsNew Property (DataValue Object)

This function returns a Boolean which indicates whether or not this DataValue is new.

Syntax

object.IsNew

Parameters

None

IsNew Property (Message Object)

Returns whether this is a new message or not.

Syntax

Historian | 11 - Historian SDK | 1719

object.IsNew

Parameters

None

IsNew Property (Tag Object)

Tag.IsNew indicates whether this is a newly created tag. Returns true if the tag’s name does

not exist in the server.

Syntax

object.IsNew

Parameters

None

Item Property (Archives Object)

Returns a specific Archive object contained in the Archives object. The Item collection can

loop through all Archives, or reference a specific Archive object directly by archive name.

The Archive Item collection automatically populates when the Archives object is

instantiated.

Syntax

object.Item

Parameters

None

Remarks

Item is a read-only property of type Collection of Archives.

Item Property (Collectors Object)

Returns a specific Collector object contained in the Collectors Object collection. The Item

collection can loop through all Collectors, or reference a specific Collector object directly by

Collector name.

Historian | 11 - Historian SDK | 1720

The Collector Item collection automatically populates when the Collectors object is

instantiated.

Syntax

object.Item

Parameters

None

Remarks

Item is a read-only property of type Collection.

Item Property (DataRecordset Object)

Returns a specific DataValue object contained in the DataRecordset object. The Item

collection can loop through all DataValues, or reference a specific DataValue object directly

by Tagname and Timestamp.

The DataRecordset (and thus the Item collection) is populated with DataValues in three

ways. The first is to set up query criteria and call the QueryRecordset method. The second

is to import a list of DataValues using the Import method. The last way is to use the Add

method to add new DataValues.

Syntax

object.Item(Tagname)

Parameters

Tagname - Variant - The name of the tag whose values to retrieve.

Remarks

Item is a read-only property of type Collection of DataValue.

Item Property (DataStores Object)

Returns a specific data store object contained in the DataStores Object collection. The Item

collection can loop through all DataStores, or reference a specific DataStore object directly

by DataStore name.

Syntax

Historian | 11 - Historian SDK | 1721

object.Item() As Collection

Parameters

None

Remarks

Item is a read-only property of type Collection.

Item Property (EnumeratedStates Object)

Returns an individual item from the EnumeratedStates collection.

Parameters

None

Remarks

Enumerated State.

Item Property (MessageRecordset Object)

Returns a specific Message object contained in the MessageRecordset object. The Item

collection can loop through all Messages or reference a specific Message object directly by

the timestamp.

The MessageRecordset (and thus the Item collection) populates with the Message in two

ways: set up query criteria and call the QueryRecordset method, or use the Add method to

add new Messages. Item is a read-only property of type Collection of Message.

Syntax

object.Item

Parameters

None

Item Property (TagDependencies Object)

This function attempts to find the given Tagname within the collection of currently

configured tags.

Syntax

Historian | 11 - Historian SDK | 1722

object.Item(Tagname)

Parameters

Tagname - Variant - Name of the tag to locate.

Item Property (TagRecordset Object)

Returns a specific Tag object contained in the TagRecordset object. The Item collection can

loop through all Tags, or reference a specific Tag object directly by the tag name.

The TagRecordset (and thus the Item collection) populates with Tags in three ways:

The first is to set up query criteria and call the QueryRecordset method. The second is to

import a list of Tags using the Import method. The last way is to use the Add method to add

new Tags.

Syntax

object.Item

Parameters

None

Remarks

Item is a read-only property of type Collection of Tag.

Item Property (UserDefinedTypeFields Object)

Returns an individual item from the multiple fields of the User Defined Type.

Syntax

object.item(Index)

Parameters

Index - Variant - The index has to be returned.

Remarks

UserDefinedTypeField.

Historian | 11 - Historian SDK | 1723

Property Reference K-L

L

LastBackup Property (Archive Object)

Returns the date and time of the last archive backup.

Syntax

object.LastBackup

Parameters

None

Remarks

LastBackup is a read-only property of the type Date.

Example

Dim I As Long ' List The Start and End Time Of Each Archive With MyArchives For I = 1 To .Item.count

Debug.Print .Item(I).Name, .Item(I).StartTime, .Item(I).LastBackup Next I End With

LastBackupUser Property (Archive Object)

Returns username of the person who performed the last backup of the archive.

Syntax

object.LastBackupUser

Parameters

None

Remarks

LastBackupUser is a read-only property of type String.

Example

Debug.Print "Modified By: " + MyArchive.LastBackupUser

LastError Property (Archive Object)

Historian | 11 - Historian SDK | 1724

Returns the last error message encountered by the Archive object. To see a complete list of

messages, refer to the ErrorList property. When possible, the system translates messages

into the locale of the client.

Syntax

object.LastError

Parameters

None

Remarks

LastError is a read-only property of type String.

LastError Property (Archives Object)

Returns the last error message encountered by the Archives object. To see a complete list of

messages, refer to the ErrorList property. When possible, the system translates messages

into the locale of the client.

Syntax

object.LastError

Parameters

None

Remarks

LastError is a read-only property of type String.

LastError Property (Collector Object)

Returns the last error message encountered by the Collector object. To see a complete list

of messages, refer to the ErrorList property. When possible, the system translates messages

into the locale of the client.

Syntax

object.LastError

Parameters

Historian | 11 - Historian SDK | 1725

None

Remarks

LastError is a read-only property of type String.

LastError Property (Collectors Object)

Returns the last error message encountered by the Collectors Object. To see a complete list

of messages, refer to the ErrorList property. When possible, the system translates messages

into the locale of the client.

Syntax

object.LastError

Parameters

None

Remarks

LastError is a read-only property of type String.

LastError Property (DataRecordset Object)

Returns the last error message encountered by the DataRecordset object. To see a complete

list of messages, refer to the ErrorList property. When possible, the system translates

messages into the locale of the client.

Syntax

object.LastError

Parameters

None

Remarks

LastError is a read-only property of type String.

LastError Property (DataStores Object)

Returns the last error message encountered by the Collectors Object.

Syntax

Historian | 11 - Historian SDK | 1726

object.LastError

Parameters

None

Remarks

LastError is a read-only property of type String.

LastError Property (EnumeratedSets Object)

Returns the last error message encountered by the EnumeratedSets object. To see a

complete list of messages, refer to the ErrorList Property. When possible, the system

translates messages into the locale of the client.

Syntax

object.LastError()

Parameters

None

Remarks

String. Indicates whether the string contains an error or not. This is a read-only property.

LastError Property (EnumeratedSets Object)

Returns the last error message encountered by the EnumeratedSets object. To see a

complete list of messages, refer to the ErrorList Property. When possible, the system

translates messages into the locale of the client.

Syntax

object.LastError()

Parameters

None

Remarks

String. Indicates whether the string contains an error or not. This is a read-only property.

LastError Property (Messages Object)

Historian | 11 - Historian SDK | 1727

Returns the last error message encountered by the EnumeratedSets object. To see a

complete list of messages, refer to the ErrorList Property. When possible, the system

translates messages into the locale of the client.

Syntax

object.LastError()

Parameters

None

Remarks

LastError is a read-only property of type String.

LastError Property (Messages Object)

Returns the last error message encountered by the EnumeratedSets object. To see a

complete list of messages, refer to the ErrorList Property. When possible, the system

translates messages into the locale of the client.

Syntax

object.LastError

Parameters

None

Remarks

LastError is a read-only property of type String.

LastError Property (Server Object)

Returns the last error message encountered by the Server object. To see a complete list of

messages, refer to the ErrorList property. When possible, the system translates messages

into the locale of the client.

Syntax

object.LastError[= String]

Parameters

Historian | 11 - Historian SDK | 1728

None

LastError Property (ServerManager Object)

Returns a text description of the last error encountered by the ServerManager object.

Syntax

object.LastError

Parameters

None

Remarks

LastError is a read-only property of type String.

LastError Property (Tag Object)

Contains the last error string generated.

Syntax

object.LastError[= String]

Parameters

None

LastError Property (TagRecordset Object)

Returns the last error message encountered by the TagRecordset object. To see a complete

list of messages, refer to the ErrorList property. When possible, the system translates

messages into the locale of the client.

Syntax

object.LastError

Parameters

None

Remarks

LastError is a read-only property of type String.

Historian | 11 - Historian SDK | 1729

LastError Property (Tags Object)

Returns the last error message encountered by the Tags Object. To see a complete list of

messages, refer to the ErrorList property. When possible, the system translates messages

into the locale of the client.

Syntax

object.LastError

Parameters

None

Remarks

LastError is a read-only property of type String.

LastModified Property (Tag Object)

Returns the time the tag configuration of this Tag was last modified.

Syntax

object.LastModified

Parameters

None

Remarks

LastModified is a read-only property of type Date.

LastModified Property (TagCriteria Object)

Sets the last modified time to search for in the TagRecordset query.

Syntax

object.LastModified[= Date]

Parameters

None

LastModified Property (TagFields Object)

Historian | 11 - Historian SDK | 1730

Determines whether the LastModified field should be returned in the TagRecordset query.

Syntax

object.LastModified[= Boolean]

Parameters

None

LastModified Property (UserDefinedTypes Object)

Returns the time when the User Defined Type was last modified.

Syntax

object.LastModified

Parameters

None

Returns

LastModified is a read-only property of type Date.

LastModifiedSet Property (TagCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.LastModified[= Boolean]

Parameters

None

LastModifiedUser Property (Tag Object)

Returns the user who last modified this Tag configuration.

Syntax

object.LastModifiedUser

Parameters

Historian | 11 - Historian SDK | 1731

None

Remarks

LastModifiedUser is a read-only property of type Date.

LastModifiedUser Property (TagCriteria Object)

Sets the last modified user to search for in the TagRecordset query.

Syntax

object.LastModifiedUser[=string]

Parameters

None

LastModifiedUser Property (TagFields Object)

Determines whether the LastModifiedUser field should be returned in the TagRecordset

query.

Syntax

object.LastModifiedUser[=Boolean]

Parameters

None

LastModifiedUser Property (UserDefinedType Object)

Returns the last user that modified the User Defined Type.

Syntax

object.LastModifiedUser

Parameters

None

Returns

LastModifiedUser is a read-only property of type String.

LastModifiedUserSet Property (TagCriteria Object)

Historian | 11 - Historian SDK | 1732

A flag to indicate whether this property has been set or not.

Syntax

object.LastModifiedUser[=Boolean]

Parameters

None

LeafCount Property (OPCBrowse Object)

Returns the number of leaves under a browse position. When a browse operation occurs,

the server returns all areas and sources under the BrowsePosition. LeafCount gives you the

number of leaves, which you can use to iterate the LeafNames and FullLeafNames arrays.

Syntax

object.LeafCount

Parameters

None

Returns

LeafCount is a read-only property of type String.

LeafNames Property (OPCBrowse Object)

Returns the display leaf name (source) for an AE server. See "FullLeafnames" property for

more information.

Syntax

object.LeafNames(Index)

Parameters

Index - Integer - The index into the leaf name array.

Returns

LeafNames is a read-only String property returned as a variant for script compatibility.

LicensedTags Property (Server Object)

Historian | 11 - Historian SDK | 1733

Returns the maximum number of tags that you can configure on the Server.

Syntax

object.LicensedTags(Index)

Parameters

None

Remarks

LicensedTags is a read-only property of type Long.

LicensedUsers Property (Server Object)

Returns the maximum number of users that may be connected to the Server at one time.

Syntax

object.LicensedUsers

Parameters

None

Remarks

LicensedUser is a read-only property of type Long.

LoEngineeringUnits Property (Tag Object)

Returns or sets the low engineering unit range of the Tag. Changes to tag properties are not

committed until you call the WriteRecordset method of the TagRecordset object.

Syntax

object.LoEngineeringUnits[= Double]

Parameters

None

LoEngineeringUnits Property (TagCriteria Object)

Sets the low engineering unit range to search for in the TagRecordset query.

Syntax

Historian | 11 - Historian SDK | 1734

object.LoEngineeringUnits[= Double]

Parameters

None

LoEngineeringUnits Property (TagFields Object)

Determines whether the LoEngineeringUnits field should be returned in the TagRecordset

query.

Syntax

object.LoEngineeringUnits[= Boolean]

Parameters

None

LoEngineeringUnitsSet Property (TagCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.LoEngineeringUnitsSet[= Boolean]

Parameters

None

LoEngineeringUnitsUpdated Property (Tag Object)

A flag to indicate whether this property has been set or not.

Syntax

object.LoEngineeringUnitsUpdated[= Boolean]

Parameters

None

LoScale Property (Tag Object)

Returns or sets the low scale value used for input scaling on the Tag. Changes to tag

properties are not committed until you call the WriteRecordset method of the TagRecordset

object.

Historian | 11 - Historian SDK | 1735

Syntax

object.LoScale[= String]

Parameters

None

LoScale Property (TagCriteria Object)

Sets the low input scale range value to search for in the TagRecordset query.

Syntax

object.LoScale[= String]

Parameters

None

LoScale Property (TagFields Object)

Determines whether the LoScale field should be returned in the TagRecordset query.

Syntax

object.LoScale[= Boolean]

Parameters

None

LoScale Property (TagCriteria Object)

Determines whether the LoScale field should be returned in the TagRecordset query.

Syntax

object.LoScaleSet[= Boolean]

Parameters

None

LoScaleUpdated (Tag Object)

A flag to indicate whether this property has been set or not.

Historian | 11 - Historian SDK | 1736

Syntax

object.LoScaleUpdated[= Boolean]

Parameters

None

LoadBalancing Property (Tag Object)

Returns or sets the status of data collection load balancing for the Tag. Load balancing

is used for polled type collection to evenly distribute data collection load over available

sampling times. This is sometimes called "Phase Shifting". Changes to tag properties are

not committed until you call the WriteRecordset method of the TagRecordset object.

Syntax

object.LoadBalancing[= Boolean]

Parameters

None

LoadBalancing Property (TagCriteria Object)

Sets the load balancing to search for in the TagRecordset query.

Syntax

object.LoadBalancing[= Boolean]

Parameters

None

LoadBalancing Property (TagFields Object)

Determines whether the LoadBalancing field should be returned in the TagRecordset query.

Syntax

object.LoadBalancing[= Boolean]

Parameters

None

LoadBalancingSet Property (TagCriteria Object)

Historian | 11 - Historian SDK | 1737

A flag to indicate whether this property has been set or not.

Syntax

object.LoadBalancingSet[= Boolean]

Parameters

None

LoadBalancingUpdated Property (Tag Object)

A flag to indicate whether this property has been set or not.

Syntax

object.LoadBalancingUpdated[= Boolean]

Parameters

None

LowPart Property (QueryModifiers Object)

Returns or sets the LowPart of query modifier. Use the Server.CriteriaFromStrings method to

determine the HighPart and LowPart of a query modifier.

Syntax

object.LowPart

Parameters

None

Remarks

Long

LowSeverity Property (OPCFilters Object)

Gets/Sets the Low Severity filter in the Alarm Collector. Only events with a severity higher

than or equal to LowSeverity will be collected.

Syntax

object.LowSeverity[= Long]

Historian | 11 - Historian SDK | 1738

Parameters

None

Property Reference M-N
M

MaintainAutoRecoveryFiles Property (Server Object)

Returns or sets whether auto recovery files are maintained by the server. Auto recovery

files are periodic backups of the current .IHA and .IHC and protect against data loss due to

ungraceful server shutdown.

Syntax

object.MaintainAutoRecoveryFiles[= Boolean]

Parameters

None

MajorVersion Property (Server Object)

Returns the server or client major version number (1, 2, 3, and so on).

Syntax

object.MajorVersion([API])

Parameters

Name Data Type Description

API Boolean When True, the server version is re

turned. When False, the client version is

returned. The default is False.

Remarks

MajorVersion is a read-only property of type Long.

Master Property (TagRecordset Object)

Returns the Master tag upon which bulk changes to tag configuration may be performed.

When calling the WriteRecordset method, and supplying the "UserMasterTag" parameter, all

Historian | 11 - Historian SDK | 1739

changes made to the Master tag will be replicated to each tag in the TagRecordset whose

Selected property is set to True.

Syntax

object.Master([ClearUpdates])

Parameters

Name Data Type Description

ClearUpdates Boolean Whether to clear all pending updates in

the master tag (optional, default = False).

Remarks

Master is a read-only property of type Tag.

Example

Dim Recordset As TagRecordset Dim Master As Tag ' Get a new TagRecordset Set Recordset =

 MyServer.Tags.NewRecordset '

Fill in criteria, get all tags with collector compression on With Recordset.Criteria

 .Tagname = "*" .CollectorCompression = True End With Recordset.QueryRecordset

Set Master = Recordset.Master ' Set Compression Percent to 0.5% Master.CollectorDeadbandPercentRange =

 0.5 '

Select all tags in the recordset Recordset.SelectAll ' Commit Changes If Not

 Recordset.WriteRecordset(True)

Then MsgBox "Failed To Commit Tag Changes" End If

MaxReturnCells Property (DataRecordset Object)

Sets the Maximum number of cells to return in the DataRecordSet.

Syntax

object.MaxReturnCells([size])

Parameters

Name Data Type Description

Size Long Number of cells to return.

Historian | 11 - Historian SDK | 1740

MaximumQueryIntervals Property (Server Object)

Returns or sets the maximum query intervals enforced by the server. This property restricts

the maximum number of samples per tag that the server can return for non-raw data

queries. Filtered and raw data queries are not throttled.

Syntax

object.MaximumQueryIntervals([Long])

Parameters

None

MaximumQueryTime Property (Server Object)

Returns or sets the maximum query time enforced by the server. The property restrict query

times and provides balanced access to the server.

Syntax

object.MaximumQueryTime([Long])

Parameters

None

MessageNumber Property (Message Object)

Returns the message number of the Message. A message number is a unique identifier for

each Message required for national language support.

Syntax

object.MessageNumber[Long]

Parameters

None

Remarks

MessageNumber is a read-only property of type Long.

MessageNumber Property (MessageCriteria Object)

Historian | 11 - Historian SDK | 1741

Establishes which message number the MessageRecordset query will filter by. A message

number is a unique identifier for each Message required for national language support.

Syntax

object.MessageNumber[Long]

Parameters

None

MessageNumber Property (MessageFields Object)

Determines whether the MessageNumber field should be returned in the MessageRecordset

query.

Syntax

object.MessageNumber[=Boolean]

Parameters

None

MessageNumberSet Property (MessageCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.MessageNumberSet[=Boolean]

Parameters

Option Description

MessageOnDataUpdate Determines whether data updates generate a message.

MessageOptions Property (Messages Object)

Exposes the MessageOptions collection to control the behavior of the Historian message

generation and archiving.

If the property is set to True, all applications connected to the archiver will cause the

archiver to generate a message on a data update, not just the application that set the

Historian | 11 - Historian SDK | 1742

property. For instance, if you set the property with the SDK and the File collector updates

data (a single value) a message will be generated by the archiver.

An example of a message that appears in Historian Administrator after you change a

specified tag property through the SDK would be:

bsmith(MY_DOMAIN\bsmith) wrote 96 to tag aa at 01/10/2003 04:13:49.861 PM, Replaced 94.000

The message topic type would be Security.

The following table describes each of the messaging options:

Syntax

object.MessageOptions(OptionName)[=Variant]

Parameters

Name Data Type Description

OptionName String The name of the message option.

Remarks

MessageOptions is a read-only property of type Collection of options.

Example

 ConnectedServer.Messages.MessageOptions("MessageOnDataUpdate") = True

MessageString Property (Message Object)

Returns the translated text of the message, including any substitutions. Messages generally

include translated fixed text and variable substitutions such as timestamps, usernames, and

tagnames.

Syntax

object.MessageString[String]

Parameters

None

MessageString Property (MessageCriteria Object)

Historian | 11 - Historian SDK | 1743

Establishes text search criteria the MessageRecordset query filters by. The MessageString

may be any sub-string of the message. You should not include wildcard characters.

Syntax

object.MessageString[=String]

Parameters

None

MessageString Property (MessageFields Object)

Determines whether the MessageString field should be returned in the MessageRecordset

query.

Syntax

object.MessageString[=Boolean]

Parameters

None

MessageStringSet Property (MessageCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.MessageStringSet[=Boolean]

Parameters

None

Messages Property (Server Object)

Returns the Messages Object for the current Server. Use the Messages Object to build

queries for message data.

Syntax

object.Messages

Parameters

Historian | 11 - Historian SDK | 1744

None

MessageOptions Property (Server Object)

Returns the server or client minor version number (0, 1, 2, and so on).

Syntax

object.MessageVersion([API])

Parameters

Name Data Type Description

API Boolean When True, the server version is returned. When

False, the client version is returned. The default is

False.

Remarks

MinorVersion is a read-only property of type Long.

N

Name Property (Archive Object)

Returns the name of the specified Archive.

Syntax

object.Name

Parameters

None

Name Property (Collector Object)

Returns the name of the specified Collector.

Syntax

object.Name

Parameters

None

Historian | 11 - Historian SDK | 1745

Remarks

Name is a read-only property of type String.

Name Property (DataStore Object)

Returns the name of data store.

Syntax

object.Name

Parameters

None

Remarks

String.

Name Property (Option Object)

The name parameter of this option.

Syntax

object.Name[= String]

Parameters

None

Name Property (UserCalcFunction Object)

Returns the name of the specified UserCalcFunction.

Syntax

object.Name[= String]

Parameters

None

NodeFilter Property (OPCBrowse Object)

Historian | 11 - Historian SDK | 1746

Some OPCAE Servers allow you to set a filter for the browse. The Areas Returned by the

Browse operation will be only those that match the filter criterion. If this property is not set,

no filtering takes place.

Syntax

object.NodeFilter[= Variant]

Parameters

None

Remarks

Nodefilter is a read/write property of type Variant for script compatibility.

NumberOfElements Property (Tag Object)

Returns or sets the number of elements of a tag to specify if it is an array. If the value of the

NumberOfElements is -1 then it is an array tag. Changes to tag properties are not committed

until you call the WriteRecordset method of the TagRecordset object.

Syntax

object.NumberOfElements[= Long]

Parameters

None

NumberOfElements Property (TagCriteria Object)

Sets the NumberOfElements property to search for in the TagRecordset query. For example

you can set to -1 if you want only array tags to be returned or set to 0 if you want non-array

tags.

Syntax

object.NumberOfElements[= Long]

Parameters

None

NumberOfElements Property (TagFields Object)

Historian | 11 - Historian SDK | 1747

Determines whether the NumberOfElements field should be returned in the TagRecordset

query.

Syntax

object.NumberOfElements[= Boolean]

Parameters

None

NumberOfFields Property (UserDefinedType Object)

Returns the number of fields in the User Defined Type.

Syntax

object.NumberOfFields

Parameters

Integer

NumberOfSamples Property (DataCriteria Object)

Returns or sets the number of samples to retrieve from the archive in the DataRecordset

query. Samples will be evenly spaced within the time range defined by start time and

end time for most sampling modes. For the "RawByNumber" sampling mode the

NumberOfSamples determines the maximum number of values to retrieve. For the

"RawByTime" sampling mode, the NumberOfSamples is ignored.

Syntax

object.NumberOfFields[= Long]

Parameters

None

NumberOfSamplesSet Property (DataCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.NumberOfSamplesSet[= Long]

Historian | 11 - Historian SDK | 1748

Parameters

None

NumStateNames Property (EnumeratedState Object)

Returns the number of states in the set.

Syntax

object.NumStateNames

Parameters

None

Remarks

Long

Property Reference O-P

P

PercentGood Property (DataValue Object)

Returns the percentage of time the value was of good quality during the interval the

DataValue applies to. Does not apply to RawByNumber and RawByTime sampling modes.

Syntax

object.PercentGood

Parameters

None

Remarks

PercentGood is a read-only property of type Single.

Example

If MyValue.PercentGood < 50 Then err.Raise 1,, "We do not have enough good data" End If

PerformanceDSStatistics (Archives Object)

Exposes performance statistics for the data store. These statistics are updated periodically.

Historian | 11 - Historian SDK | 1749

The Product server and new current values are automatically reported to the client and

updated in the PerformanceDSStatistics collection.

Syntax

object.PerformanceDSStatistics

Parameters

None

Remarks

PerformanceDSStatistics is a read-only property of type Collection of Variant.

PerformanceDSStatistics (Archives Object)

Exposes performance statistics for the data stores. These statistics are updated

periodically.

The server and new current values are automatically reported to the client and updated in

the PerformanceDSStatistics collection.

The following table describes each of the performance statistics and their purpose.

DataStores Performance Statistics

Statistic Description

ArchiveTotalEvents Total number of data points received by the data store.

This option is specific only to data stores.

ArchiveTotalOutOf

Order

Total number of data points received by the server out of time or

der with the current value.

This option is specific only to data stores.

ArchiveAverageEven

tRate

Average events processed per minute.

This option is specific only to data stores.

ArchiveMinimum

EventRate

Minimum events processed per minute.

This option is specific only to data stores.

Historian | 11 - Historian SDK | 1750

Statistic Description

ArchiveMaximum

EventRate

Maximum events processed per minute.

This option is specific only to data stores.

ArchiveWriteCache

HitRatio

Hit Ratio To Write Cache.

This option is specific only to data stores.

ArchiveAverageCom

pressionRatio

Average compression ratio for all tags.

This option is specific only to data stores.

ArchiveMinimum

CompressionRatio

Minimum compression ratio for any tag.

This option is specific only to data stores.

ArchiveTotalFailed

Writes

Total number of refused write attempts by any connection.

This option is specific only to data stores.

ArchiveTotalMes

sages

Total number of non-alert messages generated.

This option is specific only to data stores.

ArchiveTotalAlerts Total number of alert messages generated.

This option is specific only to data stores.

ArchiveFreeSpace Amount of free space (MB) in the current archive.

This option is specific only to data stores.

ArchiveSpaceCon

sumptionRate

Current free space consumption rate (MB/Day).

This option is specific only to data stores.

ArchivePredicted

DaysToFull

Predicted days to archive full.

This option is specific only to data stores.

ArchiveSpaceEffi

ciency

Efficiency of archive space utilization.

This option is specific only to data stores.

ArchiveAverageEven

tRateArray

An array of archiver received rates used to make the trend.

This option is specific only to data stores.

Historian | 11 - Historian SDK | 1751

Statistic Description

ArchiveAverage

AlarmRate

Displays the rate at which Historian is receiving alarms and events

data.

This option is specific only to data stores.

ArchiveTotalAlarm The rate at which Historian is receiving data.

This option is specific only to data stores.

Syntax

object.PerformanceDSStatistics

Parameters

None

Remarks

PerformanceDSStatistics is a read-only property of type Collection of Variant.

PerformanceStatistics (Archives Object)

Exposes performance statistics for the Product Archiver. These statistics are updated

periodically.

The Product server and new current values are automatically reported to the client and

updated in the PerformanceStatistics collection.

Syntax

object.PerformanceStatistics

Parameters

None

Remarks

PerformanceStatistics is a read-only property of type Collection of Variant.

PerformanceStatistics Property (Archives Object)

Historian | 11 - Historian SDK | 1752

Exposes performance statistics for the Historian Archiver. These statistics are updated

periodically. The Historian server and new current values are automatically reported to the

client and updated in the PerformanceStatistics collection.

The following table describes each of the performance statistics and their purpose.

Archives Performance Statistics

Statistic Description

ArchiveTotalOutOf

Order

Total number of data points received by the server out of time or

der with the current value.

This option is specific only to data stores.

ArchiveAverageEven

tRate

Average events processed per minute.

This option is specific only to data stores.

ArchiveMinimum

EventRate

Minimum events processed per minute.

This option is specific only to data stores.

ArchiveMaximum

EventRate

Maximum events processed per minute.

This option is specific only to data stores.

ArchiveWriteCache

HitRatio

Hit Ratio To Write Cache.

This option is specific only to data stores.

ArchiveAverageCom

pressionRatio

Average compression ratio for all tags.

This option is specific only to data stores.

ArchiveMinimum

CompressionRatio

Minimum compression ratio for any tag.

This option is specific only to data stores.

ArchiveTotalFailed

Writes

Total number of refused write attempts by any connection.

This option is specific only to data stores.

ArchiveTotalMes

sages

Total number of non-alert messages generated.

This option is specific only to data stores.

ArchiveTotalAlerts Total number of alert messages generated.

Historian | 11 - Historian SDK | 1753

Statistic Description

This option is specific only to data stores.

ArchiveFreeSpace Amount of free space (MB) in the current archive.

This option is specific only to data stores.

ArchiveSpaceCon

sumptionRate

Current free space consumption rate (MB/Day).

This option is specific only to data stores.

ArchivePredicted

DaysToFull

Predicted days to archive full.

This option is specific only to data stores.

ArchiveSpaceEffi

ciency

Efficiency of archive space utilization.

This option is specific only to data stores.

ArchiveAverageEven

tRateArray

An array of archiver received rates used to make the trend.

This option is specific only to data stores.

ArchiveAverage

AlarmRate

Displays the rate at which Historian is receiving alarms and events

data.

This option is specific only to data stores.

ArchiveTotalAlarm The rate at which Historian is receiving data.

This option is specific only to data stores.

Syntax

object.PerformanceStatistics[AsLocalizedString])

Parameters

Name Data Type Description

StatisticName String Name of the statistic to retrieve (read-only).

AsLocalizedString Boolean Whether to return the statistic value(s) as a local

ized string (optional, default = True, read-only).

Remarks

Historian | 11 - Historian SDK | 1754

PerformanceStatistics is a read-only property of type Collection of Variant.

Example

Dim TheStatistic As Variant

' Get The Overall Compression Performance Statistic

TheStatistic = MyArchives.PerformanceStatistics("ArchiveAverageCompressionRatio")

PerformanceStatistics Property (Collector Object)

Exposes performance statistics for the selected collector.

The following table describes each of the performance statistics and their purpose.

Collector Performance Statistics

Statistic Description

CollectorTotal

EventsCollected
Total Values Collected

CollectorTotal

EventsReported

Total Values Reported To Server.

CollectorOutOfOrder

Events

Total Events Out Of Timestamp Order.

CollectorAverage

EventRate

Average Events Reported / Minute.

CollectorMinimum

EventRate

Minimum Events Reported / Minute.

CollectorMaximum

EventRate

Maximum Events Reported / Minute.

CollectorReportRatio Ratio Of Events Collected To Events Reported.

CollectorCompres

sionPercent

The percent of data compressed by the collector.

CollectorMisses The data that are missed by the collector due to missing scheduled

collection times. Also called Overruns.

Syntax

Historian | 11 - Historian SDK | 1755

object.PerformanceStatistics(StatisticName,[AsLocalizedString])

Parameters

Name Data Type Description

StatisticName Variant Name of the statistic to retrieve (read-only).

AsLocalizedString Boolean Whether to return the statistic value(s) as a local

ized string (optional, default = True, read-only).

Example

Dim TheStatistic As Variant

' Get The Overall Compression Performance Statistic

TheStatistic = MyCollector.PerformanceStatistics("CollectorEventRate")

PrimaryUsername Property (DataComments Object)

Returns the user who added the comment to the archive.

Syntax

object.PrimaryUsername

Parameters

None

Remarks

PrimaryUsername is a read-only property of type String.

Example

Debug.Print "Comment added by: " + MyValue.Comments(1).PrimaryUsername

PrincipalCollector Property (Collector Object)

The name of the collector this collector is backing up. If the principal collector is not

responding this collector is next in line to become active.

Syntax

object.PrincipalCollector[= String]

Parameters

Historian | 11 - Historian SDK | 1756

None

PropertyList Property (Archives Object)

This function returns a list of the supported Archive properties.

Syntax

object.PropertyList

Parameters

None

PropertyList Property (Collectors Object)

Returns a list of the available collector properties. This is a complete list across all collector

types. A given collector may ignore certain properties if they do not apply.

Syntax

object.PropertyList

Parameters

None

PropertyList Property (Data Object)

This function returns a list of the available Properties of a Data value.

Syntax

object.PropertyList([ExcludeRaw], [ExcludeAlarms])

Parameters

Name Data Type Description

ExcludeRaw Boolean Whether to exclude the PercentGood property (op

tional, default = False).

ExcludeAlarms Boolean Whether to exclude the Alarm Message and Alarm

ID properties (optional, default = False).

PropertyList Property (Messages Object)

Historian | 11 - Historian SDK | 1757

Returns a list of available Properties for a message.

Syntax

object.PropertyList

Parameters

None

PropertyList Property (Tags Object)

Returns a list of valid Properties for a Tag.

Syntax

object.PropertyList

Parameters

None

QueryModifiers Property (QueryModifiers Object)

Returns or sets the QueryModifiers to be used during the DataRecordset query.

Syntax

object.QueryModifiers

 Set resQueryModifiers ConnectedServer.CriteriaFromStrings(txtQueryModifier.Text)

 .Criteria.QueryModifiers = resQueryModifiers.QueryModifiers

Property Reference Q-R
R

RawValue Property (Option Object)

The raw numeric value of this option.

Syntax

object.RawValue[= Double]

Parameters

Historian | 11 - Historian SDK | 1758

None

ReadOnly Property (Archive Object)

Returns or sets the ReadOnly status of the specified archive. If you attempt to set the

current archive to ReadOnly (the archive receiving newest data), an error is generated.

Syntax

object.ReadOnly[= Boolean]

Parameters

None

Example ' Set Archive To ReadOnly MyArchive.ReadOnly = True ' Reset Archive

ReadOnly Status MyArchive.ReadOnly = False

ReadSecurityGroup Property (Tag Object)

RReturns or sets the name of the security group controlling the reading of data for the Tag.

Changes to tag properties are not committed until you call the WriteRecordset method of

the TagRecordset object.

Syntax

object.ReadSecurityGroup[= String]

Parameters

None

ReadSecurityGroup Property (TagCriteria Object)

Returns or sets the ReadOnly status of the specified archive. If you attempt to set the

current archive to ReadOnly (the archive receiving newest data), an error is generated.

Syntax

object.ReadSecurityGroup[= String]

Parameters

None

Example With MyRecordset.Criteria .TagName = "*.F_CV" .ReadSecurityGroup = "Power

Users" End With

ReadSecurityGroup Property (TagFields Object)

Historian | 11 - Historian SDK | 1759

Determines whether the ReadSecurityGroup field should be returned in the TagRecordset

query.

Syntax

object.ReadSecurityGroup[= Boolean]

Parameters

None

Example With MyRecordset.Fields .Clear .TagName = True .Description =

True .ReadSecurityGroup = True .WriteSecurityGroup = True .AdministratorSecurityGroup

= True End With

ReadSecurityGroupSet Property (TagCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.ReadSecurityGroup[= Boolean]

Parameters

None

ReadSecurityGroupUpdated Property (Tag Object)

A flag to indicate whether this property has been set or not.

Syntax

object.ReadSecurityGroupUpdated[= Boolean]

Parameters

None

RedundancyEnabled Property (Collector Object)

Returns or sets whether the collector is part of a redundant configuration.

Syntax

object.RedundancyEnabled[= Boolean]

Parameters

None

Historian | 11 - Historian SDK | 1760

Running Property (Collector Object)

Returns or sets the running state of the specified Collector. Use this property to pause and

resume collection without restarting and stopping the collector.

Syntax

object.Running[= Boolean]

Parameters

None

Example

 ' Resume the collector MyCollector.Running = True

 ' Pause the collector MyCollector.Running = False

Property Reference S-T

S

SamplingDirectionList Property (Data Object)

This function returns a list of the available Sampling directions for a data request.

Syntax

object.SamplingDirectionList

Parameters

None

SamplingInterval Property (DataCriteria Object)

Returns or sets the interval (in milliseconds) between samples from the archive in the

DataRecordset query. For the "RawByNumber" and "RawByTime" sampling modes, the

SamplingInterval is ignored. This property can be used in place of the NumberofSamples

property.

Syntax

object.SamplingInterval[=Long]

Parameters

Historian | 11 - Historian SDK | 1761

None

SamplingIntervalSet Property (DataCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.SamplingIntervalSet[=Boolean]

Parameters

None

SamplingMode Property (DataCriteria Object)

Returns or sets the mode of sampling data from the archive by the DataRecordset query.

The following table details the available sampling modes:

Name Description Value

CurrentValue Retrieves the current value, the time

frame criteria are ignored.

1

Interpolated Retrieves evenly spaced interpolated val

ues based on NumberOfSamples and the

time frame criteria.

2

Trend Retrieves the raw minimum and raw

maximum value for each specified in

terval. Use the Trend sampling mode to

maximize performance when retrieving

data points for plotting. A start time, end

time, and an interval or number of sam

ples must be specified.

3

RawByTime Retrieves raw archive values (com

pressed) based on time frame criteria.

4

RawByNumber Retrieves raw archive values (com

pressed) based on the StartTime crite

ria, the NumberOfSamples, and Direction

criteria. Note the EndTime criteria is ig

nored for this Sampling mode.

5

Historian | 11 - Historian SDK | 1762

Name Description Value

Calculated Retrieves evenly spaced calculated val

ues based on NumberOfSamples, the

time frame criteria, and the Calculation

Mode criteria.

6

Lab The Lab sampling mode only returns the

collected values, without any interpola

tion of the value. The collected value is

repeated for each interval until there is a

change in the raw data sample's value.

Lab sampling is most often used to cre

ate a step chart rather than a smooth

curve.

Use Lab sampling instead of interpolated

if you only want true collected values re

turned. The Lab sampling mode is gener

ally not useful on highly compressed da

ta. Use interpolated sampling instead.

7

InterpolatedtoRaw When you request interpolated data, you

specify an interval or number of sam

ples. If the actual stored number of raw

samples is greater than required, you

will get interpolated data as described

above. If the actual number of stored

samples are less than the required, then

you will get the raw samples. In this way,

the needs of trending detail and applica

tion load are balanced.

This mode is best used when query

ing compressed data because the Data

Archiver can switch to the more efficient

raw data query.

8

TrendtoRaw TrendtoRaw retrieves raw data between

a given intervals when the actual data

9

Historian | 11 - Historian SDK | 1763

Name Description Value

samples are fewer than the requested

number of samples.

LabtoRaw LabtoRaw is an extension to Lab mode

of sampling and similar to Interpolated

toRaw mode where you will be switched

to raw data or lab when the actual data

samples are fewer than the requested

samples.

10

RawByFilterToggle RawByFilterToggle returns filtered time

ranges. The values returned are 0 and 1.

If the value is 1, then the condition is true

and 0 means false.

This sampling mode is used with the

time range and filter tag condition. The

result starts with a starting time stamp

and ends with an ending timestamp.

11

Syntax

object.SamplingMode[=iHistorian_SDK.ihSamplingMode]

Parameters

None

SamplingModeList Property (Data Object)

This function returns a list of the available Sampling Modes for Data.

Syntax

object.SamplingModeList([ExcludeRaw])

Parameters

Name Data Type Description

ExcludeRaw Boolean Whether to exclude raw sampling modes (optional,

default = False).

Historian | 11 - Historian SDK | 1764

SamplingModeSet Property (DataCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.SamplingModeSet[= Boolean]

Parameters

None

SecondaryUsername Property (DataComments Object)

Returns the user who signed the comment when it was added to the archive.

Syntax

object.SecondaryUsername

Parameters

None

Remarks

SecondaryUserName is a read-only property of type String.

Example

 Debug.Print "Comment signed by:"+MyValue.Comments(1).SecondaryUsername

SecurityGroupList Property (Server Object)

Returns the list of security groups from the current server. Security groups determine the

system functions permitted by users within the group.

Syntax

object.SecurityGroupList

Parameters

None

Remarks

SecurityGroupList is a read-only property of type Variant.

Historian | 11 - Historian SDK | 1765

SecurityGroupLocation Property (Server Object)

Returns or sets the location of the security groups used by the server. The Historian

server can either use security groups assigned to the local server computer ("Local"

location) or groups configured for the domain ("Domain" location). Note, changing the

SecurityGroupLocation requires a server restart to take effect.

Syntax

object.SecurityGroupLocation[= String]

Parameters

None

Selected Property (Tag Object)

Returns whether or not this tag is selected.

Syntax

object.Selected[= Boolean]

Parameters

None

Server Property (Archive Object)

Returns the server associated with the Archive object.

Syntax

object.Server

Parameters

None

Remarks

Server is a read-only property of type Server.

Example

 Dim ServerName As String ' Get The Name Of The Server ServerName = MyArchive.Server.ServerName

Historian | 11 - Historian SDK | 1766

Server Property (Archives Object)

Returns the Server associated with the Archives object.

Syntax

object.Server

Parameters

None

Remarks

Server is a read-only property of type Server.

Example

 Dim ServerName As String ' Get The Name Of The Server ServerName = MyArchives.Server.ServerName

Server Property (Collector Object)

Returns the Server associated with the Collector Object.

Syntax

object.Server

Parameters

None

Remarks

Server is a read-only property of type Server.

Example

 Dim ServerName As String ' Get The Name Of The Server ServerName = MyCollector.Server.ServerName

Server Property (Collectors Object)

Returns the Server associated with the Collectors object.

Syntax

object.Server

Historian | 11 - Historian SDK | 1767

Parameters

None

Remarks

Server is a read-only property of type Server.

Example

 Dim ServerName As String ' Get The Name Of The Server ServerName = MyCollectors.Server.ServerName

Server Property (Data Object)

Returns the server associated with the Data object.

Syntax

object.Server

Parameters

None

Remarks

Server is a read-only property of type Server.

Example

 Dim ServerName As String ' Get The Name Of The Server ServerName = MyDataServer.Server.ServerName

Server Property (DataRecordset Object)

Returns the Server associated with the DataRecordset object.

Syntax

object.Server

Parameters

None

Remarks

Server is a read-only property of type Server.

Historian | 11 - Historian SDK | 1768

Example

 Dim ServerName As String ' Get The Name Of The Server ServerName = MyRecordset.Server.ServerName

Server Property (DataStores Object)

Returns the Server associated with the DataRecordset object.

Syntax

object.Server() As Server

Parameters

None

Remarks

Server is a read-only property of type Server.

Server Property (MessageRecordset Object)

Returns the Server associated with the DataRecordset object.

Syntax

object.Server

Parameters

None

Remarks

Server is a read-only property of type Server.

Example

 Dim ServerName As String

 ' Get the name of the server

 ServerName = MyRecordset.Server.ServerName

Server Property (Messages Object)

Returns the Server associated with the Messages object.

Syntax

Historian | 11 - Historian SDK | 1769

object.Server

Parameters

None

Remarks

Server is a read-only property of type Server.

Example

 Dim ServerName As String

 ' Get The Name Of The Server

 ServerName = MyMessages.Server.ServerName

Server Property (TagRecordset Object)

Returns the Server associated with the TagRecordset object.

Syntax

object.Server

Parameters

None

Remarks

Server is a read-only property of type Server.

Example

 Dim ServerName As String

 ' Get the name of the server

 ServerName = MyRecordset.Server.ServerName

Server Property (Tags Object)

Returns the Server associated with the Tags Object.

Syntax

object.Server

Parameters

Historian | 11 - Historian SDK | 1770

None

Remarks

Server is a read-only property of type Server.

Example

 Dim ServerName As String

 ' Get the name of the server

 ServerName = MyTags.Server.ServerName

ServerName Property (Server Object)

Returns the name of the computer that the server is running on.

Syntax

object.ServerName[= String]

Parameters

None

Remarks

Server is a read-only property of type String.

ServerName Property (Server Object)

Returns the name of the computer that the server is running on.

Syntax

object.ServerName[= String]

Parameters

None

Remarks

Server is a read-only property of type String.

ServerTime Property (Server Object)

Historian | 11 - Historian SDK | 1771

Returns the current time on the connected server. The system then converts the time from

UTC into formatted time based on the ConnectionOptions (TimeOption) setting.

Syntax

object.ServerTime

Parameters

None

Servers Property (ServerManager Object)

Maintains a list of registered servers on the client. To connect a listed server, use the

Connect Method of a selected Server Object.

Syntax

object.Servers

Parameters

None

SetName Property (EnumeratedSets Object)

Returns or defines the name of an Enumerated Set.

Syntax

object.SetName

Parameters

None

Returns

String

SimpleEvents Property (OPCFilters Object)

Returns the list of Simple Event Categories being filtered on the Alarm Collector. This list is

only applied if isSimpleEventsOn(true) has been called.

Syntax

Historian | 11 - Historian SDK | 1772

object.SimpleEvents

Parameters

None

SourceAddress Property (Tag Object)

Returns or sets the address used to identify the Tag in the data source. Changes to tag

properties are not committed until you call the WriteRecordset method of the TagRecordset

object.

Syntax

object.SourceAddress[= String]

Parameters

None

SourceAddress Property (TagCriteria Object)

Sets the tag source address to search for in the TagRecordset query.

Syntax

object.SourceAddress[= String]

Parameters

None

SourceAddress Property (TagFields Object)

Determines whether the SourceAddress field should be returned in the TagRecordset query.

Syntax

object.SourceAddress[= Boolean]

Parameters

None

SourceAddressSet Property (TagCriteria Object)

A flag to indicate whether this property has been set or not.

Historian | 11 - Historian SDK | 1773

Syntax

object.SourceAddressSet[= Boolean]

Parameters

None

SourceAddressUpdated Property (Tag Object)

A flag to indicate whether this property has been set or not.

Syntax

object.SourceAddressUpdated[= Boolean]

Parameters

None

Sources Property (OPCFilters Object)

Returns a list of the Sources selected for collection. This list is only applied when

isSourceFiltering (true) has been called.

Syntax

object.Sources[= Boolean]

Parameters

None

SpikeLogic Property (Tag Object)

Returns or sets whether this tag uses the spike logic compression algorithm.

Syntax

object.SpikeLogic[= Boolean]

Parameters

None

SpikeLogic Property (TagCriteria Object)

Sets the spike logic to search for in the TagRecordset query.

Historian | 11 - Historian SDK | 1774

Syntax

object.SpikeLogic[= Boolean]

Parameters

None

SpikeLogic Property (TagFields Object)

Determines whether the SpikeLogic field should be returned in the TagRecordset query.

Syntax

object.SpikeLogic[= Boolean]

Parameters

None

SpikeLogicOverride Property (Tag Object)

Returns or sets whether this tag should use the its own Spike Logic setting or the default

Collectors setting.

Syntax

object.SpikeLogicOverride[= Boolean]

Parameters

None

SpikeLogicOverride Property (TagCriteria Object)

Sets the spike logic override to search for in the TagRecordset query.

Syntax

object.SpikeLogicOverride[= Boolean]

Parameters

None

SpikeLogicOverride Property (TagFields Object)

Historian | 11 - Historian SDK | 1775

Determines whether the SpikeLogicOverride field should be returned in the TagRecordset

query.

Syntax

object.SpikeLogicOverride[= Boolean]

Parameters

None

SpikeLogicOverrideSet Property (TagCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.SpikeLogicOverrideSet[= Boolean]

Parameters

None

SpikeLogicOverrideUpdated Property (Tag Object)

A flag to indicate whether this property has been set or not.

Syntax

object.SpikeLogicOverrideUpdated[= Boolean]

Parameters

None

SpikeLogicSet Property (TagCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.SpikeLogicSet[= Boolean]

Parameters

None

Historian | 11 - Historian SDK | 1776

SpikeLogicUpdated Property (Tag Object)

A flag to indicate whether this property has been set or not.

Syntax

object.SpikeLogicUpdated[= Boolean]

Parameters

None

StartTime Property (Archive Object)

Returns the start time of the specified archive. This represents the earliest timestamp for

any sample contained in the archive.

Syntax

object.StartTime

Parameters

None

StartTime Property (DataCriteria Object)

Returns or sets the start of the time range to retrieve data for in the DataRecordset query.

Syntax

object.StartTime[= Date]

Parameters

None

StartTime Property (MessageCriteria Object)

Establishes the start time of the MessageRecordset query.

Syntax

object.StartTime[= Date]

Historian | 11 - Historian SDK | 1777

Parameters

None

StartTimeSet Property (DataCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.StartTimeSet[= Boolean]

Parameters

None

StartTimeSet Property (MessageCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.StartTimeSet[= Boolean]

Parameters

None

StartTimeShortcut Property (DataCriteria Object)

Returns or sets the start of the time range to retrieve data for in the DataRecordset query.

Shortcuts are strings that define absolute or relative times.

The time shortcuts are the following:

Value Description

(N)ow The current time (absolute).

(T)oday Today at midnight (absolute).

(Y)esterday Yesterday at midnight (absolute).

(D)ays Number of Days (relative).

(M)in Number of Minutes (relative).

Historian | 11 - Historian SDK | 1778

Value Description

(H)our Number of Hours (relative).

(W)eek Number of Weeks (relative).

(BOM) Beginning of this month at Midnight (ab

solute).

(EOM) Last Day of this month at Midnight (ab

solute).

(BOY) First Day of this year at Midnight (absolute).

(EOY) Last Day of this year at Midnight (absolute).

Syntax

object.StartTimeShortcut[= String]

Parameters

None

Example

 With MyRecordset.Criteria .Tagmask = "*.F_CV" ' Start two days Ago at 8am in the morning

.StartTimeShortcut = "Today-2d+8h" ' End this morning at 8am

.EndTimeShortcut = "Today+8h" End With

StartTimeShortcut Property (MessageCriteria Object)

Establishes the start time of the MessageRecordset Query by specifying a time shortcut

string versus a date.

The time shortcuts are the following:

Value Description

(N)ow The current time (absolute).

(T)oday Today at midnight (absolute).

(Y)esterday Yesterday at midnight (absolute).

(D)ays Number of Days (relative).

(M)in Number of Minutes (relative).

Historian | 11 - Historian SDK | 1779

Value Description

(H)our Number of Hours (relative).

(W)eek Number of Weeks (relative).

(BOM) Beginning of this month at Midnight (ab

solute).

(EOM) Last Day of this month at Midnight (ab

solute).

(BOY) First Day of this year at Midnight (absolute).

(EOY) Last Day of this year at Midnight (absolute).

Syntax

object.StartTimeShortcut[= String]

Parameters

None

Example

'Set A Start Time For Two Days Ago

MyMessages.Criteria.StartTimeShortcut = "-2d"

StartTimeShortcutSet Property (MessageCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.StartTimeShortcutSet[= Boolean]

Parameters

None

State Property (DataStore Object)

Returns or sets the state of data store. For example, Running.

Syntax

Historian | 11 - Historian SDK | 1780

object.State

Parameters

None

Remarks

ihDataStoreState

State Property (DataStore Object)

Returns or sets the state of data store. For example, Running.

Syntax

object.State

Parameters

None

Remarks

ihDataStoreState

State Property (DataStore Object)

Returns or sets the state of data store. For example, Running.

Syntax

object.State

Parameters

None

Remarks

ihDataStoreState

StateLowRawValue Property (EnumeratedState Object)

Returns or defines the minimum value of a state when you are using a range of values for a

state. For example, if your state value is from 0 to 5 and it is defined as ON, then this would

be 0.

Historian | 11 - Historian SDK | 1781

Syntax

object.StateLowRawValue

Parameters

None

Remarks

Variant. Returns the low raw value of the state.

StateValue Property (QueryModifiers Object)

Returns or sets the state value to be used when querying data with the StateCount and

StateTime calculation modes.

Syntax

object.StateValue = value

Status Property (Archive Object)

Returns the status of the specified Archive. This status is typically Current or Active.

Syntax

object.Status

Parameters

None

Remarks

Status is a read-only property of type String.

Example

 ' Print Out The Archive Status Debug.Print MyArchive.Status

Status Property (Collector Object)

Returns the status of the specified Collector. This status is typically Running or Stopped.

Syntax

object.Status

Historian | 11 - Historian SDK | 1782

Parameters

None

Remarks

Status is a read-only property of type String.

Example

 ' Print Out The Collector Status Debug.Print MyCollector.Status

StepValue Property (Tag Object)

Returns or sets whether this tag is using Step Value or not.

Syntax

object.StepValue[= Boolean]

Parameters

None

StepValue Property (TagCriteria Object)

Sets the Step Value value to search for in the TagRecordset query.

Syntax

object.StepValue[= Boolean]

Parameters

None

StepValue Property (TagFields Object)

Determines whether the StepValue field should be returned in the TagRecordset query.

Syntax

object.StepValue[= Boolean]

Parameters

None

StepValueSet Property (TagCriteria Object)

Historian | 11 - Historian SDK | 1783

A flag to indicate whether this property has been set or not.

Syntax

object.StepValueSet[= Boolean]

Parameters

None

StepValueUpdated Property (Tag Object)

A flag to indicate whether this property has been set or not.

Syntax

object.StepValueUpdated[= Boolean]

Parameters

None

StorageType Property (DataStore Object)

Returns the type of data store. For example, ScadaBufferStore or Historical data store.

Syntax

object.StorageType

Parameters

None

Remarks

ihDataStorageType

StoreMilliseconds Property (Tag Object)

Returns or sets the time resolution of the Tag. Changes to tag properties are not committed

until you call the WriteRecordset method of the TagRecordset object.

Syntax

object.StoreMilliseconds[= Boolean]

Parameters

Historian | 11 - Historian SDK | 1784

None

StoreMilliseconds Property (TagCriteria Object)

Sets the time resolution to search for in the TagRecordset query.

Syntax

object.StoreMilliseconds[= Boolean]

Parameters

None

StoreMilliseconds Property (TagFields Object)

Determines whether the StoreMilliseconds field should be returned in the TagRecordset

query.

Syntax

object.StoreMilliseconds[= Boolean]

Parameters

None

StoreMillisecondsSet Property (TagCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.StoreMilliseconds[= Boolean]

Parameters

None

StoreMillisecondsUpdated Property (Tag Object)

A flag to indicate whether this property has been set or not.

Syntax

object.StoreMillisecondsUpdated[= Boolean]

Parameters

Historian | 11 - Historian SDK | 1785

None

StoreOPCQuality Property (Server Object)

Returns or sets whether the server stores the raw (16-bit) OPC quality flags.

Syntax

object.StoreOPCQuality[= Boolean]

Parameters

None

Strict Client Authentication Property

Returns or sets whether to enforce strict client authentication. Setting this value to TRUE will

disallow connections from clients older than version 4.7.

Syntax

object.StrictClientAuthentication

Parameters

None

Strict Collector Authentication (Archives Object)

Returns or sets whether to enforce strict client authentication. Setting this value to TRUE will

disallow connections from clients older than version 4.7.

Syntax

object.StrictCollectorAuthentication

Parameters

None

StringLength Property (Tag Object)

Returns or sets the fixed string length associated with a fixed string type Tag. Changes

to tag properties are not committed until you call the WriteRecordset method of the

TagRecordset object.

Syntax

Historian | 11 - Historian SDK | 1786

object.StringLength[= Byte]

Parameters

None

StringLength Property (TagFields Object)

Determines whether the StringLength field should be returned in the TagRecordset query.

Syntax

object.StringLength[= Boolean]

Parameters

None

StringLengthSet Property (TagCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.StringLengthSet[= Boolean]

Parameters

None

StringLengthUpdated Property (Tag Object)

A flag to indicate whether this property has been set or not.

Syntax

object.StringLengthUpdated[= Boolean]

Parameters

None

SubscribeStatus Property (Archives Object)

Subscribes to changes in Archive status and configuration. The Historian server publishes

messages to any client signed up for Archive status changes as modifications are

committed to the Archive Database. Setting the SubscribeStatus to True signs up for status

and configuration changes on all archives.

Historian | 11 - Historian SDK | 1787

Status and configuration changes are reported asynchronously to the client through the

Status_Received event of the Archives object.

Syntax

object.SubscribeStatus[= Boolean]

Parameters

None

Example

 ' Subscribe To Archive Status Updates

 MyArchives.SubscribeStatus = True

 ' Unsubscribe To Archive Status Updates

 MyArchives.SubscribeStatus = False

SubscribeStatus Property (Collectors Object)

Subscribes to changes in Collector status and configuration. The Historian server publishes

messages to any client signed up for Collector status changes as modifications are

committed to the Collector database. Setting the SubscribeStatus to True will sign up for

status and configuration changes on all Collectors.

Status and configuration changes are reported asynchronously to the client through the

Status_Received event of the Collectors object.

Syntax

object.SubscribeStatus[= Boolean]

Parameters

None

Example

 ' Subscribe To Collector Status Updates

 MyCollectors.SubscribeStatus = True

 ' Unsubscribe To Collector Status Updates

 MyCollectors.SubscribeStatus = False

Substitutions Property (Message Object)

Historian | 11 - Historian SDK | 1788

Returns the variable text of a message such as timestamps, usernames, and tagnames.

Syntax

object.Substitutions

Parameters

None

Remarks

Substitutions is a read-only property of type String.

Example

 Dim MySubstitutions As Collection Dim I As Integer Set MySubstitutions = MyMessage.Substitutions

For I = 1 To MySubstitutions.count Debug.Print MySubstitutions(I) Next I

Substitutions Property (MessageFields Object)

Determines whether the Substitutions should be returned in the MessageRecordset query.

Syntax

object.Substitutions[= Boolean]

Parameters

None

Example

 Dim MyMessages As iHistorian_SDK.MessageRecordset Set MyMessages = GetServer.Messages.NewRecordset

 With

MyMessages.Fields .Topic = True .TimeStamp = True .MessageString = True .Substitutions = True

 End With

T

Tagmask Property (DataCriteria Object)

Returns or sets a mask of tags to retrieve data for in the DataRecordset query. The tag mask

may include wildcard characters including the "*" and "?".

Syntax

Historian | 11 - Historian SDK | 1789

object.Tagmask[= String]

Parameters

None

T

TagmaskSet Property (DataCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.TagmaskSet[= Boolean]

Parameters

None

Tagname Property (Tag Object)

Returns the Tagname property of the Tag. Tagname is a read-only property.

Syntax

object.Tagname[= String]

Parameters

None

Remarks

Tagname is a read-only property of type String.

Tagname Property (Tag Object)

Returns the Tagname property of the Tag. Tagname is a read-only property.

Syntax

object.Tagname[= String]

Parameters

None

Historian | 11 - Historian SDK | 1790

Remarks

Tagname is a read-only property of type String.

Tagname Property (TagCriteria Object)

Sets the Tagname or tag mask to search for in the TagRecordset query. The Tagname may

include wildcard characters.

Syntax

object.Tagname[= String]

Parameters

None

Tagname Property (TagFields Object)

Determines whether the Tagname field should be returned in the TagRecordset query.

Syntax

object.Tagname[= Boolean]

Parameters

None

TagnameSet Property (TagCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.TagnameSet[= Boolean]

Parameters

None

TagnameUpdated Property (Tag Object)

A flag to indicate whether this property has been set or not.

Syntax

object.TagnameUpdated[= Boolean]

Historian | 11 - Historian SDK | 1791

Parameters

None

Tags Property (DataCriteria Object)

Returns or sets an array of Tagnames to retrieve data for in the DataRecordset query.

Syntax

object.Tags[= Variant]

Parameters

None

Tags Property (DataRecordset Object)

Exposes the list of Tagnames associated with the collection of DataValue results

maintained in the DataRecordset object. The Item property takes a tagname or tag index

as a parameter to expose the collection of DataValues for that tag. The first collection of

DataValues in the Item property.

Syntax

object.Tags

Parameters

None

Remarks

Tags is a read-only property of type Collection of String.

Tags Property (Server Object)

Returns the Tags object for the current server, but only if the authenticated user is a member

of the Historian tag administrators group.

Syntax

object.Tags

Parameters

None

Historian | 11 - Historian SDK | 1792

TagsSet Property (DataCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.TagsSet[= Boolean]

Parameters

None

TimeStamp Property (DataFields Object)

Determines whether the Timestamp field should be returned in the DataRecordset query.

Syntax

object.TimeStamp[= Boolean]

Parameters

None

TimeStamp Property (DataValue Object)

Returns the timestamp of the DataValue in a localized time.

Syntax

object.TimeStamp

Parameters

None

Remarks

TimeStamp is a read-only property of type Date.

TimeStamp Property (Message Object)

Returns the time the Message was created.

Syntax

object.TimeStamp[= Date]

Historian | 11 - Historian SDK | 1793

Parameters

None

Remarks

TimeStamp is a writeable property of type Date.

TimeStamp Property (MessageFields Object)

Determines whether the TimeStamp field should be returned in the MessageRecordset

query.

Syntax

object.TimeStamp[= Boolean]

Parameters

None

TimeStampType Property (Tag Object)

Returns or sets the type of time stamping applied to data at collection time.

Name Description Value

Source New values take timestamp from data source. 1

Collector New values are timestamped by Collector. 2

Changes to tag properties are not committed until you call the WriteRecordset method of

the TagRecordset object.

Syntax

object.TimeStampType[= ihTimeStampType]

Parameters

None

TimeStampType Property (TagCriteria Object)

Sets the timestamp type to search for in the TagRecordset query.

Syntax

Historian | 11 - Historian SDK | 1794

object.TimeStampType[= Boolean]

Parameters

None

TimeStampType Property (TagFields Object)

Determines whether the TimeStampType field should be returned in the TagRecordset query.

Syntax

object.TimeStampType[= Boolean]

Parameters

None

TimeStampTypeSet Property (TagCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.TimeStampTypeSet[= Boolean]

Parameters

None

TimeStampTypeUpdated Property (Tag Object)

A flag to indicate whether this property has been set or not.

Syntax

object.TimeStampTypeUpdated[= Boolean]

Parameters

None

TimeZoneBias Property (Tag Object)

Returns or sets the time zone bias for the tag. Time zone bias is used to indicate the

natural time zone of the tag expressed as an offset from GMT in minutes. Changes to tag

properties are not committed until you call the WriteRecordset method of the TagRecordset

object.

Historian | 11 - Historian SDK | 1795

Syntax

object.TimeZoneBias[= Long]

Parameters

None

TimeZoneBias Property (TagCriteria Object)

Sets the time zone bias to search for in the TagRecordset query.

Syntax

object.TimeZoneBias[= Long]

Parameters

None

TimeZoneBias Property (TagFields Object)

Determines whether the TimeZoneBias field should be returned in the TagRecordset query.

Syntax

object.TimeZoneBias[= Boolean]

Parameters

None

TimeZoneBiasUpdated Property (Tag Object)

A flag to indicate whether this property has been set or not.

Syntax

object.TimeZoneBiasUpdated[= Boolean]

Parameters

None

TimeZoneBiasSet Property (TagCriteria Object)

A flag to indicate whether this property has been set or not.

Historian | 11 - Historian SDK | 1796

Syntax

object.TimeZoneBiasSet[= Boolean]

Parameters

None

TimestampTypeList Property (Tags Object)

Returns a list of the valid Timestamp types available in Historian.

Syntax

object.TimestampTypeList

Parameters

None

Topic Property (Message Object)

Returns the Topic Number of the Message.

Syntax

object.Topic[= ihMessageTopic]

Parameters

None

Remarks

Topic is a writeable property of type ihMessageTopic.

Example

 If MyMessage.Topic = ihMessageTopic.General Then Debug.Print "This is a General Message" End If

Topic Property (MessageCriteria Object)

Establishes which Topic the MessageRecordset query will filter by.

Syntax

object.Topic[= ihMessageTopic]

Historian | 11 - Historian SDK | 1797

Parameters

None

Remarks

Topic is a writeable property of type ihMessageTopic.

Example

 MyMessages.Criteria.Topic = ihMessageTopic.General

Topic Property (MessageFields Object)

Determines whether the Topic field should be returned in the MessageRecordset query.

Syntax

object.Topic[= Boolean]

Parameters

None

Remarks

Topic is a writeable property of type ihMessageTopic.

Example

Dim MyMessages As iHistorian_SDK.MessageRecordset Set MyMessages = GetServer.Messages.NewRecordset With

 MyMessages.Fields .Topic = True End With

TopicList Property (Messages Object)

Returns a list of available Topics.

Syntax

object.TopicList([IncludeMessages], [IncludeAlerts])

Parameters

Name Data Type Description

IncludeMessages Boolean Indicates whether Message topics should be in

cluded in the returned list

Historian | 11 - Historian SDK | 1798

Name Data Type Description

IncludeAlerts Boolean Indicates whether Alert topics should be included

in the returned list

TopicName Property (Message Object)

Returns the Topic Name of the Message.

Syntax

object.TopicName

Parameters

None

Remarks

Topic is a writeable property of type String.

Example

Debug.Print "This is a " + MyMessage.TopicName + " message."

TopicSet Property (MessageCriteria Object)

A flag to indicate whether this property has been set or not.

Syntax

object.TopicSet[= Boolean]

Parameters

None

TrackingEvents Property (OPCFilters Object)

Returns the list of Tracking Event Categories being filtered on the Alarm Collector. This list is

only applied if isTrackingEventsOn(true) has been called.

Syntax

object.TrackingEvents

Parameters

Historian | 11 - Historian SDK | 1799

None

Property Reference U-V

U

UserName Property (Message Object)

Returns the username who generated the message, or who the message is associated with.

Syntax

object.UserName[= String]

Parameters

None

Remarks

UserName is a writeable property of type String.

UserName Property (MessageFields Object)

Determines whether the UserName field should be returned in the MessageRecordset query.

Syntax

object.UserName[= Boolean]

Parameters

None

UserName Property (Server Object)

Returns the name of the currently authenticated user for the server.

Syntax

object.UserName

Parameters

None

UsernameSet Property (MessageCriteria Object)

Historian | 11 - Historian SDK | 1800

A flag to indicate whether this property has been set or not.

Syntax

object.UserNameSet[= Boolean]

Parameters

None

V

Value Property (DataFields Object)

Determines whether the Value field should be returned in the DataRecordset query.

Syntax

object.Value[= Boolean]

Parameters

None

Value Property (DataValue Object)

Returns or sets the value of the DataValue.

Syntax

object.Value[= Variant]

Parameters

None

Value Property (Option Object)

The value parameter of this option expressed as a localized string.

Syntax

object.Value[= Variant]

Parameters

None

Historian | 11 - Historian SDK | 1801

Version Property (Server Object)

Returns the server or client version number.

Syntax

object.Version([API])

Parameters

Name Data Type Description

API Boolean When True, the server version is returned. When

False, the client version is returned. The default

is False. '

When connecting to an Historian v1.0 server

and passing True, Historian returns "Unknown"

for the version number.

Remarks

Version is a read-only property of type String.

Property Reference W-Z

W

WatchdogTag Property (Collector Object)

Returns or sets the collector redundancy watchdog tag name.

Syntax

object.WatchdogTag[= String]

Parameters

None

WatchdogValueMaxUnchangedPeriod Property (Collector Object)

Returns or sets the time in seconds when the collector should automatically failover if

a raw sample is not received for the watchdog tag from the primary collector. Use with

FailoverOnValueUnchanged property.

Historian | 11 - Historian SDK | 1802

Syntax

object.WatchdogValueMaxUnchangedPeriod[= Long]

Parameters

None

WriteSecurityGroup Property (Tag Object)

Sets the name of the security group controlling the writing of data for the Tag. Changes

to tag properties are not committed until you call the WriteRecordset method of the

TagRecordset object.

Syntax

object.WriteSecurityGroup[= String]

Parameters

None

WriteSecurityGroup Property (TagCriteria Object)

Sets the write security group to search for in the TagRecordset query.

Syntax

object.WriteSecurityGroup[= String]

Parameters

None

WriteSecurityGroup Property (TagFields Object)

Determines whether the WriteSecurityGroup field should be returned in the TagRecordset

query.

Syntax

object.WriteSecurityGroup[= Boolean]

Parameters

None

WriteSecurityGroupSet Property (TagCriteria Object)

Historian | 11 - Historian SDK | 1803

A flag to indicate whether this property has been set or not.

Syntax

object.WriteSecurityGroupSet[= Boolean]

Parameters

None

WriteSecurityGroupUpdated Property (Tag Object)

A flag to indicate whether this property has been set or not.

Syntax

object.WriteSecurityGroupUpdated[= Boolean]

Parameters

None

Method Reference A-B
APIStatusToString Method (Server Object)

Converts a status ID into a string.

Syntax

object.APIStatusToString(nStatus, bHRESULT)

Table 271. Parameters

Name Data Type Description

nStatus Long The status ID to be converted.

bHRESULT Boolean If true, then the status ID is an HRESULT; other

wise, it is an APIStatus.

Returns

String. The translation of the status code.

Add Method (Archives Object)

Historian | 11 - Historian SDK | 1804

Adds a new archive with the specified characteristics to the Historian server. You can

also use this method to add an existing archive file to the archives collection to restore an

archive.

Specify the FileLocation in the context of the Historian server machine drive and directory

structure. If the specified FileLocation points to an existing valid Historian archive, the

method effectively re-registers this archive and automatically loads it. Use this method

when you return a previously unloaded archive to the system.

Since the Add request is synchronous, it immediately creates a new Archive object on the

Historian server and another one in the Archives collection on the client.

Syntax

object.Add(ArchiveName As String, FileLocation As String, FileSize As Long,

ArchiveDataStoreName As String)

Table 272. Parameters

Name Data Type Description

ArchiveName String Name of the archive to add (Read-Only).

FileLocation String Fully qualified name of the archive file (Read-

Only).

FileSize Long Size of archive in MB (Read-Only).

ArchiveDataStore

Name

String Name of the archive data store the archive be

longs to. This is an optional parameter.

Returns

Archive. The newly added Archive object or Nothing.

Add Method (Collectors Object)

Adds a new collector with the specified name to the Historian server. The collector name

must be unique in a given Historian server.

Since the Add request is synchronous, it immediately creates a new Collector Object on the

Historian server and another one in the Collectors collection on the client.

Syntax

Historian | 11 - Historian SDK | 1805

object.Add(CollectorName)

Table 273. Parameters

Name Data Type

CollectorName String Name of the new collector to add. (Read-on

ly)

Returns

Collector. Returns a reference to the newly created Collector object.

Add Method (DataRecordset Object)

Adds a new blank DataValue record to the current DataRecordset for the specified tag. The

DataValue is written to the server when the WriteRecordset method of the DataRecordset

object is called. You can optionally specify the value of the record or specify it after creation

by operating on the DataValue object.

Syntax

object.Add(Tagname, TimeStamp, [InValue])

Table 274. Parameters

Name Data Type Definition

Tagname String Tag to which you are adding a new data val

ue (read-only).

TimeStamp Date Timestamp to add value at (read-only).

InValue DataValue New value (optional).

Returns

DataValue. Returns a reference to the newly created data value.

Add Method (DataStores Object)

Adds a data store.

Syntax

object.Add(MyDataStoreName,MyDefaultDS, MyDataStoreType, MyDataStoreDescription)

Historian | 11 - Historian SDK | 1806

Table 275. Parameters

Name Data Type

DataStoreName String Indicates the name of the data store.

IsDefault Boolean Indicates whether the data store is the de

fault data store.

DataStoreType String Indicates the type of the data store: Histori

cal, User, or SCADA buffer.

Description String The description provided for the data store.

Returns

DataStore.

Add Method (EnumeratedSets Object)

Adds an enumerated set to the Enumerated Sets collection. The enumerated set is not

added to the Historian Server until the SaveSet Method is called.

Syntax

object.Add(MySet)

Table 276. Parameters

Name Data Type Description

MySet EnumeratedSet The set that has to be added.

Returns

None.

Add Method (EnumeratedStates Object)

Adds an enumerated state to the enumerated set collection. The enumerated state is not

added to the Historian Server until the SaveSet Method is called.

Syntax

Object.Add(MyState)

Historian | 11 - Historian SDK | 1807

Table 277. Parameters

Name Data Type Description

MyState EnumeratedState The state that has to be added.

Returns

None.

Add Method (MessageRecordset Object)

Adds a new blank message record to the current MessageRecordset. The message is

written to the server when the WriteRecordset method of the MessageRecordset object is

called.

Syntax

object.Add

Parameters

None

Returns

The empty message that was added.

Add Method (TagDependencies Object)

Adds a dependent Tag to the current calculation. The calculation will be triggered when the

value of this tag changes.

Syntax

object.Add(Tagname)

Table 278. Parameters

Name Data Type Description

Tagname String Name of the tag to add

Returns

Boolean. Whether the Add operation succeeded.

Historian | 11 - Historian SDK | 1808

Add Method (TagRecordset Object)

Adds a new blank tag record to the current TagRecordset. The tag is written to the server

when the WriteRecordset method of the TagRecordset object is called.

Syntax

object.Add(Tagname)

Table 279. Parameters

Name Data Type Description

Tagname String Name of the tag to add

Returns

Returns a reference to the newly created tag.

Add Method (UserDefinedtypeFields Object)

Adds multiple fields to the User Defined Type. The User Defined Type is not added to the

Historian Server until the SaveSet Method is called.

Syntax

object.Add(MyField)

Table 280. Parameters

Name Data Type Description

MyField UserDefinedType

Field

The field to be added.

Returns

None.

AddComment Method (DataValue Object)

Adds a comment to the current DataValue. If you supply a secondary username and

password, the SDK authenticates the username and password before the committing the

comment.

Syntax

Historian | 11 - Historian SDK | 1809

object.AddComment(Comment, [DataTypeHint], [SecondaryUser], [SecondaryPassword])

Table 281. Parameters

Name Data Type Description

Comment Variant The comment to add.

DataTypeHint String The name of the data type for the comment (op

tional, read-only).

SecondaryUser String Supervisor's username to sign comment (optional,

read-only).

SecondaryPass

word

String Supervisor's password to sign comment (optional,

read-only).

Returns

Boolean. Returns True if the AddComment Method operation succeeded.

AddEx Method (Archives Object)

Adds a new archive with the specified characteristics to the Historian server. You can

also use this method to add an existing archive file to the archives collection to restore an

archive.

Specify the FileLocation in the context of the Historian server machine drive and directory

structure. If the specified FileLocation points to an existing valid Historian archive, the

method effectively re-registers this archive and automatically loads it. Use this method

when you return a previously unloaded archive to the system.

Since the Add request is synchronous, it immediately creates a new Archive object on the

Historian server and another one in the Archives collection on the client.

The window pointed to by hWnd is kept alive (messages processed) while the archive is

being added.

Syntax

object.AddEx(ArchiveName As String, FileLocation As String, FileSize As Long, hWnd As

Long, ArchiveDataStoreName As String)

Historian | 11 - Historian SDK | 1810

Table 282. Parameters

Name Data Type Description

ArchiveName String Name of the archive to add (Read-Only).

FileLocation String Fully qualified name of the archive file (Read-Only).

FileSize Long Size of archive in MB (Read-Only).

hWnd Long The window handle to keep alive.

ArchiveDataStore

Name

String Name of the archive data store the archive belongs

to. This is an optional parameter.

Returns

Archive. The newly added Archive object or Nothing.

AddServer Method (ServerManager Object)

Registers a new server to the list of registered servers on the client. It makes an attempt to

authenticate the connection based on the username and password supplied. If a username

and password are not supplied, it assumes the user to be the currently authenticated

domain user.

If it cannot authenticate the connection, because of incorrect user information or an invalid

ServerName, the AddServer method returns False and does not register the supplied

ServerName on the client.

Syntax

object.AddServer(ServerName, [UserName], [Password], [ConnectionTimeout])

Table 283. Parameters

Name Data Type Description

ServerName String Computer name of the Historian server (read-only).

UserName String Username to authenticate (optional, read-only).

Password String Password to authenticate (optional, read-only).

Connection

Timeout

Long The maximum length of time clients should wait for mes

sages from the server before concluding the server is un

available (optional, read-only).

Historian | 11 - Historian SDK | 1811

Returns

Boolean. Returns True if the AddServer operation succeeded.

Example

Dim MyManager As New iHistorian_SDK.ServerManager

Dim MyServer As iHistorian_SDK.Server

' Try to add the new server

If MyManager.AddServer("USGB014") Then

Set MyServer = MyManager.Servers("USGB014") Else

err.Raise 1, , "Failed to authenticate new server" End If

AlarmAttributesRecordSet Method (Alarms Object)

This function returns a list of all the Vendor Attributes in the Alarm Archiver.

Syntax

object.AlarmAttributesRecordSet

Parameters

None.

Returns

AlarmAttributes. The AlarmAttributes object contains the list of vendor attributes.

AlarmRecordSet Method (Alarms Object)

This function is used to query alarms or events from the archiver. This function takes one

parameter, an AlarmOpenRecordSetInfo object, which specifies the query. The following

sections describe how to populate this object to perform an Alarm or Event query.

AlarmOpenRecordSetInfo Parameter

This object contains details on what to select, and any filters for the query. After creating

the object, you first specify which fields to select, and which fields to sort (SelectFields), and

then specify any criteria/filter to apply (AlarmCriteria).

Create the object: Dim myAlarmOpenRecordSetInfo As New AlarmOpenRecordSetInfo

Alarm Fields

Historian | 11 - Historian SDK | 1812

The following is a list of the alarm fields that can be returned in the recordset, or used to

sort or filter the recordset. These are used in the SelectFields and AlarmCriteria object (see

below for more details).

Table 284.

Option Data Type Description

AlarmID Long The unique ID of the alarm or event in the Histori

an alarm database.

ItemID String The OPC ItemID of the alarm. This contains the

source address of the data access tag the alarm

is associated with. This could contain a NULL

value if the alarm is not associated with a tag.

Source String This is the unique identifier used by the OPC AE

Collector for the alarm or event.

DataSource String The collector interface name associated with the

alarm or event.

Tagname String The Historian Tag Name associated with the

alarm. The tag name will be NULL unless the tag

is also collected by Historian.

EventCategory String The OPC event category of the alarm or event.

ConditionName String The OPC condition of the alarm. This does not

apply to event data. This, combined with the

Source, comprises an alarm.

SubCondition

Name

String The OPC sub-condition of the alarm. This does

not apply to event data. This is the state of the

alarm.

StartTime Date The start time or time stamp of the alarm or

event.

EndTime Date The end time of the alarm. This does not apply to

event data.

AckTime Date The time the alarm was acknowledged. This

does not apply to event data.

Historian | 11 - Historian SDK | 1813

Table 284. (continued)

Option Data Type Description

Timestamp Date The time stamp of the alarm or event.

Message String The message attached to the alarm or event.

Acked Boolean Stores the acknowledgement status of the alarm.

If the alarm is acknowledged, this will be set to

TRUE.

Severity Long The severity of the alarm or event. This is stored

as an integer value with a range of 1-1000.

Actor String The operator who acknowledged the alarm, or

caused the tracking event.

Quality String The quality of the alarm or event.

AlarmOpenRecordSetInfo.SelectFields

Each of the fields above can be selected, or used to sort the alarm recordset. Fill in the

AlarmOpenRecordSetInfo.SelectFields for each field, according to the following table.

Option Data Type Description

Select Boolean True to select the field.

OrderBy Boolean True to order by the field.

OrderPriority Integer Relative priority compared to other field or

der priorities. Highest first. Ties are random.

Descending Boolean True to sort descending. OrderBy must also

be True.

Example

Set up SelectFields to select the AlarmId and ItemId. Order by the AlarmId, then the ItemId.

myAlarmOpenRecordSetInfo.SelectFields.AlarmId.Select = TRUE

myAlarmOpenRecordSetInfo.SelectFields.AlarmId.OrderBy = TRUE

myAlarmOpenRecordSetInfo.SelectFields.AlarmId.OrderPriority = 10

myAlarmOpenRecordSetInfo.SelectFields.ItemId.Select = TRUE

Historian | 11 - Historian SDK | 1814

myAlarmOpenRecordSetInfo.SelectFields.ItemId.OrderBy = TRUE

myAlarmOpenRecordSetInfo.SelectFields.ItemId.OrderPriority = 20

The SelectFields object has one other field, AllFields, which can be used to select all fields.

SelectFields.AllFields = TRUE

Choose Query Type

For all queries, the type of query should be specified. If it is not specified, the default is

to return a record set containing the events. The query type is specified by setting the

AlarmOpenRecordSetInfo.AlarmCriteria.AlarmType object.

Query Alarms: myAlarmOpenRecordSetInfo.AlarmType = ihALARM_CONDITION

Query Events: myAlarmOpenRecordSetInfo.AlarmType = ihALARM_TRACKING

Query Historical Alarm Transitions: myAlarmOpenRecordSetInfo.AlarmType = ihALARM_CONDITION_HIST

Add filters

Similar to the SelectFields object, each field listed above (Alarm Fields) can have criteria

associated with it. This criteria is used to filter the record set, so for example, you can ask

for all alarms with severity greater than 500. The type of Criteria that can be applied is

dependant on the Data Type of the field. The following table lists the available criteria:

Field Data Type Criteria Types

Integer/Long Min, Max, Equal, NotE

qual

Float Min, Max, Equal, NotE

qual

String StringMask

Quality Min, Max, Equal, NotE

qual

For example, the Severity field is of type Long. Therefore, Min, Max, Equal, or NotEqual

criteria can be specified for the severity. To query where severity is greater than 500:

myAlarmOpenRecordSetInfo.AlarmCriteria.SeverityCriteria.Min = 500

Specify Max Records

An optional criteria, MaxRecords, can be set to set the upper limit size of the recordset.

Historian | 11 - Historian SDK | 1815

Example: Return the first 10 records:

myAlarmOpenRecordSetInfo.AlarmCriteria.MaxRecords = 10

Note:

To avoid having random rows returned, if you specify a MaxRecords criteria, you

should generally also specify an Order By (see SelectFields above).

Syntax

object.AlarmRecordSet(theAlarmOpenRecordSetInfo)

Table 285. Parameters

Name Data Type Description

theAlarmOpenRecordSetIn

fo

Variant See above for details.

Returns

AlarmRecordset. An AlarmRecordset object, populated according the details specified in the

AlarmOpenRecordSetInfo parameter.

Example

Dim MyServer As iHistorian_SDK.Server

Set MyServer = GetServer

Dim myAlarmOpenRecordSetInfo As AlarmOpenRecordSetInfo

' Select the last 100 alarms in the alarm history table

myAlarmOpenRecordSetInfo.SelectFields.AllFields = True

myAlarmOpenRecordSetInfo.SelectFields.Timestamp.OrderBy = True

myAlarmOpenRecordSetInfo.SelectFields.Timestamp.Descending = True

myAlarmOpenRecordSetInfo.AlarmCriteria.AlarmType = ihALARM_CONDITION_HIST

myAlarmOpenRecordSetInfo.AlarmCriteria.MaxRecords = 100

Dim myAlarmRecordSet As AlarmRecordSet

Set myAlarmRecordSet = MyServer.Alarms.AlarmRecordSet(myAlarmOpenRecordSetInfo)

AllFields Method (DataFields Object)

Specifies that all DataFields should be returned in the DataRecordset query.

Syntax

Historian | 11 - Historian SDK | 1816

Syntax object.AllFields

Parameters

None.

Returns

None.

AllFields Method (MessageFields Object)

Specifies that all MessageFields should be returned in the MessageRecordset query.

Syntax

object.AllFields

Parameters

None.

Returns

None.

AllFields Method (TagFields Object)

Sets all fields for retrieval in the TagRecordset query.

Syntax

object.AllFields

Parameters

None.

Returns

None.

Backup Alarms Method

Backs up or saves a copy of the alarms to an offline file.

Syntax

Historian | 11 - Historian SDK | 1817

object.BackupAlarms

Table 286. Parameters

Name Data Type Description

BackupFile String The file that stores the backup alarm data.

StartTime Date Start time of the alarm data.

EndTime Date End time of the alarm data.

Returns

Boolean. Returns TRUE if the alarms are backed up.

Example

Dim Status As ihStatus

Dim ReturnStatus As Boolean

Dim AlarmsStartTime As ihTimeStruct

Dim AlarmsEndTime As ihTimeStruct Status = ihSTATUS_FAILED ReturnStatus = False

AlarmsStartTime = Date_To_UTC(StartTime) AlarmsEndTime = Date_To_UTC(EndTime)

On Error GoTo errc

Status = ihBackupAlarms(MyServer.Handle, BackupFile, AlarmsStartTime, AlarmsEndTime, 0)

If Status <> ihSTATUS_OK Then err.Raise 1, , "Error while performing Backup alarms [" +

 ErrorDescription(Status) ReturnStatus = True

BackupAlarms = ReturnStatus errc:

zLastError = "Backup Alarms >> " + err.Description

BackupAlarms = ReturnStatusEnd Function

Backup Method (Archive Object)

Performs an online backup of the specified archive by stopping inbound data flow and

copying an image of the specified archive into the file identified by the BackupFileName

parameter.

When the online backup operation completes, the archive returns to normal operation and

accepts inbound data flow.

Syntax

object.Backup(BackupFileName As String, Optional DataStoreName As String)

Historian | 11 - Historian SDK | 1818

Table 287. Parameters

Name Data Type Description

BackupFileName String Fully qualified name of the backup file (read-

only).

DataStoreName String Name of the data store to which the backup

file belongs. This is an optional parameter.

Returns

Boolean. Returns whether or not the BackupFile operation succeeded.

Example

Dim BackupFilename As String

BackupFilename = ArchiverLauncher.Archives & "\TheCurrentArchive.ZIP"

Set MyArchives = GetServer.Archives

' Find The Current Archive, Then Initiate A Backup

With MyArchives

 For I = 1 To .Item.count

 If .Item(I).IsCurrent Then

 If Not .Item(I).Backup(BackupFilename) Then

 err.Raise 1, "Backup", "Backup Failed"

 End If

 End If

 Next I

End With

BackupEx Method (Archive Object)

Performs an online backup of the specified archive by stopping inbound data flow and

copying an image of the specified archive into the file identified by the BackupFileName

parameter.

When the online backup operation completes, the archive returns to normal operation and

accepts inbound data flow.

The Ex method will process messages for a client window while waiting for the backup to

complete (so clients do not appear to be frozen.

Syntax

Historian | 11 - Historian SDK | 1819

object.BackupEx(BackupFileName As String, hWnd As Long, DataStoreName As String)

Table 288. Parameters

Name Data Type Description

BackupFileName String Fully qualified name of the backup file (read-

only)

hWnd Long The handle of the window to keep alive.

DataStoreName String Name of the data store. This is an optional

parameter.

Returns

Boolean. Returns whether or not the BackupFile operation succeeded.

Example

Dim BackupFilename As String

BackupFilename = ArchiverLauncher.Archives & "\TheCurrentArchive.ZIP" Set MyArchives =

 GetServer.Archives

' Find The Current Archive, Then Initiate A Backup

With MyArchives

 For I = 1 To .Item.count

 If .Item(I).IsCurrent Then

 If Not .Item(I).Backup(BackupFilename)

 Then err.Raise 1, "Backup", "Backup Failed"

 End If

 End If

 Next I

End With

Browse Method (OPCBrowse Object)

Populates the Browse Object with sources and areas for the current browse position.

Syntax

object.Browse(theServer, theCollector)

Historian | 11 - Historian SDK | 1820

Table 289. Parameters

Name Data Type Description

theServer Variant The Server Object for the Historian Server.

theCollector Variant The Collector Object for the Collector to

Browse.

Returns

Boolean. Returns whether or not the Browse operation succeeded.

BrowseCollector Method (TagRecordset Object)

Browses a collector for its available tags.

Syntax

object.BrowseCollector(CollectorName, AdditionsOnly, SourceFilter, DescriptionFilter,

[BrowsePosition], [Recursive])

Table 290. Parameters

Name Data Type Description

CollectorName String The name of the collector to browse.

AdditionsOnly Boolean Browse only tags that are additions to the

Historian server.

SourceFilter String The tag source address filter.

DescriptionFilter String The tag description filter.

BrowsePosition String The browse position when performing an

OPC hierarchical browse (optional, default =

"").

Recursive Boolean Whether to perform an OPC hierarchical

browse (optional, default = False).

Returns

Boolean. Success/Failure.

BrowseTags Method (Collector Object)

Historian | 11 - Historian SDK | 1821

BrowseTags is available for collection in the data source. The tags can then be added to the

archiver using the WriteRecordSet Method.

Syntax

object.BrowseTags([AdditionsOnly], [SourceFilter], [DescriptionFilter], [BrowsePosition],

[Recursive])

Table 291. Parameters

Name Data Type Description

AdditionsOnly Boolean Browse only tags that are additions to the

Historian server (optional, default = True).

SourceFilter String The tag source address filter (optional, de

fault = "").

DescriptionFilter String The tag description filter (optional, default =

"").

BrowsePosition String The browse position when performing an

OPC hierarchical browse (optional, default =

"").

Recursive Boolean Whether to perform an OPC hierarchical

browse (optional, default = False).

Returns

TagRecordset. Returns a reference to the tag record that resulted from browsing the

selected collector.

Example

Dim MyNewTags As iHistorian_SDK.TagRecordset

' Request The Collector To Browse Its Tag Source

Set MyNewTags = MyCollectors.Item("USIM031_OPC1").BrowseTags

' Modify Tag Records In Recordset To Add Additional Configuration Information

' Go Ahead And Add New Tags To System

If Not MyNewTags.WriteRecordset Then

 err.Raise 1, , "TagRecordset.WriteRecord failed: " + MyNewTags.LastError

End If

Historian | 11 - Historian SDK | 1822

Method Reference C-D
C

Clear Method (DataCriteria Object)

Clears any previously supplied criteria for the DataRecordset query. Use this method to

initialize the DataRecordset query.

Syntax

object.Clear

Parameters

None.

Returns

None.

Clear Method (DataFields Object)

Clears all DataFields from being returned in the DataRecordset query. Use this method to

initialize the DataRecordset query.

Syntax

object.Clear

Parameters

None.

Returns

None.

Clear Method (Enumerated Sets Object)

Applies to:

Clears all the elements from the EnumeratedSets collection object and create a new

instance of the EnumeratedSets collection.

Syntax

Historian | 11 - Historian SDK | 1823

object.Clear

Parameters

None.

Returns

None.

Clear Method (EnumeratedStates Object)

Applies to:

Clears all the states from the enumerated set collection.

Syntax

object.Clear

Parameters

None.

Returns

None.

Clear Method (MessageCriteria Object)

Clears all previously supplied criteria for the MessageRecordset query. Use this method to

initialize the MessageRecordset query.

Syntax

object.Clear

Parameters

None.

Returns

None.

Clear Method (MessageFields Object)

Historian | 11 - Historian SDK | 1824

Clears all previously supplied criteria for the MessageRecordset query. Use this method to

initialize the MessageRecordset query.

Syntax

object.Clear

Parameters

None.

Returns

None.

Clear Method (TagCriteria Object)

Clears previously entered criteria for the TagRecordset query. Use this method to initialize

the TagRecordset query.

Syntax

object.Clear

Parameters

None.

Returns

None.

Clear Method (TagFields Object)

Clears all fields for retrieval in the TagRecordset query.

Syntax

object.Clear

Parameters

None.

Returns

None.

Historian | 11 - Historian SDK | 1825

Returns

Clear Method (UserDefinedTypeFields Object)

Applies to:

Clears all the fields from the User Defined Type.

Syntax

object.Clear

Parameters

None.

Returns

None.

Returns

ClearRecordset Method (DataRecordset Object)

Clears specific records from the DataRecordset without deleting them from the Historian

server.

You can specify a tagname to remove all DataValues for a specific tag, or supply a specific

timestamp to remove a single DataValue.

CAUTION:

You can clear the entire DataRecordset by omitting both the tagname and

timestamp.

Syntax

object.ClearRecordset([Tagname], [TimeStamp])

Table 292. Parameters

Name Data Type Description

Tagname String Tag to clear records for (optional, read-only).

Historian | 11 - Historian SDK | 1826

Table 292. Parameters (continued)

Name Data Type Description

TimeStamp Date Timestamp to clear records for (optional,

read-only).

Returns

Boolean. Returns True if the ClearRecordset operation succeeded.

ClearRecordset Method (TagRecordset Object)

Clears specific records from the TagRecordset without deleting them from the Historian

server. You can specify a tagname to delete a specific record.

CAUTION:

You can clear the entire TagRecordset by omitting the tag name.

Syntax

object.ClearRecordset([Tagname])

Table 293. Parameters

Name Data Type Description

Tagname String Name of tag to remove from record set

(read-only, optional).

Returns

Boolean. Success/Failure.

CloseAlarms Method (Alarms Object)

This function sends a special alarm request to close alarms on a specific collector before a

specific date. This is useful to close out any alarms that are stuck mid-lifecycle.

Syntax

object.CloseAlarms(endDate, theCollector)

Historian | 11 - Historian SDK | 1827

Table 294. Parameters

Name Data Type Description

endDate Date The date from which to close alarms.

Alarms before this date are closed.

theCollector String Close alarms associated with this collec

tor/datasource.

Note:

If your alarm collector is linked to a

data collector, pass in the data col

lector name.

Returns

None.

CloseArchive Method (Archive Object)

Closes the specified archive for new data flow. You can perform this operation on the

current archive only (the one accepting the newest data). Once an archive is closed, the

Historian server looks to the next available empty archive to re-commence data storage.

If no empty archive is found, the method creates one or overwrites the oldest loaded

archive. The archiving options, ArchiveAutomaticCreate, ArchiveAutomaticFreeSpace,

ArchiveDefaultSize, and ArchiveOverWriteOld, control this behavior.

If ArchiveAutomaticCreate is running and enough free space exists on the drive of the

ArchiveDefaultPath, the method creates a new archive of default size after it creates an

archive of default size.

If the method cannot create a new archive, it overwrites the oldest archive based on

ArchiveOverWriteOld being on. If ArchiveOverWriteOld is not on, the Historian archiver shuts

down and the collectors start buffering data.

Syntax

object.CloseArchive(DataStoreName As String)

Historian | 11 - Historian SDK | 1828

Table 295. Parameters

Name Data Type Description

DataStoreName String The name of the data store the archive belongs to.

This is an optional parameter.

Returns

Boolean. Returns whether or not the CloseArchive operation succeeded.

CollectorHasBackup Method (Collectors Object)

Returns whether a collector has a backup collector.

Syntax

object.CollectorHasBackup(CollectorName)

Table 296. Parameters

Name Data Type Description

CollectorName String Name of the collector to determine if a

backup exists.

Returns

Boolean. True if the Collector has a backup, False otherwise.

Example

Dim MyCollectors As iHistorian_SDK.Collectors

Set MyCollectors = MyServer.Collectors

Dim HasBackup As Boolean

HasBackup = MyCollectors.CollectorHasBackup("SimulationCollector")

CommitImport Method (Alarms Object)

Writes the alarms/events acquired via the Import method to the Historian Archiver.

Syntax

object.CommitImport

Parameters

Historian | 11 - Historian SDK | 1829

None

Returns

Boolean. Returns whether or not the Import operation succeeded.

Connect Method (Server Object)

Initiates a connection to the current server. Calling the Connect method on a currently

connected session re-authenticates the user.

If a ServerName has been set, the method authenticates the user by the username and

password supplied, if any. If they are not supplied, it authenticates the user by the currently

authenticated domain user. If a ServerName has not been set, it uses the ServerName

registered as the Default Server. If a username and password are not supplied, it uses

the username and password registered with the default server. If neither establishes a

username, it authenticates the user by the currently authenticated domain user.

Syntax

object.Connect([ServerName], [UserName], [Password])

Table 297. Parameters

Name Data Type Description

ServerName String Table text

UserName String Username to authenticate (optional).

Password String Password to authenticate (optional).

Returns

Boolean. Returns whether or not the Connect operation succeeded.

Example

Dim MyServer As New iHistorian_SDK.Server

' Connect to the default server using default user

If Not MyServer.Connect Then

err.Raise 1, , "Failed to authenticate on server " + MyServer.ServerName

End If

' Connect to the default server using specific user

If Not MyServer.Connect("Fred", "000") Then

Historian | 11 - Historian SDK | 1830

err.Raise 1, , "Failed to authenticate on server " + MyServer.ServerName

End If

' Connect to specific server using specific user

If Not MyServer.Connect("USGB014", "Fred", "000") Then

err.Raise 1, , "Failed to authenticate on server " + MyServer.ServerName

End If

ConvertShortcutToTime Method (Server Object)

Converts a time shortcut to a date. It converts the time from UTC into formatted time based

on the ConnectionOptions (TimeOption) settings listed below.

Value Description

(N)ow The current time (absolute).

(T)oday Today at midnight (absolute).

(Y)esterday Yesterday at midnight (absolute).

(D)ays Number of Days (relative).

(M)in Number of Minutes (relative).

(H)our Number of Hours (relative).

(W)eek Number of Weeks (relative).

(BOM) Beginning of this month at Midnight (absolute).

(EOM) Last Day of this month at Midnight (absolute).

(BOY) First Day of this year at Midnight (absolute).

(EOY) Last Day of this year at Midnight (absolute).

Syntax

object.ConvertShortcutToTime(Shortcut)

Table 298. Parameters

Name Data Type Description

Shortcut String Date of shortcut to convert (read-only).

Returns

Historian | 11 - Historian SDK | 1831

Date. Returns date converted from string shortcut.

CopyTo Method (Tag Object)

Copies the properties of the given tag to the specified destination tag.

Syntax

object.CopyTo(TargetTag)

Table 299. Parameters

Name Data Type Description

TargetTag Variant The destination tag.

Returns

None.

CriteriaFromStrings Method (QueryModifiers Object)

Applies to:

Returns the sampling mode, calculation mode and query modifiers associated with the input

CriteriaString.

Syntax

object.CriteriaFromStrings(CriteriaString As String)

Table 300. Parameters

Name Data Type Description

CriteriaString String Indicates the criteria string. For example,

#ONLYGOOD.

Returns

DataCriteria

D

DataStoreUpdate Method (DataStores Object)

Updates the changes made to the data store settings.

Historian | 11 - Historian SDK | 1832

Syntax

object.MyDataStores.Item(DataStoreName)

Table 301. Parameters

Name Data Type Description

DataStoreName String Name of the data store that should be up

dated.

IsDefault Boolean Indicates whether the data store is the de

fault data store.

Description String Description of the data store. This is an op

tional parameter.

StorageType String Indicates whether the storage type is histor

ical or SCADA buffer. This is an optional pa

rameter.

Returns

Boolean. Returns TRUE if the data store has been updated and FALSE if there is an error in

updating the data store.

Delete Method (Archive Object)

Deletes the specified archive on the Historian server. This is a synchronous operation that

executes immediately when you call the Delete Method.

Syntax

object.Delete(DataStoreName As String)

Table 302. Parameters

Name Data Type Description

DataStoreName String Name of the data store that contains the

archive. This is an optional parameter.

Returns

Boolean. Returns whether or not the Delete operation succeeded.

Historian | 11 - Historian SDK | 1833

Delete Method (Archives Object)

Attempts to delete an Archive from the Historian server.

Syntax

object.Delete(ArchiveName As String, ArchiveDataStoreName As String)

Table 303. Parameters

Name Data Type Description

ArchiveName String Name of the archive to delete.

ArchiveDataStore

Name

String Name of the archive data store the archive

belongs to. This is an optional parameter.

Returns

Boolean. Returns whether or not the Delete operation succeeded.

Delete Method (Collector Object)

Deletes the specified collector on the Historian Server.

CAUTION:

The default option also deletes all tags marked with this collector as their source

(CollectorName Property) at the same time it deletes the collector.

Syntax

object.Delete([DeleteTags])

Table 304. Parameters

Name Data Type Description

DeleteTags Boolean Deletes collector tags when deleting the col

lector. (optional, default = True)

Returns

Boolean. Whether the Delete was successful.

Delete Method (Collectors Object)

Historian | 11 - Historian SDK | 1834

Removes an existing collector with the specified name from the Historian server.

Syntax

object.Delete(CollectorName, [DeleteTags])

Table 305. Parameters

Name Data Type Description

CollectorName String Name of the collector to Delete.

DeleteTags Boolean Should the tags from this collector be delet

ed as well?

Returns

Boolean. Success/Failure.

Example

Dim MyCollectors As iHistorian_SDK.Collectors

Set MyCollectors = MyServer.Collectors

MyCollectors.Delete "OPC Collector"

Delete Method (DataRecordset Object)

Marks the specified tag in the current TagRecordset for deletion. If the specified tag does

not exist in the current TagRecordset, the method adds it. If the tag is not found, the Delete

method fails.

In either case, the method does not delete this tag on the Historian server until the

WriteRecordset Method of the TagRecordset object is called.

Syntax

object.Delete(Tagname, TimeStamp)

Table 306. Parameters

Name Data Type Description

Tagname String Name of the tag to delete (read-only).

TimeStamp Date Tag timestamp (optional).

Returns

Historian | 11 - Historian SDK | 1835

Boolean. Returns True if successful.

Delete Method (DataStores Object)

Deletes the data store.

Syntax

object.Delete(DataStoreName As String)

Table 307. Parameters

Name Data Type Description

DataStoreName String Indicates the name of the data store that

has to be deleted.

Returns

Boolean. Returns TRUE if the data store has been deleted and FALSE if there is an error in

deleting the data store.

Delete Method (DataValue Object)

Deletes the DataValue from the archive. Commit the Delete operation by calling the

WriteRecordset method of the DataRecordset object.

Syntax

object.Delete

Parameters

None

Returns

Boolean. Returns whether or not the Delete operation succeeded.

Delete Method (EnumeratedSets Object)

Deletes the specified set from the Historian Server. This is a synchronous operation that is

executed immediately when you call the Delete method.

Syntax

object.Delete(setName)

Historian | 11 - Historian SDK | 1836

Table 308. Parameters

Name Data Type Description

SetName Variant The name of the set that has to be delet

ed.

Returns

Boolean. Returns True if the method has been deleted

Delete Method (EnumeratedStates Object)

Deletes the specified state from the enumerated set. This is a synchronous operation that is

executed immediately when you call the Delete method.

Syntax

object.Delete(StateName)

Table 309. Parameters

Name Data Type Description

StateName Variant The name of the state that has to be delet

ed.

Returns

Boolean. Returns True if the state has been deleted or False if not.

Delete Method (Tag Object)

Deletes the specified tag on the Historian Server. This is a synchronous operation that

executes immediately when you call the Delete method. You can choose to delete a tag

permanently from the Historian Server by passing an additional parameter as True or False.

Note:

This method is called within the WriteRecordset method. For more information,

refer to the Sample Code section.

Syntax

object.Delete((Optional) DeletePermanent)

Historian | 11 - Historian SDK | 1837

Table 310. Parameters

Name Data Type Description

DeletePermanent Boolean (Optional) Pass TRUE to permanently delete a

tag.

Returns

Boolean. Returns whether or not the Delete operation succeeded.

Delete Method (TagRecordset Object)

Marks the specified tag in the current TagRecordset for deletion. If the specified tag does

not exist in the current TagRecordset, the method adds it. If the tag is not found, the Delete

method fails. In either case, the method does not delete this tag on the Historian server until

the WriteRecordset method of the TagRecordset object is called.

Syntax

object.Delete(Tagname)

Table 311. Parameters

Name Data Type Description

Tagname String Name of the tag to delete (read-only).

Returns

Boolean. Returns whether or not the Delete operation succeeded.

Delete Method (UserDefinedTypeFields Object)

Deletes a field from the User Defined Type. This is a synchronous operation that is executed

immediately when you call the Delete method.

Syntax

object.Delete(FieldName)

Table 312. Parameters

Name Data Type Description

FieldName Variant The name of the state that has to be delet

ed.

Historian | 11 - Historian SDK | 1838

Returns

Boolean. Returns TRUE if the state has been deleted.

DeleteEx Method (Archive Object)

Deletes the specified archive on the Historian server. This is a synchronous operation that

executes immediately when you call the Delete Method. The window associated with the

handle passed in is kept alive (messages processed) while the operation takes place.

Syntax

object.DeleteEx(hWnd As Long, DataStoreName As String)

Table 313. Parameters

Name Data Type Description

hWnd Long The handle of the window to keep alive.

DataStoreName String Name of the data store that contains the

archive. This is an optional parameter.

Returns

Boolean. Returns whether or not the Delete operation succeeded.

DeleteEx Method (Archives Object)

Attempts to delete an Archive from the Historian server. Keeps the window with handle

hwnd alive by processing its messages while waiting for the deletion to occur.

Syntax

object.DeleteEx(ArchiveName As String, hWnd As Long, ArchiveDataStoreName As String)

Table 314. Parameters

Name Data Type Description

ArchiveName String Name of the archive to delete

hWnd Long The window handle to keep alive.

ArchiveDataStore

Name

String Name of the archive data store the archive

belongs to. This is an optional parameter.

Returns

Historian | 11 - Historian SDK | 1839

Boolean. Success/Failure.

Disconnect Method (Server Object)

Disconnects the currently authenticated connection to the Server.

Syntax

object.Disconnect

Parameters

None

Returns

None.

Method Reference E-H
E

Export Method (Alarms Object)

Exports the contents of the AlarmRecordSet into the specified file.

Syntax

object.Export(AlmRS, RSInfo, FileName, FileFormat)

Table 315. Parameters

Name Data Type Description

AlmRS AlarmRecordSet Returns the requested records (writeable).

RSInfo AlarmOpenRecord

SetInfo

Contains descriptions of the desired records

(read-only).

FileName String Fully qualified export filename (read-only).

FileFormat ihFileFormat File format of the export file (read-only).

Returns

Boolean. Returns whether or not the Export operation succeeded.

Export Method (DataRecordset Object)

Historian | 11 - Historian SDK | 1840

Exports the contents of the current DataRecordset into the specified file.

Syntax

object.Export(FileName, FileFormat)

Table 316. Parameters

Name Data Type Description

FileName String Fully qualified export filename (read-only.

FileFormat ihFileFormat File format of the export file (read-only).

Returns

Boolean. Returns whether or not the Export operation succeeded.

Example

' Export File From Existing Query Results

If Not MyRecordset.Export("C:\Temp\DataReport.RPT", ihFileFormat.Report) Then

Err.Raise 1, , "Error Exporting File: " + MyRecordset.LastError

End If

Export Method (EnumeratedSets Object)

Applies to:

Exports the contents of the EnumeratedSets collection into the specified file.

The following file formats are supported:

Name Description Value

CSV File is imported/exported as comma sepa

rated values.

1

XML File is imported/exported as XML. 2

Imported files follow a specific format that contains specific keywords. With CSV, the first

row of the file establishes the fields in the file and their positions. With XML reports, the files

describe the format of the data.

Syntax

Historian | 11 - Historian SDK | 1841

object. Export(FileName, FileFormat)

Table 317. Parameters

Name Data Type Description

FileName String Fully qualified export file name (read-only).

FileFormat ihFileFormat File format of the export file (read-only).

Returns

Boolean. Returns True if the sets have been exported successfully.

Export Method (MessageRecordset Object)

Exports the contents of the current MessageRecordset into the specified file.

The following file formats are supported. Exported files follow a specific format containing

specific keywords. With CSV and tabular reports, the first row of the file establishes the

fields in the file and their positions. With XML, the file itself describes the format of the data.

Name Description Value

CSV File is imported/exported as comma sepa

rated values.

1

XML File is imported/exported as XML. 2

Report File is exported as a columnar report 3

Syntax

object.Export(FileName, FileFormat)

Table 318. Parameters

Name Data Type Description

FileName String Fully qualified export file name (read-only).

FileFormat ihFileFormat File format of the export file (read-only).

Returns

Boolean. Success/Failure.

Export Method (TagRecordset Object)

Historian | 11 - Historian SDK | 1842

Exports the contents of the current TagRecordset into the specified file.

The following file formats are supported:

Name Description Value

CSV File is imported/exported as comma sepa

rated values.

1

XML File is imported/exported as XML. 2

Report File is exported as a columnar report 3

Imported files follow a specific format that contains specific keywords. With CSV and

tabular reports, the first row of the file establishes the fields in the file and their positions.

With XML reports, the files describe the format of the data. Prepare a file for import by

exporting it with the desired fields for import.

Syntax

object.Export(FileName, FileFormat)

Table 319. Parameters

Name Data Type Description

FileName String Fully qualified export file name (read-only).

FileFormat ihFileFormat File format of the export file (read-only).

Returns

Returns whether or not the Export operation succeeded.

Example

' Export file from existing query results

Set MyRecordset = MyServer.Tags.NewRecordset

MyRecordset.Criteria.Tagname = "*"

MyRecordset.Fields.AllFields

MyRecordset.QueryRecordset

If Not MyRecordset.Export(Path & "TagReport.RPT", ihFileFormat.Report) Then

err.Raise 1, , "Error exporting file: " & MyRecordset.LastError

End If

Historian | 11 - Historian SDK | 1843

Export Method (UserDefinedType Object)

Applies to:

Exports the contents of the User Defined Type into the specified file.

The following file formats are supported:

Name Description Value

CSV File is imported/exported as comma

separated values.

1

XML File is imported/exported as XML. 2

Imported files follow a specific format that contains specific keywords. With CSV, the first

row of the file establishes the fields in the file and their positions. With XML reports, the files

describe the format of the data.

Syntax

object. Export(FileName, FileFormat)

Table 320. Parameters

Name Data Type Description

FileName String Fully qualified export file name (read-only).

FileFormat ihFileFormat File format of the export file (read-only).

Returns

Boolean. Returns TRUE if the User Defined Type is exported successfully.

G

GetCurrentValue Method (Collector Object)

Returns the current value for a given tag.

Syntax

object.GetCurrentValue(SourceAddress, ErrorMessage, CurrentValue)

Historian | 11 - Historian SDK | 1844

Table 321. Parameters

Name Data Type Description

SourceAddress String The tag source address.

ErrorMessage String The error message string encountered, if any.

CurrentValue String A DataValue object representing the current tag

value.

Returns

Boolean. Succeeded/Failed. Example

Dim OPC1 As iHistorian_SDK.Collector

Dim MyTagValue As Variant

Dim MyErrorMessage As String

' Request The Collector To Get the Current Value for a Tag

Set OPC1 = MyCollectors.Item("USIM031_OPC1")

OPC1.GetCurrentValue "OPCTag1", MyErrorMessage, MyTagValue

GetFilters Method (OPCFilters Object)

Returns the current set of Filters configured for MyCollector.

Syntax

object.GetFilters(MyServer, MyCollector)

Table 322. Parameters

Name Data Type Description

MyServer Variant The Historian server connection.

MyCollector MyCollector The Collector object to acquire the Filter infor

mation for.

Returns

Boolean true on success, false otherwise

GetLastError Method (Server Object)

Historian | 11 - Historian SDK | 1845

Returns the last error message encountered by the Server object. To see a complete list of

messages, refer to the ErrorList property. When possible, the system translates messages

into the locale of the client.

Syntax

object.GetLastError

Parameters

None

Returns

String. The last error message encountered.

GetPrimaryCollectorName Method (Collectors Object)

Returns the name of the Primary Collector for a set of redundantly configured Collectors.

Syntax

object.GetPrimaryCollectorName(CollectorName)

Table 323. Parameters

Name Data Type Description

CollectorName String The name of the Collector.

Returns

String. The primary collector name.

Method Reference I-L
I

Import Method (Alarms Object)

This function imports the alarms/events in the specified file into this Alarms object.

CAUTION:

Any previously imported alarms will be discarded.

Historian | 11 - Historian SDK | 1846

Syntax

object.Import(FileName, FileFormat)

Table 324. Parameters

Name Data Type Description

FileName String Fully qualified import filename (read-only).

FileFormat Long File format of the import file (read-only).

Returns

Boolean. Returns whether or not the Import operation succeeded.

Import Method (DataRecordset Object)

Imports the specified file into the current DataRecordset. If the DataRecordset contains

items when the Import Method is invoked, the method first clears current DataRecordset

before it imports the specified file.

Syntax

object.Import(FileName, FileFormat)

Table 325. Parameters

Name Data Type Description

FileName String Fully qualified import filename (read-only).

FileFormat Long File format of the import file (read-only).

Returns

Boolean. Returns whether or not the Import operation succeeded.

Example

' Get A New Recordset

Set MyRecordset = MyData.NewRecordset

' Import The File

If Not MyRecordset.Import("C:\Temp\ImportData.CSV", ihFileFormat.CSV) Then

Err.Raise 1, , "Error Importing File:" + MyRecordset.LastError

End If

Historian | 11 - Historian SDK | 1847

' Commit Data

If Not MyRecordset.WriteRecordset Then

Err.Raise 1, , "Error Committing File: " + MyRecordset.LastError

End If

ImportMethod (EnumeratedSets Object)

Imports the specified file into the EnumeratedSets collection. The following file formats are

supported:

Name Description
Val

ue

CSV File is imported/exported as comma separated values. 1

XML File is imported/exported as XML. 2

Imported files follow a specific format that contains specific keywords. With CSV files, the

first row of the file establishes the fields in the file and their positions. With XML reports, the

files describe the format of the data.

Syntax

object. Import(FileName, FileFormat, Server)

Table 326. Parameters

Name Data Type Description

FileName String Fully qualified export file name (read-only).

FileFormat ihFileFormat File format of the export file (read-only).

Server Server Server from which the sets are imported.

Returns

Boolean. Returns True if the sets have been imported successfully.

Import Method (MessageRecordset Object)

Attempts to import a list of Messages from a file.

Syntax

object.Import(FileName, FileFormat)

Historian | 11 - Historian SDK | 1848

Table 327. Parameters

Name Data Type Description

FileFormat ihFileFormat The format of the file specified in FileName

FileName String The name of the file to import.

Returns

Boolean true if the Import succeeded, false otherwise.

Import Method (TagRecordset Object)

Imports the specified file into the current TagRecordset. If the TagRecordset contains

items when the Import method is invoked, the method first clears the current TagRecordset

before importing the specified file. After you have imported a file, call the WriteRecordset

method of the TagRecordset object to save the data to the Historian server. The following

file formats are supported:

Name Description Value

CSV File is imported/exported as comma sepa

rated values.

1

XML File is imported/exported as XML. 2

Report File is exported as a columnar report. 3

Imported files follow a specific format that contains specific keywords. With CSV and

tabular reports, the first row of the file establishes the fields in the file and their positions.

With XML reports, the files describe the format of the data.

Note:

Prepare a file for import by exporting it with the desired fields for import.

Syntax

object.Import(FileName, FileFormat)

Table 328. Parameters

Name Data Type Description

FileName String Fully qualified import file name (read-only).

Historian | 11 - Historian SDK | 1849

Table 328. Parameters (continued)

Name Data Type Description

FileFormat Long File format of the import file (read-only).

Returns

Returns whether or not the Import operation succeeded.

Example

' Get a new recordset

Set MyRecordset = MyTags.NewRecordset

' Import the file

If Not MyRecordset.Import(Path & "ImportTags.csv", ihFileFormat.CSV) Then err.Raise 1, , "Error

 importing file: " & MyRecordset.LastError

End If

' Commit Data

If Not MyRecordset.WriteRecordset Then

err.Raise 1, , "Error committing file: " & MyRecordset.LastError

End If

Import Method (UserDefinedType Object)

Applies to:

Imports the specified file into the User Defined Type collection. The following file formats

are supported:

Name Description Value

CSV File is imported/exported as comma sepa

rated values.

1

XML File is imported/exported as XML. 2

Imported files follow a specific format that contains specific keywords. With CSV files, the

first row of the file establishes the fields in the file and their positions. With XML reports, the

files describe the format of the data.

Syntax

object. Import(FileName, FileFormat, Server)

Historian | 11 - Historian SDK | 1850

Table 329. Parameters

Name Data Type Description

FileFormat ihFileFormat File format of the import file (read-only).

FileName String Fully qualified export file name (read-only).

Server Server Server from which the sets are imported.

Returns

Boolean. Returns TRUE if the type imports successfully.

InitiateFailover Method (Collectors Object)

Manually tries to initiate a Failover to a redundantly configured collector.

Syntax

object.InitiateFailover(CollectorName)

Table 330. Parameters

Name Data Type Description

CollectorName String Name of the collector to fail-over.

Returns

Collector. Returns Success/Failure.

Example

Dim MyCollectors As iHistorian_SDK.Collectors

Set MyCollectors = MyServer.Collectors

MyCollectors.InitiateFailover "SimulationCollector"

L

LastError Method (Alarms Object)

This function returns the last error message generated by this object.

Syntax

object.LastError

Historian | 11 - Historian SDK | 1851

Parameters

None

Returns

String. The last error message encountered.

LoadUserCalcLibrary Method (Server Object)

Retrieves the user calculation library from the Server object. This library contains all of

the user-created functions and subroutines available for calculations on this Server. The

calculation library will be returned as an array of UserCalcFunction objects. If no functions

exist in the library, UserCalcFunctions should be set to Empty

Syntax

object.LoadUserCalcLibrary(UserCalcFunctions)

Table 331. Parameters

Name Data Type Description

UserCalcFunctions Variant Resulting array of UserCalcFunction objects.

Returns

Boolean. Returns whether or not the calculation library was loaded successfully.

Example

Dim MyServer As New iHistorian_SDK.Server

Dim MyUserCalcFunctions() As iHistorian_SDK.UserCalcFunction

Dim MyNewFunction As New iHistorian_SDK.UserCalcFunction

' Connect to the local server

If Not MyServer.Connect("", "", "") Then

err.Raise 1, , "Failed to connect to the local server" End If

' Load the calculation library

MyServer.LoadUserCalcLibrary MyUserCalcFunctions

' Create a new function

MyNewFunction.Name = "Sum"

MyNewFunction.Definition = "Function Sum(a, b)" & vbCrLf & "Sum = a + b" & vbCrLf & "End Function"

' Add it to the loaded library

If IsArray(MyUserCalcFunctions) Then

Historian | 11 - Historian SDK | 1852

ReDim Preserve MyUserCalcFunctions(UBound(MyUserCalcFunctions) + 1) Else

ReDim MyUserCalcFunctions(0) End If

Set MyUserCalcFunctions(UBound(MyUserCalcFunctions)) = MyNewFunction

' Save the changes to the calculation library

If Not MyServer.SaveUserCalcLibrary(MyUserCalcFunctions) Then err.Raise 1, , "Failed to save the

 calculation library"

End If

Method Reference M-P
M

ManageServerDialog Method (ServerManager Object)

Displays a window to manage server connection information on the client. This window

allows you to add and remove new connections, and to modify the default username

and password. This method optionally returns the name of the server last selected in the

window.

Syntax

object.ManageServerDialog([SelectedServer])

Table 332. Parameters

Name Data Type Description

SelectedServer String Name of the selected Historian Server (op

tional, read/write).

Returns

None.

Example

Dim MyManager As New iHistorian_SDK.ServerManager

Dim MyServer As iHistorian_SDK.Server

Dim SelectedServer As String

' Show the manage server window

MyManager.ManageServerDialog SelectedServer

' If a server was selected, get the server

Historian | 11 - Historian SDK | 1853

If Trim(SelectedServer) <> "" Then

Set MyServer = MyManager.Servers(SelectedServer) End If

N

NewRecordset Method (Data Object)

Returns a new DataRecordset object to subsequently build a query for tag data from the

Historian server. It is the responsibility of the developer to release the DataRecordset

object when processing has been completed. DataRecordset objects may be re-used by re-

executing a query with new criteria set through the DataCriteria of the DataRecordset object.

You must also use a new DataRecordset object to add new data points to the system and

delete existing data points from the system. Changes are not committed until calling the

WriteRecordset method of the DataRecordset object.

Syntax

object.NewRecordset

Parameters

None

Returns

DataRecordset. A new, empty, DataRecordset object.

NewRecordset Method (Messages Object)

Returns a new MessageRecordset object to build a query for messages and alerts from the

Historian server message archive. You must release the MessageRecordset object when

processing completes. You can re-use a MessageRecordset object by re-executing a query

with new criteria set through the MessageCriteria of the MessageRecordset object.

To add new messages, you must use a new MessageRecordset object. Call the

WriteRecordset method of the MessageRecordset object to commit changes to the archiver.

Syntax

object.NewRecordset

Parameters

None

Historian | 11 - Historian SDK | 1854

Returns

MessageRecordset. Returns the newly created MessageRecordset object.

NewRecordset Method (Tags Object)

Returns a new TagRecordset object to build a query for tag information. You must terminate

the TagRecordset object when processing completes. You can re-use the TagRecordset

objects by re-executing a query with new criteria set through the TagCriteria of the

TagRecordset object.

You must also use a new TagRecordset object to add new tags to the system and to delete

tags from the system. Call the WriteRecordset Method of the TagRecordset object to

commit changes to the archiver.

Syntax

object.NewRecordset

Parameters

None.

Returns

TagRecordset. Returns a reference to the newly created Recordset Object.

Purge Alarms By Id Method

Purges a single alarm as identified by its alarm ID.

Syntax

object.AlarmIds

Table 333. Parameters

Name Data Type Description

AlarmIds Long Alarm ID of the alarm.

Returns

Boolean. Returns TRUE if the alarm is purged.

Example

Historian | 11 - Historian SDK | 1855

Dim Status As ihStatus

 Dim ReturnStatus As Boolean

 Dim Alarms() As Long

 Dim NumberOfAlarms As Long

 Dim i As Long

 Status = ihSTATUS_FAILED ReturnStatus = False

 NumberOfAlarms = (UBound(AlarmIds) + 1)

 ReDim Alarms(0 To NumberOfAlarms - 1) As Long

 On Error GoTo errc

 For i = 0 To NumberOfAlarms - 1

 Alarms(i) = AlarmIds(i)

 Next i

 Status = ihPurgeAlarmsById(MyServer.Handle, Alarms(0), NumberOfAlarms, 0)

 If Status <> ihSTATUS_OK Then err.Raise 1, , "Error Purging alarms by Id[" +

 ErrorDescription(Status) + "," + CS ReturnStatus = True

 PurgeAlarmsById = ReturnStatus errc:

 zLastError = "Purge Alarms By Id>> " + err.Description

 PurgeAlarmsById = ReturnStatus

 End Function

Purge Alarms Method

Purges or deletes the alarms from the Archiver.

Syntax

object.PurgeAlarms

Table 334. Parameters

Name Data Type Description

BackupFile String The file that stores the purged alarm data.

ShouldZipAlarms Boolean Indicates whether the alarms should be

zipped into file or not.

StartTime Date Start time of the alarms.

EndTime Date End time of the alarms.

Returns

Historian | 11 - Historian SDK | 1856

Boolean. Returns TRUE if the alarms are purged.

Example

Dim Status As ihStatus

 Dim AlarmsStartTime As ihTimeStruct Dim AlarmsEndTime As ihTimeStruct Dim

 ShouldZip As ihBoolean

 Dim ReturnStatus As Boolean

 Status = ihSTATUS_FAILED ReturnStatus = False

 AlarmsStartTime = Date_To_UTC(StartTime) AlarmsEndTime = Date_To_UTC(EndTime)

 If ShouldZipAlarms = True Then

 ShouldZip = ihTRUE Else

 ShouldZip = ihFALSE End If

 On Error GoTo errc

 Status = ihPurgeAlarms(MyServer.Handle, BackupFile, ShouldZip, AlarmsStartTime,

 AlarmsEndTime, 0)

 If Status <> ihSTATUS_OK Then err.Raise 1, , "Error Purging alarms [" +

 ErrorDescription(Status) + "," + CStr(St

 ReturnStatus = True PurgeAlarms = ReturnStatus errc:

 zLastError = "Purge Alarms>> " + err.Description

 PurgeAlarms = ReturnStatus

 End Function

Method Reference Q-T
Q

QueryArray Method (Archives Object)

This function returns a list of properties of an Archive found on the Historian server.

Syntax

object.QueryArray(ArchiveName, Params, SortAscending, ArrayOrientation, ArraySize,

ReturnCount, ReturnArray)

Historian | 11 - Historian SDK | 1857

Table 335. Parameters

Name Data Type Description

ArchiveName String Name of the Archive to return information

on.

Params Variant A list of the parameters to retrieve on the

specified Archive.

SortAscending Boolean Sorting preference for the returned list of

properties.

ArrayOrientation Integer The desired orientation of the returned ar

ray.

ArraySize Long The desired size of the returned array.

ReturnCount Long The number of rows returned in ReturnArray

ReturnArray Variant A returned array which contains the request

ed properties.

Returns

Boolean. Success/Failure.

QueryArray Method (Collectors Object)

This function returns a list of properties for a set of Collectors.

Syntax

object.QueryArray(CollectorName, Params, SortAscending, ArrayOrientation, ArraySize,

ReturnCount, ReturnArray)

Table 336. Parameters

Name Data Type Description

CollectorName String Name of the Collector to return information

on.

Params Variant A list of the parameters to retrieve from the

Collectors.

Historian | 11 - Historian SDK | 1858

Table 336. Parameters (continued)

Name Data Type Description

SortAscending Boolean Sorting preference for the returned list of

properties.

ArrayOrientation Integer The desired orientation of the returned ar

ray.

ArraySize Long The desired size of the returned array.

ReturnCount Long The number of rows returned in ReturnArray

ReturnArray Variant A returned array which contains the request

ed properties.

Returns

Boolean. Success/Failure.

QueryArray Method (DataRecordset Object)

This function returns an array of data records from the Historian server.

Syntax

object.QueryArray(Params, SortAscending, ArrayOrientation, ArraySize, ReturnCount,

ReturnArray)

Table 337. Parameters

Name Data Type Description

Params Variant A list of the parameters to retrieve.

SortAscending Boolean Sorting preference for the returned list of

properties.

ArrayOrientation Integer The desired orientation of the returned ar

ray.

ArraySize Long The desired size of the returned array.

ReturnCount Long The number of rows returned in ReturnArray

ReturnArray Variant A returned array which contains the request

ed properties.

Historian | 11 - Historian SDK | 1859

Returns

Boolean. Success/Failure.

QueryArray Method (MessageRecordset Object)

This function returns an array of Messages from the Historian server.

Syntax

object.QueryArray(Params, SortAscending, ArrayOrientation, ArraySize, ReturnCount,

ReturnArray)

Table 338. Parameters

Name Data Type Description

Params Variant A list of the parameters to retrieve.

SortAscending Boolean Sorting preference for the returned list of

properties.

ArrayOrientation Integer The desired orientation of the returned ar

ray.

ArraySize Long The desired size of the returned array.

ReturnCount Long The number of rows returned in ReturnArray

ReturnArray Variant A returned array which contains the request

ed properties.

Returns

Boolean. Success/Failure.

QueryArray Method (TagRecordset Object)

This function returns an array of Tags from the Historian server.

Syntax

object.QueryArray(Params, SortAscending, ArrayOrientation, ArraySize, ReturnCount,

ReturnArray)

Historian | 11 - Historian SDK | 1860

Table 339. Parameters

Name Data Type Description

Params Variant A list of the parameters to retrieve.

SortAscending Boolean Sorting preference for the returned list of

properties.

ArrayOrientation Integer The desired orientation of the returned ar

ray.

ArraySize Long The desired size of the returned array.

ReturnCount Long The number of rows returned in ReturnAr

ray.

ReturnArray Variant A returned array which contains the request

ed properties.

Returns

Boolean. Success/Failure

QueryRecordset Method (DataRecordset Object)

Executes the DataValue query based on the fields and criteria specified.

Syntax

object.QueryRecordset

Parameters

None

Returns

Boolean. Returns whether or not the QueryRecordset operation succeeded.

Example

Dim I As Integer

Dim J As Integer

Dim K As Integer

Dim strComment$

Dim lngInterval As Long

Historian | 11 - Historian SDK | 1861

Dim TagCount As Integer

Dim strDataQuality As String

Dim iDataRecordset As iHistorian_SDK.DataRecordset

Dim iDataValue As iHistorian_SDK.DataValue

Dim lEndTime&, lStartTime&, lNumSamples&

Dim lNumSeconds, lNumSamplesPerSecond

On Error GoTo Error_Handle

If CheckConnection = True Then

If lbTags.Text = "" Then

MsgBox "No Tag Selected", vbOKOnly, "SDK Sample" Exit Sub

End If

Set iDataRecordset = ConnectedServer.Data.NewRecordset

'reset lstValues.Clear

'build query

With iDataRecordset

'filter code

If txtFilterTag.Text <> "" Then

.Criteria.FilterTagSet = True

.Criteria.FilterTag = txtFilterTag.Text

.Criteria.FilterComparisonModeSet = True

'comparison mode

Select Case cboComparisonMode.Text

Case Is = "Equal"

.Criteria.FilterComparisonMode = 1

Case Is = "NotEqual "

.Criteria.FilterComparisonMode = 2

Case Is = "LessThan"

.Criteria.FilterComparisonMode = 3

Case Is = "GreaterThan"

.Criteria.FilterComparisonMode = 4

Case Is = "LessThanEqual"

.Criteria.FilterComparisonMode = 5

Case Is = "GreaterThanEqual"

.Criteria.FilterComparisonMode = 6

End Select

.Criteria.FilterModeSet = True

'filter mode

Historian | 11 - Historian SDK | 1862

Select Case cboFilterMode.Text

Case Is = "ExactTime"

.Criteria.FilterMode = 1

Case Is = "BeforeTime"

.Criteria.FilterMode = 2

Case Is = "AfterTime"

.Criteria.FilterMode = 3

Case Is = "BeforeAndAfterTime"

.Criteria.FilterMode = 4

End Select

.Criteria.FilterComparisonValue = txtFilterValue.Text

End If

.Criteria.Tagmask = lbTags.Text

.Criteria.StartTime = dtStartTime.Value

.Criteria.EndTime = dtEndTime.Value

'get sample mode

Select Case cboSampleMode.Text

Case Is = "Interpolated"

.Criteria.SamplingMode = 2 'interpolated

Case Is = "Raw By Number"

.Criteria.SamplingMode = 5 'raw by number

Case Is = "Raw By Time"

.Criteria.SamplingMode = 4 'raw by time

Case Is = "Current Value"

.Criteria.SamplingMode = 1 'current value

Case Is = "Calculated"

.Criteria.SamplingMode = 6 'calculation

Case Is = "Trend"

.Criteria.SamplingMode = 3 'trend

End Select

If .Criteria.SamplingMode = 5 Then

'if raw by number get direction

If optDirectionForward.Value = True Then

.Criteria.Direction = 1 'forward

Else

.Criteria.Direction = 2 'backward

End If

Historian | 11 - Historian SDK | 1863

End If

'if calculation get calc mode

If .Criteria.SamplingMode = 6 Then

Select Case cboCalculationMode.Text

Case Is = "Average"

.Criteria.CalculationMode = 1 'average

Case Is = "Standard Deviation"

.Criteria.CalculationMode = 2 'standard deviation

Case Is = "Total"

.Criteria.CalculationMode = 3 'total

Case Is = "Minimum"

.Criteria.CalculationMode = 4 'minimum

Case Is = "Maximum"

.Criteria.CalculationMode = 5 'maximum

Case Is = "Count"

.Criteria.CalculationMode = 6 'count

Case Is = "Raw Average"

.Criteria.CalculationMode = 7 'raw average

Case Is = "Raw Standard Deviation"

.Criteria.CalculationMode = 8 'raw standard deviation

Case Is = "Raw Total"

.Criteria.CalculationMode = 9 'raw total

Case Is = "Minimum Time"

.Criteria.CalculationMode = 10 'minimum time

Case Is = "Maximum Time"

.Criteria.CalculationMode = 11 'maximum time

Case Is = "Time Good"

.Criteria.CalculationMode = 12 'time good

End Select

End If

If optSamplingByNumber.Value = True Then

.Criteria.NumberOfSamples = Int(txtNumSamples.Text) Else

Select Case cboTimeUnits.Text

Case Is = "Milliseconds"

.Criteria.SamplingInterval = Int(txtInterval.Text) Case Is = "Seconds"

.Criteria.SamplingInterval = Int(txtInterval.Text) * 1000

Case Is = "Minutes"

Historian | 11 - Historian SDK | 1864

.Criteria.SamplingInterval = Int(txtInterval.Text) * 60000

Case Is = "Hours"

.Criteria.SamplingInterval = Int(txtInterval.Text) * 3600000

Case Is = "Days"

.Criteria.SamplingInterval = Int(txtInterval.Text) * 86400000

End Select

End If

.Fields.AllFields

VB.Screen.MousePointer = vbHourglass 'wait wait wait lStartTime = Timer

'do query

If Not .QueryRecordset Then lEndTime = Timer

MsgBox "Query Failed..." & Chr(13) & iDataRecordset.LastError

VB.Screen.MousePointer = vbDefault

Exit Sub

End If

lEndTime = Timer VB.Screen.MousePointer = vbDefault lNumSamples = 0

TagCount = iDataRecordset.Item(1).Count

For I = 1 To iDataRecordset.Tags.Count

For J = 1 To iDataRecordset.Item(I).Count

Set iDataValue = iDataRecordset.Item(I).Item(J) Select Case iDataValue.DataQuality

Case Is = 1

strDataQuality = "Good" Case Is = 2

strDataQuality = "Bad" Case Is = 3

strDataQuality = "Unknown"

Case Else

strDataQuality = "ERROR" End Select

strComment = ""

For K = 1 To iDataValue.Comments.Count

strComment = strComment & " " & iDataValue.Comments(K).Comment

Next K

lstValues.AddItem Format(iDataValue.TimeStamp, "MM/dd/yyyy hh:mm:ss") & _

Space(10) & CStr(iDataValue.Value) & vbTab & strDataQuality & vbTab & strComment lNumSamples =

 lNumSamples + 1

Next J

Next I

End With

lNumSeconds = lEndTime - lStartTime lNumSamplesPerSecond = lNumSamples If lNumSeconds > 0 Then

Historian | 11 - Historian SDK | 1865

lNumSamplesPerSecond = lNumSamples / lNumSeconds

End If

txtReadTime.Caption = lNumSamples & " returned in " & lEndTime - lStartTime & " seconds (" &

 lNumSamplesPerSec

Caption = "Output values for " & lbTags.Text & " (" & TagCount & ")" VB.Screen.MousePointer = vbDefault

 'done

Else

MsgBox "Not Connected"

End If

Exit Sub

Error_Handle:

VB.Screen.MousePointer = vbDefault

Select Case Err.Number

Case Is = 6 'overflow

MsgBox "Error Number: " & Err.Number & Chr(13) & "Description: " & Err.Description & Chr(13) & "Check

 numb

Case Is = 13 'type mismatch

MsgBox "Error Number: " & Err.Number & Chr(13) & "Description: " & Err.Description & Chr(13) & "Check

 numb

Case Is = 91

MsgBox "Error Number: " & Err.Number & Chr(13) & "Check connection to server"

Case Else

MsgBox "Error Number: " & Err.Number & Chr(13) & Err.Description, vbOKOnly, "Error"

End Select

QueryRecordset Method (MessageRecordset Object)

Executes the message query based on the fields and criteria specified.

Syntax

object.QueryRecordset

Parameters

None

Returns

Boolean. Success/Failure.

Historian | 11 - Historian SDK | 1866

Example

Dim MyRecordset As iHistorian_SDK.MessageRecordset

Dim I As Integer

Dim J As Integer

Dim lEndTime&, lStartTime&, lNumMessages& Dim lNumSeconds&, lNumMessagesPerSecond&

If CheckConnection = True Then

' Get A New Recordset

Set MyRecordset = ConnectedServer.Messages.NewRecordset

' Return Timestamp, Message Number, and Message String Fields In Query

With MyRecordset.Fields

.TimeStamp = True

.MessageNumber = True

.MessageString = True

End With

' Query messages for given start and end time

With MyRecordset.Criteria

.Clear

.StartTime = dtMessageStart.Value

.EndTime = dtMessageEnd.Value

If txtMessageContains.Text <> "" Then

.MessageString = txtMessageContains.Text

End If

End With

VB.Screen.MousePointer = vbHourglass ' wait wait wait

' Run Query lStartTime = Timer

If Not MyRecordset.QueryRecordset Then lEndTime = Timer

MsgBox "Query Failed..." & Chr(13) & MyRecordset.LastError

VB.Screen.MousePointer = vbDefault

Exit Sub

End If

lEndTime = Timer

' reset output list lstRetrievedMessages.Clear

' display all messages lNumMessages = 0

For J = 1 To MyRecordset.Item.Count

lstRetrievedMessages.AddItem Format(MyRecordset.Item(J).TimeStamp, "MM/dd/yyyy hh:mm:ss") & _

vbTab & MyRecordset.Item(J).MessageString lNumMessages = lNumMessages + 1

Next J

Historian | 11 - Historian SDK | 1867

' calculate performance statistics lNumSeconds = lEndTime - lStartTime lNumMessagesPerSecond =

 lNumMessages If lNumSeconds > 0 Then

lNumMessagesPerSecond = lNumMessages / lNumSeconds

End If

VB.Screen.MousePointer = vbDefault

txtReadTime.Caption = lNumMessages & " returned in " & lEndTime - lStartTime & " seconds (" &

 lNumMessagesP

End If

QueryRecordset Method (TagRecordset Object)

Executes the tag query based on the fields and criteria specified.

Syntax

object.QueryRecordset

Parameters

None.

Returns

Boolean. Returns whether the QueryRecordset operation succeeded.

Example

Dim MyTags As iHistorian_SDK.Tags

Dim MyRecordset As iHistorian_SDK.TagRecordset

Dim lStartTime&, lEndTime&, lNumSeconds&, lNumTagsPerSecond& Dim I As Integer

On Error GoTo errc lbTags.Clear

' If we are connected to server

If CheckConnection = True Then

' Query all the tagnames

Set MyTags = ConnectedServer.Tags

Set MyRecordset = MyTags.NewRecordset

MyRecordset.Criteria.Tagname = txtTagMask.Text

If txtDescriptionMask.Text <> "" Then

MyRecordset.Criteria.Description = txtDescriptionMask.Text

End If MyRecordset.Fields.Clear

MyRecordset.Fields.Tagname = True

VB.Screen.MousePointer = vbHourglass

lStartTime = Timer

Historian | 11 - Historian SDK | 1868

If Not MyRecordset.QueryRecordset Then Err.Raise 1, , "Tag Query Failed: " + MyRecordset.LastError

lEndTime = Timer

For I = 1 To MyRecordset.Item.Count

lbTags.AddItem MyRecordset.Item(I).Tagname

Next I

VB.Screen.MousePointer = vbDefault

' Calculate performance statistics

lNumSeconds = lEndTime - lStartTime

lNumTagsPerSecond = MyRecordset.Item.Count

If lNumSeconds > 0 Then

lNumTagsPerSecond = MyRecordset.Item.Count / lNumSeconds

End If

lblAddTime.Caption = MyRecordset.Item.Count & " tags returned in " & lEndTime - lStartTime & " seconds

 (" & lN MyRecordset.ClearRecordset

Set MyRecordset = Nothing

Else

MsgBox "Not connected"

End If

Exit Sub errc:

MsgBox "TestBrowseTags >> " + Err.Description

QueryTagAlias Method (TagRecordset Object)

This function returns a list of tag aliases for the tag name passed in. Pass in the current

name of the tag and this function will return if there are any previous names for the tag due

to tag rename.

Syntax object.QueryTagAlias(TagNames(), NumberofTags, TagAlias(), NoOfAliases)

Table 340. Parameters

Name Data Type Description

TagNames() String Name of the tags to return information on.

NumberofTags Long Total count of tag names passed in. This

must be equal to 1.

TagAlias() String List of 0 or more tag aliases.

NoOfAliases Integer The number of tag aliases returned.

Historian | 11 - Historian SDK | 1869

Returns

Boolean. TRUE if successful. FALSE otherwise.

QueryUserDefinedType Method (UserDefinedType Object)

Queries the Historian Server and loads all the User Defined Types that match the query

mask.

Syntax

object.QueryUserDefinedType(Server, QueryMask)

Table 341. Parameters

Name Data Type Description

Server Server The reference to the Historian Server object.

QueryMask String A mask string that can be used to search for

UserDefinedType on the Historian Server.

The string can include wild-card characters

like "*" and "?".

Returns

Boolean. Indicates whether the query was successful.

R

Reload Method (Collector Object)

Causes a re-calculation of tags to occur for a specified tag period. You can reload all tags

for the time period or specify specific tags that you want to reload.

Note:

This method is only supported by ServerToServer and Calculation collectors.

Syntax

object.Reload(StartTime, EndTime, [Tags])

Historian | 11 - Historian SDK | 1870

Table 342. Parameters

Name Data Type Description

StartTime Date The time that you want the reload to begin

at (read-only).

EndTime Date The time that you want the reload to end at

(read-only).

Tags Variant The specified tag names either in an array

of tag names, or in a tagRecordset object

for tags that you want to reload (optional).

Returns

Boolean. Returns whether or not the Reload operation succeeded.

Remove Method (TagDependencies Object)

Removes a Tag dependency from the current calculation.

CAUTION:

If no Tagname is specified, all the Tag dependencies will be removed.

Syntax

object.Remove([Tagname])

Table 343. Parameters

Name Data Type Description

Tagname Variant Name of the tag to remove (optional), de

fault = "").

Returns

Boolean. Whether the Remove operation succeeded.

RemoveServer Method (ServerManager Object)

Removes the specified server from the list of registered servers on the client.

Syntax

Historian | 11 - Historian SDK | 1871

object.RemoveServer(ServerName)

Table 344. Parameters

Name Data Type Description

ServerName String Computer name of the Historian server

(read/write).

Returns

Boolean. Whether the server was successfully removed from the list.

Rename Method (Tags Object)

Use this method to rename tag names. You can rename a tag permanently by passing an

additional parameter as TRUE or FALSE.

Note:

This method is called within the WriteRecordset method. For more information,

refer to the Sample Code section.

Syntax

object.Rename(newTagName, (Optional) RenamePermanent)

Table 345. Parameters

Name Data Type Description

newTagName String Name of the new tag to rename.

RenamePermanent

(Optional)

Boolean Pass TRUE to permanently rename a tag.

Returns

Boolean. Returns whether or not the Rename operation succeeded.

Restore Alarms Method

Restores the alarms.

Syntax

object.RestoreAlarms

Historian | 11 - Historian SDK | 1872

Table 346. Parameters

Name Data Type Description

RestoreFileName String The name of the file to be restored to the ab

solute path.

Returns

Boolean. Returns TRUE if the alarms have been restored.

Example

Dim Status As ihStatus

Dim ReturnStatus As Boolean Status = ihSTATUS_FAILED ReturnStatus = False

On Error GoTo errc

Status = ihRestoreAlarms(MyServer.Handle, RestoreFileName, 0)

If Status <> ihSTATUS_OK Then err.Raise 1, , "Error in restoring the alarms [" +

 ErrorDescription(Status) + "," ReturnStatus = True

RestoreAlarms = ReturnStatus errc:

zLastError = "Purge Alarms>> " + err.Description

RestoreAlarms = ReturnStatus

End Function

S

SaveSet Method (EnumeratedSets Object)

Saves the Enumerated Set that has been passed into the Historian Server.

Syntax

object.SaveSet(SetTosave)

Table 347. Parameters

Name Data Type Description

SetToSave EnumeratedSet The set that is passed in to be saved.

Returns

None.

SaveSet Method (UserDefinedType Object)

Historian | 11 - Historian SDK | 1873

Saves the UserDefinedType that has been passed into the Historian Server.

Syntax

object.SaveSet(Handle, MySet, Datatype)

Table 348. Parameters

Name Data Type Description

Handle Long Server handle.

MySet UserDefinedType The UserDefinedType to be saved.

DataType ihDatatype The data type of the UserDefinedType

Returns

Boolean. Returns TRUE if the UserDefinedType is saved.

SaveToCollectorProperty Method (OPCFilters Object)

Saves the current filter configuration in the Collector object.

Syntax

object.SaveToCollectorProperty(Collector)

Table 349. Parameters

Name Data Type Description

Collector Variant The Collector object in which to save the filter

ing information.

Returns

Boolean true on success, false otherwise.

SaveUserCalcLibrary Method (Server Object)

Saves the given user calculation library to the Server object. This will update the set of

user-created functions and subroutines available for calculations on this Server. The new

calculation library must be passed in as an array of UserCalcFunctions.

This list of functions will replace any existing user calculation library on the Server. To save

an empty calculation library, pass a non-array value such as Empty.

Historian | 11 - Historian SDK | 1874

Syntax

object.SaveUserCalcLibrary(UserCalcFunctions)

Table 350. Parameters

Name Data Type Description

UserCalcFunctions Variant Array of UserCalcFunction objects.

Returns

Boolean. Returns whether or not the calculation library was saved successfully.

Example

Dim MyServer As New iHistorian_SDK.Server

Dim MyUserCalcFunctions() As iHistorian_SDK.UserCalcFunction

Dim MyNewFunction As New iHistorian_SDK.UserCalcFunction

' Connect to the local server

If Not MyServer.Connect("", "", "") Then

err.Raise 1, , "Failed to connect to the local server" End If

' Load the calculation library

MyServer.LoadUserCalcLibrary MyUserCalcFunctions

' Create a new function

MyNewFunction.Name = "Sum"

MyNewFunction.Definition = "Function Sum(a, b)" & vbCrLf & "Sum = a + b" & vbCrLf & "End Function"

' Add it to the loaded library

If IsArray(MyUserCalcFunctions) Then

ReDim Preserve MyUserCalcFunctions(UBound(MyUserCalcFunctions) + 1) Else

ReDim MyUserCalcFunctions(0) End If

Set MyUserCalcFunctions(UBound(MyUserCalcFunctions)) = MyNewFunction

' Save the changes to the calculation library

If Not MyServer.SaveUserCalcLibrary(MyUserCalcFunctions) Then err.Raise 1, , "Failed to save the

 calculation library"

End If

SelectAll Method (TagRecordset Object)

Selects each tag in the current TagRecordset. Use in conjunction with the Master tag to

perform bulk update operations on the selected tags of the TagRecordset.

Historian | 11 - Historian SDK | 1875

Syntax

object.SelectAll

Parameters

None.

Returns

None.

Example

' Query for tags

Set MyRecordset = MyServer.Tags.NewRecordset

MyRecordset.QueryRecordset

' Select all tags

MyRecordset.SelectAll

' Update the HiEngineeringUnits for all tags

MyRecordset.Master.HiEngineeringUnits = 300

' Commit changes

MyRecordset.WriteRecordset

SetFields Method (DataRecordset Object)

Sets the DataValue fields to return from the Historian server when a DataRecordset query is

executed.

Syntax

object.SetFields(Params)

Table 351. Parameters

Name Data Type Description

Params Variant Array of DataValue fields to set.

Returns

Boolean. Success / Failure

SetFields Method (MessageRecordset Object)

Set a list of desired Fields to be returned for the messages.

Historian | 11 - Historian SDK | 1876

Syntax

object.SetFields(Params)

Table 352. Parameters

Name Data Type Description

Params Variant Array of Message fields

Returns

Boolean. Success / Failure

SetFields Method (TagRecordset Object)

Sets the Fields to retrieve in the TagRecordSet.

Syntax

object.SetFields(Params)

Table 353. Parameters

Name Data Type Description

Params Variant The array of field values to set.

Returns

Boolean. Success / failure.

SetNames Method (EnumeratedSets Object)

This function returns an array of names of all the loaded Enumerated Sets within the

Historian server object.

Syntax

object.SetNames()

Parameters

None.

Returns

String Array.

Historian | 11 - Historian SDK | 1877

ShowErrorListDialog Method (Server Object)

Displays a window that details errors messages accumulated during the current session

of the Server object. Each message is timestamped at the time the error generated and

includes an error message translated into the locale of the client when possible.

Syntax

object.ShowErrorListDialog

Parameters

None.

Returns

None

Example

ErrorTrap:

' On error display the error list window

If MyServer.ErrorList.count > 0 Then

MyServer.ShowErrorListDialog

End If

SubscribeAlerts Method (Messages Object)

Subscribes to alert messages reported by the Historian Server. As the server receives alerts,

the Historian server publishes messages to any client signed up for alerts.

• To subscribe to messages of specific types, supply a topic.

• To subscribe to all topics, do not supply a topic. Subscribe all is the default.

• Subscribe to individual topics by making multiple calls to the SubscribeAlerts with

different topics.

• To subscribe to all topics, call SubscribeAlerts and pass 0.

• To unsubscribe to a specific topic or all topics, call SubscribeAlerts and supply the

Subscribe parameter set to False.

The Alert_Received event of the Messages object reports alert messages to the client

asynchronously.

Syntax

Historian | 11 - Historian SDK | 1878

object.SubscribeAlerts(Topic, Subscribe)

Table 354. Parameters

Name Data Type Description

Topic ihMessageTopic Topics of Alerts to subscribe to (optional,

default = All).

Subscribe Boolean Flag to subscribe / unsubscribe to alerts

(optional, default = True). Set to False to un

subscribe.

Returns

Boolean. Returns whether or not the SubscribeAlerts operation succeeded.

SubscribeChanges Method (Tags Object)

Subscribes to changes in tag configuration. The Historian server publishes messages to

any client signed up for tag configuration changes as modifications are saved to the tag

database.

The system reports tag configuration messages asynchronously to the client through the

ChangeReceived event of the Tags Object.

To unsubscribe to a specific tag, or all tags, call SubscribeChanges and supply the

Subscribe parameter set to False.

Syntax

object.SubscribeChanges(Tagname, Subscribe)

Table 355. Parameters

Name Data Type Description

Tagname String Name of tag to Subscribe for configuration

changes (read-only).

Subscribe Boolean Flag to Subscribe/Unsubscribe to tag

changes (default = True).

Returns

Boolean. Returns whether or not the SubscribeChanges operation succeeded.

Historian | 11 - Historian SDK | 1879

SubscribeData Method (Data Object)

Subscribes to changes in the current value of a specific tag. The Historian server publishes

messages as new values are received to any client signed up for current value changes. To

qualify as a new current value, any new data point must have a newer timestamp than the

previously established current value. Values received by the Historian server have passed a

deadband check by the collector reporting the data. Since new current values have not been

compressed, however, values reported as current may not exactly match those that reach

the archive.

You can use the MinimumElapsedTime, in milliseconds, to throttle the rate at which current

values are reported to a specific server connection. If the same tag is subscribed twice, the

last supplied MinimumElapsedTime is used. If MinimumElapsedTime is not supplied, or is

zero, the system reports all current values.

The system reports current values asynchronously to the client through the DataReceived

event of the Data object.

To unsubscribe to a specific tag, or all tags, call SubscribeData and set the Subscribe

parameter to False.

Syntax

object.SubscribeData(Tagname, MinimumElapsedTime, Subscribe)

Table 356. Parameters

Name Data Type Description

Tagname String Name of the tag to Subscribe for current val

ues (read-only).

MinimumElapsed

Time

MinimumElapsed

Time

Minimum elapsed time (ms) between values

(read-only).

Subscribe Boolean Flag to subscribe/unsubscribe to current

values (read-only).

Returns

Boolean. Operation success / fail

SubscribeMessages Method (Messages Object)

Historian | 11 - Historian SDK | 1880

Subscribes to messages reported by the Historian Server. The Historian Server publishes

messages as messages are received to any client signed up for messages. As an option,

you may supply a topic to subscribe only to messages of specific types. If you do not supply

a topic, all topics are subscribed. You can subscribe to individual topics by making multiple

calls to the SubscribeMessages method with different topics, or pass 0 to subscribe to all

topics.

The system reports alert messages asynchronously to the client through the

Message_Received event of the Messages object.

To unsubscribe to a specific topic, or all topics, call SubscribeMessages and set the

Subscribe parameter to False.

Syntax

object.SubscribeMessages(Topic, Subscribe)

Table 357. Parameters

Name Data Type Description

Topic ihMessageTopic Topics of messages to Subscribe to (option

al, default = True).

Subscribe Boolean Flag to unsubscribe to a specific topic (op

tional, default = True).

Returns

Boolean. Operation success / fail

Substitutions Method (MessageFields Object)

Determines whether the Substitutions should be returned in the MessageRecordset query.

Syntax

object.Substitutions

Parameters

None

Returns

Historian | 11 - Historian SDK | 1881

None

Example

Dim maMyMessages As iHistorian_SDK.MessageRecordset

Set MyMessages = GetServer.Messages.NewRecordset With MyMessages.Fields

.Topic = True

.TimeStamp = True

.MessageString = True

.Substitutions = True

End With

T

TestCalculation Method (Tag Object)

Runs the calculation currently stored in the Calculation property. This calculation will be run

with a current time of "Now". The results of the calculation will be stored in the Value and

DataQuality parameters.

If an error occurs during the test, a description of the error will be stored in the

ErrorMessage parameter.

Syntax

object.TestCalculation(Value, DataQuality, ErrorMessage)

Table 358. Parameters

Name Data Type Description

Value Variant Value of the calculation result.

DataQuality String Quality of the calculation result.

ErrorMessage String Description of any error that occurred during

the test.

Returns

Boolean. Operation success / fail

TranslateMessage Method (Server Object)

Historian | 11 - Historian SDK | 1882

Returns a translated message or prompt based on the current locale and the

MessageNumber specified. If no translation is available for the current locale, the method

uses the default message.

To insert context specific information into the generic message string, use substitutions. For

example, the generic message string:

Connection To Server:[1]

Failed With Error Number: [2]

requires two substitutions, the first being the server, and the second being the error number.

The substituted message then reads:

Connection To Server: USGB014

Failed With Error Number: 65535.

Syntax

object.TranslateMessage(MessageNumber, DefaultMessage, Substitutions)

Table 359. Parameters

Name Data Type Description

MessageNumber Long Message or prompt number to translate (read-

only).

DefaultMessage String Default message to translate (optional, read-on

ly).

Substitutions ParamArray Ordered substitutions into message (optional,

read-only).

Returns

String. The translated message text.

Example

Dim MyServer As New iHistorian_SDK.Server

Dim MyPrompt As String

' Connect to the default server

If Not MyServer.Connect Then

err.Raise 1, , "Failed to authenticate on server " + MyServer.ServerName

End If

Historian | 11 - Historian SDK | 1883

' Translate the prompt from the connected server

MyPrompt = MyServer.TranslateMessage(549, "User: [1]", MyServer.Username)

' Prompt is translated to "User: Fred"

Method Reference U-Z
U

UnSelectAll Method (TagRecordset Object)

Applies to:

Clears all selections in the current TagRecordset. See the SelectAll method and the Master

Tag Property.

Syntax

object.UnSelectAll

Parameters

None

Returns

None

Example

' Clear any current selection MyRecordset.UnSelectAll

UserCalcFunctionsFromString Method (Server Object)

Applies to:

Converts the given string to an array of user calculation functions. The string is assumed to

have been generated from a call to UserCalcFunctionsToString.

If no functions exist in the string, UserCalcFunctions will be set to Empty.

Syntax

object.UserCalcFunctionsFromString(FuncStr, UserCalcFunctions)

Historian | 11 - Historian SDK | 1884

Table 360. Parameters

Name Data Type Description

FuncStr String String to convert.

UserCalcFunctions Variant Resulting array of UserCalcFunction ob

jects.

Returns

Boolean. Conversion successful / failed.

UserCalcFunctionsToString Method

Applies to:

Converts the given array of user calculation functions to a string.

To convert an empty set of functions, pass a non-array value such as Empty.

Syntax

object.UserCalcFunctionsToString(UserCalcFunctions, FuncStr)

Table 361. Parameters

Name Data Type Description

UserCalcFunctions Variant Array of UserCalcFunction objects.

FuncStr String String resulting from conversion

Returns

Boolean. Conversion successful / failed.

W

WriteArray Method (DataRecordset Object)

Applies to:

Attempt to write a set of Data to the Historian archiver.

Historian | 11 - Historian SDK | 1885

Note:

This function is not fully implemented yet and will always return false current

DataRecordset before it imports the specified file.

Syntax

object.WriteArray(DataArray)

Table 362. Parameters

Name Data Type Description

DataArray Variant Data Array to be written to the Historian archiv

er.

Returns

Boolean. Write succeeded / failed.

WriteRecordset Method (DataRecordset Object)

Applies to:

Saves changes made to the DataRecordset object to the Historian server. If DataValues have

not changed, the method does not write DataValues to the server.

Syntax

object.WriteRecordset

Parameters

None

Returns

Boolean. Write succeeded / failed.

WriteRecordset Method (MessageRecordset Object)

Applies to:

Saves changes made to the MessageRecordset object to the Historian server. Only new

messages are written to the server.

Historian | 11 - Historian SDK | 1886

Syntax

object.WriteRecordset

Parameters

None

Returns

Boolean. Write succeeded / failed.

WriteRecordset Method (TagRecordset Object)

Applies to:

Saves changes made to the TagRecordset Object to the Historian server. If tags have not

changed, they are not re-written to the server.

Syntax

object.WriteRecordset([UseMasterTag])

Table 363. Parameters

Name Data Type Description

UseMasterTag Boolean Whether to apply Master tag changes to all tags

(read-only optional).

Returns

Boolean. Write succeeded / failed.

X

XML Method (DataRecordset Object)

Applies to:

Returns an XML document fragment representing the DataValues and DataFields contained

in the current DataRecordset.

Syntax

object.XML([XMLHeader], [StartIndex], [EndIndex])

Historian | 11 - Historian SDK | 1887

Table 364. Parameters

Name Data Type Description

XMLHeader String XML to include before the DataRecordset

XML (optional).

StartIndex Long Index of first tag to include in XML (option

al).

EndIndex Long Index of last tag to include in XML (option

al).

Returns

String. An XML document fragment string.

Example

Dim Recordset As DataRecordset

' Get A New Data Recordset

Set Recordset = MyServer.Data.NewRecordset

' Fill In Criteria, Get One Tag For Yesterday

With Recordset.Criteria

 .Tagmask = "MyNode.OneTag.F_CV"

 .StartTime = DateAdd("d", -1, Now)

 .EndTime = Now

End With

' Fill In Fields, Timestamp and Value

With Recordset.Fields

 .TimeStamp = True

 .Value = True End With

Recordset.QueryRecordset

' Print XML to Debug Window

Debug.Print Recordset.XML

XML Method (MessageRecordset Object)

Applies to:

Returns an XML document fragment representing the Messages and MessageFields

contained in the current MessageRecordset.

Historian | 11 - Historian SDK | 1888

Syntax

object.XML([XMLHeader], [StartIndex], [EndIndex])

Table 365. Parameters

Name Data Type Description

XMLHeader String XML to include before message XML (read-

only, optional).

StartIndex Long Index of first message to Include in XML

(read-only, optional).

EndIndex Long Index of last message to include in XML

(read-only, optional).

Returns

String. An XML document fragment string.

XML Method (TagRecordset Object)

Applies to:

Returns an XML document fragment representing the Tags and TagFields contained in the

current TagRecordset.

Syntax

object.XML([XMLHeader], [StartIndex], [EndIndex])

Table 366. Parameters

Name Data Type Description

XMLHeader String XML to include before the TagRecordset

XML (read-only, optional).

StartIndex Long Index of first tag to Include in XML (read-on

ly, optional).

EndIndex Long Index of last tag to include in XML (read-on

ly, optional).

Example

Historian | 11 - Historian SDK | 1889

Dim Recordset As TagRecordset

' Get a new tag recordset

Set Recordset = MyServer.Tags.NewRecordset

' Fill in criteria, aet all tags

With Recordset.Criteria

.Tagname = "*"

End With

' Fill in fields, get tagname and description

With Recordset.Fields

 .Tagname = True

 .Description = True

 End With

Recordset.QueryRecordset

' Print XML to debug window

Debug.Print Recordset.XML

Event Reference A-Z
A

AlertReceived Event (Messages Object)

The AlertReceived event fires each time an alert is reported to a client. This event fires only

for those alert topics that you subscribed to by using the SubscribeAlerts method of the

Messages object.

Syntax

AlertReceived(NewAlert)

Table 367. Parameters

Name Data Type Description

NewAlert Message The Alert reported by the Historian server

(read-only).

Example

' It is necessary to declare Messages "WithEvents" Dim WithEvents MyMessages As iHistorian_SDK.Messages

 Attribute MyMessages.VB_VarHelpID = -1

Historian | 11 - Historian SDK | 1890

Private Sub Form_Load()

' Subscribe To All Alert Topics

If Not MyMessages.SubscribeAlerts(ihMessageTopic.Security, True) Then

Err.Raise 1, , "Failed To Subscribe" End If

End Sub

' Event Procedure

Private Sub MyMessages_Alert_Received(NewMessage As Message)

' We Just Received A New Alert

With NewMessage

Debug.Print "Received Alert " + CStr(.MessageNumber) + _ " " + .MessageString

End With

End Sub

C

ChangeReceived Event (Tags Object)

Fires each time a tag configuration change is reported to a client. Subscribe to data changes

using the current data received event. This event fires only for tags that you subscribed to by

using the SubscribeChanges method of the Tags object. You can subscribe to tag changes

on a per tag basis or you can pass "" to subscribe to changes on any tag.

Syntax

ChangeReceived(ChangedTag)

Table 368. Parameters

Name Data Type Description

ChangedTag Tag Tag configuration change reported by

the server (read-only).

D

DataReceived Event (Data Object)

Fires each time a changed value is reported to a client. This event fires only for tags that you

subscribed to by using the SubscribeData method of the Data object.

Syntax

DataReceived(Tagname, Value)

Historian | 11 - Historian SDK | 1891

Table 369. Parameters

Name Data Type Column Header

Tagname String Tag with the current value change re

ported by the server (read-only).

Value DataValue Value reported by the server (read-only).

Example

' It is necessary to declare Data "WithEvents" Dim WithEvents MyData As iHistorian_SDK.Data Attribute

 MyData.VB_VarHelpID = -1

Private Sub Form_Load()

' Subscribe To Changes

If Not MyData.SubscribeData("USGB014.FIC101.F_CV", 5000, True) Then

Err.Raise 1, , "Failed To Subscribe" End If

End Sub

' Event Procedure

Private Sub MyData_DataReceived(Tagname As String, DataValue As DataValue)

' We Just Received a Current Value Update

With DataValue

Debug.Print "Received Current Value For " + Tagname + " " + _

" At " + Format$(.TimeStamp) + " With Value of " + _ CStr(.Value)

End With

End Sub

M

MessageReceived Event (Messages Object)

) Fires each time a message is reported to a client. This event fires only for message topics

that you subscribed to by using the SubscribeMessages method of the Messages object.

Syntax

MessageReceived(NewMessage)

Table 370. Parameters

Name Data Type Description

NewMessage Message Message reported by the Historian Server

(read-only).

Historian | 11 - Historian SDK | 1892

S

StatusReceived Event (Archives Object)

Fires each time a tag configuration change is reported to a client. This event fires only if the

SubscribeStatus property of the Archives object is set to true.

Syntax

StatusReceived(ChangedArchive)

Table 371. Parameters

Name Data Type Description

ChangedArchive Archive Reported change for Historian server

archive (read-only).

Example

' It is necessary to declare Archives "WithEvents" Dim WithEvents MyArchives As iHistorian_SDK.Archives

 Attribute MyArchives.VB_VarHelpID = -1

Private Sub Form_Load()

' Subscribe To Changes

MyArchives.SubscribeStatus = True

End Sub

' Event Procedure

Private Sub MyArchives_StatusReceived(ChangedArchive As Archive)

' We Just Received An Archive Status Update

With ChangedArchive

Debug.Print "Received Update For " + .Name + " (" + .FileName + ")" End With

End Sub

StatusReceived Event (Collectors Object)

Fires each time a Collectors' status or configuration change is reported to a client. This

event fires only if the SubscribeStatus property of the Collectors object is set to True.

Syntax

StatusReceived(ChangedCollector)

Historian | 11 - Historian SDK | 1893

Table 372. Parameters

Name Data Type Description

ChangedCollector Collector Reported change for collec

tor (read-only).

Example

' It is necessary to declare Collectors "WithEvents"

Dim WithEvents MyCollectors As iHistorian_SDK.Collectors

Attribute MyCollectors.VB_VarHelpID = -1

Private Sub Form_Load()

' Subscribe To Changes

MyCollectors.SubscribeStatus = True

End Sub

T

TagnameChangeReceived Event (Tags Object)

Occurs each time a tag is renamed. This event occurs only for tags that you subscribed

to by using the SubscribeChanges method of the Tags object. You can subscribe to tag

changes on a per tag basis or you can pass "" to subscribe to changes on any tag.

Syntax

TagnameChangeReceived(ChangedTag, oldTag)

Table 373. Parameters

Name Data Type Description

ChangedTag Tag Tag rename change reported by the

server (read-only).

oldTag String Old tag name reported by the server

(read-only).

Chapter 12. Historian Utility Suite

Alerting System
The Alerting System is a reliable and efficient solution designed to promptly notify users via email when

a particular service becomes unavailable or experiences an unexpected interruption. This system aims to

minimize downtime and ensure timely response to service disruptions, enabling users to take appropriate

actions to mitigate the impact on their operations. By providing real-time alerts, it empowers users to stay

informed about service interruptions and promptly address any issues.

Key features of this utility include:

• Service Monitoring: The alerting system continuously monitors the availability and status of

the targeted service, whether it's a custom service or an application service like Historian Data

Archiver(x64), or any other critical service.

• Customizable Alert Conditions: Alerting system is driven by a config file, which give the flexibility

to use by any product. Users can define for alerts for specific services under which they want

to receive alert emails. This system accommodates two categories of the services, in case of

Historian, user can specify IH and Collectors, since the system do a search a ‘contains’ condition of

the given string. It will monitor all the

• Real-Time Email Notifications: When the system detects a service stop or meets the predefined

alert conditions, it immediately triggers an email notification to the designated user. The email

includes relevant service name in the subject and the body.

• User Management: The alerting system allows users to manage their notification preferences and

frequency settings in milli seconds to monitor services. They can change recipients to receive

alerts, add or remove email addresses.

• Dump Creation & Uploading to FTP: A configurable attribute will allow the alerting system to create

a dump when a service stops. uploads the mini dumps to preconfigured ftp sites, which reduces

the manual errors during the setting to create dumps and ftp upload. Let’s assume a user starts the

alerting system, and after a few hours, a service get down, then the system automatically creates

mini dumps and automatically uploads to the ftp mentioned for analysis.

Note:

The ServiceRunCheck.exe utility should be run with Administrator privileges. The

ServiceRunCheck.exe.config, also provided with this utility, can be edited in any text editor (such

as Notepad). In this file you can update details like user names, passwords, smtp clients, and so

on.

Historian | 12 - Historian Utility Suite | 1895

For more information, see article ID 000068757 on the GE Vernova Support center: https://

digitalsupport.ge.com/s/article/Historian-Alerting-System-Utility?language=en_US

Version Validator
The Version Validator utility reports if all the .exes and .dlls from a given folder are of correct version with

the correct last modified date. This Utility aids the user to identify any mismatches of binaries.

Note:

The HistorianPayLoadCheck.exe utility should be run with Administrator privileges, in order to

generate master files.

This utility has two tabs: PayLoadCheck and Generate Masterfile as shown in the following figure:

For more information on how to use, see article ID 000068787 on the GE Vernova Support center: https://

digitalsupport.ge.com/s/article/Historian-Version-Validator-Utility?language=en_US

DiagnostiX Tool
The DiagnostiX is a powerful software solution designed to streamline the support and development

process by providing a comprehensive understanding of the customer environment. This tool helps

Support teams and Developers tackle customer issues, enabling them to self-solve obvious problems and

significantly reducing the time and effort spent on resolution.

Key features and benefits include:

https://digitalsupport.ge.com/s/article/Historian-Alerting-System-Utility?language=en_US
https://digitalsupport.ge.com/s/article/Historian-Alerting-System-Utility?language=en_US
https://digitalsupport.ge.com/s/article/Historian-Version-Validator-Utility?language=en_US
https://digitalsupport.ge.com/s/article/Historian-Version-Validator-Utility?language=en_US

Historian | 12 - Historian Utility Suite | 1896

• Environment Snapshot: This tool offers a holistic view of the customer environment, capturing

essential details such as operating system, hardware specifications, software versions, network

configuration, and other relevant parameters. This comprehensive snapshot eliminates the need

for back-and-forth communication to gather information, saving valuable time for both support

teams and developers.

• Self-Solve Capabilities: This tool goes beyond just identifying issues; it also provides built-in

solutions for common problems. Through a knowledge base of known issues and their resolutions,

the tool offers step-by-step guidance to support teams and developers, enabling them to self-solve

straightforward issues efficiently. This not only saves time but also empowers the teams to handle

a broader range of customer concerns independently.

• Enhanced Collaboration: This tool acts as a collaborative platform, facilitating seamless

communication between support teams and developers. It provides a centralized repository for

sharing diagnostic reports, annotated screenshots, log files, and other relevant artifacts. This

ensures that all stakeholders have access to the same information, fostering better collaboration

and reducing the back-and-forth communication that often delays issue resolution.

• Early Resolution and Customer Satisfaction: With its comprehensive insights and self-solve

capabilities, This tool empowers support teams to resolve customer issues at an earlier stage. By

addressing problems swiftly, customer satisfaction levels soar, as frustrations are minimized, and

the time taken for issue resolution is significantly reduced. Ultimately, this tool helps support teams

deliver exceptional customer service and enhance overall customer experience.

Note:

The DiagnostiX.exe utility should be run with Administrator privileges. The DiagnostiX.exe.config,

also provided with this utility, can be edited in any text editor (such as Notepad). In this file you

can update details like user names, passwords, smtp clients, and so on.

For more information, see article ID 000068924 on the GE Vernova Support center: https://

digitalsupport.ge.com/s/article/DiagnostiX-Historian-Diagnostic-Report-Tool

https://digitalsupport.ge.com/s/article/DiagnostiX-Historian-Diagnostic-Report-Tool
https://digitalsupport.ge.com/s/article/DiagnostiX-Historian-Diagnostic-Report-Tool

Chapter 13. Collector Tool Kit

Collector Toolkit Overview

Overview

The Collector Toolkit lets you write programs that integrate tightly with Proficy Historian and let you lever-

age the same configuration tools, redundancy schemes, and health monitoring as collectors that ship with

Proficy Historian. A custom collector is a collector developed using the Collector Toolkit. It collects data

and messages from a data source and writes them to a Data Archiver. Using the Collector Toolkit, you can

create custom collectors that:

• Collect data and messages from any data source

• Perform collector compression and buffer collected data

• Report data and messages to a local or remote Data Archiver

Custom collectors can be developed to function much like the standard OPC and iFIX collectors that

come with the Proficy Historian product. The collected data can be used in any application that connects

to Proficy Historian.

The toolkit enables development of programs that collect data at the current time. It is not suitable for

developing migration programs, file import programs, SQL import programs or other programs that

produce data which has timestamps in the past. Use other Proficy Historian toolkits to accomplish these

task.

The toolkit supports pre-processing raw data with Python Expression Tags during collection, provided

that you enable this. For details on how to use these tags, refer to the Python Expression Tags in Data

Collectors General .

Prerequisites

Prerequisites

This topic covers prerequisites for using the Collector Toolkit in Windows. To use the Collector Toolkit in

Linux, consult Installing and Configuring the Collector Toolkit for Linux (on page 1900).

To create custom collectors using the Collector Toolkit:

Historian | 13 - Collector Tool Kit | 1898

• You must have Visual Studio 2010 and Historian 6.0 SP1 or higher installed and configured on your

machine.

• You must ensure that you have administrative rights and open Visual Studio in Administrative

mode.

• The collectors developed based on the Collector Toolkit must be written in C++.

Note:

• Both the computer the collector is running on and the Data Archiver it connects to must be

Historian 6.0SP1 or higher. Also, Historian Administrator should be 6.0 SP1 or newer.

• You can create custom collectors using Collector Toolkit on both 32-bit and 64-bit

collectors.

Enabling Python Expression Tags with the Collector Toolkit

To enable Python Expression Tags with the Collector Toolkit:

1. Open the registry in regedit.

2. Navigate to the key created for the specific collector type for which you want expression use

enabled. The collector type is the value of ServiceName that is specified in the method call to

CCollectorDelegator::InitializeCollector.

◦ If you are creating a 64 bit collector, this is under HKEY_LOCAL_MACHINE\SOFTWARE

\Intellution, Inc.\iHistorian\Services.

◦ If you are creating a 32 bit collector, this is under HKEY_LOCAL_ MACHINE\SOFTWARE

\Wow6432Node\Intellution, Inc.\iHistorian\Services.

◦ For example, if you are creating a 32 bit collector with a ServiceName of RabbitMQCollector

with the toolkit, go to HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Intellution,

Inc.\iHistorian\Services\RabbitMQCo.

3. Under that key, add a string variable with the following values:

◦ Name: ServiceExtensions

◦ Type: REG_SZ

◦ Data: PythonExpressions

4. Ensure that the Python Expression Extension binary dependencies (casablanca100.dll,

python34.dll, PythonExpressionExtension.dll) are in the same location as the collector executable.

Refer to the Python Expression Tags for details on how to use these tags.

Historian | 13 - Collector Tool Kit | 1899

Installing the Collector Toolkit with Historian

About Installation

This topic covers installing the Collector Toolkit with Historian in Windows. To use the Collector Toolkit in

Linux, see Installing and Configuring the Collector Toolkit for Linux (on page 1900).

Before you install the Collector Toolkit, verify that Microsoft Visual Studio 2010 is already installed on your

computer. The Collector Toolkit is one of the standard options available during the installation of Proficy

Historian. User developed Collectors built with the Collector Toolkit will require a client license in the

same manner as other API programs. Run the install on the computer on which you want to develop your

collector and select the Collector Toolkit option at the prompt. Refer to the Getting Started with Historian

guide for the complete installation procedure

Creating the Custom Collector Using the Wizard

You can create a custom collector using the Visual Studio wizard or the sample application available as

part of the installation. If you want to create a collector using the wizard, follow the below procedure.

The toolkit, by default, gets saved in the same installation folder as Historian in the Program files

folder of your computer. For example, C:\Program Files\Proficy\Proficy Historian

\CollectorToolkit\CollectorToolkit. The example here indicates that Historian is installed in C

drive. If Historian is installed in D drive, the location changes accordingly.

1. Navigate to the folder where the toolkit utility is saved. For example, C:\Program Files

\Proficy\Proficy Historian\CollectorToolkit\CollectorToolkit in the case of a

32-bit collector and C:\Program Files\Proficy\Historian\x86\CollectorToolkit in

case of a 64-bit collector.

2. Double-click the CollectorToolkit.sln file. A Microsoft Visual Studio window appears in

Administrator mode.

3. Right-select the project in the Solution Explorer pane and select one of the following: Build Solution

or Rebuild Solution.

An output window appears indicating whether the Build or Rebuild has been successful.

If you see the message, Build succeeded or Rebuild All succeeded, it indicates that the

wizard has been activated. If the wizard is successful, the CollectorToolkit.ico and

CollectorToolkit.vsz files appear in the wizards’ folder in Visual Studio.

4. Proceed to create a custom collector.

Historian | 13 - Collector Tool Kit | 1900

Installing and Configuring the Collector Toolkit for Linux

Installing and Configuring the Collector Toolkit for Linux

The toolkit is compiled and tested on CentOS 7 and Ubuntu 14. The minimum system requirements are:

• g++(GCC) 4.8.x

• glibc2.17+

Installing the Collector Tool kit for Linux

The Collector Toolkit is delivered as a tar file. There are four different artifacts to choose from: static and

shared library versions of debug and non-debug (release) versions. Choose whichever of the artifacts best

fits your needs.

Unzip the tar file at a location where you want to install it. There are 4 folders at the top level.

• shared: The shared folder contains an example collector using the Collector Toolkit. A sample

Make file is also provided. This example works as is. Your can use this as a template to create your

own custom collector.

• lib: The lib folder contains two libraries: libihAPI and libihCollectorDelegator.

• include: The include folder contains include files that you would need to include in your custom

collector. ihAPI.h is optional. It needs to be included only if you are making use of any System APIs

directly in your custom collector.

• bin: The bin folder contains some pre-compiled binaries. Random is the binary for the Simulation

Collector. RandomValueSimulator is the sample collector built using the example code in the shared

folder.

Configuring the Collector Tool Kit

1. Update the following key in the HistorianServers.reg file: [HKEY_LOCAL_MACHINE\Software

\Intellution, Inc.\iHistorian\Services\<ServiceName>.

<ServiceName> must match the service name passed to the InitializeCollector() function in

main() in your custom collector.

2. Update the following two properties in the HistorianServers.reg file.

◦ HistorianNodeName: Update this to your Historian Server’s name or IP Address. The custom

collector tries to connect to the Historian Server specified by this property.

◦ InterfaceName: Change this to the interface name of your choice. The custom collector uses

this to identify itself in Historian Admin Console.

Historian | 13 - Collector Tool Kit | 1901

Configuring Custom Collector Wizard

Configuring a Custom Collector using the Wizard

You can create a custom collector using the Visual Studio wizard or the sample application available as

part of the installation.

To create a collector using the wizard, follow the below procedure.

1. Navigate to the folder where the toolkit utility is saved. For example, C:\Program Files

\Proficy\ProficyHistorian\CollectorToolkit\CollectorToolkit. The toolkit, by

default, gets saved in the same installation folder as Historian in the Program files folder of your

computer. The example here indicates that Proficy Historian is installed on the C drive. If Proficy

Historian is installed in D drive, the location changes accordingly.

2. Double-click the CollectorToolkit.sln file. A Microsoft Visual Studio window appears in

Administrator mode.

3. Right-select the project in the Solution Explorer pane and select one of the following: Build Solution

or Rebuild Solution.

An output window appears indicating whether the Build or Rebuild has been successful.

◦ If you see the message, Build succeeded or Rebuild All succeeded, it indicates that the

wizard has been activated. If the wizard is successful, the CollectorToolkit.ico and

CollectorToolkit.vsz files appear in the wizards’ folder in Visual Studio.

◦ Ensure that the CollectorToolkit.vsz and CollectorToolkit.ico files exist in the

above corresponding Operating system locations.

◦ If you are working in 64 bit operating system, open CollectorToolkit.vsz in Notepad

and replace the following line: Param="ABSOLUTE_PATH = C:\Program Files\Proficy\Proficy

Historian\CollectorToolkit\CollectorToolkit" with Param="ABSOLUTE_PATH = C:\Program

Files\Proficy\Proficy Historian\x86\CollectorToolkit\CollectorToolkit". This enables

you to open the wizard correctly.

4. Proceed to Creating a custom collector as described below.

Creating a Custom Collector

Note:

The Collector Toolkit runtime for 32-bit collectors uses ihCollector-DelegatorN.dll and

ihCollector-DelegatorN.lib, where N is a version number, which changes from version to

version.

Historian | 13 - Collector Tool Kit | 1902

The Collector Toolkit runtime for 64-bit collectors uses ihCollector-DelegatorN_x64.dll and

ihCollector-DelegatorN_x64.lib, where N is a version number, which changes from version to

version.

1. Open Microsoft Visual Studio 2010 in Administrator Mode.

2. Open a new project by navigating to File > New > Project.

The New Project page appears.

3. In the Installed Templates section, select Wizards.

The Collector Toolkit Wizard window appears.

4. Enter the following information in the New Project page.

◦ Provide the name of the collector in the Name field.

◦ Provide the location where you want to save the Collector in the Location field. Select

Browse... to navigate to the desired location.

◦ Provide the solution name in the Solution name field. A solution name is the name of the

Collector solution.

◦ Select the Create directory for solution check box to create a directory for the collector.

5. Select OK to proceed.

The Welcome to the Historian Collector Toolkit Wizard page appears.

6. Select Next to proceed.

The Application Settings page appears. The options that you see on the Application Setting page

are set by default. These are the recommended settings and should not be changed.

7. Select Finish

The Microsoft Visual Studio appears in Administrator mode with the source code framework for

the custom collector. Write the custom logic in the Skeletal Methods generated through the Wizard

for the respective functionality. Refer to About Interfaces (on page 1903) for a description of the

methods.

Changing Historian Server Name

Changing the Historian Server Name Using Registry

By default, custom collector tries to connect to the local Historian server. If you want the collector to

connect to a remote Historian server, you must change the HistorianNodeName registry key located at:

Historian | 13 - Collector Tool Kit | 1903

• On a 64 bit machine, this is under HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node

\Intellution, Inc.\iHistorian\Services\<CollectorName>\

• On a 32 bit collector, this is under \HKEY_LOCAL_MACHINE\SOFTWARE\Intellution, Inc.\iHistorian

\Services\<CollectorName>\

Working with collector Interfaces

About Interfaces

A collector is an interface through which data can be sent to the Data Archiver.

The custom collector is a 32 bit windows executable, where you need to implement only the collector

specific functionality. The toolkit provides the code that schedules collection, performs compression and

buffering, and writes data to the Data Archiver.

The following is a list to provide better understanding.

Interfaces Enabling Basic Functionality

• ihCollectorToolkitPreInitialize

• ihCollectorToolkitInitialize

• ihCollectorToolkitInitializeCompleted

• ihCollectorToolkitDefinitionInitialize

• ihCollectorToolkitReset

• ihCollectorToolkitPropertyUpdate

• ihCollectorGetTags

• ihCollectorToolkitShutdown

Interfaces Enabling Advanced Functionality

These interfaces are further categorized as follows.

The following methods are used to perform operations on Polled tags:

• ihCollectorToolkitPolledInit

• ihCollectorToolkitPolledInitCompleted

• ihCollectorToolkitASyncStartReading

• ihCollectorToolkitASyncAddTag

• ihCollectorToolkitASyncDeleteTag

• ihCollectorToolkitASyncReload

• ihCollectorToolkitDataCallback

Historian | 13 - Collector Tool Kit | 1904

The following methods are used to perform operations on Hierarchical and Miscellaneous functions:

• ihCollectorToolkitGetTagsHierarchical

• ihCollectorToolkitDestroyGroupData

• ihCollectorToolkitWriteValue

• ihCollectorToolkitDebugModeChange

• ihCollectorToolkitMiscReload

• ihCollectorToolkitGetData

Collector Development

You can develop a collector that uses polled reads or unsolicited reads or both. Polled reads are grouped

within the shell are present to collector specific code a list of tags to be polled. The collector specific

code can do whatever grouping is necessary or efficient for that data source. Unsolicited tags are simply

passed on by one to the collector specific code at collector start up and on configuration change. It is up

to the collector specific code to group tags and report data changes into the collector shell.

You can support tag browse or you can hard code responses to browse requests and require the tags to

be created in some other way such as the Microsoft Excel tag import.

Throughout development, consider what information would be useful to see in the collector

logs to troubleshoot issues and use the debug mode functionality to control what messages

should appear. Your collector specific code will be notified of changes to debug mode in the

ihCollectorToolkitDebugModeChange function.

Collection can be paused and resumed without the collector exe being restarted. Pause and resume are

relayed to the collector specific code in the ihCollectorToolkitReset function.

Your collector can choose to support a heartbeat, status, and rate functionality via the

ihCollectorToolkitWriteValue function. In this case the collector would write into the data source in

addition to the reading done during collection. The toolkit will call the write function once per minute and

you will need to write to the data source.

Your collector can react to configuration changes sent to collector specific code in the

ihCollectorToolkitPropertyUpdate function. These are changes to the collector itself in the General1-5

fields not changes to the tag list

Possibly the most complex design decision is if you should support on-the-fly configuration changes or

require collector restart. Adding or removing tags to collection or changing collection intervals for active

tags is not always possible for all data sources. Consider this as an advanced feature.

Historian | 13 - Collector Tool Kit | 1905

Custom Collector Design

Design topics for Creating Custom Collectors

Among the first design decisions to be made with a collector is to map the data source’s timestamps,

values, and qualities to the Proficy Historian types.

Timestamps

You can let the toolkit assign timestamps to polled or unsolicited data or you can provide

the timestamps with unsolicited data. If you choose to provide timestamps, you must

provide them in the GMT+0 time zone. Proficy Historian offers microsecond resolution on

timestamps, which should be sufficient for most applications.

Values

The Proficy Historian has a finite set of data types. If your data source has other types that

cannot be converted then do not collect those tags. If there is any scaling or adjustments to

the data, consider if those should be done in your collector specific code or via input scaling

in the toolkit or calculation tags in the Data Archiver. Also, consider what the value means if

the data quality is not good. In most parts of Proficy Historian, if you set the data quality to

bad then the value will be ignored.

Quality

This can be the most important design decision of your collector. Your design needs to

indicate what data is meaningful and should be used in trends and reports and what data

is not meaningful. If the Historian contains tags from other data sources, you should be

consistent with other collectors so that the retrieval program need to be aware of where the

data came from.

Once you have a design for timestamp, value, and quality, you should think about how best to group your

tags for the most efficient collection. The toolkit will pass a list of polled and unsolicited tags to your code

at startup and their intervals. For polled tags, you can mostly ignore the tags because you will be sent a

list later when it is time to poll the data. For unsolicited tags, you need to build your own groups and notify

the toolkit when data changes.

Adding Browsing functionality is optional but is recommended to have. Think about how your code will

respond to browse requests and how you will filter the tagnames and descriptions.

Your code does not need to do anything for collector compression or for store and forward of data.

You collector can utilize the same log file mechanism as other collectors but you should decide what you

should write to help troubleshoot the collector.

Historian | 13 - Collector Tool Kit | 1906

Finally, you should consider how your collector should react to tag changes made while the collector is

running. Tags can be added or deleted or properties like Collection interval or Deadband can be modified.

Backward Compatibility of the Collector Toolkit

Backward Compatibility of the Collector Toolkit

From time to time, the runtime library files of the Collector Toolkit (namely ihCollectorDelegator.dll and

its variants) undergo changes to introduce new features or fix defects.

In some cases, changes are introduced that break backward compatibility. This means that the new

runtime library does not work with custom collectors developed with past versions of the Toolkit. In

such cases, a new version number appears in the names of the DLL files to indicate that they should not

replace previous releases of the runtime library.

In other cases, a new runtime library, with changes, still works with custom collectors developed with

past versions of the Toolkit. If the replacement library has the same name as the replaced library, you can

safely replace earlier versions of the runtime library with the new library.

The Collector Toolkit includes the latest version of header files and import libraries (.h and .lib files),

but no previous versions of these files. However, the Toolkit ships all previously released runtime DLLs

that are necessary for custom collectors developed in the past to run. When there have been successive

releases of a DLL that are backward compatible (indicated by their shared name), only the latest release is

shipped.

If you want to develop new custom collectors, you should acquire and use the latest version of the

Collector Toolkit. If you want to maintain or fix defects in an existing custom collector, you can use the

version of the Toolkit with which the collector was developed. Alternately, you may want to try a more

recent version. However, in such a case, some changes to the source code may be necessary if the Toolkit

contains changes that break backward compatibility.

Custom Collector Toolkit Interface Technical Reference

Custom Collector Toolkit Interface Technical Reference

The Collector Toolkit interfaces help in writing collectors with basic functionality such as initializing

collectors, adding data and tags, the others help in writing advanced features such as store and forward

functions, heartbeat, buffering, queuing. The following are the various interfaces in detail:

ihCollectorToolkitASyncAddTag

Historian | 13 - Collector Tool Kit | 1907

The shell will call this function at start up and on change to indicate a tag that should be collected. The

collector specific code should keep all information about the tags and use it later to deliver the collected

data.

Prototype

int ihInterfaceTKASyncAddTag(ihInterfaceTKASyncTagInfo *ASyncTag,

int IsCollectorStarting)

Returns

TRUE on success. FALSE if the tag could not be added. For example, if the tag

has an invalid address you can return an error here or report bad data later after

ihCollectorToolkitAsyncStartReading is called.

Parameters

Name Data Type Description

ASyncTag ihInterfaceTKASyncTagIn

fo

Refer to the structure description.

IsCollectorStart

ing

int TRUE if this function is being called

as part of collector start-up. FALSE if

this is being called because a tag was

added or modified while the collector

was running.

ihCollectorToolkitASyncDeleteTag

Use this tag to update information to the Collector when a tag is deleted so that it will stop collecting data

from the source. For example, if you delete a tag or stop collection in the administrator then the shell will

call this function.

Prototype

int ihCollectorToolkitASyncDeleteTag(int tagId)

Returns

TRUE on success; your collector specific code should always return TRUE.

Parameters

Historian | 13 - Collector Tool Kit | 1908

Name Data Type Description

tagId Int Tag identifier; the tag name

is not passed into this func

tion. You would have to

match the tag identifier with

a magnate passed in ihCol

lectorToolkitASyncAddTag.

ihCollectorToolkitASyncInit

The collector shell will call this to indicate the start of a list of tags to be collected asynchronously. The

tags will be delivered via the ihCollectorToolkitASyncAddTag function and the collector specific code

should keep track of all tag information.

Prototype

int ihInterfaceTKASyncInit(void);

Returns

TRUE on success; your collector specific code should always return TRUE.

ihCollectorToolkitASyncInitCompleted

The collector shell will call this method to indicate the end of a list of tags to be collected asynchronously.

Prototype

int ihInterfaceTKASyncInitCompleted(void)

Returns

TRUE on success; your collector specific code should always return TRUE.

ihCollectorToolkitASyncReload

This function is used to perform a recalculation on all unsolicited tags in the custom collector. Custom

collector must implement the necessary changes to read data from the source and send values via

the ihCollectorToolkitDataCallback. The time frame for recalculation is given in the input parameters

StartTime and EndTime.

For more information on the methods of unsolicited tags, refer the methods listed for unsolicited tags in

About Interfaces (on page 1903).

Prototype

Historian | 13 - Collector Tool Kit | 1909

int ihCollectorToolkitASyncReload(ihTKTimeStruct TimeStruct *StartTime, ihTKTimeStruct TimeStruct

 *EndTime)

Returns

Always, TRUE.

Parameters

Name Data Type Description

StartTime ihTKTimeStruct Reserved

EndTime ihTKTimeStruct Reserved

ihCollectorToolkitASyncStartReading

The collector shell will call this method to indicate that the collector should start reading data for

asynchronous tags from the source and report any data changes to the shell.

Prototype

int CustomCollector:: ihCollectorToolkitASyncStartReading(void)

Returns

TRUE on success; your collector specific code should return TRUE.

ihCollectorToolkitDataCallback

This callback is used when unsolicited tags get the data and asynchronously writes them into

the Historian. Custom collector receives the data from unsolicited tags and sends it to the

ihCollectorToolkitDataCallback. This call back function internally writes the data into the Historian.

Prototype

voidihCollectorToolkitDataCallback(void *Param)

Returns

Void.

Parameters

Name Data Type Description

ASyncTag ihInterfaceTKASyncData Refer to the structure description.

Example

Historian | 13 - Collector Tool Kit | 1910

You can use this function as shown in the following example to create a thread using which

the unsolicited tags

data is written into the Historian.

/// Summary;

/// Unsolicited dedicated thread corresponding method.

Here all unsolicited tags get data from source(usually, way should be source

notification to historian) and sends to historian

/// </summary>

/// <param name="param">;Collector instance</param>

UINT RandomValueSimulator::TKAsyncReadFunc(void* param)

{

 POSITION pos = NULL;

 RandomValueSimulator* pColl = (RandomValueSimulator*) param;

 while (TRUE)

 {

 if (g_DoAsyncRead)

 {

 CSingleLock lock(&;g_Sync, TRUE);

 if (!g_AsyncTags.IsEmpty())

 {

 // gets each unsolicited tag into ihInterfaceTKAsyncTagInfo object

 if (!pos)

 pos = g_AsyncTags.GetHeadPosition();

 ihInterfaceTKASyncTagInfo* tag = g_AsyncTags.GetNext(pos);

 int numTags = 1;

 ihInterfaceTKDataInfo data;

 memset(&;data, 0, sizeof(ihInterfaceTKDataInfo));

 data.Tag = pColl->;TKStrdup(tag->;Tag);

 data.DataProp.ValueDataType = tag->;DataType;

 data.DataProp.TimeStamp = pColl->;TKGetSystemTime();

 // gets data for selected tag

 pColl->;ihCollectorToolkitGetData(0, 0, 0, numTags, NULL, &;data);

 unsigned long collectionTime = (unsigned long)time(0);

 int tagId = tag->;TagId;

 ihInterfaceTKASyncData asyncData;

 memset(&;asyncData, 0, sizeof(ihInterfaceTKASyncData));

Historian | 13 - Collector Tool Kit | 1911

 asyncData.NumValues = numTags;

 asyncData.TagIds = &;tagId;

 asyncData.Values = &;data.DataProp;

 asyncData.CollectionTimes = &;collectionTime;

 // sends to historian

 pColl->;ihCollectorToolkitDataCallback(&;asyncData);

 }

 else

 {

 pos = NULL;

 }

 }

 else

 {

 pos = NULL;

 }

 long sleepTimeInMs = 500 + (rand() % 46) * 100;

 // sleep from 0.5 to 5 seconds

 Sleep(sleepTimeInMs);

 }

 return 0;

}

ihCollectorToolkitDefinitionInitialize

Use this interface to specify what labels you want to appear on the collector configuration page of the

administrator. The administrator will show 5 edit boxes for General 1 to General 5 but with this function

you can control what text is show next to each edit box.

All custom collectors share the same set of labels.

Prototype

void ihCollectorToolkitDefinitionInitialize(ihCollectorToolkitDefProperties* CustomPropertyDesc)

Returns

Void.

Parameters

Historian | 13 - Collector Tool Kit | 1912

Name Data Type Description

CustomPropertyDesc ihCollectorToolkitDefProp

erties

Pointer to a Custom Collec

tor’s specific properties Gen

eral 1-5 definitions.

ihCollectorToolkitDestroyGroupData

Reserved for future use. Your collector specific code should call the CCollectorDelegator function.

Prototype

void ihCollectorToolkitDestroyGroupData(int NumTags, void *Data, void *Misc)

Returns

Void.

Parameters

Name Data Type Description

NumTags int Reserved

Data void Reserved

Misc void Reserved

ihCollectorToolkitDebugModeChange

The collector calls this method when a change is detected. 0 indicates only errors and important

information should be written to log. 255 is the highest setting for all debug information to display.

Prototype

void ihCollectorToolkitDebugModeChange(int DoDebug)

Returns

Void.

Parameters

Name Data Type Description

DoDebug int Zero or non zero debug level.

ihCollectorToolkitGetData

Historian | 13 - Collector Tool Kit | 1913

This is the function called by the collector shell each time the collector should poll data from the

data source. The shell will pass a list of tags by tag id to be read. The tagids were provided to the

collector specific code in the PolledAddTag call. The string tagnames, if needed, are available in the

ihInterfaceTKDataInfo structure. The collector should gather the data and fill in the remaining fields of

the ihInterfaceTKDataInfo.

Prototype

void ihCollectorToolkitGetData(int MinInterval, int AnySourceTimes, int CreatePermGroup, int NumTags,

int *TagIds, ihInterfaceTKDataInfo *Data)

Returns

Void.

Parameters

Name Data Type Description

MinInterval int The minimum configured

collection interval of the tags

being passed in for polling.

AnySourceTimes Int TRUE if any of the tags to be

collected are configured for

Time assigned by source.

This would mean the collec

tor specific code has to do

additional work to provide a

timestamp with the data. If

this is FALSE, then the col

lector shell will provide the

timestamp.

CreatePermGroup Int FALSE if this is a one time

read such at start up or col

lector redundancy fail over.

In this case, you can choose

to not make a permanent

collection group inside your

code. If this is TRUE, then

this is a normal scheduled

polled read and you should

Historian | 13 - Collector Tool Kit | 1914

Name Data Type Description

consider making a perma

nent group in your code for

greater efficiency.

NumTags Int Number of tags to be read.

TagIds Int List of tags to be read, iden

tified by tag ID. The tag

names are in the data para

meter, if required.

Data ihInterfaceTKDataInfo Pointer to the Proficy Histori

an Collector Data Properties.

This contains some informa

tion from the shell and then

the collector specific code

needs to fill in the collected

values.

Example

Populating data for a single tag.

ihInterfaceTKDataInfodata;

memset(&data,0, sizeof(ihInterfaceTKDataInfo));

data.Tag= L”computername.OperatorName”

data.DataProp.ValueDataType= ihTKFloat; // correct data type- same as tag type

data.DataProp.TimeStamp= pColl->TKGetSystemTime(); //10/01/2014 07:05:00

data.DataProp.Value = 10; // value that matches the data type.

data.DataProp.Quality = ihTKOPCGood;

ihCollectorToolkitGetTagsHierarchical

Use this interface to retrieve and represent the data in a hierarchical manner.

Prototype

void ihCollectorToolkitGetTagsHierarchical(wchar_t* BrowsePosition, wchar_t* NodeFilter,

ihInterfaceTKHierarchicalBrowseResponse* Response)

Returns

Historian | 13 - Collector Tool Kit | 1915

Void.

Parameters

Name Data Type Description

BrowsePosition wchar_t* Position of browsing for spe

cific Tag.

NodeFilter wchar_t* Node filtering required for

tag to get hierarchical infor

mation.

Response ihTKHierarchicalBrowseRe

sponse

Hierarchical Groups of tags

browse response.

ihCollectorGetTags

Use this interface to browse tags from source. The shell will give some criteria and the collector specific

code should fill in the result.

Tags can be skipped when they exist in the data source but should not be collected into Proficy Historian.

For example, if a tag has a data type that is not compatible with Proficy Historian, you would not return it

and you can increment the number skipped.

Prototype

void ihCollectorToolkitGetTags(ihInterfaceTKTagRecordset *Tags, ihInterfaceTKCfgInfo *Cfg, wchar_t

 *BrowsePosition,

ihTKBoolean Recursive, wchar_t *DescriptionMask, wchar_t *SourceAddressMask, int CanReadASync,

int DoMsgPump, int *NumSkipped

Returns

Void.

Parameters

Name Data Type Description

Tags ihInterfaceTKRecordset Pointer to a Proficy Historian

Tags Record set containing

browse criteria and where

you can return the tags.

Historian | 13 - Collector Tool Kit | 1916

Name Data Type Description

Cfg ihInterfaceTKCfgInfo Pointer to Proficy Historian

Collector Configuration In

formation. Use this if neces

sary to help determine the

browse results.

BrowsePosition wchar_t Pointer to a position of

browsing for specific Tag.

Recursive ihTKBoolean TRUE if the browse should

be recursive in collector spe

cific code. Applies only if

your data source has a tree

of available tags.

DescriptionMask wchar_t * or a description mask that

you should use when deter

mining tags to return.

SourceAddressMask wchar_t * or a source address mask

that you should use when

determining tags to return.

CanReadASync int Non-zero if your collector is

capable of asynchronous

reads. Typically, this parame

ter does not affect browse

results.

DoMsgPump int 0 should be ignored.

NumSkipped int Use this to return any tags

that were skipped because

they did not match the de

scription or source address

mask or had an invalid data

type.

ihCollectorToolkitInitializeCompleted

When this method is called by the collector shell, it indicates that the initialization is complete.

Historian | 13 - Collector Tool Kit | 1917

Prototype

ihCollectorToolkitInitializeCompleted(void)

Returns

FALSE on success; collector should return FALSE.

ihCollectorToolkitInitialize

Use this interface to initialize the collector by using information in the ihInterfaceTKCfgInfo and

ihInterfaceTKPreCfgInfo structures. Your code also needs to save away the callback pointers passed into

this function for use later with unsolicited reads and browses.

Prototype

int ihCollectorToolkitInitialize(ihInterfaceTKCfgInfo *Cfg, ihInterfaceTKPreCfgInfo *PreCfg, wchar_t

 *ErrorMsg,

int ErrorMsgSize,wchar_t *RegKeyName, ihCollectorToolkitCollectorCallbacks *Callbacks, int DoDebug)

Returns

TRUE if initialization was successful. Otherwise, FALSE. If initialization failed, you can return

a text string error message in the ErrorMsg parameter and that message will be entered into

the collector log.

Parameters

Name Data Type Description

Cfg ihInterfaceTKCfgInfo Pointer to the Proficy Histo

rian Collector Configuration

Information.

PreCfg ihInterfaceTKPreCfgInfo Pointer to the Collector pre-

Configuration Information.

ErrorMsg wchar_t Pointer to an Initialization Er

ror Message, if any. Any er

ror would be reported to col

lector log.

ErrorMsgSize int Error Message Size. This is

the maximum length that

your error message size can

be.

Historian | 13 - Collector Tool Kit | 1918

Name Data Type Description

RegKeyName wchar_t Pointer to a Registry Key

Name. Will be filled in with

the location of your collec

tor’s registry information.

Callbacks ihTKCollectorCallbacks Pointer to callbacks to func

tions inside the collector

shell. Save these function

pointers and call them at the

appropriate time, such as to

deliver unsolicited data into

the shell.

DoDebug int This value will be zero if the

collector is not in debug

mode and non-zero if debug

mode is enabled. Save this

value and use it to log more

or less information to your

collector log.

ihCollectorToolkitMiscReload

Reserved for future use. Your collector specific code should simply call the function in the

CCollectorDelegator.

Prototype

int ihCollectorToolkitMiscReload(ihTKTimeStruct *StartTime, ihTKTimeStruct *EndTime)

Returns

TRUE; your collector specific code should return TRUE.

Parameters

Name Data Type Description

*StartTime ihInterfaceTKTimeStruct Reserved

*EndTime ihTKTimeStruct Reserved

Historian | 13 - Collector Tool Kit | 1919

ihCollectorToolkitPolledAddTag

The collector shell calls this to indicate the tag will be used later in polled collection. The collector specific

code should keep all information given as it will be used in the ihInterfaceGetData call.

The polled tag add notification is done via ihCollectorToolkitPolledAddTag and data is sent to Historian

via ihCollectorToolkitGetData. The frequency of asking for data for polled tag is based on the tag

collection interval.

Prototype

int ihCollectorToolkitPolledAddTag(ihInterfaceTKPolledTagInfo *PolledTag, int IsCollectorStarting)

Returns

TRUE on success; your collector specific code should return TRUE.

Parameters

Name Data Type Description

PolledTag ihInterfaceTKPolledTagInfo Pointer to a Historian Collec

tor Polled Tag Information.

IsCollectorStarting int Parameter to provide infor

mation about collector state.

ihCollectorToolkitPreInitialize

Use this interface to provide the toolkit with some of the capabilities of the collector. Here, you can

specify if you support multiple instances, if you support unsolicited reads, and if your collector supports

browsing.

Information filled into the ihInterfaceTKCfgInfo structure will later be passed into the

ihCollectorToolkitInitialize function.

Prototype

void ihCollectorToolkitPreInitialize(ihInterfaceTKPreCfgInfo *PreCfg, ihInterfaceTKCfgInfo *Cfg)

Returns

Void.

Parameters

Historian | 13 - Collector Tool Kit | 1920

Name Data Type Description

PreCfg ihInterfaceTKPreCfgInfo Pointer to Collector Configu

ration Information.

Cfg ihInterfaceTKCfgInfo Pointer to additional Collec

tor Configuration Informa

tion.

ihCollectorToolkitPropertyUpdate

This function is called when the user changes any collector property in Historian Administrator such as

the General1 -5 properties. Your collector specific code can decide what changes are meaningful.

Prototype

void ihCollectorToolkitPropertyUpdate(ihInterfaceTKCfgInfo *Cfg)

Returns

Void.

Parameters

Name Data Type Description

Cfg ihInterfaceTKCfgInfo Current values of Collector

configuration information.

ihCollectorToolkitPolledInit

The collector shell calls this method at start up and on change to indicate the start of a list of tags to be

polled, as the collector runs. The actual polling takes place in the ihInterfaceGetData call.

Prototype

int ihCollectorToolkitPolledInit(void);

Returns

FALSE on success; your collector specific code should return FALSE.

ihCollectorToolkitPolledInitCompleted

The collector shell will call this to indicate the end of the polled tag list. This informs the source to begin

its initialization.

Prototype

Historian | 13 - Collector Tool Kit | 1921

int ihCollectorToolkitPolledInitCompleted(void);

Returns

FALSE on success; your collector specific code should return FALSE.

ihCollectorToolkitPropertyUpdate

This function is called when the user changes any collector property in Historian Administrator such as

the General1 -5 properties. Your collector specific code can decide what changes are meaningful.

Prototype

void ihCollectorToolkitPropertyUpdate(ihInterfaceTKCfgInfo *Cfg)

Returns

Void.

Parameters

Name Data Type Description

Cfg ihInterfaceTKCfgInfo Current values of Collector

configuration information.

ihCollectorToolkitPolledDeleteTag

The shell calls this function to notify the collector specific code that a tag will no longer be polled.

Prototype

int ihCollectorToolkitPolledDeleteTag(int tagId);

Returns

TRUE on success; your collector specific code should return TRUE.

Parameters

Name Data Type Description

TagId int TagId that is being deleted.

The tag name is not passed

into this function. Match the

TagId with the information

passed in the ihCollector

ToolkitPolledAddTag.

Historian | 13 - Collector Tool Kit | 1922

ihCollectorToolkitPolledInitCompleted

The collector shell will call this to indicate the end of the polled tag list. This informs the source to begin

its initialization.

Prototype

int ihCollectorToolkitPolledInitCompleted(void);

Returns

FALSE on success; your collector specific code should return FALSE.

ihCollectorToolkitReset

The toolkit will call this function when the collector is being paused or shutdown. Proficy Historian stores

collector information before the Collector is shut down.

Prototype

void ihCollectorToolkitReset(int Shutdown)

Returns

Void.

Parameters

Name Data Type Description

Shutdown int 0 if the collector pauses and

non-zero if the collector is

shutting down.

ihCollectorToolkitStartReading

When the shell calls this method, it indicates the collector specific code to start polled and unsolicited

reading from the source.

Prototype

int ihCollectorToolkitStartReading(void)

Returns

TRUE on success; your collector specific code should return TRUE.

ihCollectorToolkitShutdown

Historian | 13 - Collector Tool Kit | 1923

The collector shell will call this function when the collector executable (.exe) is shutting down.

Prototype

void ihInterfaceTKShutdown(void);

Returns

Void.

ihCollectorToolkitTagChange

The toolkit will call this function when the properties of a tag are changed in Client Tools, Historian

Administrator, or other external tools. The tag and what properties have changed are indicated in the tag

props and changed fields.

This function is called on tag property change and is not involved with data changes.

Your collector should decide how to react to tag property changes or should ignore the changes.

Prototype

int ihCollectorToolkitTagChange(int TagId, iHTKTagProperties *TagProps, iHTKTagFields *ChangedFields

Returns

int (TRUE/FALSE).

Parameters

Name Data Type Description

TagId int TagID that has changed.

TagProps ihTKTagProperties Pointer to a Proficy Historian

Tag Property structure that

indicates the new tag proper

ty values.

ChangedFields ihTKTagFields Pointer to information about

which tag properties have

changed.

ihCollectorToolkitGetEnumeratedSets

The toolkit calls this function based on the value configured under the SynchInterval registry key value.

This function is called every x minutes, where x is the value configured for the registry key.

Historian | 13 - Collector Tool Kit | 1924

Collectors implemented using the Collector Toolkit have to implement this method to fetch the

EnumeratedSet from their source.

Prototype

int ihCollectorToolkitGetEnumeratedSets(ihTKEnumeratedSetRecordSet *EnumeratedSetRecordSet)

Returns

int (TRUE/FALSE).

Parameters

Name Data Type Description

EnumeratedSetRecordSet ihTKEnumeratedSetRecordSet Pointer to an EnumeratedSe

tRecordSet structure which

should be added to Historian

Server.

ihCollectorToolkitWriteValue

The toolkit will call this function once per minute if the user has configured heartbeat/status/rate tags. If

your collector does not support this feature you can hard code a return value and not do the write.

Prototype

void ihCollectorToolkitWriteValue(wchar_t *Tag, wchar_t *SValue, double DValue

Returns

Void.

Parameters

Name Data Type Description

Tag wchar_ t Pointer to a source address

in the data source to write

to.

doubled Value DValue Numeric value to be written,

if the Tag is a numeric tag.

For example, a report rate

would be written to a rate

tag or a 1 would be written

to a heartbeat tag.

Historian | 13 - Collector Tool Kit | 1925

Name Data Type Description

SValue SValue The string value to be writ

ten if tag source address is a

string tag. For example, the

string Running would be writ

ten to a status tag.

What is a Helper Method?

Helper Methods are used to allocate memory for variables while developing Collectors. Using these helper

methods will prevent cross boundary issues. The following are the Helper Methods:

Name Description

wchar_t*TKStrdup(const wchar_t* string) Use this method to allocate memory on the heap,

assign values and returns.

voidTKFree(void* pointer) Use this method to free up pointer memory.

void*TKMalloc(_In_ size_t _Size) Use this method to allocate memory.

Custom Structure Technical Reference

What is a Structure?

A Structure is a user defined data type. Structures are used in Interface Methods to represent data types

that are compatible with Historian and allow the custom collectors to interact with Historian.

Note:

The abbreviation, TK stands for Toolkit.

For developing basic Custom Collectors, you should have knowledge about the following structures:

• ihInterfaceTKPreCfgInfo, ihInterfaceTKCfgInfo - Maintains collector configuration information.

• ihCollectorToolKitDefProperties - Maintains collectors specific properties.

• ihInterfaceTKDataInfo - Maintains data information.

• ihInterfaceTKRecordset - Maintains tag recordset.

• ihTKTagProperties - Maintains tag properties.

• ihTKTagFields - Maintains tag fields details

• ihTKTagCriteria - Maintains tag criteria details.

Historian | 13 - Collector Tool Kit | 1926

• ihTKDataType - Maintains tag data type

• ihInterfaceTKHierarchicalBrowseResponse - Maintains hierarchical browse response information.

• ihInterfaceTKASyncTagInfo - Maintains Unsolicited tag information.

• ihInterfaceTKPolledTagInfo - Maintains Polled tag information.

The following are few more structures that are used for developing Custom Collectors:

• ihTKTagRecordset

• ihTKBlobData

• ihTKHiddenValue

• ihTKRawQuality

• ihTKQuality

• ihTKCommentData

• ihTKComments

• ihTKDataProperties

• ihInterfaceTKASyncData

• ihTKGetDataType

• ihTKStatus

• ihTKMessageTopic

• ihTKCollectorCallbacks

• ihTKTimeStruct

• ihTKQualityStatus

• ihTKQualitySubStatus

• ihTKDataType

• ihTKInterfaceType

• ihTKCollectionType

• ihTKTimeStampType

• ihTKTimeResolution

• ihTKTagId

• ihTKConditionCollectionComparison

• ihTKAlarmInterfaceProperties

• ihTKHierarchicalBrowseResponse

Custom Collector Toolkit Structure Reference

Following are the custom Collector Toolkit structure references:

ihInterfaceTKPreCfgInfo

Historian | 13 - Collector Tool Kit | 1927

The ihInterfaceTKPreCfgInfo structure maintains the pre-configuration information of a collector.

Definition

typedef struct ihInterfaceTKPreCfgInfo {

ihTKInterfaceType InterfaceType;

int MultipleInstancesAllowed;

int MinimumInterval;

int MaxTagsPerRead;

int CanReadASync;

int CanBrowseSource;

int CanSourceTimestamp;

int ForceInputScaling;

int NeedMsgPump;

float ForcedScaleHI;

float ForcedScaleLO;

int ForceAsyncSource;

int ForcePolledSource;

int AyncAllowAdjustWhenSource;

int PolledAllowAdjustWhenSource;

int DontWriteASyncOfflineValue;

int DontWritePolledOfflineValue;

int DoesReloadMode;

int DoesLagTimes;

ihTKTagFields ReloadTagFields;

ihTKTagFields NotifyTagFields;

int IsHistoricalCollector;

int CanBrowseHierarchical;

wchar_t ReloadModeName[100];

TKCallBackFunctionCalcLibraryTag * CalcLibraryTagCallback;

void * CalcLibraryTagCallbackParam;

int CanSendOPCQuality;

} ihInterfaceTKPreCfgInfo;

Parameters

Name Description

InterfaceType Indicates the collector responsible for collecting data for

the tag.

Historian | 13 - Collector Tool Kit | 1928

Name Description

MultipleInstancesAllowed Indicates whether multiple instances are allowed.

MinimumInterval Indicates the minimum interval the collector uses.

MaxTagsPerRead Indicates the maximum tags per read.

CanReadASync Indicates whether Async tags can be read.

CanBrowseSource If True, this column indicates that the collector is capable

of browsing its source for tags.

CanSourceTimestamp Indicates whether the data source is capable of providing

timestamps along with the data.

ForceInputScaling Forces input scaling to be used.

NeedMsgPump Indicates whether a message pump is required.

ForcedScaleHI Forces to use Hi Scaling.

ForcedScaleLO Forces to use Low scaling.

ForceAsyncSource Forces to use Async source.

ForcePolledSource Forces to use polled source.

AsyncAllowAdjustWhenSource Forces Async to allow adjust when source.

PolledAllowAdjustWhenSource Forces to polled to allow adjust when source.

DontWriteASyncOfflineValue Forces not to write Async offline value.

DontWritePolledOfflineValue Forces not to write polled offline values.

DoesReloadMode Uses the reload mode.

DoesLagTimes Defines the lag times.

IsHistoricalCollector Indicates whether it is a historical collector.

CanBrowseHierarchical Indicates whether a hierarchical browse can be done.

ReloadModeName Reload mode name.

CalcLibraryTagCallback Call back function for calculation tag.

CalcLibraryTagCallbackParam Calculation tag call back parameters

CanSendOPCQuality Indicates whether OPC Quality can be sent.

Historian | 13 - Collector Tool Kit | 1929

ihInterfaceTKCfgInfo

The ihInterfaceTKCfgInfo structure maintains the configuration information of the collectors.

Definition

typedef struct ihInterfaceTKCfgInfo {

int CanBrowseSource;

int CanSourceTimestamp;

int ForcePolled;

int DoOnFly;

wchar_t* CustomProp1;

wchar_t* CustomProp2;

wchar_t* CustomProp3;

wchar_t* CustomProp4;

wchar_t* CustomProp5;

wchar_t StatusOutputAddress[500];

wchar_t RateOutputAddress[500];

wchar_t HeartbeatOutputAddress[500];

wchar_t InterfaceName[500];

wchar_t HistorianNodeName[1024];

wchar_t LogFilePath[500];

wchar_t BufferFilePath[500];

uint32 MinimumDiskFreeBufferSize;

uint32 MaximumMemoryBufferSize;

int ShouldAdjustTime;

int ShouldQueueWrites;

int SourceTimeInLocalTime;

volatile int32_t CollectionDelay;

wchar_t DefaultTagPrefix[200];

uint32_t DefaultCollectionInterval;

ihTKCollectionType DefaultCollectionType;

ihTKTimeStampType DefaultTimeStampType;

int DefaultLoadBalancing;

int DefaultCollectorCompression;

float DefaultCollectorCompressionDeadband;

uint32_t DefaultCollectorCompressionTimeout;

int ReloadMode;

volatile int32_t DisableOnTheFlyTagChanges;

Historian | 13 - Collector Tool Kit | 1930

uint32_t ReadLagTime;

int32_t MaxHistoricalRecoverySeconds;

int32_t HistoricalOverrunThresholdSecs;

int DontStartupPolling;

int DefaultSpikeLogic;

float DefaultSpikeMultiplier;

uint32_t DefaultSpikeInterval;

volatile int32_t DataRecoveryQueueEnabled;

int DefaultAbsoluteDeadbanding;

double DefaultAbsoluteDeadband;

int RedundancyEnabled;

wchar_t RedundancyPrincipalCollector[500];

volatile int32_t RedundancyIsActiveCollector;

wchar_t RedundancyPrimaryCollector[500];

uint32_t SyncThreadInterval;

} ihInterfaceTKCfgInfo;

Parameters

Name Description

CanBrowseSource If True, this column indicates that the collector is capa

ble of browsing its source for tags.

CanSourceTimestamp Indicates whether the data source is capable of provid

ing timestamps along with the data.

ForcePolled If you set as true then collection type will be forced to

be ihPolled.

DoOnFly Indicates whether to enable or disable on the fly

changes.

CustomProp1 The general (or spare) configuration fields for the col

lector. The CollectorGeneral1 column is not user de

fined; it is different for each collector.

CustomProp2 The general (or spare) configuration fields for the col

lector. The CollectorGeneral2 column is not user de

fined; it is different for each collector.

Historian | 13 - Collector Tool Kit | 1931

Name Description

CustomProp3 The general (or spare) configuration fields for the col

lector. The CollectorGeneral3 column is not user de

fined; it is different for each collector.

CustomProp4 The general (or spare) configuration fields for the col

lector. The CollectorGeneral4 column is not user de

fined; it is different for each collector.

CustomProp5 The general (or spare) configuration fields for the col

lector. The CollectorGeneral5 column is not user de

fined; it is different for each collector.

StatusOutputAddress[500] The address in the source database into which the col

lector writes the status signal output.

RateOutputAddress[500] An address or tag name in the data source into which

the collector writes the current value of the events per

minute output.

HeartbeatOutputAddress[500] The address in the source database into which the col

lector writes the heartbeat signal output.

InterfaceName[500] The name of the collector. The collector name is

unique in a given Historian Server.

HistorianNodeName[1024] The name of the DataArchiver server where we need to

store our data.

LogFilePath[500] Path name to specify the location of the log files.

BufferFilePath[500] Path name to specify the location of the buffer files.

MinimumDiskFreeBufferSize The minimum size (in MB) of disk buffer for buffering

outgoing data.

MaximumMemoryBufferSize The maximum size of memory buffer (in MB) for

buffering outgoing data.

ShouldAdjustTime If the data source supplies the timestamps, the Shoul

dAdjustTime value is False. If the collector supplies the

timestamps, the ShouldAdjustTime value is True.

ShouldQueueWrites Indicates whether queue writes are allowed or not.

Historian | 13 - Collector Tool Kit | 1932

Name Description

SourceTimeInLocalTime Applicable only for data source timestamps. Indicates

whether the timestamps use local time. If SourceTime

InLocalTime is False, then UTC time is used.

CollectionDelay The length of time, in seconds, that the collector should

delay collection at start-up (to allow data source time

to initialize).

DefaultTagPrefix[200] The prefix that is automatically added to all tag names

added by the specified collector.

DefaultCollectionInterval The collection interval, in milliseconds, for tags added

by the collector.

ihTKCollectionType

DefaultCollectionType

Type of collection used to acquire data for tags added

by the collector:

• Unsolicited - The collector accepts data from the

source whenever the source presents the data.

• Polled - The collector acquires data from a

source on a periodic schedule determined by the

collector.

ihTKTimeStampType

DefaultTimeStampType

The type of time stamping applied to data samples at

collection time for tags added by the collector:

• Source - The source delivers the timestamp

along with the data sample.

• Collector - The collector delivers the timestamp

along with the collected data.

DefaultCollectorCompression Indicates whether the default collector compression is

enabled for tags added by the collector.

DefaultCollectorCompression

Deadband

The default collector compression deadband for tags

added by the collector.

DefaultCollectorCompression

Timeout

Indicates the default collector compression time out

value.

DisableOnTheFlyTagChanges Indicates whether a user can perform on the fly

changes to this tag. When enabled (True), you can

Historian | 13 - Collector Tool Kit | 1933

Name Description

make changes to this tag without having to restart the

collector.

If this option is disabled (False), any changes you make

to this tag does not affect collection until you restart

the collector.

DefaultSpikeLogic Indicates whether the Spike Logic is enabled.

DefaultSpikeMultiplier Indicates the default Spike Logic multiplier.

DefaultSpikeInterval Indicates the default Spike Logic interval.

DataRecoveryQueueEnabled Indicates whether the Recovery queue is enabled.

DefaultAbsoluteDeadbanding Indicates if the absolute deadband is enabled.

RedundancyEnabled Indicates that the collector redundancy is enabled.

RedundancyPrincipalCollec

tor[500]

Indicates the principal collector.

RedundancyIsActiveCollector Indicates that the current collector is active.

RedundancyPrimaryCollec

tor[500]

Indicates the principal collector.

SyncThreadInterval If greater than 0, indicates that the collector is capable

of synchronizing EnumeratedSets populated by ihCol

lectorToolkitGetEnumeratedSets implementation.

ihCollectorToolkitGetEnumeratedSets is fired every x

minutes, where x is the value of SyncThreadInterval.

ihCollectorToolKitDefProperties

The ihCollectorToolkitDefProperties structure maintains the Custom Collectors specific properties

General1-5 definitions.

Definition

typedef struct {

wchar_t* InterfaceDefName;

int32_t InterfaceType;

unsigned char IsSystemInterface;

Historian | 13 - Collector Tool Kit | 1934

wchar_t* General1Description;

wchar_t* General2Description;

wchar_t* General3Description;

wchar_t* General4Description;

wchar_t* General5Description;

} ihCollectorToolkitDefProperties;

Parameters

Name Description

InterfaceDefName The name of the Custom Collector.

InterfaceType ihTKCustom- specifies the custom collector

type.

IsSystemInterface Boolean. If true, specifies whether it is a

System collector or a custom collector. De

fault - false.

General1Description Collector general-1 property description.

General2Description Collector general-2 property description.

General3Description Collector general-3 property description.

General4Description Collector general-4 property description.

General5Description Collector general-5 property description.

The parameters General1Description, General2Description to General5Description,

specifies the collector specific properties descriptions which are not listed among the

general collector properties. Using Collector Toolkit we can add up to 5 collector specific

properties descriptions.

ihInterfaceTKDataInfo

The ihInterfaceTKDataInfo structure maintains data properties of a collector.

Definition

typedef struct ihInterfaceTKDataInfo {

wchar_t

*ArchiveTagName;

wchar_t *Tag;

Historian | 13 - Collector Tool Kit | 1935

ihTKDataProperties DataProp;

ihTKAPIStatus ErrorStatus;

ihTKGetDataType GetDataType;

wchar_t *ErrorMessage;

uint32_t CollectionTime;

wchar_t *CustomProp1;

wchar_t *CustomProp2;

wchar_t *CustomProp3;

wchar_t *CustomProp4;

wchar_t *CustomProp5;

} ihInterfaceTKDataInfo;

Parameters

Name Description

*ArchiveTagName Tag name of the archive.

*Tag Name of the tag.

DataProp Properties of the data.

ErrorStatus Status of the error.

GetDataType Data type.

*ErrorMessage Error message.

CollectionTime Collection time.

*CustomProp1 CustomProp1 property description.

*CustomProp2 CustomProp2 property description.

*CustomProp3 CustomProp3 property description.

*CustomProp4 CustomProp4 property description.

*CustomProp5 CustomProp5 property description.

Example

Populating data for a single tag.

ihInterfaceTKDataInfodata;

memset(&data,0, sizeof(ihInterfaceTKDataInfo));

data.Tag= L”computername.OperatorName”

Historian | 13 - Collector Tool Kit | 1936

data.DataProp.ValueDataType= ihTKFloat;// correct data type- same as tag type

data.DataProp.TimeStamp = pColl->TKGetSystemTime(); //10/01/2014 07:05:00

data.DataProp.Value = 10; // value that matches the data type.

data.DataProp.Quality = ihTKOPCGood;

ihTKTagProperties

The ihTKTagProperties structure maintains the properties of a Historian tag.

Definition

typedef struct ihTKTagProperties {wchar_t* Tagname; wchar_t*

Description; wchar_t*

EngineeringUnits; wchar_t*

Comment; ihTKDataType

DataType;

unsigned char FixedStringLength;

wchar_t* InterfaceName; wchar_t*

SourceAddress; ihTKCollectionType

CollectionType; uint32_t

CollectionInterval; uint32_t

CollectionOffset; ihTKBoolean

LoadBalancing; ihTKTimeStampType

TimeStampType; double

HiEngineeringUnits;

double LoEngineeringUnits;

ihTKBoolean InputScaling;

double HiScale;

double LoScale;

ihTKBoolean InterfaceCompression;

float InterfaceDeadbandPercentRange;

ihTKBoolean ArchiveCompression;

float ArchiveDeadbandPercentRange;

wchar_t* CustomProp1;

wchar_t* CustomProp2;

wchar_t* CustomProp3;

wchar_t* CustomProp4;

wchar_t* CustomProp5;

wchar_t* ReadSecurityGroup;

Historian | 13 - Collector Tool Kit | 1937

wchar_t* WriteSecurityGroup;

wchar_t* AdministratorSecurityGroup;

ihTKTimeStruct LastModified;

wchar_t* LastModifiedUser;

ihTKInterfaceType InterfaceType;

ihTKBoolean ObsoleteField;

int32_t UTCBias;

uint32_t NumberOfCalculationDependencies;

wchar_t** CalculationDependencies;

uint32_t AverageCollectionTime;

ihTKBoolean CollectionDisabled;

uint32_t ArchiveCompressionTimeout;

uint32_t InterfaceCompressionTimeout;

ihTKBoolean SpikeLogic;

ihTKBoolean SpikeLogicOverride;

ihTKBoolean InterfaceAbsoluteDeadbanding;

double InterfaceAbsoluteDeadband;

ihTKBoolean ArchiveAbsoluteDeadbanding;

double ArchiveAbsoluteDeadband;

ihTKBoolean StepValue;

ihTKTimeResolution TimeResolution;

ihTKBoolean ConditionCollectionEnabled;

wchar_t* ConditionCollectionTriggerTag;

ihTKConditionCollectionComparison ConditionCollectionComparison;

wchar_t* ConditionCollectionCompareValue;

ihTKBoolean ConditionCollectionMarkers;

ihTKTagId TagId;

} ihTKTagProperties;

Parameters

Name Description

Tagname Tagname property of the tag.

Description User description of the tag.

EngineeringUnits Engineering units description of the tag.

Historian | 13 - Collector Tool Kit | 1938

Name Description

Comment User comment associated with the selected

tag.

DataType The data type returned in this column is the

data type that is defined in Historian Admin

istrator application.

FixedStringLength Zero unless the data type is FixedString.

If the data type is FixedString, this num

ber represents the maximum length of the

string value.

InterfaceName Name of the collector responsible for col

lecting data for the specified tag.

SourceAddress Address used to identify the tag at the

data source. For iFIXsystems, this is NTF

(Node.Tag.Field).

CollectionType Types of collection used to acquire data for

the tag.

CollectionInterval The time interval, in milliseconds, between

readings of data from this tag.

CollectionOffset The time shift from midnight, in millisec

onds, for collection of data from this tag.

LoadBalancing Indicates whether the data collector should

automatically shift the phase of sampling to

distribute the activity of the processor even

ly over the polling cycle. This is sometimes

called Phase Shifting.

TimeStampType The type of time stamping applied to data

samples at collection time:

Historian | 13 - Collector Tool Kit | 1939

Name Description

• Source: The source delivers the time

stamp along with the data sample.

• Collector: The collector delivers the

timestamp along with the collected

data.

HiEngineeringUnits The high end of the engineering units range.

Used only for scaled data types and input

scaled tags.

LoEngineeringUnits The low end of the engineering units range.

Used only for scaled data types and input

scaled tags.

InputScaling Indicates whether the measurement should

be converted to an engineering unit's value.

When set to False, the measurement is inter

preted as a raw measurement.

With input scaling set to True, the system

converts the value to engineering units by

scaling the value between the Hi and Lo

Scale. If InputScaling is not enabled, the

system assumes that the measurement is

already converted into engineering units.

HiScale The high end value of the input scaling

range used for the tag.

LoScale The low end value of the input scaling range

used for the tag.

InterfaceCompression Indicates whether collector compression is

enabled for the tag.

Collector compression applies a smoothing

filter to incoming data by ignoring incremen

tal changes in values that fall within a dead

band centered around the last collected val

ue. The collector passes (to the archiver)

Historian | 13 - Collector Tool Kit | 1940

Name Description

any new value that falls outside the dead

band and then centers the deadband around

the new value.

InterfaceDeadbandPercentRange The current value of the compression dead

band.

ArchiveCompression Indicates whether the archive collector com

pression is enabled for the tag.

ArchiveDeadbandPercentRange The current value of the archive compres

sion deadband.

CustomProp1 The general (or spare) configuration fields

for the collector. The CustomProp1 column is

not user-defined; it is different for each col

lector.

CustomProp2 The general (or spare) configuration fields

for the collector. The CustomProp2 column is

not user-defined; it is different for each col

lector.

CustomProp3 The general (or spare) configuration fields

for the collector. The CustomProp3 column is

not user-defined; it is different for each col

lector.

CustomProp4 The general (or spare) configuration fields

for the collector. The CustomProp4 column is

not user-defined; it is different for each col

lector.

CustomProp5 The general (or spare) configuration fields

for the collector. The CustomProp5 column is

not user-defined; it is different for each col

lector.

ReadSecurityGroup The name of the Windows security group

controlling the reading of data for the tag.

Historian | 13 - Collector Tool Kit | 1941

Name Description

WriteSecurityGroup The name of the Windows security group

controlling the writing of data for the tag.

AdministratorSecurityGroup The name of the Windows security group

responsible for controlling configuration

changes for the tag.

LastModified The date and time that the tag configura

tion for this tag was last modified. The time

structure includes milliseconds.

LastModifiedUser The user name of the Windows user who

last modified this tag's configuration.

InterfaceType The collector responsible for collecting data

for the tag.

ObsoleteField

UTCBias The time zone bias for the tag. Time zone

bias is used to indicate the natural time

zone of the tag expressed as an offset from

UTC (Universal Time Coordinated) in min

utes.

UTC is the international time standard, the

current term for what was commonly re

ferred to as Greenwich Mean Time (GMT).

ArchiveCompressionTimeout Indicates the maximum amount of time

from the last stored point before another

point is stored, if the value does not exceed

the archive compression deadband.

The data archiver treats the incoming sam

ple after the timeout occurs as if it exceed

ed compression. It then stores the pending

sample.

Historian | 13 - Collector Tool Kit | 1942

Name Description

InterfaceCompressionTimeout Indicates the maximum amount of time the

collector will wait between sending samples

to the archiver.

SpikeLogic Indicates whether the Spike Logic is en

abled for the tag.

SpikeLogicOverride Indicates whether the Spike Logic setting

for this tag overrides the collector.

InterfaceAbsoluteDeadbanding Indicates if absolute collector deadband is

enabled for this tag.

InterfaceAbsoluteDeadband Indicates the value for absolute collector

deadband.

ArchiveAbsoluteDeadbanding Indicates if absolute archive deadband is

enabled for this tag.

ArchiveAbsoluteDeadband Indicates the value for absolute archive

deadband.

StepValue Indicates if the StepValue property is en

abled for the tag.

TimeResolution Indicates the timestamp resolution in sec

onds, milliseconds, or microseconds.

ConditionCollectionEnabled Indicates whether condition-based collec

tion is enabled.

ConditionCollectionTriggerTag Tag condition-based collection trigger tag.

ConditionCollectionComparison Tag condition-based collection comparison

operator.

ConditionCollectionCompareValue Tag condition-based collection compare val

ue.

ConditionCollectionMarkers Indicates whether to employ condi

tion-based collection markers.

TagId TagID associated with this tag.

Historian | 13 - Collector Tool Kit | 1943

ihTKTagFields

The ihTKTagFields structure maintains the information that should be provided to Historian while creating

tags.

Definition

typedef struct ihTKTagFields {

ihTKBoolean AllFields;

ihTKBoolean Tagname;

ihTKBoolean Description;

ihTKBoolean EngineeringUnits;

ihTKBoolean Comment;

ihTKBoolean DataType;

ihTKBoolean FixedStringLength;

ihTKBoolean InterfaceName;

ihTKBoolean SourceAddress;

ihTKBoolean CollectionType;

ihTKBoolean CollectionInterval;

ihTKBoolean CollectionOffset;

ihTKBoolean LoadBalancing;

ihTKBoolean TimeStampType;

ihTKBoolean HiEngineeringUnits;

ihTKBoolean LoEngineeringUnits;

ihTKBoolean InputScaling;

ihTKBoolean HiScale;

ihTKBoolean LoScale;

ihTKBoolean InterfaceCompression;

ihTKBoolean InterfaceDeadbandPercentRange;

ihTKBoolean ArchiveCompression;

ihTKBoolean ArchiveDeadbandPercentRange;

ihTKBoolean CustomProp1;

ihTKBoolean CustomProp2;

ihTKBoolean CustomProp3;

ihTKBoolean CustomProp4;

ihTKBoolean CustomProp5;

ihTKBoolean ReadSecurityGroup;

ihTKBoolean WriteSecurityGroup;

ihTKBoolean AdministratorSecurityGroup;

Historian | 13 - Collector Tool Kit | 1944

ihTKBoolean ObsoleteField;

ihTKBoolean LastModified;

ihTKBoolean LastModifiedUser;

ihTKBoolean InterfaceType;

ihTKBoolean TimeResolution;

ihTKBoolean UTCBias;

ihTKBoolean AverageCollectionTime;

ihTKBoolean CalculationDependencies;

ihTKBoolean CollectionDisabled;

ihTKBoolean ArchiveCompressionTimeout;

ihTKBoolean InterfaceCompressionTimeout;

ihTKBoolean SpikeLogic;

ihTKBoolean SpikeLogicOverride;

ihTKBoolean InterfaceAbsoluteDeadbanding;

ihTKBoolean InterfaceAbsoluteDeadband;

ihTKBoolean ArchiveAbsoluteDeadbanding;

ihTKBoolean ArchiveAbsoluteDeadband;

ihTKBoolean StepValue;

ihTKBoolean MaxTagsToRetrieve;

ihTKBoolean ConditionCollectionEnabled;

ihTKBoolean ConditionCollectionTriggerTag;

ihTKBoolean ConditionCollectionComparison;

ihTKBoolean ConditionCollectionCompareValue;

ihTKBoolean ConditionCollectionMarkers;

ihTKBoolean TagId;

} ihTKTagFields;

Parameters

Name Description

AllFields Tag request contains all fields.

Tagname Tag request contains Tagname.

Description Tag request contains Description.

EngineeringUnits Tag request contains EngineeringUnits.

Comment Tag request contains Comment.

DataType Tag request contains DataType.

Historian | 13 - Collector Tool Kit | 1945

Name Description

FixedStringLength Tag request contains FixedStringLength.

InterfaceName Tag request contains InterfaceName.

SourceAddress Tag request contains SourceAddress.

CollectionType Tag request contains CollectionType.

CollectionInterval Tag request contains CollectionInterval.

CollectionOffset Tag request contains CollectionOffset.

LoadBalancing Tag request contains LoadBalancing.

TimeStampType Tag request contains TimeStampType.

HiEngineeringUnits Tag request contains HiEngineeringUnits.

LoEngineeringUnits Tag request contains LoEngineeringUnits.

InputScaling Tag request contains InputScaling.

HiScale Tag request contains HiScale.

LoScale Tag request contains LoScale.

InterfaceCompression Tag request contains InterfaceCompression.

InterfaceDeadbandPercentRange Tag request contains InterfaceDeadbandPer

centRange.

ArchiveCompression Tag request contains ArchiveCompression.

ArchiveDeadbandPercentRange Tag request contains ArchiveDeadbandPer

centRange.

CustomProp1 Tag request contains CustomProp1.

CustomProp2 Tag request contains CustomProp2.

CustomProp3 Tag request contains CustomProp3.

CustomProp4 Tag request contains CustomProp4.

CustomProp5 Tag request contains CustomProp5.

ReadSecurityGroup Tag request contains ReadSecurityGroup.

WriteSecurityGroup Tag request contains WriteSecurityGroup.

Historian | 13 - Collector Tool Kit | 1946

Name Description

AdministratorSecurityGroup Tag request contains AdministratorSecuri

tyGroup.

ObsoleteField Tag request contains ObsoleteField.

LastModified Tag request contains LastModified.

LastModifiedUser Tag request contains LastModifiedUser.

InterfaceType Tag request contains InterfaceType.

TimeResolution Tag request contains TimeResolution.

UTCBias Tag request contains UTCBias.

AverageCollectionTime Tag request contains AverageCollection

Time.

CalculationDependencies Tag request contains CalculationDependen

cies.

CollectionDisabled Tag request contains CollectionDisabled.

ArchiveCompressionTimeout Tag request contains ArchiveCompression

Timeout.

SpikeLogic Tag request contains SpikeLogic.

SpikeLogicOverride Tag request contains SpikeLogicOverride.

InterfaceAbsoluteDeadbanding Tag request contains InterfaceAbsolute

Deadbanding.

InterfaceAbsoluteDeadband Tag request contains InterfaceAbsolute

Deadband.

ArchiveAbsoluteDeadbanding Tag request contains ArchiveAbsoluteDead

banding.

ArchiveAbsoluteDeadband Tag request contains ArchiveAbsoluteDead

band.

StepValue Tag request contains StepValue.

MaxTagsToRetrieve Tag request contains MaxTagsToRetrieve.

Historian | 13 - Collector Tool Kit | 1947

Name Description

ConditionCollectionEnabled Tag request contains ConditionCollection

Enabled.

ConditionCollectionTriggerTag Tag request contains ConditionCollection

TriggerTag.

ConditionCollectionComparison Tag request contains ConditionCollection

Comparison.

ConditionCollectionCompareValue Tag request contains ConditionCollection

CompareValue.

ConditionCollectionMarkers Tag request contains ConditionCollection

Markers.

TagId Tag request contains TagId

ihTKTagCriteria

The ihTKTagCriteria structure maintains the information required while retrieving data from Historian.

Definition

typedef struct ihTKTagCriteria {

wchar_t* TagnameMask;

uint32_t NumberOfTags;

wchar_t** TagnameArray;

wchar_t* DescriptionMask;

wchar_t* EngineeringUnits;

wchar_t* Comment;

ihTKDataType DataType;

unsigned char FixedStringLength;

wchar_t* InterfaceName;

wchar_t* SourceAddress;

ihTKCollectionType CollectionType;

uint32_t CollectionInterval;

uint32_t CollectionOffset;

ihTKBoolean LoadBalancing;

ihTKTimeStampType TimeStampType;

double HiEngineeringUnits;

double LoEngineeringUnits;

Historian | 13 - Collector Tool Kit | 1948

ihTKBoolean InputScaling;

double HiScale;

double LoScale;

ihTKBoolean InterfaceCompression;

float InterfaceDeadbandPercentRange;

ihTKBoolean ArchiveCompression;

float ArchiveDeadbandPercentRange;

wchar_t* CustomProp1;

wchar_t* CustomProp2;

wchar_t* CustomProp3;

wchar_t* CustomProp4;

wchar_t* CustomProp5;

wchar_t* ReadSecurityGroup;

wchar_t* WriteSecurityGroup;

wchar_t* AdministratorSecurityGroup;

ihTKTimeStruct LastModified;

wchar_t* LastModifiedUser;

ihTKInterfaceType InterfaceType;

ihTKBoolean ObsoleteField;

int32_t UTCBias;

uint32_t AverageCollectionTime;

ihTKBoolean CollectionDisabled;

uint32_t ArchiveCompressionTimeout;

uint32_t InterfaceCompressionTimeout;

ihTKBoolean SpikeLogic;

ihTKBoolean SpikeLogicOverride;

ihTKBoolean InterfaceAbsoluteDeadbanding;

double InterfaceAbsoluteDeadband;

ihTKBoolean ArchiveAbsoluteDeadbanding;

double ArchiveAbsoluteDeadband;

ihTKBoolean SourceAddressIsMask;

ihTKBoolean StepValue;

int32_t MaxTagsToRetrieve;

ihTKTimeResolution TimeResolution;

ihTKBoolean ConditionCollectionEnabled;

wchar_t* ConditionCollectionTriggerTag;

ihTKConditionCollectionComparison ConditionCollectionComparison;

Historian | 13 - Collector Tool Kit | 1949

wchar_t* ConditionCollectionCompareValue;

ihTKBoolean ConditionCollectionMarkers;

ihTKTagId TagId;

} ihTKTagCriteria;

Parameters

Name Description

TagnameMask Tag name mask criteria.

NumberOfTags Number of tags for a tag.

TagnameArray Tag name array of a tag.

DescriptionMask Tag description mask criteria.

EngineeringUnits Tag engineering units criteria.

Comment Tag comment criteria.

DataType Tag data type criteria.

FixedStringLength Tag fixed string length criteria.

InterfaceName Tag interface name.

SourceAddress Tag source address criteria.

CollectionType Tag collection type criteria.

CollectionInterval Tag collection interval criteria.

CollectionOffset Tag collection offset criteria.

LoadBalancing Tag load balancing enabled criteria.

TimeStampType Tag timestamp type criteria.

HiEngineeringUnits Tag high engineering unit criteria.

LoEngineeringUnits Tag low engineering unit criteria.

InputScaling Tag input scaling enabled criteria.

HiScale Tag high scale value criteria.

LoScale Tag low scale value criteria.

InterfaceCompression Tag interface compression.

Historian | 13 - Collector Tool Kit | 1950

Name Description

InterfaceDeadbandPercentRange Tag interface deadband percentage range.

ArchiveCompression Tag archive compression enabled criteria.

CustomProp1 Tag custom property 1.

CustomProp2 Tag custom property 2.

CustomProp3 Tag custom property 3.

CustomProp4 Tag custom property 4.

CustomProp5 Tag custom property 5.

ReadSecurityGroup Tag read security group name criteria.

WriteSecurityGroup Tag write security group name criteria.

AdministratorSecurityGroup Tag administrator security group name cri

teria.

LastModified Tag last modified time criteria.

LastModifiedUser Tag last modified user name criteria.

InterfaceType Tag interface type.

ObsoleteField Tag obsolete field.

UTCBias Tag UTC bias criteria.

AverageCollectionTime Tag average collection time.

CollectionDisabled Tag collection disabled criteria.

ArchiveCompressionTimeout Tag archive-compression time out criteria.

InterfaceCompressionTimeout Tag interface compression time out.

SpikeLogic Tag spike logic enabled criteria.

SpikeLogicOverride Tag spike logic override enabled criteria.

InterfaceAbsoluteDeadbanding Tag interface absolute deadband.

ArchiveAbsoluteDeadbanding Tag archive compression absolute dead

band criteria.

Historian | 13 - Collector Tool Kit | 1951

Name Description

SourceAddressIsMask Whether to interpret source address criteria

as a wildcard expression.

StepValue Tag step value enabled criteria.

MaxTagsToRetrieve Maximum number of tags to retrieve per

query.

TimeResolution Tag time resolution criteria.

ConditionCollectionEnabled Tag condition-based collection enabled cri

teria.

ConditionCollectionTriggerTag Tag condition-based collection trigger tag

criteria.

ConditionCollectionComparison Tag condition-based collection comparison

operator criteria.

ConditionCollectionCompareValue Tag condition-based collection compare val

ue criteria.

ConditionCollectionMarkers Tag condition-based collection markers en

abled criteria.

TagId TagId criteria.

ihTKDataType

The ihTKDataType structure contains the data types supported by Historian.

Definition

typedefenum ihTKDataType {

ihTKDataTypeUndefined = 0,

ihTKScaled,

ihTKFloat,

ihTKDoubleFloat,

ihTKInteger,

ihTKDoubleInteger,

ihTKFixedString,

ihTKVariableString,

ihTKBlob,ihTKTime,

Historian | 13 - Collector Tool Kit | 1952

ihTKInt64,

ihTKUInt64,

ihTKUInt32,

ihTKUInt16,

ihTKMaxDataType}ihTKDataType;

Parameters

Name Description

ihTKDataTypeUndefined An Undefined data type.

ihTKScaled A single precision (32-bit) floating-point

type.

ihTKFloat A single precision (32-bit) floating-point

type.

ihTKDoubleFloat A double precision (64-bit) floating-point

type.

ihTKInteger A short, signed integral type (16-bit).

ihTKDoubleInteger A long, signed integral type (32-bit).

ihTKFixedString A fixed-length UNICODE string The length

is determined by Tag.FixedStringLengthtag

property.

ihTKVariableString A variable-length UNICODE string.

ihTKBlob An unstructured, binary data type.

ihTKTime A date-time type (64-bit), capable of storing

one DateTime instance value.

ihTKInt64 A __int64-bit quad integer.

ihTKUInt64 A __int64-bit unsigned quad integer.

ihTKUInt32 A long, unsigned integral type (32-bit).

ihTKUInt16 A short, unsigned integral type (16-bit).

ihTKMaxDataType A max data type.

ihInterfaceTKASyncTagInfo

Historian | 13 - Collector Tool Kit | 1953

The ihInterfaceTKASyncTagInfo structure contains unsolicited tag information.

Definition

typedef struct ihInterfaceTKASyncTagInfo {

int TagId;

wchar_t *ArchiveTagName;

wchar_t *Tag;

int Interval;

double DeadbandPct;

ihTKDataType DataType;

int UseSourceTimeStamp;

wchar_t *CustomProp1;

wchar_t *CustomProp2;

wchar_t *CustomProp3;

wchar_t *CustomProp4;

wchar_t *CustomProp5;

} ihInterfaceTKASyncTagInfo;

Parameters

Name Description

TagId TagId of the tag to be stored.

*ArchiveTagName Tag name of the corresponding TagId

stored in the archiver.

*Tag Tag name used as primary key.

Interval Collection interval of the tag.

DeadbandPct Deadband percentage used for compres

sion.

DataType Datatype of the tag.

UseSourceTimeStamp Enables you to specify to use source time

stamp or collector timestamp.

*CustomProp1 The general (or spare) configuration fields

for the collector. The CustomProp1 column

is not user-defined; it is different for each

collector.

Historian | 13 - Collector Tool Kit | 1954

Name Description

*CustomProp2 The general (or spare) configuration fields

for the collector. The CustomProp2 column

is not user-defined; it is different for each

collector.

*CustomProp3 The general (or spare) configuration fields

for the collector. The CustomProp3 column

is not user-defined; it is different for each

collector.

*CustomProp4 The general (or spare) configuration fields

for the collector. The CustomProp4 column

is not user-defined; it is different for each

collector.

*CustomProp5 The general (or spare) configuration fields

for the collector. The CustomProp5 column

is not user-defined; it is different for each

collector.

ihInterfaceTKPolledTagInfo

The ihInterfaceTKPolledTagInfo structure maintains the polled tag information of the collectors.

Definition

typedef struct ihInterfaceTKPolledTagInfo {

int TagId;

wchar_t *ArchiveTagName;

wchar_t *Tag;

int Interval;

int Offset;

double DeadbandPct;

ihTKDataType DataType;

int UseSourceTimeStamp;

wchar_t *CustomProp1;

wchar_t *CustomProp2;

wchar_t *CustomProp3;

wchar_t *CustomProp4;

Historian | 13 - Collector Tool Kit | 1955

wchar_t *CustomProp5;

} ihInterfaceTKPolledTagInfo;

Parameters

Name Description

TagId TagId of the tag to be stored.

*ArchiveTagName Tag name of the corresponding tag ID

stored in the archiver.

*Tag Tag name used as primary key.

Interval Collection interval of the tag.

Offset Offset from midnight (in seconds) to force

sampling at a specific time of day.

DeadbandPercentage Deadband percentage used for compres

sion.

ihTKDataType DataType Datatype of the tag.

UseSourceTimeStamp Enables you to specify to use source time

stamp or collector timestamp.

*CustomProp1 The general (or spare) configuration fields

for the collector. The CollectorGeneral1 col

umn is not user-defined; it is different for

each collector.

*CustomProp2 The general (or spare) configuration fields

for the collector. The CollectorGeneral2 col

umn is not user-defined; it is different for

each collector.

*CustomProp3 The general (or spare) configuration fields

for the collector. The CollectorGeneral3 col

umn is not user-defined; it is different for

each collector.

*CustomProp4 The general (or spare) configuration fields

for the collector. The CollectorGeneral4 col

Historian | 13 - Collector Tool Kit | 1956

Name Description

umn is not user-defined; it is different for

each collector.

*CustomProp5 The general (or spare) configuration fields

for the collector. The CollectorGeneral5 col

umn is not user-defined; it is different for

each collector.

ihTKTagRecordset

The ihTKTagRecordset structure maintains Historian tags' record set.

Definition

typedef struct ihTKTagRecordset {

ihTKTagFields RequestedFields;

ihTKTagCriteria Criteria;

ihTKTagFields CriteriaFields;

uint32_t NumberOfRecords;

ihTKTagPropertiesPtr TagRecords;

} ihTKTagRecordset;

Parameters

Name Description

RequestedFields Tag fields structure, which can be used to

retrieve the specific fields of tags.

Criteria Criteria structure, which can be used to

query the tags based on the fields that are

set.

CriteriaFields Tag fields structure that need to be populat

ed based on query criteria. For example, if

user wants to query the tags based on Tag

names then CriteriaFields.Tagname must

set to true.

NumberOfRecords Number of TagRecords.

Historian | 13 - Collector Tool Kit | 1957

Name Description

TagRecords Array of TagRecords. Each TagRecord is a tag

property of each tag.

ihTKBlobData

The ihTKBlobData structure contains some memory that can support data in any format such as XML or

CSV.

Definition

typedefstruct ihTKBlobData {

void*Blob;

uint32_tBlobSize;

}ihTKBlobData;

Parameters

Name Description

Blob Blob data.

BlobSize Blob size.

ihTKHiddenValue

The ihTKHiddenValue structure represents the mapping of supported data types Historian and Microsoft,

the operating system.

Definition

typedef union ihTKHiddenValue {

short Integer;

int32_t DoubleInteger;

float Float;

double DoubleFloat;

ihTKBlobData Blob;

wchar_t* String;

ihTKTimeStruct Time;

int64_t Int64;

uint64_t UInt64;

uint32_t UInt32;

uint16_t UInt16;

Historian | 13 - Collector Tool Kit | 1958

} ihTKHiddenValue;

Parameters

Name Description

Integer Single integer.

DoubleInteger Double integer.

Float Float.

DoubleFloat Double float.

Blob Blob.

String String.

Time Timestamp structure with seconds and

nanoseconds.

Int64 Quad integer.

UInt64 Unsigned quad integer.

UInt32 Unsigned double integer.

UInt16 Unsigned short.

ihTKRawQuality

The ihTKRawQuality structure maintains the raw quality types of the tag data.

Definition

typedef struct ihTKRawQuality {

ihTKBoolean Deleted;

ihTKBoolean Replaced;

unsigned char QualityStatus;

unsigned char QualitySubStatus;

ihTKBoolean OPCQualityValid;

unsigned short OPCQuality;

} ihTKRawQuality;

Parameters

Historian | 13 - Collector Tool Kit | 1959

Name Description

Deleted Deleted tag data.

Replaced Replaced tag data.

QualityStatus QualityStatus of the tag data.

QualitySubStatus QualitySubStatus of the tag data.

OPCQualityValid OPCQualityValid.

OPCQuality OPCQuality.

ihTKQuality

The ihTKQuality structures determines the percentage of good data in the raw quality.

Definition

typedefunion ihTKQuality {

ihTKRawQuality RawQuality;

float PercentGood;

}ihTKQuality;

Parameters

Name Description

ihTKRawQuality RawQuality.

ihTKQuality PercentGood.

ihTKCommentData

The ihTKCommentData structure maintains the comment about Comment Data in the tag, if any.

Definition

typedefstruct ihTKCommentData {

wchar_t*DataTypeHint;

ihTKBlobDataCommentData;

}ihTKCommentData;

Parameters

Historian | 13 - Collector Tool Kit | 1960

Name Description

DataTypeHint Data type.

CommentData Comment data.

ihTKComments

The ihTKComments structure maintains the information about comment data.

Definition

typedef struct ihTKComments {

ihTKTimeStruct StoredOnTimeStamp;

ihTKTimeStruct CommentTimeStamp;

wchar_t* SuppliedUsername;

wchar_t* Username;

ihTKCommentData CommentData;

} ihTKComments;

Parameters

Name Description

StoredOnTimeStamp Stored time (Set by Archiver).

CommentTimeStamp Timestamp.

SuppliedUsername Supplied username (optionally given in ih

CommentAdd).

Username NT user name of writer. (Set by Archiver).

CommentData Comment Data.

ihTKDataProperties

The ihTKDataProperties structure represents the properties of the data.

Definition

typedef struct ihTKDataProperties {

ihTKTimeStruct TimeStamp;

ihTKDataType ValueDataType;

ihTKValue Value;

ihTKQuality Quality;

Historian | 13 - Collector Tool Kit | 1961

unsigned char NumberOfComments;

ihTKCommentsPtr Comments;

} ihTKDataProperties;

Parameters

Name Description

TimeStamp Time stamp of the data.

ValueDataType Data type.

Value Data value.

Quality Quality.

NumberOfComments Number of comments, if any.

Comments Array of comments.

ihInterfaceTKASyncData

The ihInterfaceTKASyncData structure represents the unsolicited tags' data. ihInterfaceTKASyncData can

be defined as an array of pointers if user want to send multiple data for multiple tags in one callback. This

callback doesn’t return errors, but will log any errors in writing to either the DA log or the collector specific

log.

Definition

typedef struct ihInterfaceTKASyncData {

int NumValues; int *TagIds;

ihTKDataProperties *Values;

uint32_t *CollectionTimes;

} ihInterfaceTKASyncData;

Parameters

Name Description

NumValues Number of data properties.

*TagIds Tag ids.

*Values Array of data properties.

*CollectionTimes Collected Times.

Historian | 13 - Collector Tool Kit | 1962

Example

Adding data to ihInterfaceTKASyncData structure.

uint32_tcollectionTime = (uint32_t)time(0);

int tagId = tag->TagId;

ihInterfaceTKASyncData asyncData;

memset(&asyncData,0, sizeof(ihInterfaceTKASyncData));

asyncData.NumValues= 1; asyncData.TagIds = &tagId;

asyncData.Values = &data.DataProp;

asyncData.CollectionTimes= &collectionTime;

pColl->ihCollectorToolkitDataCallback(&asyncData);

ihTKGetDataType

The ihTKGetDataType structure indicates the different ways data is collected from source.

Definition

typedef enum ihTKGetDataType {

ihTKGetDataTimed = 0,

ihTKGetDataAsync,

ihTKGetDataDemand

} ihTKGetDataType;

Parameters

Name Description

ihTKGetDataTimed Polled data. The collector acquires data

from a source on a periodic schedule deter

mined by the collector.

ihTKGetDataAsync Asynchronous data, the collector accepts

data from the source whenever the source

presents the data.

ihTKGetDataDemand Data on demand, the collector accepts data

from source whenever there is a demand for

data.

ihTKStatus

The ihTKStatus structure contains the error statuses of Historian.

Historian | 13 - Collector Tool Kit | 1963

Definition

typedef enum ihTKStatus {

ihTKSTATUS_OK = 0,

ihTKSTATUS_FAILED = -1,

ihTKSTATUS_API_TIMEOUT = -2,

ihTKSTATUS_NOT_CONNECTED = -3,

ihTKSTATUS_INTERFACE_NOT_FOUND = -4,

ihTKSTATUS_NOT_SUPPORTED = -5,

ihTKSTATUS_DUPLICATE_DATA = -6,

ihTKSTATUS_NOT_VALID_USER = -7,

ihTKSTATUS_ACCESS_DENIED = -8,

ihTKSTATUS_WRITE_IN_FUTURE = -9,

ihTKSTATUS_WRITE_ARCH_OFFLINE = -10,

ihTKSTATUS_ARCH_READONLY = -11,

ihTKSTATUS_WRITE_OUTSIDE_ACTIVE = -12,

ihTKSTATUS_WRITE_NO_ARCH_AVAIL = -13,

ihTKSTATUS_INVALID_TAGNAME = -14,

ihTKSTATUS_LIC_TOO_MANY_TAGS = -15,

ihTKSTATUS_LIC_TOO_MANY_USERS = -16,

ihTKSTATUS_LIC_INVALID_LIC_DLL = -17,

ihTKSTATUS_NO_VALUE = -18,

ihTKSTATUS_DUPLICATE_INTERFACE = -19,

ihTKSTATUS_NOT_LICENSED = -20,

ihTKSTATUS_CALC_CIRC_REFERENCE = -21,

ihTKSTATUS_BACKUP_EXCEEDED_SPACE = -22,

ihTKSTATUS_INVALID_SERVER_VERSION = -23,

ihTKSTATUS_DATA_RETRIEVAL_COUNT_EXCEEDED= -24,

ihTKSTATUS_DELETEDATA_OUTSIDE_ACTIVE = -25,

ihTKSTATUS_ALARM_ARCHIVER_UNAVAILABLE = -26,

ihTKSTATUS_ARGUMENT_INVALID = -27,

ihTKSTATUS_ARGUMENT_NULL = -28,

ihTKSTATUS_ARGUMENT_OUT_OF_RANGE = -29,

ihTKSTATUS_MAX_ERROR_NUM = -30,

} ihTKStatus;

Parameters

Historian | 13 - Collector Tool Kit | 1964

Name Description

ihTKSTATUS_FAILED Generic failure.

ihTKSTATUS_API_TIMEOUT Server machine name not found, or server found but

Archiver service is not running.

ihTKSTATUS_NOT_ CONNECTED Not currently connected to a Historian server.

ihTKSTATUS_INTERFACE_ NOT_FOUND Interface not found.

ihTKSTATUS_NOT_SUPPORTED Reserved.

ihTKSTATUS_DUPLICATE_DATA WriteData was called with error_on_replace = TRUE

and the supplied data would have overwritten the

existing data.

ihTKSTATUS_NOT_VALID_USER Server found, but invalid username or password.

ihTKSTATUS_ACCESS_DENIED Access is denied by the Historian server. Check

user name/password or security group member

ship.

ihTKSTATUS_WRITE_IN_FUTURE Write time stamp is too far in the future.

ihTKSTATUS_WRITE_ARCH_OFFLINE There is no Archiver to hold the write time stamp.

ihTKSTATUS_ARCH_READONLY The archive to hold the write time stamp is marked

as read-only.

ihTKSTATUS_WRITE_OUTSIDE_ACTIVE The write time stamp is before the active hours

(now - "data is read only after") setting.

ihTKSTATUS_WRITE_NO_ARCH_

AVAILABLE

No archive is available to hold the write time stamp.

ihTKSTATUS_INVALID_TAGNAME Tagname used is not valid. Tagname does not exist

in the Historian server.

ihTKSTATUS_LIC_TOO_MANY_TAGS Exceeded tag license count on the server.

ihTKSTATUS_LIC_TOO_MANY_USERS Exceeded user license count on the server.

ihTKSTATUS_LIC_INVALID_LIC_DLL An invalid license DLL is installed.

ihTKSTATUS_NO_VALUE No value has been passed to the function.

ihTKSTATUS_NOT_LICENSED Your installation of Historian is not licensed.

Historian | 13 - Collector Tool Kit | 1965

Name Description

ihTKSTATUS_CALC_CIRC_REFERENCE Reserved.

ihTKSTATUS_DUPLICATE_INTERFACE Reserved.

ihTKSTATUS_BACKUP_EXCEEDED_SPACE Reserved.

ihTKSTATUS_INVALID_SERVER_VERSION You are attempting to use this API on an invalid ver

sion of Historian.

ihTKSTATUS_DATA_RETRIEVAL_COUNT_

EXCEEDED

You tried to request too many samples in one read

request.

ihTKSTATUS_INVALID_PARAMETER Generic failure when an invalid value is passed into

the user API.

ihTKMessageTopic

The ihTKMessageTopic structure posts the status messages of Historian.

Definition

typedef enum ihTKMessageTopic {

ihTKMessageTopicUndefined=0,

ihTKConnections,

ihTKConfigurationAudit,

ihTKGeneral,

ihTKServiceControl,

ihTKPerformance,

ihTKSecurity,

ihTKMessageTopicMax,

ihTKAllTopics=10000,

ihTKAlertTopics, ihTKMessageTopics,

} ihTKMessageTopic;

Parameters

Name Description

ihTKConnections Connection related messages.

ihTKConfigurationAudit Audit messages.

ihTKGeneral General messages.

Historian | 13 - Collector Tool Kit | 1966

Name Description

ihTKServiceControl Service control messages.

ihTKPerformance Performance related messages.

ihTKSecurity Security related messages.

ihTKMessageTopicMax Must be the last one after the basic topics and be

fore the combinations.

ihTKAlertTopics Any alerts.

ihTKCollectorCallbacks

The ihTKCollectorCallbacks structure controls the way the Async tag’s functions are performed.

Definition

typedef struct ihTKCollectorCallbacks {

TKCallBackFunctionNoParams *ShutdownFunc;

TKCallBackFunctionOneParam *LogMsgFunc;

TKCallBackFunctionOneParam *DataFunc;

TKCallBackFunctionOneLongParam *AsyncOverrunFunc;

TKCallBackFunctionOneLongParam *ChangeInterfaceControlFunc;

TKCallBackFunctionTwoLongParams *ReconnectFunc;

TKCallBackFunctionMessageAdd *AddMessageCallback;

//CallbackFunctionAlarmNotification *AlarmNotificationFunc;

TKCallBackFunctionGetTimeOffset *GetTimeOffsetFunc;

} ihTKCollectorCallbacks;

Parameters

Name Description

*ShutdownFunc When the Collector shuts down, this callback will be

called from the toolkit.

*LogMsgFunc When user wants to log any information, this call

back is used.

*DataFunc When data needs to be added, this call back is used.

*AsyncOverrunFunc This callback is called for data overruns.

Historian | 13 - Collector Tool Kit | 1967

Name Description

*ReconnectFunc When user needs to reconnect to Historian, this call

back is used.

*AddMessageCallback When user wants to add a message to Historian, this

callback is used.

*GetTimeOffsetFunc When time offsets need to be adjusted, this callback

is used.

ihTKTimeStruct

The ihTKTimeStruct structure contains the time value in seconds and Nanoseconds.

Definition

typedef struct ihTKTimeStruct {

uint32_t Seconds;

uint32_t Nanoseconds;

} ihTKTimeStruct

Parameters

Name Description

Seconds The time value in seconds.

Nanoseconds The time value in nanoseconds.

ihTKQualityStatus

The ihTKQualityStatus structure defines the quality of the incoming data value that Historian stores.

Definition

typedef enum ihTKQualityStatus {

ihTKOPCBad = 0,

ihTKOPCUncertain,

ihTKOPCNA, ihTKOPCGood,

} ihTKQualityStatus;

Parameters

Historian | 13 - Collector Tool Kit | 1968

Name Description

Bad The quality of the associated data value is bad. There

is low or no confidence in the associated data value.

Uncertain There is uncertainty about the associated data value.

NA The associated data value is unused.

Good The quality of the associated data value is good.

ihTKQualitySubStatus

The ihTKQualitySubStatus structure indicates the reasons for the quality of associated data value.

Definition

typedef enum ihTKQualitySubStatus {

ihTKOPCNonspecific = 0,

ihTKOPCConfigurationError,

ihTKOPCNotConnected,

ihTKOPCDeviceFailure,

ihTKOPCSensorFailure,

ihTKOPCLastKnownValue,

ihTKOPCCommFailure,

ihTKOPCOutOfService,

ihTKScaledOutOfRange,

ihTKOffLine, ihTKNoValue,

ihTKCalculationError,

ihTKConditionCollectionHalted,

ihTKCalculationTimeout

} ihTKQualitySubStatus;

Parameters

Name Description

Nonspecific The quality of the data value due to a non

specific status.

ConfigurationError The quality of the data value due to a config

uration error.

Historian | 13 - Collector Tool Kit | 1969

Name Description

NotConnected The quality of the data value due to a non-

connectivity.

DeviceFailure The quality of the data value due to device

failure.

SensorFailure The quality of the data value due to sensor

failure.

LastKnownValue The quality of the data value from the last

known value.

CommFailure The quality of the data value due to sensor

failure.

OutOfService The quality of the data value due to an out

of service status.

ScaledOutOfRange The quality of the data value due to the val

ue being out of range.

OffLine The quality of the data value due to the

source being offline.

NoValue The quality of the data value if the source

does not provide a value.

CalculationError The quality of the data value due to a calcu

lation error.

ConditionCollectionHalted The quality of the data due to halting the

collection.

CalculationTimeout The quality of the data value due to calcula

tion time-out

ihTKDataType

The ihTKDataType structure contains the data types supported by Historian.

Definition

typedef enum ihTKDataType {

ihTKDataTypeUndefined = 0,

Historian | 13 - Collector Tool Kit | 1970

ihTKScaled,

ihTKFloat,

ihTKDoubleFloat,

ihTKInteger,

ihTKDoubleInteger,

ihTKFixedString,

ihTKVariableString,

ihTKBlob,

ihTKTime,

ihTKInt64,

ihTKUInt64,

ihTKUInt32,

ihTKUInt16,

ihTKMaxDataType

} ihTKDataType;

Parameters

Name Description

ihTKDataTypeUndefined An Undefined data type.

ihTKScaled A single precision (32-bit) floating-point type.

ihTKFloat A single precision (32-bit) floating-point type.

ihTKDoubleFloat A double precision (64-bit) floating-point type.

ihTKInteger A short, signed integral type (16-bit).

ihTKDoubleInteger A long, signed integral type (32-bit).

ihTKFixedString A fixed-length UNICODE string The length is determined

by Tag.FixedStringLengthtag property.

ihTKVariableString A variable-length UNICODE string.

ihTKBlob An unstructured, binary data type.

ihTKTime A date-time type (64-bit), capable of storing one Date

Time instance value.

ihTKInt64 A __int64-bit quad integer.

ihTKUInt64 A __int64-bit unsigned quad integer.

Historian | 13 - Collector Tool Kit | 1971

Name Description

ihTKUInt32 A long, unsigned integral type (32-bit).

ihTKUInt16 A short, unsigned integral type (16-bit).

ihTKMaxDataType A max data type.

ihTKInterfaceType

The ihTKInterface structure contains the different interfaces that can interact with Historian. For

example, ihTKCustom is a custom collector type generated by Toolkit.

Definition

typedef enum ihTKInterfaceType {

ihTKInterfaceUndefined=0,

ihTKIFix,

ihTKRandom,

ihTKOPC,

ihTKFile,

ihTKIFixLabData,

ihTKManualEntry,

ihTKOther,

ihTKCalcEngine,

ihTKServerToServer,

ihTKPI,

ihTKOPCAE,

ihTKCIMPE,

ihTKPIDistributor,

ihTKCIMME,

ihTKPerfTag,

ihTKCustom

} ihTKInterfaceType;

Parameters

Name Description

ihTKIFix Interface for iFix_collector.

ihTKRandom Interface for Simulation collector.

Historian | 13 - Collector Tool Kit | 1972

Name Description

ihTKOPC Interface for OPC DA collector.

ihTKFile Interface for File collector.

ihTKIFixLabData Interface for Deprecated.

ihTKManualEntry Interface for Deprecated.

ihTKOther Interface for Deprecated.

ihTKCalcEngine Interface for Calculation collector.

ihTKServerToServer Interface for ServerToServer collector.

ihTKPI Interface for OSI PI collector.

ihTKOPCAE Interface for OPC A&E collector.

ihTKCIMPE Interface for Native CIMPLICITY collector.

ihTKPIDistributor Interface for OSI PI distributor.

ihTKCIMME Interface for Proficy Machine Edition collec

tor.

ihTKCustom Interface for Custom collector.

ihTKCollectionType

The ihTKCollectionType structure indicates the types of data collection methods Historian supports.

Definition

typedef enum ihTKCollectionType {

ihTKUnsolicited=1, ihTKPolled

} ihTKCollectionType;

Parameters

Name Description

ihTKUnsolicited Asynchronous data collection based on incoming data

value changes.

ihTKPolled Periodic data collection based on a configured interval.

ihTKTimeStampType

Historian | 13 - Collector Tool Kit | 1973

The ihTKTimeStampType structure stores timestamp for data according to source time or the collector time.

Definition

typedef enum ihTKTimeStampType {

ihTKSource = 1, ihTKInterface,

} ihTKTimeStampType;

Parameters

Name Description

ihTKSource Stores the timestamp from data source.

ihTKInterface Stores the timestamp from the collector based on the

host computer clock.

ihTKTimeResolution

The ihTKTimeResolution structure contains the time resolution that Historian supports.

Definition

typedef enum ihTKTimeResolution {

ihTKSeconds = 0,

ihTKMilliseconds,

ihTKMicroseconds,

ihTKNanoseconds

} ihTKTimeResolution;

Parameters

Name Description

ihTKSeconds Time up to a resolution of 1 second.

ihTKMilliseconds Time up to a resolution of 1 millisecond (1-thou

sandth of a second).

ihTKMicroseconds Time up to a resolution of 1 microsecond (1-mil

lionth of a second).

ihTKNanoseconds Time up to a resolution of 1 nanosecond (1-bil

lionth of a second).

ihTKTagId

Historian | 13 - Collector Tool Kit | 1974

The ihTKTagId structure indicates the GUID of a tag.

Definition

typedef struct { uint32_t

Data1; unsigned short

Data2; unsigned short

Data3;

unsigned char Data4[8];

} ihTKTagId;

ihTKConditionCollectionComparison

The ihTKConditionCollectionComparison structure eliminates storing the values that are not within the

defined range.

Definition

typedef enum ihTKConditionCollectionComparison

{

ihTKConditionComparisonUndefined = 0,

ihTKConditionComparisonEqual,

ihTKConditionComparisonLessThan,

ihTKConditionComparisonLessThanEqual,

ihTKConditionComparisonGreaterThan,

ihTKConditionComparisonGreaterThanEqual,

ihTKConditionComparisonNotEqual

}ihTKConditionCollectionComparison;

Parameters

Name Description

ihTKConditionComparisonEqual Equality comparison operator.

ihTKConditionComparisonLessThan Value less than the comparison operator.

ihTKConditionComparisonLessThanEqual Value less than or equal comparison opera

tor.

ihTKConditionComparisonGreaterThan Value greater than comparison operator.

ihTKConditionComparisonGreaterThanEqual Value greater than or equal comparison op

erator.

Historian | 13 - Collector Tool Kit | 1975

Name Description

ihTKConditionComparisonNotEqual Inequality comparison operator.

ihTKAlarmInterfaceProperties

Definition

typedef struct ihTKAlarmInterfaceProperties {

ihTKBoolean SupportsEventFiltering;

ihTKBoolean SupportsCategoryFiltering;

ihTKBoolean SupportsSourceFiltering;

ihTKBoolean SupportsAreaFiltering;

ihTKBoolean SupportsSeverityFiltering;

int NumSimpleEvents;

wchar_t** SimpleEventList;

int NumTrackingEvents;

wchar_t** TrackingEventList;

int NumConditionEvents;

wchar_t** ConditionEventList;

} ihTKAlarmInterfaceProperties;

Parameters

Name Description

SupportsEventFiltering Indicates if it supports event filtering.

SupportsCategoryFiltering Indicates if it supports category filtering.

SupportsSourceFiltering Indicates if it supports source filtering.

SupportsAreaFiltering Indicates if it supports area filtering.

SupportsSeverityFiltering Indicates if it supports severity filtering.

NumSimpleEvents Number of simple events.

SimpleEventList Simple events.

NumTrackingEvents Number of tracking events.

TrackingEventList Tracking events.

NumConditionEvents Number of condition events.

ConditionEventList Condition events.

Historian | 13 - Collector Tool Kit | 1976

ihTKHierarchicalBrowseResponse

The ihTKHierarchicalBrowseResponse structure represents the tags in a hierarchical way.

Definition

typedef struct ihTKHierarchicalBrowseResponse {

int NodeCount;

wchar_t** NodeNames;

wchar_t** FullNodeNames;

int LeafCount;

wchar_t** LeafNames;

wchar_t** FullLeafNames;

} ihTKHierarchicalBrowseResponse;

Parameters

Name Description

NodeCount Number of elements in the node.

NodeNames Names of all the node names.

FullNodeNames Complete node name.

LeafCount Number of leaf elements.

LeafNames Names of all the leaf elements.

FullLeafNames Complete leaf names.

Hierarchical Custom Controller Browsing

Browsing Custom Controller in a Hierarchy

Hierarchical browsing can be developed using the Collector Toolkit. Hierarchical browsing enables you

to browse custom collectors in a hierarchical manner if your server supports hierarchical organization of

tags in a tree structure.

To browse for Custom Collector tags in a hierarchy:

Historian | 13 - Collector Tool Kit | 1977

1. Browse your data source for new tags.

2. From the Collector list, select the custom collector you wish to browse. A hierarchical tree appears

in the Browse Results window.

3. To limit the displayed tags to only those that are not collected, from the Show Only list select

Source Tags Not Collected.

4. To limit the displayed tags to match a tag name or tag description, enter the value to match in the

Source Tag Name or Description text boxes.

5. Navigate to the node in the tree you want to browse, and then select Browse. The tags within the

selected portion of the Custom Collector tag hierarchy will be displayed.

a. To browse automatically, select the AutoBrowse check box. The available tags will be

displayed in the Browse Results window whenever a node is selected in the tree.

b. To show all child elements within a hierarchy, enable the Show All Children check box. All

tags at, or below the hierarchical level of the selected node in the tree will be displayed in the

Browse Results window.

6. Select the tag or tags you want to add to Historian, and select Add Selected Tags. Collected tags

will appear in black in the tag list.

Historian | 13 - Collector Tool Kit | 1978

Note:

◦ The Browse option for the Custom Collector will not return all items that reside in

the Server configuration. Items that may not get returned include, but are not limited

to, unsupported data types and user-defined items in some Simulation Servers.

Occasionally, items that do not appear in the browse can still be added manually

using the Add Tag Manually option.

◦ If you are browsing and adding tags with the Custom Collector, note that some

Custom Collectors do not support data blocks with a length greater than 1. These

Servers can choose to show the first item in an array in the browse rather than show

them all. For example, an OPC Server may contain 3000 analog values datablock:1

to datablock:3000, but would only show datablock:1.

◦ If you want to archive data from poll records of a length greater than 1, it is

recommended that you use the Excel Add-In to configure a large block of tags -

including the missing items - and add the tags.

◦ If you are unable to browse items on your server containing forward slashes

(/), you may have to change the default separator in your Custom Collector

configuration. To do so, you will need to open the Windows Registry Editor and

edit the HKEY_LOCAL_MACHINE\SOFTWARE\Intellution, Inc\iHistorian\Services

\[Collector Name]\OPCBrowseTreeSep key (where [Collector Name] is the name

of your Custom collector) and change the string value to a character not present

among your Server item IDs. Typical values include |, !, or &. Create this key, if it does

not already exist.

◦ If you are unable to browse readable items in your server with the Custom collector,

you may need to change the browse access mask used by the collector. To do so,

you will need to open the Windows Registry Editor and edit the [HKEY_LOCAL_MACHINE

\SOFTWARE\Intellution, Inc.\iHistorian\Services\[Collector Name] (where

[Collector Name] is the name of your Custom collector) and add DWORD key

"OPCBrowseAccessRightsMask"=dword:00000003. Valid values are 0, 1, 2, 3 with 1

being the default. Use 0 or 3 if you are unable to browse readable items. Creating or

changing the value takes effect on the next browse attempt and does not require a

collector restart.

Developing Hierarchical Browsing using Collector Toolkit

The following callback is used to develop hierarchical browsing using the Collector Toolkit:

Historian | 13 - Collector Tool Kit | 1979

ihCollectorToolkitGetTagsHierarchical(wchar_t* BrowsePosition, wchar_t* NodeFilter,

ihTKHierarchicalBrowseResponse* Response);

The following are the parameters in this callback:

Name Description

BrowsePosition The place where the current node is selected.

NodeFilter The delimiter using which hierarchical node differ

entiation is made

Response structure Contains the number of nodes/leaves for a particu

lar node.

To define the hierarchical tree format as illustrated in the Add Multiple Tags from Collector figure above,

Historian provides the following information in three responses, provided as a sample here. Use the

information in the following three responses to browse the tags and add the required tags.

As a first response Historian returns:

ihInterfaceGetTagsHierarchical()

The following are the parameter values:

BrowsePosition "ihHierarchicalBrOwSeRoOt"

NodeFilter: "" (By default, this uses a “/”)

Response = NULL

NodeCount 1 int

NodeNames "_Status" wchar_t *

FullNodeNames "/_Status" wchar_t *

ihInterfaceGetTags()

BrowsePosition “ihHierarchicalBrOwSeRoOt” wchar_t*

Second response:

ihInterfaceGetTagsHierarchical()

BrowsePosition "/_Status"

NodeNames "DA_Server"

FullNodeNames "/_Status/DA_Server"

ihInterfaceGetTags()

BrowsePosition “/_Status”

Historian | 13 - Collector Tool Kit | 1980

Third response:

ihInterfaceGetTagsHierarchical()

BrowsePosition "/_Status/DA_Server"

BrowsePosition "/_Status/DA_Server"

Collector Initialization Callbacks

The following are the callbacks used for a collector when it is initialized:

• ihCollectorToolkitPreInitialize

• ihCollectorToolkitInitialize

• ihCollectorToolkitInitializeCompleted

When a collector is shutting down, ihCollectorToolkitShutdown method is called and the collector

performs all the necessary steps before it is completely shut down.

Example

The following sample program helps you understand the ihCollectorToolkitPreInitialize function.

Historian expects Custom Collector Pre-Initialization information from the user. For example, custom

collector can browse tags, collector type and so on.

/// </summary>

/// <param name="PreCfg">Collector Pre - Configuration information structure</param>

/// <param name="Cfg">Collector Configuration information structure</param>

void RandomValueSimulator::ihCollectorToolkitPreInitialize(ihInterfaceTKPreCfgInfo *PreCfg, ihInterfaceTKCfgInfo *Cfg)

{

// Initializes General1-5 values, here General1,2 were initialized with 1000, 60.

Cfg->CustomProp1 = TKStrdup(_T("1000"));

Cfg->CustomProp2 = TKStrdup(_T("60"));

// Historian follows representation of the collectors in the form of ComputerName_CollectorName, Tags in the form of

 ComputerName.TagName.

// In the following section custom collector is trying to get the computer name.

CString ComputerName, IP;

TKGetHostNameAndIP(ComputerName, IP);

if (ComputerName.GetLength() >; 0)

{

ComputerName.Append(_T("."));

wcscpy_s(Cfg->;DefaultTagPrefix, ComputerName.GetBuffer());

Historian | 13 - Collector Tool Kit | 1981

}

RandPreCfg = *PreCfg;

RandPreCfg.CanSendOPCQuality = TRUE; // to send OPC Quality

RandPreCfg.InterfaceType = ihTKCustom; // interface type

RandPreCfg.MultipleInstancesAllowed = FALSE;

RandPreCfg.MinimumInterval = RandMinimumInterval;

RandPreCfg.MaxTagsPerRead = MaxTagsPerGroup;

RandPreCfg.CanReadASync = TRUE;// to read tags Asynchronously

RandPreCfg.CanBrowseSource = TRUE;// you can browse the collector

RandPreCfg.CanSourceTimestamp = TRUE;// collector sends data containing source time stamp or server time stamp

RandPreCfg.ForceInputScaling = FALSE;

RandPreCfg.NeedMsgPump = FALSE;

RandPreCfg.ForcedScaleLO = 0.0; // Low engineering unit

RandPreCfg.ForcedScaleHI = (float) RAND_MAX;// High engineering unit

RandPreCfg.DoesReloadMode = FALSE;

RandPreCfg.DoesLagTimes = FALSE;

RandPreCfg.CanBrowseHierarchical = TRUE;

*PreCfg = RandPreCfg;

}

For the ihCollectorToolkitInitialize function:

Collector Initialization

/// </summary>

/// <param name="Cfg">Collector Configuration information</param>

/// <param name="PreCfg">Collector Pre-Configuration Information</param>

/// <param name="ErrorMsg">Error Message while initializing</param>

/// <param name="ErrorMsgSize">Size of Error Message</param>

/// <param name="RegKeyName">modification required registry keys, if any </param>

/// <param name="Callbacks">Callbacks of all the asynchronous methods</param>

/// <param name="DoDebug">debug param</param>

/// <returns>status of the method call</returns>

int RandomValueSimulator::ihCollectorToolkitInitialize(ihInterfaceTKCfgInfo *Cfg,

ihInterfaceTKPreCfgInfo *PreCfg, wchar_t *ErrorMsg, int ErrorMsgSize, wchar_t *RegKeyName, ihCollectorToolkitCallback

 *Callbacks, int DoDebug)

{

// updates configuration information to collector

ihCollectorToolkitPropertyUpdate(Cfg);

Historian | 13 - Collector Tool Kit | 1982

TKFree(TagPrefix);

// Historian follows representation of Tags in the form of ComputerName.TagName.

TagPrefix = TKStrdup(Cfg->DefaultTagPrefix);

Cfg->DoOnFly = 1;

// Initializes error msg to ""(NULL)

ErrorMsg = TKStrdup(_T(""));

srand((unsigned) time(NULL));

RandCfg = *Cfg;

g_Callbacks = Callbacks;

return(TRUE);

}

Polled Tag Callbacks

For polled tags we use different callback functions at various stages.

Step 1

At collector start up, ihCollectorToolkitPolledInit and

ihCollectorToolkitPolledInitCompleted callbacks are triggered and the details of all the

Polled tags for the given collector is returned.

Step 2

If a polled tag is added, ihCollectorToolkitPolledAddTag method is called and the details of

the tag is entered in the collector tag list.

Step 3

If a polled tag is deleted, ihCollectorToolkitPolledDeleteTag method is called and the tag

details are removed from the collector tag list.

Example

The following sample helps you understand the given callback functions.

The collectors maintains the polled tag details in the local Cache as:

map<int, ihInterfaceTKPolledTagInfo> TagIdToTagInfoMap;

This map is filled using this sample example:

/// Polled tags initialization started

/// </summary>

/// <returns>TRUE/FALSE</returns>

Historian | 13 - Collector Tool Kit | 1983

int RandomValueSimulator::ihCollectorToolkitPolledInit(void)

{

TagIdToTagInfoMap.clear();

return CCollectorDelegator::ihCollectorToolkitPolledInit();

}

/// <summary>

/// Historian updating the source saying that, polled tags initialization successful.

Are there any initialization from source for polled tags?

/// <summary>

/// <returns>TRUE/FALSE</returns>

int RandomValueSimulator::ihCollectorToolkitPolledInitCompleted(void)

{

return CCollectorDelegator::ihCollectorToolkitPolledInitCompleted();

}

/// <summary>

/// Adds polled tag to the historian from source

/// </summary>

/// <param name="PolledTag">ihInterfaceTKPolledTagInfo instance</param>

/// <param name="IsCollectorStarting">collector status</param>

/// <returns>TRUE/FALSE</returns>

int RandomValueSimulator::ihCollectorToolkitPolledAddTag(ihInterfaceTKPolledTagInfo

*PolledTag, int IsCollectorStarting)

{

TagIdToTagInfoMap.insert(std::pair<int, ihInterfaceTKPolledTagInfo>

(PolledTag-<TagId, *PolledTag));

return CCollectorDelegator::ihCollectorToolkitPolledAddTag(PolledTag,

IsCollectorStarting);

}

Historian | 13 - Collector Tool Kit | 1984

/// <summary>

/// Deleted polled tag from Historian from Client Tools/non web admin/external tools

/// <summary>

/// <param name="tagId">Tag Identification</param>

/// <returns>TRUE/FALSE</returns>

int RandomValueSimulator::ihCollectorToolkitPolledDeleteTag(int tagId)

{

TagIdToTagInfoMap.erase(TagIdToTagInfoMap.find(tagId));

return CCollectorDelegator::ihCollectorToolkitPolledDeleteTag(tagId);

}

Unsolicited Tags Callbacks

For unsolicited tags we use different callback functions at various stages.

Step 1

At collector start up, ihCollectorToolkitASyncInit and

ihCollectorToolkitASyncInitCompleted callbacks are triggered and the details of all the

unsolicited tags for the given collector is returned.

Step 2

If an unsolicited tag is added, ihCollectorToolkitASyncAddTag method is called and the

details of the tag is entered in the collector tag list.

Step 3

If an unsolicited tag is deleted, ihCollectorToolkitASyncDeleteTag method is called and the

tag details are removed from the collector tag list.

Example

The following sample helps you understand the given callback functions. The below sample code creates

a thread for simulating the Unsolicited tag's collector behavior.

//This structure is the list of Unsolicited Tags.

struct AsyncTagList : public CList<ihInterfaceTKASyncTagInfo*, ihInterfaceTKASyncTagInfo*>

{

virtual ~AsyncTagList()

{

FreeAll();

}

Historian | 13 - Collector Tool Kit | 1985

void AddTag(ihInterfaceTKASyncTagInfo* tag)

{

ihInterfaceTKASyncTagInfo* info = new ihInterfaceTKASyncTagInfo;//need to allocate in delegator

memcpy(info, tag, sizeof(ihInterfaceTKASyncTagInfo));

AddTail(info);

}

void FreeAll()

{

while (!IsEmpty())

delete RemoveHead();

}

};

AsyncTagList g_AsyncTags;

--

/// <summary>

/// Initializes unsolicited tags, by creating dedicated thread

/// <summary>

/// <returns></returns>

int RandomValueSimulator::ihCollectorToolkitASyncInit(void)

{

 CSingleLock lock(&g_Sync, TRUE);

 g_AsyncTags.FreeAll();

 if (!g_AsyncThread)

 g_AsyncThread = AfxBeginThread(TKAsyncReadFunc, this);

 return TRUE;

}

--

/// <summary>

/// unsolicited tags initialization completed

/// <summary>

/// <returns>TRUE/FALSE</returns>

int RandomValueSimulator::ihCollectorToolkitASyncInitCompleted(void)

{

Historian | 13 - Collector Tool Kit | 1986

 return TRUE;

}

--

/// <summary>

/// Custom Collector Initialization completed and is ready to read data from Source for unsolicited tag

/// <summary>

/// <returns>TRUE/FALSE</returns>

int RandomValueSimulator::ihCollectorToolkitASyncStartReading(void)

{

 InterlockedExchange(&g_DoAsyncRead, TRUE);

 return TRUE;

}

--

/// <summary>

/// Adds unsolicited tag to the historian

/// <summary>

/// <param name="ASyncTag">ihInterfaceTKAsyncTagInfo pointer</param>

/// <param name="IsCollectorStarting">Current Status of the Collector</param>

/// <returns>TRUE/FALSE</returns>

int RandomValueSimulator::ihCollectorToolkitASyncAddTag(ihInterfaceTKASyncTagInfo *ASyncTag, int

 IsCollectorStarting)

{

 CSingleLock lock(&g_Sync, TRUE);

 g_AsyncTags.AddTag(ASyncTag);

 return TRUE;

}

/// <summary>

/// From Clients tools/non-web admin/custom tools, if user deletes a tag, historian updates custom collector saying

 that tag got deleted.

/// So that, custom collector stops collecting data from source for that tag

Historian | 13 - Collector Tool Kit | 1987

/// <summary>

/// <param name="tagId">Tag Identifier</param>

/// <returns>TRUE/FALSE</returns>

int RandomValueSimulator::ihCollectorToolkitASyncDeleteTag(int tagId)

{

 CSingleLock lock(&g_Sync, TRUE);

 POSITION pos = g_AsyncTags.GetHeadPosition();

 while (pos)

 {

 ihInterfaceTKASyncTagInfo * tagInfo = g_AsyncTags.GetAt(pos);

 if (tagInfo->TagId == tagId)

 {

 g_AsyncTags.RemoveAt(pos);

 return TRUE;

 }

 g_AsyncTags.GetNext(pos);

 }

 return TRUE;

}

--

/// <summary>

/// This method called by historian, if it needs to perform any calculations on source data. This method is only

 usefull in "Calculation collector" way of collection for unsolicited tags

/// <summary>

/// <param name="StartTime"> start time for reload</param>

/// <param name="EndTime"> end time for reload</param>

/// <returns>TRUE/FALSE</returns>

int RandomValueSimulator::ihCollectorToolkitASyncReload(ihTKTimeStruct *StartTime, ihTKTimeStruct *EndTime)

{

 return CCollectorDelegator::ihCollectorToolkitASyncReload(StartTime, EndTime);

}

/// <summary>

Historian | 13 - Collector Tool Kit | 1988

/// Unsolicited dedicated thread corresponding method. Here all unsolicited tags get data from source(usually, way

 should be source notification to historian) and sends to historian

/// <summary>

/// <param name="param"> Collector instance </param>

UINT RandomValueSimulator::TKAsyncReadFunc(void* param)

{

 POSITION pos = NULL;

 RandomValueSimulator* pColl = (RandomValueSimulator*) param;

 while (TRUE)

 {

 if (g_DoAsyncRead)

 {

 CSingleLock lock(&g_Sync, TRUE);

 if (!g_AsyncTags.IsEmpty())

 {

 // gets each unsolicited tag into ihInterfaceTKAsyncTagInfo object

 if (!pos)

 pos = g_AsyncTags.GetHeadPosition();

 ihInterfaceTKASyncTagInfo* tag = g_AsyncTags.GetNext(pos);

 int numTags = 1;

 ihInterfaceTKDataInfo data;

 memset(&data, 0, sizeof(ihInterfaceTKDataInfo));

 data.Tag = pColl->TKStrdup(tag->Tag);

 data.DataProp.ValueDataType = tag->DataType;

 data.DataProp.TimeStamp = pColl->TKGetSystemTime();

 // gets data for selected tag

 pColl->ihCollectorToolkitGetData(0, 0, 0, numTags, NULL, &data);

 unsigned long collectionTime = (unsigned long)time(0);

 int tagId = tag->TagId;

 ihInterfaceTKASyncData asyncData;

 memset(&asyncData, 0, sizeof(ihInterfaceTKASyncData));

 asyncData.NumValues = numTags;

 asyncData.TagIds = &tagId;

 asyncData.Values = &data.DataProp;

 asyncData.CollectionTimes = &collectionTime;

 // sends to historian

 pColl->ihCollectorToolkitDataCallback(&asyncData);

Historian | 13 - Collector Tool Kit | 1989

 }

 else

 {

 pos = NULL;

 }

 }

 else

 {

 pos = NULL;

 }

 long sleepTimeInMs = 500 + (rand() % 46) * 100; // sleep from 0.5 to 5 seconds

 Sleep(sleepTimeInMs);

 }

 return 0;

}

Chapter 14. Data Collectors - General

Data Collectors Overview

About Historian Data Collectors

A data collector gathers data from a data source on a schedule or event basis, processes it, and forwards

it to the Historian server or a cloud destination for archiving. The following image shows the data flow in a

typical Historian system from a data source to the archive.

The following table provides a list of collectors, their usage, and whether each of them is toolkit-based

and consumes a client access license (CAL).

Historian | 14 - Data Collectors - General | 1991

Collector Name Description Is Toolkit-Based? Consumes a CAL?

The Calculation collec

tor (on page 2098)

Performs data calcula

tions on values stored in

the archiver.

No Yes

The CygNet collector (on

page 2167)

Collects data from a

CygNet server.

Yes Yes

The File collector (on

page 2181)

Imports CSV and XML

files into Historian.

No No

The HAB collector (on

page 2208)

Collects data from Habi

tat.

Yes

The iFIX Alarms and

Events collector collec

tor (on page 2251)

Collects alarms and

events data from iFIX.

No No

The iFIX collector (on

page 2251)

Collects tag data from

iFIX.

No No

The MQTT collector (on

page 2298)

Collects data published

to a topic using an

MQTT broker.

Yes Yes

The MQTT Sparkplug

B collector (on page

2312)

Enables you to connect

as a Primary Host ap

plication and collect da

ta based on the MQTT

Sparkplug B specifica

tion (Sparkplug 3.0.0).

Specifically, you can

subscribe to a topic that

was published using the

Sparkplug B payload and

collect time-series data

in a structured and un

derstandable format.

Yes Yes

Historian | 14 - Data Collectors - General | 1992

Collector Name Description Is Toolkit-Based? Consumes a CAL?

The ODBC collector (on

page 2341)

Collects data from an

application based on an

ODBC driver.

Yes Yes

The OPC Classic Alarms

and Events collector (on

page 2390)

Collects data from an

OPC Classic Alarms and

Events server (such as

CIMPLICITY).

No No

The OPC Classic DA col

lector (on page 2356)

Collects data from an

OPC Classic Data Ac

cess (DA) server (such

as CIMPLICITY).

The OPC Classic HDA

collector (on page

2374)

Collects data from an

OPC Classic Historical

Data Access (HDA) serv

er (such as CIMPLICI

TY).

Yes Yes

The OPC UA Data Ac

cess (DA) collector (on

page 2426)

Collects data from an

OPC UA DA server (such

as CIMPLICITY).

Yes Yes

The OSI PI collector (on

page 2443)

Collects data from an

OSI PI server.

No No

The Python collector (on

page 2463)

Run Python scripts on

tag values and stores

them in Historian

No No

The Server-to-Server col

lector (on page 2499)

Collects data from a His

torian server and sends

it to another Historian

server.

No Yes

The Server-to-Server dis

tributor (on page 2554)

Collects data from a

smaller Historian serv

er and sends it to a larg

er, centralized Historian

No Yes

Historian | 14 - Data Collectors - General | 1993

Collector Name Description Is Toolkit-Based? Consumes a CAL?

server or a cloud desti

nation.

The Simulation collector

(on page 2558)

Generates random num

bers and string patterns

for testing/demonstra

tion purposes.

No No

The Windows Perfor

mance collector (on

page 2562)

Collects Windows per

formance counter data.

Yes Yes

The Wonderware collec

tor (on page 2566)

Collects data from a

Wonderware Historian

2014 R2 server.

Yes Yes

Data collectors use a specific data acquisition interface that match the data source type, such as iFIX

Easy Data Access (EDA) or OPC 1.0 or 2.0 (Object Linking and Embedding for Process Control). For more

information, see Supported Acquisition Interfaces (on page 1998). The Simulation collector generates

random numeric and string data. The File collector reads data from text files.

Limitations: When failover occurs from a primary collector to a secondary collector (or vice versa), there

will be some data loss as the collector tries to connect to the source to fetch the data.

Bi-Modal Cloud Data Collectors

Collectors can send data to an on-premises Historian server as well as cloud destinations such as Google

Cloud, Azure IoT Hub, AWS Cloud, and Predix Cloud. Therefore, these collectors are called bid-modal

collectors. The following collectors, however, are not bi-modal collectors; they can send data only to an

on-premises Historian server:

• The File collector

• The HAB collector

• The iFIX Alarms and Events collector

• The Calculation collector

• The Server-to-Server distributor

• The OSI PI Distributor

• The OPC Classic Alarms and Events collector

• The Python collector

Historian | 14 - Data Collectors - General | 1994

When you create a collector instance, you can choose whether you want the collector to send data to

an on-premises Historian server or a cloud destination. You can create multiple instances of the same

collector, and configure each of them to send data to a different destination.

Note:

Bi-modal Collectors support up to Transport Layer Security (TLS) 1.2.

The Predix cloud destination (via a secure web socket) supports APM, Automation, or Brilliant

Manufacturing Cloud subscription. The Collector Toolkit is updated as well. Hence, a custom collector

created using the toolkit has the same capabilities.

There are a few differences in the working of a bi-modal collector based on whether the destination is

Historian or cloud. Following table explains the key differences.

Functionality Destination - Historian Destination - Cloud

HISTORIANN

ODENAME

registry key

Contains the destination Historian

Server’s name/ IP Address.

Contains the cloud destination settings as well

as proxy historian server name or IP if applica

ble (configServer).

Cloud destination format:

CloudDestinationAddress|configServer|IdentityIssu

er|ClientID|

ClientSecret|ZoneID|Proxy|proxyUser|proxyPassword

Mapping

Source Tags

with Destina

tion Tags

(Add Tags)

You must map tags in Historian Serv

er to Data Source tags using one of the

Admin tools (VB Admin/Web Admin).

The data gets stored in IHA files and

the Tag configurations are stored in

IHC files.

As it is not possible to map tags in the Cloud

with tags in the Data Source, user must select

if mapping should be done through Historian

(works as a proxy) or through Offline Configu

ration File at the time of installation.

If the user selects Historian, then tags will be

created in the Cloud which in turn may have

been mapped through one of the Admin tools

(VB Admin/Web Admin).

If Offline Configuration File is selected, the user

must provide an XML configuration file con

taining tag configurations that need to be cre

Historian | 14 - Data Collectors - General | 1995

Functionality Destination - Historian Destination - Cloud

ated in the Cloud for mapping them with the

Source tags.

Other Tag

Manage

ment Oper

ations such

as Delete, Re

name, Data

cleaning

It is possible to do all tag management

operations.

No tag management operations are allowed.

After you update the offline tag configuration

file, or after you specify the tags using Histori

an Administrator, the changes are reflected au

tomatically (without the need to restart the col

lector).

Data Type

support

All standard data types are supported. All other data types, excepting arrays, enums

and User defined types (UDT), BLOB, are sup

ported.

Data Collector Software Components

Data Collector software consists of four main components:

• Data Collector Program

Executable data collection program for the type of collector. For example,

ihFileCollector.exe.

• Local Tag Cache

Cache of configuration information that permits the collector to perform collection even when the

archiver is not present at start-up (*.cfg).

• Local Outgoing Data Buffer

Buffer of the data sent to the server that the server has not yet confirmed receiving.

• Historian API

Interface that connects the collector to the Historian Server for configuration, data flow, and control

functions.

Supported Windows versions for Data Collectors

The following table displays the supported Windows processor versions (32-bit or 64-bit) for the Historian

data collectors.

Historian | 14 - Data Collectors - General | 1996

Collector Name 32-bit 64-bit

The Calculation collector Yes Yes

The CygNet collector No Yes

The File collector Yes Yes

The HAB collector No Yes

The iFIX Alarms and Events collector collector Yes Yes

The iFIX collector Yes Yes

The OPC Classic Alarms and Events collector Yes Yes

The OPC DA collector Yes Yes

The OPC Classic HDA collector No Yes

The OPC UA Data Access (DA) collector No Yes

The OSI PI collector (API / SDK) Yes Yes

The OSI PI distributor Yes Yes

The Python collector Yes Yes

The Server-to-Server collector Yes Yes

The Server-to-Server distributor Yes Yes

The Simulation collector Yes Yes

The Windows Performance collector Yes Yes

The Wonderware Collector No Yes

The ODBC collector No Yes

The MQTT collector No Yes

Data Collector Functions

A Historian Data Collector performs the following functions:

• Connects to the data source using a specific data acquisition interface, such as EDA, OPC 1.0, or

OPC2.0.

• Groups tags by collection interval for efficient polling.

Historian | 14 - Data Collectors - General | 1997

• Reads data as frequently as 10 times/sec, depending on the configuration parameters of individual

tags. An OPC Collector configured for unsolicited collection can read data as frequently as 1

millisecond (or 1000 times/second).

• Scales the collected value to the EGU Range.

• Compresses collected data based on a deadband specified on a tag by tag basis, and forwards

only values that exceed the deadband to the Historian Server for final compression and archiving.

• Automatically stores data during a loss of connection to the server and forwards that data to the

server after the connection is restored.

Common Collector Functions

Each collector performs some functions common to all types of collectors (except the File collector).

These functions are:

• Maintains a local cache of tag information to sustain collection while the server connection is

down.

• Automatically discovers available tags from a data source and presents them to Historian

Administrator.

• Buffers data during loss of connection to the server and forwards it to the server when the

connection is restored.

• Automatically adjusts timestamps, if enabled, for synchronizing collector and archiver timestamps.

• Supports both collector and device timestamp, where applicable.

• Schedules data polling for polled collection.

• Performs first level of data compression (collector compression).

• Responds to control requests, such as pause/resume collection.

After collecting and processing information, a collector forwards the data to the Historian Server, which

optionally performs final compression and stores the information in the Archive Database. The Archive

Database consists of one or more files, each of which contains a specific time period of historical data.

For more information on Historian Server architecture, refer to System Architecture (on page 69).

File collector Functions

The File collector imports files in either CSV (Comma Separated Variables) or XML (Extensible Markup

Language) format. Since this is basically a file transfer operation, a File collector does not perform the

typical collector functions of data polling, browsing for tags, pause/resume collection, data compression,

or storing/forwarding of data on loss of server connection. A File collector, however, is an extremely

useful tool for importing and configuring tags, for bulk updating of tag parameters and messages, and for

importing data from all types of systems.

Historian | 14 - Data Collectors - General | 1998

Supported Acquisition Interfaces

This section provides a list of specific Data Collectors and the associated Data Acquisition Interfaces

(protocols or ways in which data is input).

Data Collector Data Acquisition Interface

iFIX Data Collector EDA data acquisition interface

Machine Edition View Data Collector Point Management API Interface

OPC Data Collector OPC data acquisition interface

OPC Classic Alarms and Events collector The OPC Alarms and Events server

CygNet collector SQL Server ODBC Driver Interface

File Data Collector CSV or XML file import

Simulation Data Collector Random pattern of data

Calculation collector Calculations performed on data already in the serv

er

Server-to-Server Collector Data and messages collected from one Historian

Server (source) to another Historian Server (desti

nation)

OPC UA Data Access (DA) collector OPC Data Acquisition interface for Microsoft Win

dows

Wonderware Data Collector SQL Server ODBC Driver Interface

ODBC collector SQL Server ODBC Driver Interface

Best Practices for Working with Data Collectors

Here are some best practices that enable the collectors collect and store the most accurate data:

• Synchronize the Windows clock for the following computers:

◦ Source Data Archiver of a Server-to-Server Collector

◦ Computer on which the Data Collector is running

◦ Destination Data Archiver

• Turn on the Data Recovery Mode option for Historical Collectors such as Server-to-Server and

Calculation collectors. This ensures that most gaps in data collection due to the unavailability of

Historian | 14 - Data Collectors - General | 1999

source Archiver or in the case of collector not running are automatically filled in the next time the

collector runs.

• If you are using polled collection with Calculation or Server-to-Server Collector, ensure that you

have at least one uncompressed polled tag so that the polled data is frequently sent to the

destination Archiver. This ensures that the bad data marker sent when a collector shuts down has

an accurate time stamp that reflects the time of shutdown of the collector.

About Installing Historian Data Collectors
When you install collectors, the required binaries are downloaded. In addition, if iFIX/CIMPLICITY are

installed on the same machine as the collectors, instances of the following collectors are created:

• The iFIX collector

• The iFIX Alarms & Events collector

• The OPC Classic Data Access collector for CIMPLICITY

• The OPC Classic Alarms and Events collector for CIMPLICITY

If an iFIX collector instance created in version 9.0 exists, after you upgrade collectors, another instance of

the iFIX collector is created. Because of this, the Remote Collector Manager (RCM) will not work correctly.

Therefore, if you want to use RCM, you must delete one of the instances. If needed, you can manually

create another instance of the iFIX collector using Configuration Hub or the RemoteCollectorConfigurator

utility. This is applicable to the iFIX Alarms and Events collector as well.

Note:

If you want to upgrade collectors earlier than version 7.1, additional registries that you create

manually are deleted. Therefore, we recommend that you back them up, uninstall the collectors,

and then install the latest version.

Install Collectors Using the Installer

After you install collectors, the following artefacts will be available:

• Executable files: These files are required to add a collector instance.

• Instances of the following collectors:

◦ The iFIX collector

◦ The iFIX Alarms & Events collector

◦ The OPC Classic Data Access collector for CIMPLICITY

◦ The OPC Classic Alarms and Events collector for CIMPLICITY

Historian | 14 - Data Collectors - General | 2000

These instances will be created only if iFIX and/or CIMPLICITY are installed on the same machine

as the collectors.

• The Remote Collector Management agent: Provides the ability to manage collectors remotely.

1. Run the InstallLauncher.exe file.

2. Select Install Collectors.

The welcome page appears.

3. Select Next.

The license agreement appears.

4. Select the Accept check box, and then select Next.

The default installation drive appears.

5. If needed, modify the installation drive, and then select Next.

The data directory page appears.

Historian | 14 - Data Collectors - General | 2001

6. If needed, change the folder for storing the collector log files, and then select Next.

The destination Historian server page appears.

Historian | 14 - Data Collectors - General | 2002

7. Provide the credentials of the Windows user account of the destination Historian server to which

you want Remote Management Agent to connect.

These details are required for Remote Collector Manager to connect to Historian to manage the

collectors remotely. If you are installing collectors on same machine as the Historian server, and

if strict collector authentication is disabled, you need not provide these details; by default, the

machine name of the local Historian server is considered. If, however, they are installed on different

machines, or if strict collector authentication is enabled, you must provide the credentials of the

Historian server user.

8. Select Next.

The You are ready to install page appears.

9. Select Install.

The installation begins.

10. When you are prompted to reboot your system, select Yes.

Historian | 14 - Data Collectors - General | 2003

The collector executable files are installed in the following folder: <installation drive>:\Program

Files (x86)\GE Digital\<collector name>. The iFIX collectors are installed in the following

folder: C:\Program Files\GE\iFIX. The following registry paths are created:

• HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\ GE Digital\iHistorian\Services

\<collector type>

• HKEY_LOCAL_MACHINE\SOFTWARE\GE Digital\iHistorian\Services\<collector

type>

In addition, if iFIX and/or CIMPLICITY are installed on the same machine as the collectors, instances of

the following collectors are created:

• The iFIX collector

• The iFIX Alarms & Events collector

• The OPC Classic Data Access collector for CIMPLICITY

• The OPC Classic Alarms and Events collector for CIMPLICITY

Installing a Collector at a Command Prompt

After you install collectors and Remote Management Agent, the following artefacts will be available:

• Executable files: These files are required to add a collector instance.

• Instances of the following collectors:

◦ The iFIX collector

◦ The iFIX Alarms & Events collector

◦ The OPC Classic Data Access collector for CIMPLICITY

◦ The OPC Classic Alarms and Events collector for CIMPLICITY

These instances will be created only if iFIX and/or CIMPLICITY are installed on the same machine

as the collectors.

• The Remote Collector Management agent: Provides the ability to manage collectors remotely.

Using Configuration Hub, you will then add a collector instance and begin using the collector.

This topic describes how to install collectors at a command prompt. You can also install them using the

installer (on page 143).

1. Navigate to the Collectors folder in the installation folder.

2. At a command prompt, enter:

Collectors_Install.exe -s RootDrive=<value> DestinationServerName=<value>

DataPath="<value>" UserName1=<value> Password=<value>

Historian | 14 - Data Collectors - General | 2004

Parameter Description Default Value

RootDrive The installation drive for the

collectors.

C:\

DataPath The folder for storing the col

lector log files.

C:\Proficy Historian

Data

DestinationServerName The host name of the destina

tion Historian server to which

you want collectors to send da

ta.

This is required for Remote

Collector Manager to connect

to Historian to manage the col

lectors remotely. If you are in

stalling collectors on the same

machine as the Historian serv

er, and if strict collector au

thentication is disabled, you

need not provide the server

name; by default, the machine

name of the local Historian

server is considered. If, howev

er, they are installed on differ

ent machines, or if strict collec

tor authentication is enabled,

you must provide the creden

tials of the Historian server

user.

local host name

UserName1 The username of the Windows

user of the destination Histori

an server. A value is required

only if the destination Histori

an server and collectors are on

different machines.

Historian | 14 - Data Collectors - General | 2005

Parameter Description Default Value

Password The password of the Windows

user of the destination Histori

an server. A value is required

only if the destination Histori

an server and collectors are on

different machines.

For example: Collectors_Install.exe -s RootDrive=C:\ DestinationServerName=myservername

DataPath="C:\Proficy Historian Data" UserName1=user123 Password=xyz123

3. Restart the machine. If you uninstall a collector or install another one before restarting the

machine, an error may occur.

The collector executable files are installed. In addition, if iFIX and/or CIMPLICITY are installed on the

same machine as the collectors, instances of the following collectors are created:

• The iFIX collector

• The iFIX Alarms & Events collector

• The OPC Classic Data Access collector for CIMPLICITY

• The OPC Classic Alarms and Events collector for CIMPLICITY

1. Ensure that the Windows user that you have specified while installing collectors is added to the iH

Security Admins and iH Collector Admins groups.

2. Enable trust for a client certificate for Configuration Hub.

3. Enable trust for a self-signed certificate on Chrome (on page 97).

4. Import an issuer certificate.

You are now ready to use Configuration Hub. To add and manage collector instances, you can use

Configuration Hub or Remote Collector Management. For instructions specific to setting up the iFIX

collector and the iFIX Alarms and Events collector, refer to Working with iFIX Collectors.

Upgrade Collectors
• Ensure that you are attempting to upgrade the collectors that were installed using the Historian

Installation Package. If you previously installed the collectors using the Proficy Installer, such as

the iFIX Proficy Installer, you must upgrade the collectors using the Proficy Installer only.

• If an iFIX collector instance created in version 9.0 exists, after you upgrade collectors, another

instance of the iFIX collector is created. Because of this, the Remote Collector Manager (RCM)

https://www.ge.com/digital/documentation/confighub/version2024/g_confighub_client_certificates.html
https://www.ge.com/digital/documentation/opshub/windows/windows/t_import_certificate.html

Historian | 14 - Data Collectors - General | 2006

will not work correctly. Therefore, if you want to use RCM, you must delete one of the instances. If

needed, you can manually create another instance of the iFIX collector using Configuration Hub or

the RemoteCollectorConfigurator utility. This is applicable to the iFIX Alarms and Events collector

as well.

• For collectors earlier than version 7.1, additional registries that you create manually are deleted.

Therefore, we recommend that you back up them, uninstall the collectors, and then install the latest

version.

Install the collectors (on page 142).

The collectors are upgraded to the latest version.

Sending Data to Cloud

Send Data to Alibaba Cloud

Generate a password using the utility. While generating the password, use the same algorithm that you

will use to connect to Alibaba Cloud.

To send data to Alibaba Cloud, you can choose any of the following collectors:

• The iFIX collector

• The MQTT collector

• The ODBC collector

• The OPC Classic DA collector

• The OPC Classic HDA collector

• The OPC UA DA collector

• The OSI PI collector

• The Python Collector

• The Server-to-Server collector

• The Simulation collector

• The Windows Performance collector

• The Wonderware collector

1. Access Alibaba IoT Platform console.

2. Create a product. When you do so:

◦ In the Node Type field, select Directly Connected Device.

◦ In the Network Connection Method field, select Wi-Fi.

◦ In the Data Type field, select ICA Standard Data Format.

http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/189223/cn_zh/1605168543507/MQTT_Password.7z
https://www.alibabacloud.com/help/doc-detail/73705.htm

Historian | 14 - Data Collectors - General | 2007

3. Note down the region ID for the region you have selected. For a list of region IDs, refer to https://

www.alibabacloud.com/help/doc-detail/40654.htm.

4. Access the product certificate, and note down the product secret and product key values.

5. Create a device.

6. Access Configuration Hub (on page 336).

7. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors in the system appears.

8. If needed, select the system in which you want to add a collector instance.

https://www.alibabacloud.com/help/doc-detail/40654.htm
https://www.alibabacloud.com/help/doc-detail/40654.htm
https://www.alibabacloud.com/help/doc-detail/73729.htm?spm=a2c63.p38356.0.0.2b213e18OFQyNj#task-yk1-rnl-vdb

Historian | 14 - Data Collectors - General | 2008

9. In the upper-right corner of the main section, select .

The Add Collector Instance: <system name> window appears, displaying the Collector Selection

section. The MACHINE NAME field contains a list of machines on which you have installed

collectors.

10. In the COLLECTOR TYPE field, select a collector type, and then select Get Details.

The INSTALLATION DRIVE and DATA DIRECTORY fields are disabled and populated.

11. Select Next.

The Source Configuration section appears, populating the hostname of the collector machine.

12. As needed, enter values in the available fields, and then select Next.

The Destination Configuration section appears.

Historian | 14 - Data Collectors - General | 2009

13. In the CHOOSE DESTINATION field, select MQTT, and then provide values as described in the

following table.

Field Description

HOST ADDRESS Enter a value in the following format: <product name>.iot-as-

mqtt.<region ID>.aliyuncs.com. A value is required.

For example: a23dr53dwrt.iot-as-mqtt.cn-shanghai.aliyuncs

.com

PORT Enter 1883. A value is required.

CLIENT ID Enter a value in the following format: <device name>|securemod

e=<value>,signmethod=<algorithm name>. A value is required.

◦ For securemode, enter 2 for direct TLS connection, or en

ter 3 for direct TCP connection.

◦ For signmethod, specify the signature algorithm that

you want to use. Valid values are hmacmd5, hmacsha1,

hmacsha256, and sha256. You must use the same algo

rithm to generate the password.

For example: MyDevice|securemode=3,signmethod=hmacsha1

Historian | 14 - Data Collectors - General | 2010

Field Description

TOPIC Enter a value in the following format: /sys/<product name>/<de

vice name>/thing/event/property/post. A value is required.

For example: /sys/a23dr53dwrt/MyDevice/thing/event/proper

ty/post

USERNAME Enter a value in the following format: <device name><product

name>. A value is required.

For example: MyDevicea23dr53dwrt

PASSWORD Enter the password that you have generated. A value is required.

CHOOSE CONFIGURATION Select the type of the configuration to specify the tags whose

data you want to collect. Select one of the following options:

◦ Historian Configuration: Select this option if you want to

add the tags manually using Historian Administrator (on

page 659). If you select this option, the CONFIGURATION

HISTORIAN SERVER field appears.

◦ Offline Configuration: Select this option if you want to

provide the tag names using the offline configuration (on

page 2039) file instead of adding tags manually. By de

fault, this file is located in the following location: <in

stallation folder of Historian>\GE Digi

tal\<collector name>

14. Select Next.

The Collector Initiation section appears.

Historian | 14 - Data Collectors - General | 2011

15. Enter a collector name.

The value that you enter:

◦ Must be unique.

◦ Must not exceed 15 characters.

◦ Must not contain a space.

◦ Must not contain special characters except a hyphen, period, and an underscore.

16. In the RUNNING MODE field, select one of the following options.

◦ Service - Local System Account: Select this option if you want to run the collector as a

Windows service using the credentials of the local user (that is, the currently logged-in user).

If you select this option, the USERNAME and PASSWORD fields are disabled.

◦ Service Under Specific User Account: Select this option if you want to run the collector as

a Windows service using a specific user account. If you select this option, you must enter

values in the USERNAME and PASSWORD fields. If you have enabled the Enforce Strict

Collector Authentication option in Historian Administrator, you must provide the credentials

of a user who is added to at least one of the following security groups:

▪ iH Security Admins

▪ iH Collector Admins

▪ iH Tag Admins

If you choose the first option, you can also configure the collector to start automatically when you

start the computer, or, in the case of iFIX collectors, whenever you start iFIX.

Historian | 14 - Data Collectors - General | 2012

17. Select Add.

The collector instance is created.

18. Specify the tags for which you want to collect data.

◦ If you have selected Historian Configuration in the CHOOSE CONFIGURATION field, specify

the tags manually (on page 357).

◦ If you have selected Offline Configuration in the CHOOSE CONFIGURATION field, specify the

tags using the offline configuration file (on page 2039).

The collector begins sending Historian data to the device that you have created.

Send Data to AWS IoT Core

To send data to an AWS IoT Code, you can choose any of the following collectors:

• The iFIX collector

• The MQTT collector

• The ODBC collector

• The OPC Classic DA collector

• The OPC Classic HDA collector

• The OPC UA DA collector

• The OSI PI collector

• The Python Collector

• The Server-to-Server collector

• The Simulation collector

• The Windows Performance collector

• The Wonderware collector

1. Access the AWS Management Console page.

2. Search and select IoT Core.

The AWS IoT page appears.

3. Create a policy allowing the permissions that you want to grant on your device (for example,

iot:Connect, iot:Publish, iot:Subscribe, iot:Receive). For the resource, provide the topic name. If,

however, you want to use all topics, enter *.

4. Create a thing, linking it with the policy that you have created.

5. Download the certificates and key files for the device to communicate. In addition, download the

root CA certificate.

https://docs.aws.amazon.com/iot/latest/developerguide/iot-moisture-policy.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-moisture-create-thing.html

Historian | 14 - Data Collectors - General | 2013

Important:

This is mandatory, and it is the only time you can download the certificates.

6. In the left navigation pane, select Settings.

7. Make a note of the endpoint that appears.

8. Access Configuration Hub (on page 336).

9. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors in the system appears.

Historian | 14 - Data Collectors - General | 2014

10. If needed, select the system in which you want to add a collector instance.

11. In the upper-right corner of the main section, select .

The Add Collector Instance: <system name> window appears, displaying the Collector Selection

section. The MACHINE NAME field contains a list of machines on which you have installed

collectors.

12. In the COLLECTOR TYPE field, select a collector type (except the File collector and the Server-to-

Server collector), and then select Get Details.

The INSTALLATION DRIVE and DATA DIRECTORY fields are disabled and populated.

13. Select Next.

The Source Configuration section appears, populating the hostname of the collector machine.

14. As needed, enter values in the available fields, and then select Next.

The Destination Configuration section appears.

Historian | 14 - Data Collectors - General | 2015

15. In the CHOOSE DESTINATION field, select MQTT, and then provide values as described in the

following table.

Field Description

HOST ADDRESS Enter the endpoint that you have noted down. A

value is required.

PORT Enter 8883. A value is required.

CLIENT ID Enter the thing name. A value is required.

TOPIC Enter the MQTT topic to which you want the

collector to publish data. A value is required.

For information on topic names, refer to https://

docs.aws.amazon.com/iot/latest/developer

guide/topics.html.

USERNAME Enter any value. Since we will use a certifi

cate-based authentication, username and pass

word will not be used; however, you must still

enter a value.

https://docs.aws.amazon.com/iot/latest/developerguide/topics.html
https://docs.aws.amazon.com/iot/latest/developerguide/topics.html
https://docs.aws.amazon.com/iot/latest/developerguide/topics.html

Historian | 14 - Data Collectors - General | 2016

Field Description

PASSWORD Enter any value. Since we will use a certifi

cate-based authentication, username and pass

word will not be used; however, you must still

enter a value.

CA SERVER ROOT FILE Enter the path of the root CA certificate file that

you have downloaded.

CLIENT CERTIFICATE Enter the path of the device certificate that you

have downloaded.

PRIVATE KEY FILE Enter the path of the private key file that you

have downloaded.

PUBLIC KEY FILE Enter the path of the public key file that you

have downloaded.

CHOOSE CONFIGURATION Select the type of the configuration to specify

the tags whose data you want to collect. Select

one of the following options:

◦ Historian Configuration: Select this op

tion if you want to add the tags manual

ly using Historian Administrator (on page

659). If you select this option, the CON

FIGURATION HISTORIAN SERVER field

appears.

◦ Offline Configuration: Select this option

if you want to provide the tag names us

ing the offline configuration (on page

2039) file instead of adding tags man

ually. By default, this file is located in

the following location: <installation

folder of Historian>\GE Digi

tal\<collector name>

16. Select Next.

The Collector Initiation section appears.

Historian | 14 - Data Collectors - General | 2017

17. Enter a collector name.

The value that you enter:

◦ Must be unique.

◦ Must not exceed 15 characters.

◦ Must not contain a space.

◦ Must not contain special characters except a hyphen, period, and an underscore.

18. In the RUNNING MODE field, select one of the following options.

◦ Service - Local System Account: Select this option if you want to run the collector as a

Windows service using the credentials of the local user (that is, the currently logged-in user).

If you select this option, the USERNAME and PASSWORD fields are disabled.

◦ Service Under Specific User Account: Select this option if you want to run the collector as

a Windows service using a specific user account. If you select this option, you must enter

values in the USERNAME and PASSWORD fields. If you have enabled the Enforce Strict

Collector Authentication option in Historian Administrator, you must provide the credentials

of a user who is added to at least one of the following security groups:

▪ iH Security Admins

▪ iH Collector Admins

▪ iH Tag Admins

If you choose the first option, you can also configure the collector to start automatically when you

start the computer, or, in the case of iFIX collectors, whenever you start iFIX.

Historian | 14 - Data Collectors - General | 2018

19. Select Add.

The collector instance is created.

20. Specify the tags for which you want to collect data.

◦ If you have selected Historian Configuration in the CHOOSE CONFIGURATION field, specify

the tags manually (on page 357).

◦ If you have selected Offline Configuration in the CHOOSE CONFIGURATION field, specify the

tags using the offline configuration file (on page 2039).

The collector begins sending Historian data to the thing that you have created.

21. Access AWS IoT Core, and in the left pane, select Test.

The MQTT test client page appears.

22. Subscribe to the topic to which the collector is publishing data, and then select Subscribe.

The messages received from the topic appear, indicating that the collector is sending data to the

AWS IoT device.

AWS supports a payload of maximum 128 KB. Therefore, if the message size is greater than 128

KB, create a registry key named CloudMaxSamplesPerMsg for the collector instance, and decrease

the value to 700 or less. If, however, you want to send more data in a message, we recommend that

you create another collector instance and send data to another thing resource in AWS.

Historian | 14 - Data Collectors - General | 2019

Tip:

To find out the message size, modify the collector instance (on page 634) and set the log

level to 3 or more.

23. Create a VPC destination or an HTTP destination for the messages.

24. Monitor the data that you have collected.

Send Data to Azure Cloud in the Key-Value Format

To send data to an Azure IoT Hub device, you can choose any of the following collectors:

• The iFIX collector

• The MQTT collector

• The ODBC collector

• The OPC Classic DA collector

• The OPC Classic HDA collector

• The OPC UA DA collector

• The OSI PI collector

• The Python Collector

• The Server-to-Server collector

• The Simulation collector

• The Windows Performance collector

• The Wonderware collector

This topic describes how to send data in the key-value format. In this

format, the message size is bigger because names of the tag properties are

repeated. However, it provides clarity to novice users. For example: {"body":

[{"tagname":"Azure_Iot_simulation_tag_1","epochtime":1629730936000,"tagvalue":7129.124023438,"quality":3},

{"tagname":"Azure_Iot_simulation_tag_2","epochtime":1629730936000,"tagvalue":123.3738924567,"quality":3}] ,"messageId":436 ,"statusCode":0}

You can also send data in the KairosDB format (on page 608).

Note:

Data in Azure IoT Hub is stored for maximum seven days, after which it is deleted from the hub.

Therefore, you must consume the data within seven days. Based on your requirement, you can

store it in a relevant Azure storage. You can then use Azure functions or streaming analytics to

analyse the data.

https://docs.aws.amazon.com/iot/latest/developerguide/vpc-rule-action.html
https://docs.aws.amazon.com/iot/latest/developerguide/rule-destination.html
https://docs.aws.amazon.com/iot/latest/developerguide/monitoring_overview.html

Historian | 14 - Data Collectors - General | 2020

1. Create Azure IoT Hub.

Tip:

To choose the correct Azure IoT Hub tier based on your data throughput, refer to https://

docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-quotas-throttling. For guidance

on choosing the appropriate subscription, refer to https://azure.microsoft.com/en-

us/pricing/details/iot-hub/

2. After you create Azure IoT Hub, select Go to resource, and then note down the hostname:

3. Create devices in Azure IoT Hub to group related tag information; thus mapping a collector

instance to a device. We recommend that you create one device per collector instance. Ensure that

the device is running.

When you create a device, use the following guidelines to choose the authentication type:

◦ Symmetric Key: Select this option if you want to use a Shared Access Signature (SAS)

authentication.

◦ X.509 Self-Signed: Select this option if you want to create self-signed certificates using

OpenSSL. We recommend that you use these certificates only for testing purposes. For

instructions, refer to https://docs.microsoft.com/en-us/azure/iot-hub/tutorial-x509-self-

sign.

◦ X.509 CA Signed: Select this option if you want to use CA-signed certificates

4. If you have selected Symmetric Key in the previous step, select the link in the Device ID column,

and note down the shared access key value.

https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-create-through-portal
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-create-through-portal
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-quotas-throttling
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-quotas-throttling
https://azure.microsoft.com/en-us/pricing/details/iot-hub/
https://azure.microsoft.com/en-us/pricing/details/iot-hub/
https://docs.microsoft.com/en-us/azure/iot-edge/how-to-register-device?view=iotedge-2020-11&tabs=azure-portal
https://docs.microsoft.com/en-us/azure/iot-edge/how-to-register-device?view=iotedge-2020-11&tabs=azure-portal
https://docs.microsoft.com/en-us/azure/iot-hub/tutorial-x509-self-sign
https://docs.microsoft.com/en-us/azure/iot-hub/tutorial-x509-self-sign

Historian | 14 - Data Collectors - General | 2021

5. Access Configuration Hub (on page 336).

6. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors in the default system appears.

7. If needed, select the system in which you want to add a collector instance.

8. If needed, select the system in which you want to add a collector instance.

9. In the upper-right corner of the main section, select .

The Add Collector Instance: <system name> window appears, displaying the Collector Selection

section. The MACHINE NAME field contains a list of machines on which you have installed

collectors.

10. In the COLLECTOR TYPE field, select a collector type, and then select Get Details.

The INSTALLATION DRIVE and DATA DIRECTORY fields are disabled and populated.

11. Select Next.

The Source Configuration section appears.

12. As needed, enter values in the available fields.

13. Select Next.

Historian | 14 - Data Collectors - General | 2022

The Destination Configuration section appears.

14. Select MQTT, and provide values as described in the following table.

Field Description

HOST ADDRESS Enter the host name of the resource that you

have noted down in step 2. A value is required

and must be in the following format: <Azure IoT

Hub name>.azure-devices.net

PORT Enter 8883.

CLIENT ID Enter the ID of the device that you created in

step 3. A value is required and must be unique

for an MQTT broker.

TOPIC Enter devices/<device ID>/messages/events.

AUTO REFRESH Indicates whether you want to automatically

create/refresh the SAS authentication token

when it expires.

Historian | 14 - Data Collectors - General | 2023

Field Description

◦ If you switch the toggle off, you must

manually provide the token as soon as it

expires.

◦ If you switch the toggle on, you must

provide the shared access key that you

have noted down in step 4. And, you can

leave the PASSWORD field blank.

This is applicable only if you have selected

Symmetric Key in step 3.

USERNAME Enter a value in the following format: <host

name or IP address>/<device ID>/?api-ver

sion=2018-06-30

PASSWORD Enter the SAS token. This is applicable only if

you have selected Symmetric Key in step 3 and

if you have switched off the AUTO REFRESH

toggle.

For instructions on generating a SAS token, re

fer to https://docs.microsoft.com/en-us/azure/

cognitive-services/translator/document-trans

lation/create-sas-tokens?tabs=Containers.

DEVICE SHARED KEY Enter the shared access key value that you not

ed down in step 4. A value is required. This is

applicable only if you have selected Symmetric

Key in step 3 and if you have switched the AU

TO REFRESH toggle on.

CA SERVER ROOT FILE Enter the path of the CA server root file that

you want to use. You can find the file here:

https://github.com/Azure-Samples/IoTMQT

TSample/blob/master/IoTHubRootCA_Balti

more.pem.

CLIENT CERTIFICATE Enter the path to the client certificate. A value is

required. This is applicable only if you have se

lected one of these options in step 3:

https://docs.microsoft.com/en-us/azure/cognitive-services/translator/document-translation/create-sas-tokens?tabs=Containers
https://docs.microsoft.com/en-us/azure/cognitive-services/translator/document-translation/create-sas-tokens?tabs=Containers
https://docs.microsoft.com/en-us/azure/cognitive-services/translator/document-translation/create-sas-tokens?tabs=Containers
https://github.com/Azure-Samples/IoTMQTTSample/blob/master/IoTHubRootCA_Baltimore.pem
https://github.com/Azure-Samples/IoTMQTTSample/blob/master/IoTHubRootCA_Baltimore.pem
https://github.com/Azure-Samples/IoTMQTTSample/blob/master/IoTHubRootCA_Baltimore.pem

Historian | 14 - Data Collectors - General | 2024

Field Description

◦ X.509 Self-Signed: If you have selected

this option, you can generate the certifi

cate using OpenSSL.

◦ X.509 CA Signed: If you have selected

this option, you would receive the certifi

cate from CA.

PRIVATE KEY FILE Enter the complete path to the private key file.

A value is required. This is applicable only if you

have selected one of these options in step 3:

◦ X.509 Self-Signed: If you have selected

this option, you can generate the key file

using OpenSSL.

◦ X.509 CA Signed: If you have selected

this option, you would receive the key file

from CA.

PUBLIC KEY FILE Enter the path to the public key file. This is ap

plicable only if you have selected one of these

options in step 3:

◦ X.509 Self-Signed: If you have selected

this option, you can generate the key file

using OpenSSL.

◦ X.509 CA Signed: If you have selected

this option, you would receive the key file

from CA.

CHOOSE CONFIGURATION The type of the configuration to specify the

tags whose data you want to collect. Select one

of the following options:

◦ Historian Configuration: Select this op

tion if you want to add the tags manual

ly (on page 357). If you select this option,

the CONFIGURATION HISTORIAN SERV

ER field appears.

◦ Offline Configuration: Select this option

if you want to provide the tag names us

ing the offline configuration (on page

Historian | 14 - Data Collectors - General | 2025

Field Description

2039) file instead of adding tags man

ually. By default, this file is located in

the following location: <installation

folder of Historian>\GE Digi

tal\<collector name>

CONFIGURATION HISTORIAN SERVER The host name of the machine from which you

want to access Historian Administrator to add

the tags manually for the collector. This field

appears only if you have selected Historian

Configuration in the CHOOSE CONFIGURATION

field.

15. Select Next.

The Collector Initiation section appears.

16. Enter a collector name.

The value that you enter:

◦ Must be unique.

◦ Must not exceed 15 characters.

Historian | 14 - Data Collectors - General | 2026

◦ Must not contain a space.

◦ Must not contain special characters except a hyphen, period, and an underscore.

17. In the RUNNING MODE field, select one of the following options.

◦ Service - Local System Account: Select this option if you want to run the collector as a

Windows service using the credentials of the local user (that is, the currently logged-in user).

If you select this option, the USERNAME and PASSWORD fields are disabled.

◦ Service Under Specific User Account: Select this option if you want to run the collector as

a Windows service using a specific user account. If you select this option, you must enter

values in the USERNAME and PASSWORD fields. If you have enabled the Enforce Strict

Collector Authentication option in Historian Administrator, you must provide the credentials

of a user who is added to at least one of the following security groups:

▪ iH Security Admins

▪ iH Collector Admins

▪ iH Tag Admins

If you choose the first option, you can also configure the collector to start automatically when you

start the computer, or, in the case of iFIX collectors, whenever you start iFIX.

18. Select Add.

The collector instance is created.

19. Specify the tags for which you want to collect data.

◦ If you have selected Historian Configuration in the CHOOSE CONFIGURATION field, specify

the tags manually (on page 357).

◦ If you have selected Offline Configuration in the CHOOSE CONFIGURATION field, specify the

tags using the offline configuration file (on page 2039).

The collector begins sending Historian data to the Azure IoT Hub device that you have created.

Send Data to Google Cloud

1. Download the Google root CA certificate from https://pki.google.com/roots.pem.

2. Create public/private key pairs. Use OpenSSL only for testing purposes.

To send data to a Google Cloud device, you can choose any of the following collectors:

• The iFIX collector

• The MQTT collector

• The ODBC collector

• The OPC Classic DA collector

• The OPC Classic HDA collector

https://pki.google.com/roots.pem
https://cloud.google.com/iot/docs/how-tos/credentials/keys

Historian | 14 - Data Collectors - General | 2027

• The OPC UA DA collector

• The OSI PI collector

• The Python Collector

• The Server-to-Server collector

• The Simulation collector

• The Windows Performance collector

• The Wonderware collector

1. Access Google Cloud Platform.

2. Create a project. Note down the project ID.

3. Create a registry.

When you create the registry:

◦ Use the MQTT protocol.

◦ You can choose to provide a CA certificate.

Note down the registry ID and the region values.

4. Add a device to the registry.

When you add the device:

◦ Allow device communication.

◦ Upload the public key or enter the details manually.

Note down the device ID.

5. Access Configuration Hub (on page 336).

6. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors in the default system appears.

7. If needed, select the system in which you want to add a collector instance.

8. If needed, select the system in which you want to add a collector instance.

9. In the upper-right corner of the main section, select .

https://cloud.google.com/resource-manager/docs/creating-managing-projects#creating_a_project
https://cloud.google.com/iot/docs/how-tos/devices#creating_a_device_registry
https://cloud.google.com/iot/docs/quickstart#add_a_device_to_the_registry

Historian | 14 - Data Collectors - General | 2028

The Add Collector Instance: <system name> window appears, displaying the Collector Selection

section. The MACHINE NAME field contains a list of machines on which you have installed

collectors.

10. In the COLLECTOR TYPE field, select a collector type, and then select Get Details.

The INSTALLATION DRIVE and DATA DIRECTORY fields are disabled and populated.

11. Select Next.

The Source Configuration section appears.

12. As needed, enter values in the available fields.

13. Select Next.

The Destination Configuration section appears.

Historian | 14 - Data Collectors - General | 2029

14. Select MQTT, and provide values as described in the following table.

Field Description

HOST ADDRESS Enter mqtt.googleapis.com. A value is required.

PORT Enter 8883 or 443.

CLIENT ID Enter the ID of the device that you created

in the following format: projects/<project

ID>/locations/<cloud region>/reg

istries/<registry ID>/devices/<device ID>.

For example: projects/mygcpproject/loca

tions/asia-east1/registries/testmqttgcpi

ot/devices/gcptesting

A value is required and must be unique for an

MQTT broker.

TOPIC Enter devices/<device ID>/events.

AUTO REFRESH Indicates whether you want to automatically re

fresh the authentication token when it expires.

If you switch the toggle off, you must manually

Historian | 14 - Data Collectors - General | 2030

Field Description

provide the token as soon as it expires. Google

Cloud accepts only those tokens that expire in

24 hours or less; therefore, we recommend that

you switch the toggle on.

USERNAME Enter any value. This value is not used, but only

if you enter a value, you can proceed.

PASSWORD If you have switched the AUTO REFRESH toggle

on, leave this field blank. Historian generates a

JSON Web Token (JWT) and uses it automati

cally.

CA SERVER ROOT FILE Enter the path of the Google root CA certificate

that you have downloaded.

CLIENT CERTIFICATE Enter the path to the client certificate.

PRIVATE KEY FILE Enter the complete path to the private key file. A

value is required.

PUBLIC KEY FILE Enter the path to the public key file. A value is

required.

CHOOSE CONFIGURATION The type of the configuration to specify the

tags whose data you want to collect. Select one

of the following options:

◦ Historian Configuration: Select this op

tion if you want to add the tags manual

ly (on page 357). If you select this option,

the CONFIGURATION HISTORIAN SERV

ER field appears.

◦ Offline Configuration: Select this option

if you want to provide the tag names us

ing the offline configuration (on page

2039) file instead of adding tags man

ually. By default, this file is located in

the following location: <installation

folder of Historian>\GE Digi

tal\<collector name>

Historian | 14 - Data Collectors - General | 2031

Field Description

CONFIGURATION HISTORIAN SERVER The host name of the machine from which you

want to access Historian Administrator to add

the tags manually for the collector. This field

appears only if you have selected Historian

Configuration in the CHOOSE CONFIGURATION

field.

15. Select Next.

The Collector Initiation section appears.

16. Enter a collector name.

The value that you enter:

◦ Must be unique.

◦ Must not exceed 15 characters.

◦ Must not contain a space.

◦ Must not contain special characters except a hyphen, period, and an underscore.

17. In the RUNNING MODE field, select one of the following options.

Historian | 14 - Data Collectors - General | 2032

◦ Service - Local System Account: Select this option if you want to run the collector as a

Windows service using the credentials of the local user (that is, the currently logged-in user).

If you select this option, the USERNAME and PASSWORD fields are disabled.

◦ Service Under Specific User Account: Select this option if you want to run the collector as

a Windows service using a specific user account. If you select this option, you must enter

values in the USERNAME and PASSWORD fields. If you have enabled the Enforce Strict

Collector Authentication option in Historian Administrator, you must provide the credentials

of a user who is added to at least one of the following security groups:

▪ iH Security Admins

▪ iH Collector Admins

▪ iH Tag Admins

If you choose the first option, you can also configure the collector to start automatically when you

start the computer, or, in the case of iFIX collectors, whenever you start iFIX.

18. Select Add.

The collector instance is created.

19. Access Google Cloud Platform, and select Pub/Sub > Topics.

Historian | 14 - Data Collectors - General | 2033

20. Select Messages > PULL.

Messages published to the topic that you have created appear. These messages contain the data

sent by the collector instance. You can verify that the message content is correct by selecting

Message body.

Send Data to Predix Cloud

To send data to Predix Cloud, you can choose any of the following collectors:

• The iFIX collector

• The MQTT collector

• The ODBC collector

• The OPC Classic DA collector

• The OPC Classic HDA collector

Historian | 14 - Data Collectors - General | 2034

• The OPC UA DA collector

• The OSI PI collector

• The Python Collector

• The Server-to-Server collector

• The Simulation collector

• The Windows Performance collector

• The Wonderware collector

1. Register with the Timeseries service or any UAA service that you want to use. Note down the

destination address, URI, client ID, client secret, and the zone ID that you have provided.

2. Access Configuration Hub (on page 336).

3. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors in the system appears.

4. If needed, select the system in which you want to add a collector instance.

5. In the upper-right corner of the main section, select .

https://www.ge.com/digital/documentation/predix-platforms/tss-setup-configure.html

Historian | 14 - Data Collectors - General | 2035

The Add Collector Instance: <system name> window appears, displaying the Collector Selection

section. The MACHINE NAME field contains a list of machines on which you have installed

collectors.

6. In the COLLECTOR TYPE field, select a collector type (except the File collector and the Server-to-

Server collector), and then select Get Details.

The INSTALLATION DRIVE and DATA DIRECTORY fields are disabled and populated.

7. Select Next.

The Source Configuration section appears, populating the hostname of the collector machine.

8. As needed, enter values in the available fields, and then select Next.

The Destination Configuration section appears.

9. In the CHOOSE DESTINATION field, select Predix Timeseries, and then provide values as described

in the following table.

Field Description

CLOUD DESTINATION AD

DRESS

The URL of a data streaming endpoint exposed by the Predix

Time Series instance to which you want to send data. Typically,

it starts with “wss://”. This value is used as part of the interface

name and default tag prefix of the collector. Your Predix Time

Series administrator can provide this URL.

Historian | 14 - Data Collectors - General | 2036

Field Description

IDENTITY ISSUER The URL of an authentication endpoint for the collector to au

thenticate itself and acquire necessary credentials to stream to

the Predix Time Series. In other words, this is the issuer ID of

the Proficy Authentication instance that you want to use to con

nect to Predix Time Series. Typically, it starts with https:// and

ends with “/oauth/token”.

CLIENT ID Identifies the collector when interacting with Predix Time Series.

This is equivalent to the username in many authentication

schemes. The client must exist in the Proficy Authentication

instance identified by the identity issuer, and the system re

quires that the timeseries.zones. {ZoneId}.ingest and time

series.zones.{ZoneId}.query authorities are granted access

to the client for the Predix Zone ID specified. Your Predix Time

Series administrator can provide this information.

CLIENT SECRET The secret to authenticate the collector. This is equivalent to the

password in many authentication schemes.

ZONE ID Unique identifier of the instance to which the collector will send

data.

PROXY Identifies the URL of the proxy server to be used for both the au

thentication process and for sending data. If the collector is run

ning on a network where proxy servers are used to access web

resources outside of the network, then you must provide the

proxy server settings. However, it does not affect the proxy serv

er used by Windows when establishing secure connections. As

a result, you must still configure the proxy settings for the Win

dows user account under which the collector service runs.

PROXY USERNAME The username to connect to the proxy server.

PROXY PASSWORD The password to connect to the proxy server.

DATAPOINT ATTRIBUTES The attributes or parameters related to a datapoint that you

want the collector to collect. Select Add Attributes to specify

the attributes. You can add maximum five attributes for each

collector instance.

Historian | 14 - Data Collectors - General | 2037

Field Description

CHOOSE CONFIGURATION The type of the configuration to specify the tags whose data you

want to collect. Select one of the following options:

◦ Historian Configuration: Select this option if you want to

add the tags manually (on page 357). If you select this

option, the CONFIGURATION HISTORIAN SERVER field

appears.

◦ Offline Configuration: Select this option if you want to

provide the tag names using the offline configuration (on

page 2039) file instead of adding tags manually. By de

fault, this file is located in the following location: <in

stallation folder of Historian>\GE Digi

tal\<collector name>

CONFIGURATION HISTORIAN

SERVER

The host name of the machine from which you want to access

Historian Administrator to add the tags manually for the collec

tor. This field appears only if you have selected Historian Con

figuration in the CHOOSE CONFIGURATION field.

10. Select Next.

The Collector Initiation section appears.

Historian | 14 - Data Collectors - General | 2038

11. Enter a collector name.

The value that you enter:

◦ Must be unique.

◦ Must not exceed 15 characters.

◦ Must not contain a space.

◦ Must not contain special characters except a hyphen, period, and an underscore.

12. In the RUNNING MODE field, select one of the following options.

◦ Service - Local System Account: Select this option if you want to run the collector as a

Windows service using the credentials of the local user (that is, the currently logged-in user).

If you select this option, the USERNAME and PASSWORD fields are disabled.

◦ Service Under Specific User Account: Select this option if you want to run the collector as

a Windows service using a specific user account. If you select this option, you must enter

values in the USERNAME and PASSWORD fields. If you have enabled the Enforce Strict

Collector Authentication option in Historian Administrator, you must provide the credentials

of a user who is added to at least one of the following security groups:

▪ iH Security Admins

▪ iH Collector Admins

▪ iH Tag Admins

If you choose the first option, you can also configure the collector to start automatically when you

start the computer, or, in the case of iFIX collectors, whenever you start iFIX.

13. Select Add.

The collector instance is created.

14. Specify the tags for which you want to collect data.

◦ If you have selected Historian Configuration in the CHOOSE CONFIGURATION field, specify

the tags manually (on page 357).

◦ If you have selected Offline Configuration in the CHOOSE CONFIGURATION field, specify the

tags using the offline configuration file (on page 2039).

The collector begins sending Historian data to Predix Timeseries.

Protocols and Port Numbers

The following table provides a list of protocols that are available to send data to Azure IoT Hub, guidelines

on which protocol to choose, and the port number that each protocol uses.

Historian | 14 - Data Collectors - General | 2039

Protocol When to Use Port Number

HTTP Use this protocol if the data that you want to send

is not large and/or the default ports for the other

protocols are not available.

80

MQTT MQTT is lightweight compared to AMQP, and is

widely used. Use this protocol if you want to send

data using low bandwidth and/or you do not want

to connect to multiple devices using the same con

nection.

8883

AMQP AMQP is more reliable compared to other proto

cols. It sends data in batches, and hence, the net

work traffic is less compared to that of MQTT. Use

this protocol if you want to send a large amount of

data from multiple collectors frequently.

5671

MQTT over web sockets MQTT is lightweight compared to AMQP, and is

widely used. In addition, communication using web

sockets is more reliable and secure. Use this pro

tocol if you want to send data using low bandwidth

and securely.

443

AMQP over web sockets AMQP is more reliable compared to other proto

cols. It sends data in batches, and hence, the net

work traffic is less compared to that of MQTT. In

addition, communication using web sockets is

more reliable and secure. Use this protocol if you

want to send a large amount of data from multiple

collectors frequently and securely.

443

Offline Collector Configuration

Offline Configuration for Collectors

Offline Configuration helps you to define the configuration properties of a collector (Taglist, Tag

properties, and collector interface properties) in XML format. This feature is particularly useful when

collectors connect to a cloud destination.

Historian | 14 - Data Collectors - General | 2040

When collectors connect to both Historian server and cloud, you can add tags, set tag configuration

properties, and collector interface properties.

The path to the Offline Tag Configuration file is provided in the collector registry as:

OfflineTagConfigurationFile (Data Type: String). This key contains the path to offline configuration file. For

Server to Server Collector the default value is: C:\Program Files (x86)\GE Digital\Historian

Server to Server Collector\Config\S2S_Offline_Config.xml.

The following tag properties are required for Cloud collector tags:

Mandatory properties for non-historical collector (PI to Cloud, OPCUA to Cloud etc)

Tagname, Data Type and Source Address

Mandatory properties for historical collector (Server to Cloud)

Tagname, Data Type, Source Address and CalculationDependency

All other properties are not mandatory.

Creating Offline Configuration XML file

It is recommended that you add the Collector property section above the Tag property section in your

offline configuration XML file.

1. Add the following collector interface properties to the top of your configuration XML file.

The following is an example for the Server to Server Collector interface properties:

<Import>

<Collectors>

<Collector Name="<Collector Name>">

<InterfaceType>ServerToServer</InterfaceType>

<InterfaceGeneral1>10</InterfaceGeneral1>

......

</Collector>

</Collectors>

2. Add your TagList and Tag properties to your XML file.

<Collectors>

...

</Collectors>

Historian | 14 - Data Collectors - General | 2041

<TagList Version="1.0.71">

<Tag>

<Tagname>simCollector1</Tagname>

<SourceAddress>Result = CurrentValue("SJC1GEIP05.Simulation00002")</SourceAddress>

...

</Tag>

<Tag>

<Tagname>simCollector2</Tagname>

<SourceAddress>Result = CurrentValue("SJC1GEIP05.Simulation00002")</SourceAddress>

...

</Tag>

...

</TagList>

</Import>

3. Add the closing </Import> tag to the end of your XML file.

Collector Interface Properties

The collector interface properties are written in the following formal in the XML file.

<Import>

<Collectors>

<Collector Name="<Collector Name>">

<InterfaceType>ServerToServer</InterfaceType>

<InterfaceGeneral1>10</InterfaceGeneral1>

......

</Collector>

</Collectors>

</Import>

where <Collector Name> is the collector name found in the ServerToServerCollector.shw file.

You can configure the following properties:

Historian | 14 - Data Collectors - General | 2042

Property Name Possible Values Example

InterfaceType ServerToServer, PI,

Custom

<InterfaceType>ServerToServer</InterfaceType>

DefaultTagPrefix Any tag prefix

name

<DefaultTagPrefix>OfflineCloud</DefaultTagPrefix>

CanBrowseSource Yes, No <CanBrowseSource>Yes</CanBrowseSource>

CanSourceTimestamp Yes, No <CanSourceTimestamp>Yes</CanSourceTimestamp>

MinimumDiskFreeBuffer

Size

Size in MB <MinimumDiskFreeBufferSize>150</MinimumDiskFree

BufferSize>

MaximumMemory

BufferSize

Size in MB <MaximumMemoryBufferSize>200</MaximumMemoryBuffer

Size>

ShouldAdjustTime Yes, No <ShouldAdjustTime>Yes</ShouldAdjustTime>

ShouldQueueWrites Yes, No <ShouldQueueWrites>No</ShouldQueueWrites>

SourceTimeInLocalTime Yes, No <SourceTimeInLocalTime>No</SourceTimeInLocalTime>

CollectionDelay Time in seconds <CollectionDelay>2</CollectionDelay>

DefaultCollectionInterval Time in millisec

onds

<DefaultCollectionInterval>1000</DefaultCollection

Interval>

DefaultCollectionType Polled, Unsolicited <DefaultCollectionType>Unsolicited</DefaultCollec

tionType>

DefaultTimeStampType Source, Collector <DefaultTimeStampType>Source</DefaultTimeStampType>

DefaultLoadBalancing Yes, No <DefaultLoadBalancing>No</DefaultLoadBalancing>

DefaultCollectorCom

pression

Yes, No <DefaultCollectorCompression>No</DefaultCollector

Compression>

DefaultCollectorCom

pressionDeadband

Double type value <DefaultCollectorCompressionDeadband>0.00000</De

faultCollectorCompressionDeadband>

DisableOnTheFlyTag

Change

Yes, No <DisableOnTheFlyTagChange>No</DisableOnTheFlyTag

Change>

DefaultCollectorCom

pressionTimeout

Time in millisec

onds

<DefaultCollectorCompressionTimeout>0</DefaultCol

lectorCompressionTimeout>

Historian | 14 - Data Collectors - General | 2043

Property Name Possible Values Example

DefaultSpikeLogic Yes, No <DefaultSpikeLogic>Yes</DefaultSpikeLogic>

DefaultSpikeMultiplier Any numeric value <DefaultSpikeMultiplier>4</DefaultSpikeMultiplier>

DefaultSpikeInterval Any numeric value <DefaultSpikeInterval>5</DefaultSpikeInterval>

DataRecoveryQueueEn

abled

Yes, No <DataRecoveryQueueEnabled>No</DataRecoveryQueueEn

abled>

DefaultAbsoluteDead

banding

Yes, No <DefaultAbsoluteDeadbanding></DefaultAbsoluteDead

banding>

DefaultAbsoluteDead

band

Double type value <DefaultAbsoluteDeadband>0.00000</DefaultAbsolute

Deadband>

RedundancyEnabled Yes, No <RedundancyEnabled>No</RedundancyEnabled>

RedundancyPrincipalCol

lector

<RedundancyPrincipalCollector></RedundancyPrincipal

Collector>

RedundancyIsActiveCol

lector

Yes, No <RedundancyIsActiveCollector>No</RedundancyIsActive

Collector>

InterfaceGeneral1 Customized for

each collector

<InterfaceGeneral1>10</InterfaceGeneral1>

InterfaceGeneral2 Customized for

each collector

<InterfaceGeneral2>4</InterfaceGeneral2>

InterfaceGeneral3 Customized for

each collector

<InterfaceGeneral3>3.188.87.41</InterfaceGeneral3>

InterfaceGeneral4 Customized for

each collector

<InterfaceGeneral4></InterfaceGeneral4>

InterfaceGeneral5 Customized for

each collector

<InterfaceGeneral5></InterfaceGeneral5>

Tag List and Tag Properties

The format of Source Address for the Server to Cloud Collector is typically of format: Result =

CurrentValue("SJC1GEIP05.Simulation00002"). For other collectors the format of the source address

should be the value expected by the source server, for example, OPC and PI Collector tags typically use

the Tag source item id for the SourceAddress.

Historian | 14 - Data Collectors - General | 2044

Server to Cloud Tag Example:

<Tag>

<Tagname>simCollector2</Tagname>

<SourceAddress>Result = CurrentValue("SJC1GEIP05.Simulation00002")</SourceAddress>

...

</Tag>

OPC Collector Tag Example:

<Tag>

 <Tagname>simCollector2</Tagname>

 <SourceAddress>Channel1.Device1.Tag1</SourceAddress>

 ...

 </Tag>

You can configure the following properties:

Property Name Possible Values Example

Tagname Any name <Tagname>sim

Tag1</Tagname>

Description Description of tag <Description>sim

Tag1</Description>

EngineeringUnits Unit of value <EngineeringUnit

s>Centigrade</Engi

neeringUnits>

Comment Comment of tag <Comment>sim

Tag1</Comment>

DataType SingleFloat, SingleInteger, DoubleFloat, FixedString, Vari

ableString, Scaled, Byte, Boolean, DoubleInteger, Unsigned

SingleInteger, UnsignedDoubleInteger, QuadInteger, Un

signedQuadInteger, Blob, Time, Array, MultiField

<DataType>Single

Float</DataType>

FixedStringLength <FixedStringLength></

FixedStringLength>

InterfaceName <InterfaceName></In

terfaceName>

Historian | 14 - Data Collectors - General | 2045

Property Name Possible Values Example

SourceAddress Tag source address <SourceAddress>Re

sult = CurrentVal

ue("SJC1GEIP05.Sim

ula

tion00002")</Source

Address>

CollectionType Polled, Unsolicited <CollectionType>Unso

licited</Collection

Type>

CollectionInterval Interval of collection. Unit depends on TimeResolution. <CollectionInter

val>2</CollectionIn

terval>

CollectionOffset Time in seconds <CollectionOff

set>0</CollectionOff

set>

LoadBalancing Yes, No <LoadBalanc

ing>No</LoadBalanc

ing>

TimeStampType Source, Collector <TimeStamp

Type>Source</TimeS

tampType>

HiEngineeringU

nits

Any numeric value <HiEngineeringU

nits>200000.00</Hi

EngineeringUnits>

LoEngineeringU

nits

Any numeric value <LoEngineering

Units>0</LoEngi

neeringUnits

InputScaling Yes, No <InputScal

ing>Yes</InputScal

ing>

Historian | 14 - Data Collectors - General | 2046

Property Name Possible Values Example

HiScale Any numeric value <HiS

cale>32767.00</HiS

cale>

LoScale Any numeric value <LoScale>0</LoScale>

SpikeLogic Yes, No <SpikeLog

ic>Yes</SpikeLogic>

SpikeLogicOver

ride

Yes, No <SpikeLogicOver

ride>Yes</SpikeLogic

Override>

InterfaceCom

pression

Yes, No <InterfaceCompres

sion>Yes</Interface

Compression>

InterfaceDead

bandPercent

Range

Any double type value <InterfaceDeadband

PercentRange>0</In

terfaceDeadbandPer

centRange>

InterfaceCom

pressionTimeout

Time in milliseconds <InterfaceCompres

sionTimeout>0</Inter

faceCompressionTime

out>

InterfaceAbsolut

eDeadband

Any double type value <InterfaceAbsolut

eDeadband>0</Inter

faceAbsoluteDeadband>

InterfaceAbsolut

eDeadbanding

Yes, No <InterfaceAbsolute

Deadbanding>No</In

terfaceAbsoluteDead

banding>

ConditionCollec

tionEnabled

Yes, No <ConditionCollectio

nEnabled>No</Con

ditionCollectionEn

abled>

Historian | 14 - Data Collectors - General | 2047

Property Name Possible Values Example

ConditionCollec

tionTriggerTag

Name of tag <ConditionCollec

tionTriggerTag>sim

Tag1</ConditionCol

lectionTriggerTag>

ConditionCollec

tionComparison

= , EQ , < , LT , <= , LE , > , GT , >= , GE , != , NE <ConditionCollection

Comparison>EQ</Condi

tionCollectionCompar

ison>

ConditionCollec

tionCompareVal

ue

Any numeric value <ConditionCollection

CompareValue>0</Con

ditionCollectionCom

pareValue>

ConditionCollec

tionMarkers

Yes, No <ConditionCollection

Markers>No</Condi

tionCollectionMark

ers>

NumberOfEle

ments

<NumberOfEle

ments></NumberOfEle

ments>

UserDefinedType

Name

<UserDefinedType

Name></UserDefined

TypeName>

CalcType Raw, Analytic, PythonExpr <Calc

Type>Raw</CalcType>

TimeResolution Seconds, Milliseconds, Microseconds <TimeResolution>Se

conds</TimeResolu

tion>

InterfaceGeneral1 Customized for each collector <InterfaceGener

al1>10</InterfaceGen

eral1>

Historian | 14 - Data Collectors - General | 2048

Property Name Possible Values Example

InterfaceGeneral2 Customized for each collector <InterfaceGener

al2>4</InterfaceGen

eral2>

InterfaceGeneral3 Customized for each collector <InterfaceGener

al3>3.188.87.41</In

terfaceGeneral3>

InterfaceGeneral4 Customized for each collector <InterfaceGener

al4></InterfaceGener

al4>

InterfaceGeneral5 Customized for each collector <InterfaceGener

al5></InterfaceGener

al5>

About Updating Tag Properties Dynamically

When you add or delete tags for a collector, or when you modify the properties of the tags or the collector

using the offline configuration file, the changes are reflected without the need to restart the collector.

The following conditions apply for the changes to reflect automatically:

• This is applicable only to bi-modal collectors.

• The changes are reflected in 90 seconds.

Note:

If you do not want tag properties to be updated dynamically for a collector, perform the following

steps:

1. Access the offline configuration file for the collector. By default, this file is available in

the following location: <installation folder of Historian>\GE Digital

\<collector name>. For example, for the simulation collector, the path to the file is

C:\Program Files (x86)\GE Digital\Historian Simulation Collector

\Config\Sim_Offline_Config.xml.

Historian | 14 - Data Collectors - General | 2049

2. Inside the <collector> element, for the <DisableOnTheFlyTagChanges> parameter, enter Yes,

and save the file. By default, the value is No.

Tip:

To verify that the changes are saved, verify the .shw file for the collector.

Troubleshooting

By default, the offline configuration file is continuously monitored for any changes in the tag names and/

or properties, and the changes are reflected dynamically. If, however, the changes are not reflected, you

can create the following registry key to fix the issue: OfflineTagForceCheckDuration

Cloud Collector Specific Registry Configuration

Various registry keys are available for modifying the default behavior of cloud collector. These keys can

be added to the specific cloud collectors for altering the default behavior.

For a Server-to-Server collector, the keys will be added to: HKEY_LOCAL_MACHINE\SOFTWARE

\Wow6432Node\GE Digital\iHistorian\Services\ServerToServerCollector

ZIP compression: Zip compression is available for Cloud collectors so that the JSON Payload can be

compressed with a reduced network bandwidth.

Following registry key is available for compression:

JsonPayloadGzipCompression: Use this registry key to reduce the network usage while the data is

transferred from collector to cloud.

Default value: 0, means no compression (if registry key does not exist)

Valid values: 1 to 9. 1 is minimal compression and 9 is maximum compression.

Data Type: DWORD

Registry key for Controlling Max send queue size

CloudMaxOutstandingMsgs: Use this registry key to configure the maximum send queue size.

Default value: 512

Valid values: 24 to 512

Historian | 14 - Data Collectors - General | 2050

Data Type: DWORD

Registry key to save messages in failed queues

FailedMsgQueueEnabled: Use this registry key to save messages in failed queues as backup. This is done

when any message fails for any unexpected reason.

Default: 0 (Disabled). (if no registry key)

Valid Values: 0 (Disabled) or 1(Enabled)

Data Type: Binary

Working with Tags

Understanding Tag names

Historian tag names vary according to the type of collector. By default, the tag name is the source address

prepended with a string.

It is recommended that tag names use only characters available for folders and file names to avoid the

problems (limitations) with some clients and filtering. You can use tag names that contain the characters

& and + in the Non-Web Historian Administrator.

iFIXCollector Tagnames

The format of Historian tag names for an iFIX collector generally is

Node.Tag.Field

where

• Node, by default, is the name of the SCADA node, the data source. This field is configurable,

however.

• Tag is the database tag.

• Field is the database field.

Examples of typical tag names:

NODE8.WATER-_SWITCH.F_CV

NODE2.MASH_LEVEL.B_CUALM

USGBS1.FIC101.F_CV

USGBS1.FT102.A_LAALM

Historian | 14 - Data Collectors - General | 2051

where

• NODE8, NODE2, and USGBS1 are the names of the iFIX SCADA nodes.

• WATER_SWITCH, MASH_LEVEL, FIC101, and FT102 are the names of the database tags.

• 4F_CV means single floating point, current value.

• B_CUALM means current alarm status.

• A_LAALM means analog input, latched alarm.

OPC or Simulation Collector Tagnames

The format of Historian tags for an OPC or Simulation collector is:

ComputerName.ItemID

where

• ComputerName, by default, is the name of the machine on which the collector is installed. This field is

configurable, however.

• ItemID is the data point being polled.

Calculation collector Tagnames

There is no specified format for Historian tags for a Calculation collector. We recommend that you select

a consistent naming convention so the tags are easily and clearly identifiable. You should avoid using

spaces and other special characters or reserved words used in SQL or VBScript. This applies to any tag

being used as a source tag in the formula.

Server-to-Server Collector Tagnames

There is no specified format for Historian tags for a Server-to-Server Collector. We recommend that you

select a consistent naming convention so the tags are easily and clearly identifiable. Server-to-Server

Collectors allow you to specify a prefix to add to the Server-to-Server Collector tags.

Note:

In cases where you want the destination tag's data to be a duplicate of the source tag, then the

tag name would be identical. This is especially important so that all messages and alerts are

included.

Historian | 14 - Data Collectors - General | 2052

Adding Tags from a Collector

Add Multiple Tags from a Collector Using Historian Administrator

This topic describes how to add multiple tags from a collector using Historian Administrator. You can also

add tags using the Web Admin console (on page 2055).

Note:

When you add a tag, do not enter a leading space or a trailing space in the tag name.

1. Select the Add Tags From Collector link in the Tag Maintenance page.

The Add Multiple Tags from Collector window appears.

2. Select a collector from the Collector drop-down list.

Historian | 14 - Data Collectors - General | 2053

Note:

If you add tags from a File collector, the file you import specifies the collector to which the

tags are assigned. Those tags are then returned by a browse of the specified collector. It is

also possible to leave the assignment blank. If the file does not specify a Collector Name

for a tag, the tag is added with no collector name.

You cannot browse a Calculation collector through the Add Tags From Collector window in

Historian Administrator.

3. In the Show Only field, select either All Source Tags or Source Tags Not Collected.

If you select the second option, the browse returns only the tags that are not currently included for

collection.

If a Historian tag name is different from its source address tag name, the source tag is displayed

in the returned list even if you browse the collector using the Show Source Tags Not Collected

criterion. Collection on the same source address using a unique tag name is allowed.

4. In the Source Tag name and Description fields, you can optionally enter masks for the browse,

using standard Windows wildcard characters.

5. Select Browse to initiate the search or Reset to start over.

Historian | 14 - Data Collectors - General | 2054

The browse returns a list of tags, as shown in the following figure. In the Historian Non-Web

Administrator, a tag that is currently collected appears in black type. A tag that is not currently

collected appears in blue type.

Adding Uncollected Tags from a Collector

1. Select the required tags. Selecting a tag selects its tag name and description.

you can select:

◦ a single tag by selecting on the name of the tag.

◦ multiple tags by pressing the Ctrl key and selecting the tags.

◦ a contiguous group by selecting the first tag, pressing the Shift key, and selecting the last

tag of the group.

◦ all tags by selecting Select All at the bottom of the page.

To clear all tags, select Unselect All.

Historian | 14 - Data Collectors - General | 2055

2. Select Add Selected Tags. The selected tags are added to the Historian Tag Database.

The Tag Maintenance page appears. The lower left portion of the page displays a list of all tag

names added to the Historian Tag Database.

Add Tags from a Collector Using the Web Admin Console

This topic describes how to add tags from a collector using the Web Admin console. You can also add

tags using Historian Administrator (on page 2052).

Note:

When you add a tag, do not enter a leading space or a trailing space in the tag name.

1. Select the plus sign in the Tag page.

2. Select Add Tags from Collector.

The Add Tags from Collector window appears.

3. Select the collector from the Collector name list.

For collectors with hierarchical browsing, expand the folder to select the desired tags. The >

symbol indicates that you need to navigate further within the folder.

Historian | 14 - Data Collectors - General | 2056

4. Enter the Source Tag Name or select Browse.

The list of available tags is displayed.

5. Select tags.

You can select a single tag and or select multiple tags. To select a series of tags, press and hold

the Shift key and select the series.

6. Select Add to add the tags. To add all the tags, select Add All.

7. Select Preview to preview the selected tag details.

8. Select Add Selected Tags to add the selected tags from the collectors.

Adding Tags for Collectors with Hierarchical Browsing

1. Select the plus sign in the Tag page.

2. Select Add Tags from Collector.

The Add Tags from Collector window appears.

3. Select the collector from the Collector name list.

4. Enter the Source Tag Name or select Browse.

The list of available tags is displayed.

5. Select tags.

You can select a single tag and or select multiple tags. To select a series of tags, press and hold

the Shift key and select the series.

6. Select Add to add the tags. To add all the tags, select Add All.

7. Select Preview to preview the selected tag details.

8. Select Add Selected Tags to add the selected tags from the collectors.

Manually Adding Tags

Typically, you add new tags to the Historian by browsing the data source or by bulk importing a group of

tags with the Excel Add-In tool. Occasionally, you may need to add a single tag manually. You can add

tags manually:

• for creating a calculation tag.

• for holding values that are added using the Excel Add-In or custom SDK application.

• for testing purposes.

For example, if you are currently not connected to a collector, the browse is slow, or is not supported, and

if you want to configure tags associated with that collector, you can add them manually.

Historian | 14 - Data Collectors - General | 2057

When adding a tag manually, you must manually configure the fields for the tag that the Add Tag Manually

window does not include. For instance, when you add a tag manually, the Data Type field does not

automatically populate after you select a Source Address. You must manually set the data type from the

Collection section after you add the tag. Use caution when selecting the data type. If you select the wrong

data type, you most likely will get incorrect data or you could even lose data. It does not use the collector

default settings, such as those for archive and collector compression, as it would with the browse and

pick.

Add a Tag Using Historian Administrator

1. Add an instance of the collector (on page 357) that you want to use to collect the tag data.

2. Create a data store (on page 852) in which you want to store the tag data.

1. Access Historian Administrator.

2. Select Tags > Add Tag Manually.

The Add Tag Manually window appears.

3. Enter values in the available fields as described in the following table.

Historian | 14 - Data Collectors - General | 2058

Field Description

Collector Name Select the collector that you want to use to col

lect data of the tag.

Source Address Enter the

Tag Name Enter a name for the tag.

Data Store Select the type of the data store in which you

want to store the tag data.

Data Type Select the data type of the tag. If you select

MultiField, the User Def Type Name field is en

abled.

User Def Type Name For a tag of the multi-field data type, select the

data type of the tag that you have defined.

Is Array Tag Select this check box if the tag stores an array

of data.

Time Resolution

Time Adjustment
Important:

If you manually add a Server-to-Serv

er tag, ensure that you set the Time

Adjustment field for the tag to the Ad

just for Source Time Difference op

tion, after you add the tag. The Time

Adjustment field is located in the Ad

vanced section in the Tag Maintenance

page. This field only applies to Serv

er-to-Server tags that use a polled col

lection type.

4. Select OK.

The tag is added.

Historian | 14 - Data Collectors - General | 2059

Add a Tag Using the Web Admin Console

The dynamic collector update feature ensures that any modifications done to the tag configuration do

not affect all the tags in a collector. Only the tags that stop data collection will record zero data and bad

quality without restarting the collector. In other words, the tags that do not stop data collection do not

record bad data samples to the collection.

Whenever you add tags, delete tags, or modify certain tag properties, the following collectors reload only

the modified tag(s) without restarting the collectors:

• OPC Collector

• iFIX collector

• Calculation collector

• Simulation Collector

• Server to Server Collector

• PI Collector

• PI Distributor

For a tag to stop and restart the collection without restarting the collector, you must enable the On-

line Tag Configuration Changes option in the Advanced section of the Collector Maintenance page. By

default, the On-line Tag Configuration Changes option is enabled.

If you disable the On-line Tag Configuration Changes option, any changes you make to the tags do not

affect collection until after you restart the collector. To restart the collector, you must stop and start

the collector service or executable. Restarting the collector stops and restarts the tag(s) collection and

records bad data samples to the collection.

All the collector configuration changes done within a 30 second time frame are batched up to let you

update/modify a small set of tags at a time to collect the modified data faster.

Note:

It is recommended that you disable the On-line Tag Configuration Changes option while updating

large sets of tags at the same time, and restart the collector after modification.

Follow these steps to add a new tag manually from the Web Administrator:

1. Select the link in the Tag Details page and select Add Tags Manually.

The Add Tag window appears.

2. Select a collector from the drop-down list in the Collector Name field.

Historian | 14 - Data Collectors - General | 2060

This associates the new tag with a specific collector.

3. Enter the Source Address and Tag Name in the appropriate fields.

4. Select the data store in the Data Store field.

5. Select a Data Type from the drop-down list.

6. For fixed string data types only, enter a value in the field adjacent to the Data Type field.

7. Select Seconds, Milliseconds, or Microseconds in the Time Resolution field.

8. Select the Is Array Tag option, if the tag is an Array Tag.

9. Select Add to add the tag.

Important:

If you manually add a Server-to-Server tag, ensure that on the Tag Maintenance page

Advanced tab, you set the Time Adjustment field to Adjust for Source Time Difference ,

after you add the tag. Note that, this field only applies to Server-to-Server tags that use a

polled collection type.

Add a Source Address Using the Web Admin Console

1. Select a collector from the drop-down list in the Collector Name field.

This associates the new tag with a specific collector.

2. Enter the Source Address or select the Browse button.

The Add Tags from Collectors window appears.

3. Select the tag you want to associate to source address. You can select only one tag.

4. Select OK.

The source address of the tag will be added.

Copy a Tag

If you want to create a copy of an existing tag with all the same properties, use the Copy Tag function.

Copy Tag works only for individual tags. You cannot copy multiple tags at once.

1. To copy a tag using Historian Administrator:

a. Select a tag to copy from the tag list.

b. Select the Copy Tag link in the Tag Maintenance page.

The Copy Tag window appears.

c. Type a new tag name.

d. Select OK to copy the tag and all the associated tag properties.

Historian | 14 - Data Collectors - General | 2061

2. To copy a tag using the Web Admin console:

a. Select the Copy Tag icon in the Tag page.

The Copy Tag window appears.

b. Type a new tag name.

c. Select OK to copy the tag and all the associated tag properties.

Search for Tags

1. To search for tags using Historian Administrator:

a. In the Tag Maintenance page, select the Search Historian Tag Database link.

The Search Historian Tag Database window appears.

b. Enter a tag search mask in the Tag Mask field, using * and ? wildcard characters.

You can search for a description instead of a tag by entering a mask in the Description field.

If you leave both fields blank, the search returns all tags.

c. Select the name of the collector in the Collector field.

d. Enter the maximum number of tags the search should return.

If you leave this field blank, your search will return all the tags available in the Historian Tag

Database.

e. Select OK.

The Tag Maintenance page appears.

Historian | 14 - Data Collectors - General | 2062

Note:

Prior to performing any maintenance, it is recommended to adhere to the accepted

practice of performing a backup of your Historian archive. It is also recommended

that you use the Excel Add-In to export your tag configuration for all tags. It is

recommended that you export tags associated with each collector on a separate

worksheet.

f. If you want to change the default tag properties, select the name of the tag.

g. Enter the properties of the tag in the appropriate fields.

h. Select Update to save your entries.

CAUTION:

Multi-select and property change will affect all selected tags. Changing the

collector type for the Calculation and Server-to-Server tags will result in a loss of the

calculation formula.

2. To search for tags using the Web Admin console:

a. Select Advanced Search in the Tags page.

The Advanced Search window appears.

b. In the Step 1 section, select the tag criteria from the list.

c. Enter or select the Tag Criteria Value.

If you leave the fields blank, the search returns all the available tags.

d. Select Add Criteria and choose Collector Name as criteria.

e. Select the collector from the list.

f. Select Find Tags.

All the tags that satisfy the query criteria are displayed in the Step 2 section.

g. Select the tags and select Apply to return the list of tags to the parent Tags page.

h. If you want to change the default tag properties, select the name of the tag from the list and

edit the properties in the Tag Editor section.

Historian | 14 - Data Collectors - General | 2063

i. Select Update to save your entries.

CAUTION:

Multi-select and property change will affect all selected tags. Changing the

collector type for the Calculation and Server-to-Server tags will result in a loss of the

calculation formula.

Remove Tags

Deleting a tag only removes it from the browse list; the data remains intact in the Archive and can be

queried by tag name. It is recommended that you export your tag configuration before and after tag

modifications.

1. To remove a tag using Historian Administrator:

a. On Historian Administrator Main page, select the Tags link on the toolbar.

The Tag Maintenance page appears.

b. Select the name of the tag you want to remove.

To remove multiple tags:

▪ Select a tag to highlight it.

▪ Select multiple tags by pressing the Control key and selecting the individual tags.

▪ Select contiguous tags by pressing the Shift key and selecting the first and last tags

of the sequence.

c. Select the Delete button.

The Delete Tag window appears.

d. Select either Remove Tag from System or Stop Data Collection and select OK.

If you want to stop collection temporarily and resume collection later for a specified

time, you can disable collection for that tag instead. To do this, select the tag on the Tag

Maintenance page, select Collection, and then select the Disable option for the Collection

field.

2. To remove a tag using the Web Admin console:

a. On Historian Administrator Main page, select the Tags link on the toolbar.

The Tag Maintenance page appears.

b. Select the name of the tag you want to remove.

Historian | 14 - Data Collectors - General | 2064

To remove multiple tags:

▪ Select a tag to highlight it.

▪ Select multiple tags by pressing the Control key and selecting the individual tags.

▪ Select contiguous tags by pressing the Shift key and selecting the first and last tags

of the sequence.

c. Select the Delete button.

The Delete Tag window appears.

d. Select either Remove Tag from System or Stop Data Collection and select OK.

Browse a Data Source for New Tags

To browse for new tags, your collector must be running. If it is not running, start the collector.

The most common way to add tags to an Historian Database is to browse the data source for new tags.

Note:

Performing large tag browses in Historian Administrator may cause your session to time out. Use

the browse filter criteria to return a smaller list. In the Non-Web Administrator, if your OPC server

supports hierarchical organization of your tags, see Adding Tags for Collectors with Hierarchical

Browsing (on page 2056) to speed browse sessions.

1. To browse for new tags using Historian Administrator:

a. Open the Historian Non-Web Administrator.

b. Select the Collectors link from the toolbar.

The Collector Maintenance page appears.

c. If you have multiple collectors listed, select a collector from the Collectors list.

d. To browse for new tags from your data source, select Add Tags at the bottom of the page.

The Add Multiple Tags From Collector window appears.

Historian | 14 - Data Collectors - General | 2065

e. In the Show Only field, select either All Source Tags or Source Tags Not Collected.

If you select the second option, the browse returns only the tags that are not currently

included for collection.

If a Historian tagname is different from its source address tagname, the source tag is

displayed in the returned list even if you browse the collector using the Show Source Tags

Not Collected criterion. Collection on the same source address using a unique tagname is

allowed.

A check mark beside a tag indicates that the tag is currently being collected. Absence of a

mark indicates that the tag is not currently being collected.

f. In the Source Tagname and Description fields, you can optionally enter masks for the

browse, using standard Windows wildcard characters.

g. Select Browse to initiate the search or Reset to start over.

The browse returns a list of tags, as shown in the following figure. In the Historian Non-

Web Administrator, a tag that is currently collected appears in black type. A tag that is not

currently collected appears in blue type.

Historian | 14 - Data Collectors - General | 2066

See also Add Multiple Tags from a Collector Using Historian Administrator (on page 2052).

2. To browse for new tags using the Web Admin console:

a. Open the Historian Web Administrator.

b. Select the Collectors link from the toolbar.

The Collector page appears.

c. If you have multiple collectors listed, select a collector from the Collectors list.

d. To browse for new tags from your data source, go to the Tags page from the Configuration

page.

e. Select Add Tags at the bottom of the page and select Add Tag from Collector.

The Add Tags from Collector window appears.

f. Select single or multiple tags, select on Add Selected Tags button.

See also Add Tags from a Collector Using the Web Admin Console (on page 2055).

About Configuring Collector Options

If you are using Historian Administrator, configure collector options as follows:

Historian | 14 - Data Collectors - General | 2067

• Start at the Collector Maintenance page in Historian Administrator. You can access the Collector

Maintenance page in several ways:

◦ Select the Collectors link in any of the major pages in Historian Administrator.

◦ Select the collector name in the Collectors section of Historian Administrator Main page.

This displays the page with the specific collector already selected.

The Collector Maintenance page lists all connected collectors at the left of the page. The right-side

displays parameter values, in several tabs, for the collector you select by selecting on a name in the list.

• To make a change in a configurable parameter, enter the value in the appropriate field and select

Update. For more information, refer to Historian Administrator.

If you are using the Web Admin console,

• Go to the Collectors page. This displays the list of available collectors and their status. You can

edit the collector configurable parameters.

• From the Collector Maintenance page or the Collector page, select the various tabs to display

parameters of various types for the specific collector you have selected.

For more information, refer to Historian Web Administrator Help.

.

About Collector Redundancy

Historian includes support for collector redundancy, which decreases the likelihood of lost data due to

software or hardware failures. Implementing collector redundancy ensures that collection of your data

remains uninterrupted. Collector redundancy makes use of two or more collectors, gathering data from a

single source. For more information, refer to the About Collector Redundancy (on page 975).

Note:

Use Polled tags only as watchdog tags.

Collect Vendor Attributes

Data sources are often customized to include information specific to a site's installation in the form of

vendor attributes. This customization adds data not covered by the OPC or OPCAE specifications and

may or may not require storage in the Historian Archive. As a result, Historian Administrator provides a

means to specify which vendor attributes will be collected from any given data source. A maximum of 10

vendor attributes can be collected.

Historian | 14 - Data Collectors - General | 2068

1. To collect vendor attributes using Historian Administrator:

a. In the Historian Administrator Main page, select the Collectors link in the toolbar.

The Collector Maintenance page appears.

b. Select Configuration.

c. To collect all vendor attributes from the data source, select All.

d. To collect up to 10 selected vendor attributes from the data source:

i. Select the Selected option.

ii. Select Add to add a vendor attribute to collect from the data source.

The Vendor Attributes window appears.

e. In the Vendor Attribute field, enter the vendor attribute you wish to collect from the data

source and select OK.

The vendor attribute appears in the list box on the Collector Configuration page.

f. To remove a vendor attribute, select it in the list box and select Remove.

g. Select Update to apply your changes.

2. To collect vendor attributes using the Web Admin console:

a. In the Historian Dashboard, select the Details button in the Collectors section.

The Collect Statistics window appears.

b. Select the Configure button.

The Collector Configuration page appears.

c. To collect all vendor attributes from the data source, select All.

d. To collect up to 10 selected vendor attributes from the data source:

i. Select the Selected option.

ii. Select Add to add a vendor attribute to collect from the data source.

The Vendor Attributes window appears.

e. In the Vendor Attribute field, enter the vendor attribute you wish to collect from the data

source and select OK.

The vendor attribute appears in the list box on the Collector Configuration page.

Historian | 14 - Data Collectors - General | 2069

f. To remove a vendor attribute, select it in the list box and select Remove.

g. Select Update to apply your changes.

Collector Spare Configuration

Spare configuration enables you to add additional configuration to the tag using the Spare 1 to Spare 5

fields in all the collectors except in a Server-to-Server collector, Server-to-Server distributor, and an OSI PI

distributor.

• In case of an OSI PI distributor, data is read from the Historian tag displayed in the Source Address

field and sent to the OSI PI tag name displayed in the Spare 1 field. To control the source and

destination tags, change the Source Address and Spare 1 values. You can add or update values in

the remaining spare fields.

• In case of Server-to-Server collector and Server-to-Server distributor, you can update the Spare 1

to Spare 4 values, but the Spare 5 field is used only for internal purposes. Therefore, do not update

the Spare 5 field.

Data Collector Operation and Troubleshooting

Data Collector File Locations

Historian data collector files are installed in the following default directories:

• Executables

◦ OPC, Simulator, File, Calculation, and Server-to-Collectors

c:\Program Files\Proficy\Historian\Server

◦ iFIXCollector

C:\Program Files (x86)\GE\iFIX

• LOG files and SHOW files

C:\Historian Data\LogFiles (*.log, *.shw)

• Buffer files and local tag cache

C:\Historian Data\BufferFiles (*.msq, *.cfg)

Historian | 14 - Data Collectors - General | 2070

Pause or Resume Data Collection for All Tags

1. To pause or resume data collection using Historian Administrator:

a. Open Historian Administrator.

b. Select the Collectors link.

The Collector Maintenance page appears.

c. From the list of collectors at the left of the page, select the collector you want to pause or

resume.

d. Select the appropriate running status from the Collection Status section in the General

section.

No data buffering occurs while collection is paused.

e. Select Update to activate your change.

2. To pause or resume data collection using the Web Admin console:

a. Go to the Collectors Configuration page.

b. From the list of collectors at the left of the page, select the collector you want to pause or

resume.

c. Select Pause or Resume.

No data buffering occurs while collection is paused.

3. To pause or resume data collection by accessing the local collector machine:

a. On the Start menu, select Run.

b. Type services.msc and select OK.

The Services window appears.

c. Select the Historian (collector type) Collector and select Start or Stop.

d. Select Close.

4. To pause data collection from the Collector icon:

Historian | 14 - Data Collectors - General | 2071

a. Select the Windows Start button, select Historian 6.0 from the Programs menu, and select

the appropriate icon for your collector.

The process should start and an application icon display should appear in minimized form

on the lower toolbar.

b. To stop the collector, maximize the icon from the toolbar, type s, and press Enter.

Pause Data Collection for a Subset of Tags

1. To pause data collection for a subset of tags using Historian Administrator:

a. From Historian Administrator Main page, select the Tags link.

The Tag Maintenance page appears.

b. Select one or more tags in the Tags section.

The right-hand column displays current parameters.

c. Locate the Collection field in the Collection section.

d. Select the Disabled option.

e. Select Update.

2. To pause data collection using the Web Admin console:

a. Go to the Tags page from the Configuration page.

b. Select one or more tags in the Tags section.

The Tag Editor section displays current parameters.

c. Locate the Collection field in the Collection section.

d. Disable the option.

e. Select Update.

Data collection stops for those tags. To re-activate collection for those tags, select Enabled

for the Collection option and select Update.

Historian | 14 - Data Collectors - General | 2072

Note:

If the collector is configured to allow online changes, making configuration changes

such as the above may cause bad data samples to be recorded as the collector

internally restarts. Disable online configuration changes and restart the collector

manually if you want to avoid this behavior.

Modify User Privileges for Starting a Collector

To start any collector, a user must have Power User privileges at a minimum. Typically, a user from the

Administrator group starts a collector. If running as a service, you can use the local system account. If

a user is not a Power User or Administrator, for instance, and you still want to allow that user to start a

collector, you can override the user permissions setting in the Windows Registry.

The following example shows how to change the user permissions for a collector (the iFIX collector).

While these steps outline the procedure for changing the user permissions for the iFIX collector, note that

you must perform these steps individually for each collector that you want to allow the user to start.

To change the permissions in the Windows Registry, you must be an Administrator. After you change the

permissions, you can exit the Registry Editor, allow the user to log in again, and then allow that user to

restart the collector.

1. On the Start menu, select Run.

2. Type regedt32 and select OK.

The Registry Editor appears.

3. Navigate to the following registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\Intellution,Inc.\iHistorian\Services\iFixCollector

4. Right-select the iFIX Collector folder and select Permissions.

The Permissions for iFIXCollector window appears.

5. Select the Users group in the top portion of the window.

6. Select the Allow check box from the Full Control permissions, in the bottom portion of the window.

7. Select Apply.

About Monitoring Data Collector Performance Statistics

You can evaluate data collector performance by observing information displayed or recorded in the

following pages or files:

Historian | 14 - Data Collectors - General | 2073

• Historian Administrator Main page and Historian Messages page.

For a detailed description of the parameter/option fields and the Alerts and Message Search

Windows, refer to Using Historian Administrator manual.

• LOG and SHOW files on the data collector local machine.

LOG (.log) files are historical journals of every event affecting operation of the collector. When you

troubleshoot a problem in a collector, examining the log files is the best place to begin. The default

path for LOG and SHW files is C:\Proficy Historian Data\LogFiles. The highest number

is the most recent.

SHOW (.shw) files allow you to examine the current configuration of a data collector. This file also

details version and system configuration affecting the specific collector. The default path for LOG

and SHW files is C:\Proficy Historian Data\LogFiles.

If you are upgrading from a previous version of Historian, then the Archives, LogFiles, and

BufferFiles destination paths will remain unchanged.

Historian periodically checks for Archives, Bufferfiles, and Logfiles folder disk space

availability. If the available disk space is less than configured, then Historian Data Archiver may

shutdown.

• Event Viewer on the Historian Server and on the collector local machine.

The Windows Event Viewer logs all system events of interest to an administrator or developer.

Each event has an identifying icon, such as Information, Warning, or Error. Select an item to

display more detail about the event. Use this information to determine when and why a server fault

occurred and when satisfactory operation was restored.

• Historian tag using the source address of the Rate Output Address, Status Output Address, or

heartbeat Output Address.

Disabling Rebroadcasting for Historian Data Archiver

The Historian Data Archiver service rebroadcasts collector status reports to all connected clients to

ensure they are immediately notified of any changes to their configuration. If you have many collectors

(20 or more) pointing to a single Historian archive, you may experience network congestion.

1. Start the Windows Registry Editor.

2. Navigate to the HKEY_LOCAL_MACHINE\SOFTWARE\Intellution, Inc\iHistorian\Services

\DataArchiver key

Historian | 14 - Data Collectors - General | 2074

3. Create a new DWORD called RouteInterfaceStatusMsg and set it to 0 (to enable rebroadcasting, set

this value to 1).

4. Close the Windows Registry Editor.

5. Restart the Historian Data Archiver service.

Note:

If rebroadcasting is disabled in the Historian Data Archiver service, any programs

subscribed to collector status changes using Collectors.SubscribeStatus = true will

no longer automatically receive collector status messages. To receive collector status

messages, periodically read the Collector.Status property instead.

Troubleshooting Tag Configuration

To troubleshoot the tag configuration:

• View the Collector SHOW (DataCollector.shw) file in C:\Historian Data\LogFiles

\xxxCollector.shw to review the current Data Collector configuration.

• View the DataCollector.LOG file in C:\Proficy Historian Data\LogFiles

\xxxCollector-01.log to detect operational errors with Tags.

• If you are using aggregate data, such as average, minimum, or maximum, use a chart display such

as the trend option or the Excel Add-In to sample and then observe how data is stored.

• If you are not certain about what is happening, turn off Collector Compression and Archive

Compression and observe how raw data values flow into the archive. Be sure to export the tag

configuration first so you can return to the original configuration.

Note:

If you are upgrading from a previous version of Historian, then the Archives, LogFiles,

and BufferFiles destination paths will remain unchanged. By default, C:\Program

Files\Proficy\Proficy Historian\Logfiles\.

Reviewing the Active Collector Configuration

You can view the active collector configuration via the Historian Administration too, and you can also view

the local Data collector SHOW (.shw) file.

1. In Historian Administrator Main page, select the Collectors link. The Collector Maintenance page

appears.

The Collector Maintenance page appears.

Historian | 14 - Data Collectors - General | 2075

2. Select a data collector in the left column. The right column fills with current configuration data.

3. Examine the current configuration settings to verify that they are appropriate.

You can also review the active configuration by examining the local Data Collector SHOW(.SHW)

File, as shown below:

4. Scan the contents of the file and verify that the configuration parameters are correct for the

application.

If any of the values are not appropriate:

a. Go back Historian Administrator.

b. Select the Collectors link to display the Collector Maintenance page.

c. Select a collector.

d. Access the various sections and enter new values as appropriate.

e. Select Update.

The new values are stored in the Data Collector SHW file after 30 seconds.

Historian | 14 - Data Collectors - General | 2076

Collector and Archive Compression

It is possible for collected tags with no compression to appear in Historian as if the collector or archive

compression options are enabled. If collector compression occurs, you will notice an increase in the

percentage of the Compression value from 0% in the Collectors panel of the System Statistics page in

Historian Administrator. When archive compression occurs, you will notice the Archive Compression

value and status bar change on the System Statistics page.

Collector Compression

For all collectors, except the File collector, you may observe collector compression occurring for your

collected data (even though it is not enabled) if bad quality data samples appear in succession. When a

succession of bad data quality samples appears, Historian collects only the first sample in the series. No

new samples are collected until the data quality changes. Historian does not collect the redundant bad

data quality samples, and this is reflected in the Collector Compression percentage statistic.

For a Calculation or Server-to-Server Collector, you may possibly observe collector compression (even

though it is not enabled) when calculations fail, producing no results or bad quality data.

Archive Compression

If the Archive Compression value on the System Statistics page indicates that archive compression

is occurring, and you did not enable archive compression for the tags, the reason could be because of

internal statistics tags with archive compression enabled.

Data Buffering

During normal operation, the Data Collector sends data and messages to the Historian Server using TCP/

IP.The Server responds when it has successfully received the data.

Normal variations in response from the server can leave a small number of messages buffered in

memory.When the collector loses its connection, or whenever the server cannot keep up with throughput,

the data collector establishes a buffer. During such periods, the data collector continues to write data,

caching it in the local file and memory buffer instead of writing it to the server. When the collector

reestablishes the connection to the server, it forwards the stored data to the server, clearing the buffer as

the server successfully receives the data.

If a collector writing to an archive loses its connection and the disk buffer becomes full, real-time

collection does not begin immediately upon the re-established connection to the server. No data is

collected from the time that the connection to the archive is re-established until approximately the time it

takes for the buffer on the collector to clear.

Historian | 14 - Data Collectors - General | 2077

Note:

The Data Buffering feature does not apply to File collectors. The File collector does not process

incoming files when the connection to the server is down. When the connection is re-established,

processing of incoming files resumes.

If there is not enough free space for a collector to create its buffer files on initial startup, the collector

shuts down immediately and sends the following message to the Event Viewer:

"[datetime] MessageAdd -MDW_iFIX collector Buffering could not create buffer files. Shutting down."

If there is not enough free space for the collector to create its buffer files on startup, the collector shuts

down and sends a message to the Event Viewer. The simplest way to prevent this from happening is to

free up disk space to allow the collector to start. If this is not possible, you can edit the Registry to change

the buffer size.

Editing the Registry to Change the Buffer Size

1. Select Run from the Start menu.

The Run window appears.

2. Type Regedit and press Enter.

The Registry Editor appears.

3. Locate the ComputerName_OPC1 key, where ComputerName is the name of your computer. You

can find this key here:

HKEY_LOCAL_MACHINE\SOFTWARE\Intellution,Inc.\Historian\Services\OPCCollector\ComputerName_OPC1

4. Add a new DWORD value. Enter the name MinimumDiskFreeBufferSize, select the decimal option,

and set the value to a small number such as 10 or 20. The value that you enter represents the

number of MB of buffer space needed.

5. Start the collector.

6. If the Collector does not connect to the Historian Server, check the log file in the logfiles folder on

the collector computer. If the log states that Historian "could not create buffer files" then repeat

steps 1-5, this time using a smaller number.

7. Once the Collector connects to the Historian Server, the collector should appear in the Admin UI

and you can readjust the buffer file size on the bottom of the collector’s General section.

Setting Up Services Recovery Actions in Windows

Windows allows you to set up recovery actions to take place if a service fails. If you are running Historian

Collectors on Windows, set recovery actions to restart the service for your individual collectors.

Historian | 14 - Data Collectors - General | 2078

To set recovery actions for a specific service:

1. Open the Control Panel.

2. Double-click the Administrative Tools icon.

3. Double-click the Services icon in the Administrative Tools window.

The Services window appears.

4. Right-select the Service you want to set recovery options for.

5. Select Properties.

The Service Properties window appears.

6. Select Recovery.

7. Select the recovery actions you want in the First attempt failure, Second attempt failure and

Subsequent attempts failure fields.

For more information on setting Services Recovery Actions, refer to the Microsoft Management

Console online Help.

Working with Python Expression Tags

Python Expression Tags in Historian

A Python® expression is typically a single line of Python code which, when executed, evaluates to a single

value. It can also be thought of as the right-hand side of a Python assignment operation.

Python Expression Tags are used in cases where you do not want to store a raw data value, but wish

to store only derived or calculated values. Historian allows raw data to be pre-processed with Python

expressions during collection, so that the data collected for the expression tags contain these derived

values.

See www.python.org/ for complete Python documentation.

Note:

This functionality is available only for the Enterprise edition of Historian.

To use a Python Expression Tag in Historian, you must configure a tag as a Python Expression Tag using

either Historian File collector or Historian Excel Add-in. You can then use the Python expression on this

tag to pre-process raw data before the result is inserted into Historian.

The following collectors support Python Expression Tags:

https://www.python.org/

Historian | 14 - Data Collectors - General | 2079

• Simulation Data Collector

• iFix Data Collector

• OPC Data Collector

• OSI PI Collector

• Windows Performance Collector

• Collector Toolkit

To enable Python Expression support for toolkit-based collectors, copy the following files to the collector

executable path:

• python34.dll

• ihcpprest140_2_8.dll.dll

• PythonExpressionExtension.dll

For 32-bit collectors, these files are located at C:\Program Files\Proficy\Proficy Historian

\x86\Server. For 64-bit collectors, these files are located at C:\Program Files\Proficy\Proficy

Historian\x64\Server.

Supported Python Modules

This table lists the available Python modules. Within the approved modules below, certain Python classes,

functions, and keywords may not be available for use, for security reasons. For example, the exec function

cannot be used.

Note:

Python modules not listed in the table are not supported.

Standard

Python Modules
Documentation Needs Importing

builtins Standard Python documentation No

datetime Standard Python documentation Yes

math Standard Python documentation Yes

statistics Standard Python documentation Yes

Module part of Historian

install

Unit of Measure Python Module.pdf

(This document can also be found in the help di

rectory for your Historian installation.)

Yes

http://www.python.org
http://www.python.org
http://www.python.org
http://www.python.org

Historian | 14 - Data Collectors - General | 2080

Standard

Python Modules
Documentation Needs Importing

uom (unit of measure

conversion module)

Constructing and Adding Python Expression Tags

To configure and use the Python Expression Tag in Historian:

1. Construct a Python Expression. (on page 2080)

2. Construct the JSON configuration. (on page 2080)

3. Add the Python Expression Tag to Historian. (on page 2082)

For examples, see the Python Expression Tag Examples (on page 2084).

Constructing a Python Expression

1. Open a text editor.

2. Construct an expression in Python that takes raw data and produces a calculated value you want to

store in Historian.

◦ The raw data in your expression is exposed in the Python script as an object with the

following properties: value, is_quality_good, is_quality_bad, timestamp

◦ You can give this object any name you want.

3. Ensure that the expression you create is a valid Python expression (that is, it evaluates to a single

value).

For example, we call our object temp and we use the value property. We create a simple, valid

Python expression, taking raw data (temp.value) and create a calculated value.

temp.value + math.pow(10,temp.value/70)

To use this example, temp.value must be defined and the Python math module must be imported.

Constructing the JSON Configuration

Construct a JSON configuration object that contains the Python expression in the same text editor. This

allows you to specify Python modules that you require and to link the variables (parameters) used in the

expression to a raw data source.

It is easier to edit your JSON in the Historian Excel Add-In, which you will use later to add the tag to

Historian, see Adding a Python Expression Tag to Historian (on page 2082).

Historian | 14 - Data Collectors - General | 2081

The JSON needs to be “minified” and it needs to conform to a particular structure. Example of JSON

containing a Python Expression in "Minified" format

{"imports":["math"],"script":"temp.value +

math.pow(10,temp.value/70)","parameters":[{"name":"temp","source":{"add

Here is an example of JSON structure in “Beautified” format. The highlighted entries are placeholders.

{

"imports":["<imported_module0>", "<imported_module1>",

"<imported_module2>",...], "script":"<python_expression>",

"parameters":[

{

"name":"<variable_name>", "source":{"address":"<source_address>",

"dataType":"<datatype_of_parameter_value_field>"}

},...

]

}

After "imports", list the Python modules you need to import for your Python expression. See Supported

Python Modules (on page 2079).

After "script", enter the python expression that you created in Constructing a Python Expression (on page

2080).

Provide values for the following parameters:

Para

meter
Description

name The variable name you gave to the object representing the raw data which will be pre-

processed by the expression you created. This variable is exposed in the Python script as an

object with the following properties: value, is_quality_good, is_quality_bad, timestamp.

address The source address used by the collector to access the raw data. This parameter is stipu

lated in the context of the chosen collector, which must be on the list of collectors (on page

2078) supporting Python Expression Tags.

dataType The datatype of the \value field for the variable representing the raw data. This allows the

Python expression to know the data type on which it is operating.

The datatype options are: SingleFloat, DoubleFloat, SingleInteger, DoubleInteger,

QuadInteger, UnsignedSingleInteger, UnsignedDoubleInteger, UnsignedQuadInteger,

Historian | 14 - Data Collectors - General | 2082

Para

meter
Description

FixedString, VariableString, Byte, Boolean. These are the same Historian data types that

are supported by the File collector.

Example of JSON containing a Python Expression in “Beautified” format

This example uses the Simulation Collector. Your collector might use a different source address.

{

 "imports":["math"],

 "script":"temp.value+math.pow(10,temp.value/70)",

 "parameters":[{"name":"temp","source":

{"address":"Simulation00001","dataType":"SingleFloat" } }]

}

It is important to check that your JSON is valid, since no validation will be performed on the JSON at tag

creation.

Minified JSON

Once you have constructed this JSON, you need to format it as a “minified” string, so that it can be

processed in later steps. Minified JSON has no newline characters or comments. There are tools which

can help you minify JSON.

For our example, the minified JSON would look like this:

{"imports":["math"],"script":"temp.value + math.pow(10,temp.value/70)","parameters":

[{"name":"temp","source":{"address":"Simulation00001","dataType":"SingleFloat"}}]}

Pay attention to escape characters in your JSON. If your JSON contains a \ character, you need to escape

it. So, \ becomes \\ (since \ is used to escape another \).

Adding a Python Expression Tag to Historian

You can now add a Python Expression Tag to Historian. Ensure the following for your Python Expression

Tag:

• CalcType is set to "PythonExpr".

• SourceAddress contains the JSON configuration.

Historian | 14 - Data Collectors - General | 2083

Adding the Python Expression Tag can be done using Historian File collector or Historian Excel Add-in in

the same way that you would add a regular tag.

For more information on adding tags, refer to Historian File collector or Historian Excel Add-in.

• File collector (especially the CSV File Formats and XML File Formats sections)

If you add your tag to the Historian via the File collector and using the CSV format, you must

enclose the JSON in quotation marks (") to satisfy CSV requirements for a column value containing

commas (,).

This means that you will also need to escape any quotation marks (") in the JSON. That is, "

becomes "" (as " is used to escape another ").

• Using the Historian Excel Add-in

The Historian Excel Add-In has the advantage of being easiest to use for editing your JSON.

Example of Adding a Tag Using the File collector

For this example, we choose to add a Python Expression tag to the Historian using the File collector to

import a CSV file.

The file contents look like this:

[Tag]

Tagname,CollectorName,CalcType,SourceAddress,DataType,Description

ExampleTag,SimulationCollector,PythonExpr,

"{""imports"":[""math""],""script"":""temp.value +

math.pow(10,temp.value/70)"",""parameters"":[{""name"":""temp"",""source"":{""address"":""Simulation00001"",""dataType"

":""SingleFloat""}}]}",

SingleFloat,Python Expression Tag example

Note the following:

• The CalcType header is included and set to PythonExpr.

• The Source Address is set to the minified JSON created in the previous step.

• The CollectorName is set to SimulationCollector, which is a Simulation Collector. This collector

is on the list of collectors supporting Python Expression Tags. Your collector might be called by a

different name.

Historian | 14 - Data Collectors - General | 2084

• The quotation marks within the JSON string are escaped with other quotation marks in the CSV

file.

For more information, refer to File collector > CSV file format.

Viewing the Python Expression Tag

When viewing a Python Expression Tag using Historian Administrator, note that:

• The Source Address field contains the full applicable JSON configuration, which includes an

indication of the source address. Changing this is not recommended.

• The Browse button for configuring the Source Address is disabled for Python Expression Tags.

Python Expression Tag Examples

This section provides examples for using Python® Expression Tags.

Using No Python Modules or Functions

In this example, we want to perform gross error detection on a signal "Signal" and clip the values to a

range between 0 and 600.

Expression

To solve this, we create the following Python expression.

 0 if Signal.value<0 else (600 if Signal.value>600 else Signal.value)

Python Datatype Name Description

Expression Inputs SingleFloat Signal Represents the signal value.

Expression Result SingleFloat Not Applicable Represents the resulting expression val

ue, with extreme outliers clipped.

Python Modules to Import for this Expression: None. (Only modules contained on the list of supported

modules (on page 2079) are available for this expression.)

Constructing the JSON:

Using the created expression, we construct the following JSON. For more information, refer to

Constructing the JSON Configuration (on page 2080).

Historian | 14 - Data Collectors - General | 2085

"script":"0 if Signal.value<0 else (600 if Signal.value>600 else Signal.value)", "parameters":[

 {

 "name":" Signal",

 "source":{"address":"Simulation00001", "dataType":"SingleFloat"}

 }

]

 }

Note that the address parameter is stipulated in the context of the chosen collector, which must be on the

list of collectors (on page 2078) supporting Python Expression Tags.

In this example, we have used the Simulation Collector. Your collector might use a different source

address.

We then transform the above into a minified JSON string:

{"script":"0 if Signal.value < 0 else (600 if Signal.value > 600 else Signal.value)","parameters":

 [{"name":"Signal","source":{"address":"Simulation00001",dataType":"SingleFloat"}}]}

Adding the Expression Tag to Historian

For this example, we choose to add a Python Expression tag to the Historian using the File collector to

import a CSV file. (We could also have added the tag via the Historian Excel Add-In.)

The file contents look like this:

[Tag]

 Tagname,CollectorName,CalcType,SourceAddress,DataType,DescriptionGEDSignalTag,SimulationCollector,PythonExpr,

 "{""script"":""0 if Signal.value < 0 else (600 if Signal.value > 600 else

 Signal.value)"",""parameters"":

 [{""name"":""Signal"",""source"":{""address"":""Simulation00001"",""dataType"":""SingleFloat""}}]}",

 SingleFloat,Python Expression Tag example

Note the following:

• The CalcType header is included and set to PythonExpr.

• The Source Address is set to the minified JSON created in the previous step.

Historian | 14 - Data Collectors - General | 2086

• The CollectorName is set to SimulationCollector, which is a Simulation Collector. Your collector

might be called by a different name.

• The quotation marks within the JSON string are escaped with other quotation marks.

We then import the file, following the instructions specified in File collector.

Using a Bulit-In Python Function

In this example, we want to calculate the maximum of two temperature values to be collected.

Expression

To solve this, we create the following Python expression:

max(ThermocoupleA.value, ThermocoupleB.value)

Python Datatype Name Description

Expression Inputs SingleFloat ThermocoupleA Represents a temperature value.

SingleFloat ThermocoupleB Represents a temperature value.

Expression Result SingleFloat Not Applicable Represents the maximum of the two giv

en temperature values

Python Modules to Import for this Expression: None. A built-in Python module from the Python Standard

Library is used. (Only modules contained on the list of supported modules (on page 2079) are available to

this expression.)

Constructing the JSON

Using the created expression, we construct the following JSON:

{

 "script":"max(ThermocoupleA.value,ThermocoupleB.value)",

 "parameters":[

 {

 "name":"ThermocoupleA",

 "source":{"address":"Simulation00001","dataType":"SingleFloat"}

 },

 {

 "name":"ThermocoupleB",

 "source":{"address":"Simulation00002","dataType":"SingleFloat"}

bm_file_collector.ditamap

Historian | 14 - Data Collectors - General | 2087

 }

]

}

Note that the address parameter is stipulated in the context of the chosen collector, which must be on the

list of collectors (on page 2078) supporting Python Expression Tags. In this example, we have used the

Simulation Collector. Your collector might use a different source address.

We then transform the above into a minified JSON string:

{"script":"max(ThermocoupleA.value,ThermocoupleB.value)","parameters":[{"name":"ThermocoupleA","source":

{"address":"Simulation00001","dataType":"SingleFloat"}},{"name":"ThermocoupleB","source":

{"address":"Simulation00002","dataType":"SingleFloat"}}]}

Adding the Expression Tag to Historian

For this example, we choose to add a Python Expression tag to the Historian using the Historian Excel

Add-In. (We could also have added the tag by using via the File collector to import a CSV file.)

Ensure the following for your Python Expression Tag:

• The CalcType is set to PythonExpr.

• The SourceAddress contains the JSON configuration.

• The CollectorName is set to the name of the chosen collector, which must be on the list of

collectors supporting Python Expression Tags. Your collector might be called by a different name.

• The quotation marks within the JSON string are escaped with other quotation marks in the CSV

file.

Otherwise, the tag is added in exactly the same way as for a regular tag.

Using A Python Standard Library Module

In this example we want to calculate a result based on a specific time range for an expression input. We

set a supply voltage to zero within prescribed time ranges.

Expression

To solve this, we create the following Python expression:

0 if (SupplyVoltage.timestamp.astimezone().time() >= datetime.time(18) and

SupplyVoltage.timestamp.astimezone().time() <= datetime.time(20, 30)) else

SupplyVoltage.value

Historian | 14 - Data Collectors - General | 2088

Python Datatype Name Description

Expression Inputs SingleFloat SupplyVoltage Represents the value we wish to trans

form.

Expression Result datetime Not Applicable Represents the resulting supply volt

age, set to zero in the prescribed time

ranges.

Python Modules to Import for this Expression: datetime module. This module is shipped with Historian.

Constructing the JSON

Using the created expression, we construct the following JSON:

{

 "imports":["datetime"],

 "script":"0 if (SupplyVoltage.timestamp.astimezone().time() >= datetime.time(18) and

SupplyVoltage.timestamp.astimezone().time() <= datetime.time(20, 30)) else

SupplyVoltage.value","parameters":[

 {

 "name":" SupplyVoltage",

 "source":{"address":"Simulation00001", "dataType":"SingleFloat"}

 }

]

}

Note that the address parameter is stipulated in the context of the chosen collector, which must be on the

list of collectors (on page 2078) supporting Python Expression Tags. In this example, we have used the

Simulation Collector. Your collector might use a different source address.

We then transform the above into a minified JSON string:

{"imports":["datetime"],"script":"0 if (SupplyVoltage.timestamp.astimezone().time() >= datetime.time(18) and

SupplyVoltage.timestamp.astimezone().time() <= datetime.time(20, 30)) else

SupplyVoltage.value","parameters":[{"name":"SupplyVoltage","source":

{"address":"Simulation00001","dataType":"SingleFloat"}}]}

Adding the Expression Tag to Historian

For this example, we choose to add a Python Expression tag to the Historian using the Historian Excel

Add-In. (We could also have added the tag via the File collector to import a CSV file.)

Historian | 14 - Data Collectors - General | 2089

Ensure the following for your Python Expression Tag:

• The CalcType is set to PythonExpr.

• The SourceAddress contains the JSON configuration.

• The CollectorName is set to the name of the chosen collector, which must be on the list of

collectors supporting Python Expression Tags. Your collector might be called by a different name.

Otherwise, the tag is added in exactly the same way as for a regular tag.

Using A Python Standard Library Module

In this example we want to calculate a result based on a specific time range for an expression input. We

set a supply voltage to zero within prescribed time ranges.

Expression

To solve this, we create the following Python expression:

0 if (SupplyVoltage.timestamp.astimezone().time() >= datetime.time(18) and

SupplyVoltage.timestamp.astimezone().time() <= datetime.time(20, 30)) else

SupplyVoltage.value

Python Datatype Name Description

Expression Inputs SingleFloat SupplyVoltage Represents the value we wish to trans

form.

Expression Result datetime Not Applicable Represents the resulting supply volt

age, set to zero in the prescribed time

ranges.

Python Modules to Import for this Expression: datetime module. This module is shipped with Historian.

Constructing the JSON

Using the created expression, we construct the following JSON:

{

 "imports":["datetime"],

 "script":"0 if (SupplyVoltage.timestamp.astimezone().time() >= datetime.time(18) and

SupplyVoltage.timestamp.astimezone().time() <= datetime.time(20, 30)) else

SupplyVoltage.value","parameters":[

Historian | 14 - Data Collectors - General | 2090

 {

 "name":" SupplyVoltage",

 "source":{"address":"Simulation00001", "dataType":"SingleFloat"}

 }

]

}

Note that the address parameter is stipulated in the context of the chosen collector, which must be on the

list of collectors (on page 2078) supporting Python Expression Tags. In this example, we have used the

Simulation Collector. Your collector might use a different source address.

We then transform the above into a minified JSON string:

{"imports":["datetime"],"script":"0 if (SupplyVoltage.timestamp.astimezone().time() >= datetime.time(18) and

SupplyVoltage.timestamp.astimezone().time() <= datetime.time(20, 30)) else

SupplyVoltage.value","parameters":[{"name":"SupplyVoltage","source":

{"address":"Simulation00001","dataType":"SingleFloat"}}]}

Adding the Expression Tag to Historian

For this example, we choose to add a Python Expression tag to the Historian using the Historian Excel

Add-In. (We could also have added the tag via the File collector to import a CSV file.)

Ensure the following for your Python Expression Tag:

• The CalcType is set to PythonExpr.

• The SourceAddress contains the JSON configuration.

• The CollectorName is set to the name of the chosen collector, which must be on the list of

collectors supporting Python Expression Tags. Your collector might be called by a different name.

Otherwise, the tag is added in exactly the same way as for a regular tag.

Using A Historian Python Module

In this example we want to convert a temperature value from Fahrenheit to Celsius.

Expression

To solve this, we create the following Python expression:

uom.to_Celsius(Thermocouple.value, uom.Temperature.Fahrenheit)

Historian | 14 - Data Collectors - General | 2091

Python Datatype Name Description

Expression Inputs SingleFloat Thermocouple Represents the temperature value in de

grees Fahrenheit

Expression Result SingleFloat Not Applicable Represents the temperature value in de

grees Celsius

Python Modules to Import for this Expression: uom module. This Python module is shipped with

Historian.

(Only modules contained on the list of supported modules (on page 2079) are available to this

expression.)

Constructing the JSON

Using the created expression, we construct the following JSON:

{

 "imports":["uom"],

 "script":"uom.to_Celsius(Thermocouple.value, uom.Temperature.Fahrenheit)",

 "parameters":[

 {

 "name":" Thermocouple",

 "source":{"address":"Simulation00001", "dataType":"SingleFloat"}

 }

]

}

Note that the address parameter is stipulated in the context of the chosen collector supporting Python

Expression Tags. In this example, we have used the Simulation Collector. Your collector might use a

different source address.

We then transform the above into a minified JSON string:

{"imports":["uom"],"script":"uom.to_Celsius(Thermocouple.value,uom.Temperature.Fahrenheit)","parameters":

[{"name":"Thermocouple","source":{"address":"Simulation00001","dataType":"SingleFloat"}}]}

Adding the Expression Tag to Historian

For this example, we choose to add a Python Expression tag to the Historian using the File collector to

import a CSV file. (We could also have added the tag via the Historian Excel Add-In.)

Historian | 14 - Data Collectors - General | 2092

The file contents look like this:

[Tag]

Tagname,CollectorName,CalcType,SourceAddress,DataType,DescriptionConvertedTempTag,SimulationCollector,PythonExpr,

"{""imports"":[""uom""],""script"":""uom.to_Celsius(Thermocouple.value,uom.Temperature.Fahrenheit)"",

""parameters"":[{""name"":""Thermocouple"",""source"":{""address"":""Simulation00001"",""dataType"":

""SingleFloat""}}]}",

SingleFloat,Python Expression Tag example

Note the following: The CalcType header is included and set to PythonExpr.

Note the following:

• The CalcType header is included and is set to PythonExpr.

• The SourceAddress contains the JSON configuration.

• The CollectorName is set to the name of the chosen collector, which must be on the list of

collectors supporting Python Expression Tags. Your collector might be called by a different name.

• The quotation marks within the JSON string are escaped with other quotation marks in the CSV

file.

For more information, see File collector > CSV File Formats.

We then import the file, following the instructions in the File collector section.

Using Array/Table Lookup

In this example we want to translate a string representing order of magnitude into a corresponding

numerical value using array/table lookup.

This example will be explained by means of a hypothetical collector called PlantSensorCollector

that is a Python Expression enabled collector. The collector collects a source tag with address

TemperatureSetpoint of type VariableString, having values 'Low', 'Medium', and 'High'.

Expression

To solve this, we create the following Python expression:

{'Low':100, 'Medium':400, 'High':800}.get(Setpoint.value, 0)

Historian | 14 - Data Collectors - General | 2093

Python Datatype Name Description

Expression Inputs VariableString Setpoint Represents the given ordinal string value

we wish to transform.

Expression Result SingleFloat Not Applicable Represents the numerical value corre

sponding to the ordinal string input.

Python Modules to Import for this Expression: None. (Only modules contained on the list of supported

modules (on page 2079) are available to this expression.)

Constructing the JSON: Using the created expression, we construct the following JSON:

{

 "script":"{'Low':100,'Medium':400,'High':800}.get(Setpoint.value, 0)",

 "parameters":[

 {

 "name":" Setpoint",

 "source":{"address":"TemperatureSetpoint", "dataType":"VariableString"}

 }

]

 }

We then transform the above into a minified JSON string:

{"script":"{'Low':100,'Medium':400,'High':800}.get(Setpoint.value,0)","parameters":

 [{"name":"Setpoint","source":{"address":"TemperatureSetpoint","dataType":"VariableString"}}]}

Adding the Expression Tag to Historian: For this example, we choose to add a Python Expression tag

to the Historian using the File collector to import a CSV file. (We could also have added the tag via the

Historian Excel Add-In.)

The file contents look like this:

[Tag]Tagname,CollectorName,CalcType,SourceAddress,DataType,DescriptionNumericalTagDerivedFromOrdinalVal,PlantSensorColl

ector,PythonExpr,

 "{""script"":""{'Low':100,'Medium':400,'High':800}.get(Setpoint.value,0)"",""parameters"":

 [{""name"":""Setpoint"",""source"":{""address"":""TemperatureSetpoint"",""dataType"":""VariableString""}}]}",

 VariableString, Python Expression Tag example

Historian | 14 - Data Collectors - General | 2094

Note the following:

• The CalcType is set to PythonExpr.

• The SourceAddress contains the JSON configuration.

• The CollectorName is set to the name of the chosen collector, which must be on the list of

collectors supporting Python Expression Tags. Your collector might be called by a different name.

• The quotation marks within the JSON string are escaped with other quotation marks in the CSV

file.

For more information, see File collector > CSV File Formats.

We then import the file, following the instructions specified in File collector.

Uninstall Collectors
If you want to uninstall collectors, delete all the instances of the collectors that you have created. You

can do so using Configuration Hub (on page 654) or Remote Collector Management (on page 817). The

following instances of collectors (the ones that were created during the installation of collectors) are

deleted automatically:

• The iFIX collector

• The iFIX Alarms & Events collector

• The OPC Classic Data Access collector for CIMPLICITY

• The OPC Classic Alarms and Events collector for CIMPLICITY

Even after you uninstall collectors and Web-based Clients, the corresponding Windows services and

registry entries are not removed.

1. Select Programs / Uninstall a Program in Control Panel.

2. Select Historian Collectors, and then select Uninstall.

The collectors are uninstalled.

Troubleshooting Issues with Collectors
This topic contains solutions/workarounds to some of the common issues encountered with

Configuration Hub. This list is not comprehensive. If the issue you are facing is not listed on this page,

refer to Troubleshooting the Historian Server (on page 298).

Proxy Timeout Error While Adding a Collector Instance

Historian | 14 - Data Collectors - General | 2095

Description

When you attempt to add a collector, sometimes, a proxy error appears even if the error

occurs because of an API timeout.

Workaround

1. Access the historian-httpd.conf file located at C:\Program Files\GE

\Operations Hub\httpd\conf\app-specific.d.

2. Increase the timeout value (for example, 250). If the timeout parameter is not

available, enter it as follows: ProxyTimeout <value>

3. Restart the Proficy Historian Tomcat Server and the Proficy Operations Hub Httpd

Reverse Proxy services.

Unable to Use the Windows login User and Password During the Destination Historian Server

Configuration When Adding a Collector Instance

Description

During Collector instance creation, for some reason, if you are unable to use the Windows

login user and password during the Destination Historian server configuration, you can

perform the following workaround.

Workaround

• Edit the Password and UserName registries and add the predefined user, that is,

<hostname>.admin and its password in the Collector Manager registry at Computer

\HKEY_LOCAL_MACHINE\SOFTWARE\GE DIGITAL\Historian Remote

Management Agents\Collector Manager.

• Check if the predefined user, that is, <hostname>.admin was added to the Local users

& Group. If not, add the predefined user and its password to the Local users & Group.

For more information on how to add a user to Local users & Group, refer to Adding

Users to Windows Security Group.

Receiving a Collector Configuration Error

Description

A single ihConfigurationGetProperties[-2] error appears in the collector.LOG file.

Workaround

The error most likely occurred as a result of the collector connecting and querying for

changes in the tag database immediately, getting a timeout, and then immediately querying

again and succeeding.

Historian | 14 - Data Collectors - General | 2096

Polled-based Collector performance improvements leading to "Load on source" and "Increase Overruns"

Description

From Historian 2022 onwards, the performance of polled-based collectors has been

enhanced by introducing a higher number of polled threads, set to a default of 4, compared

to the previous default of 1. While this enhancement has a positive impact on the collector

performance, it may cause a decrease in performance on the source side due to increased

load and also cause potential overruns. Therefore, if you are facing any performance

issue on the source side, you can modify the number of polled threads using the following

workaround.

Workaround

1. Open Registry Editor.

2. Create REG_NumPolledReadThreads as a new DWORD (32-bit) Value in the following

registry paths, and then change its value to 1.

32-bit collector registry path for Proficy products:

Computer\HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\Intellution,

Inc.\iHistorian\Services

32-bit collector registry path:

Computer\HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\GE Digital

\iHistorian\Services

64-bit collector registry path:

Computer\HKEY_LOCAL_MACHINE\SOFTWARE\GE Digital\iHistorian

\Services

For example,

iFIX Collector

Computer\HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\Intellution,

Inc.\iHistorian\Services\iFixCollector

Simulation Collector

Computer\HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\GE Digital

\iHistorian\Services\SimulationCollector

Historian | 14 - Data Collectors - General | 2097

OPC Collector

Computer\HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Intellution,

Inc.\Historian OPC Collector

3. Ensure to restart the corresponding collector.

Chapter 15. The Calculation Collector

Overview of the Calculation Collector
Using the Calculation collector, you can perform data calculations on values already in the archiver. It

retrieves data from tags in the Historian archive, performs the calculation, and then stores the resulting

values into new archive tags. You can then access these tags like you access any other Historian tag.

Features of the Calculation Collector

The Calculation collector performs calculations on the following values:

• Current values of other Historian tags in the same archiver.

• Previous raw samples of other tags in the same archiver.

• Calculated values of other Historian tags in the same archiver, such as minimum, maximum,

average, or standard deviation. You can specify a time range for these calculations or perform a

filtered query. You can use the resulting single number in a calculation.

• Interpolated values of other Historian tags in the same archiver.

• Any data retrievable using a VBScript, file I/O, ADO, and so on.

Data Flow

The following image shows the data flow in a Calculation collector. The output from a calculation is

always a single Historian tag.

Historian | 15 - The Calculation Collector | 2099

Advantages of Using the Calculation Collector

• The Calculation collector can keep a history of the calculated values.

• It can perform thousands of calculations per second. Therefore, it is generally preferred to a VB

SDK program performing the same functions.

• It can perform calculations on data stored in the following sources:

◦ A SCADA database (such as iFIX)

◦ A VB SDK program

◦ A Historian collector (using input scaling)

◦ By the Calculation collector

◦ The Historian OLE DB provider

◦ Reporting tools such as Crystal Reports

◦ The Historian Excel Add-In

Limitations

• Python Expression Tags are not supported for use together with the Calculation collector. The

behavior of the Calculation collector is different from that of Python Expression Tags, which are

used in cases where you do not want to store a raw data value, but wish to store only derived

values. For more information, refer to Python Expression Tag Examples (on page 2084).

• You cannot store specific numeric qualities or sub-qualities in a calculation formula. You can

only set a good or bad data quality in the Calculation collector; that is you can store Good for

NonSpecific (when quality > 0 in the calculation formula) or Bad for CalcFailed (when quality = 0 in

the calculation formula).

• By design Calculation collector manages good quality values only.

About the Tags Used by the Calculation Collector

The Calculation collector uses the following types of Historian tags in a calculation:

• One or more source tags: These tags are used in the calculation formula.

• One or more trigger tags: These tags trigger the calculation. Triggers can be polled (schedule-

based) (on page 2112) or unsolicited (event-based) (on page 2114).

• A single destination tag: This tag stores the result of the calculation. It is also called a calculation

tag. It must be different from the source tags of the calculation. However, a destination tag can be

a source tag for another calculation.

Historian | 15 - The Calculation Collector | 2100

The following image shows how you can use the Calculation collector to perform a more complex

calculation with several tags and multiple calculations resulting in one output tag. It also shows how the

output of one calculation can be used as an input to another.

Workflow for Using the Calculation Collector

After you have added an instance of the Calculation collector, to perform a calculation using the collector,

you must perform the following steps:

Step Number Description Notes

1 Create a tag administrative se

curity group (on page 291). In ad

dition to defining the iH Tag Ad

mins who have the power to cre

ate, modify, and remove tags, you

can also define individual tag lev

el security to protect sensitive

tags.

This step is required to prevent

a user from intentionally or unin

tentionally launching malicious

VBScript code. For example, if

a user connected to the data

archiver created a calculation tag

to file system object, that user

could potentially delete all the

files on your hard drive. To pre

Historian | 15 - The Calculation Collector | 2101

Step Number Description Notes

vent this, implement tag-level se

curity.

1 Configure the Calculation collec

tor (on page 2101).

This step is required only if you

want to change the default val

ues for collector-specific para

meters.

2 Create the source and destina

tion tags (on page 2099). To do

so, you can add a tag manual

ly using Historian Administrator

(on page 2057) or the Web Admin

console (on page 2059). Or, you

can copy a tag (on page 2060).

Note:

You cannot browse a

Calculation collector

through the Add Tags

From Collector window

in Historian Administra

tor.

This step is required.

3 Assign a trigger to the destina

tion tag (on page 2114).

This step is required only if the

tag is unsolicited (that is, event-

based).

4 Define the calculation formula

(on page 2118).

This step is required.

Configure the Calculation Collector
1. Install the Historian server (on page 104) and collectors (on page 142).

2. Create an instance of the collector using Configuration Hub (on page 479) or the

RemoteCollectorConfigurator utility (on page 797).

Historian | 15 - The Calculation Collector | 2102

1. To configure the collector using Configuration Hub:

a. Access Configuration Hub (on page 336).

b. Select Collectors, and then select the Calculation collector instance that you want to

configure.

The fields specific to the collector instance appear in the DETAILS section.

c. Enter values as specified in the following table.

Field Description

Calculation Timeout

(sec)

The maximum time a calculation must be performed before be

ing terminated. The default value is 10 seconds. If the calcula

tion takes longer, it is canceled, and a bad data quality sample is

stored in the destination tag with a subquality, calculation error.

Max Recovery Time (hr) The maximum time, in hours till now, that the collector will at

tempt to restore data. This is applicable only to event-based

tags. The default value is 4 hours.

If you want to disable automatic calculation of the tag, set the

value of this field to 0.

MTLS Security Indicates whether you want to use Mutual TLS (MTLS) protocol

to enforce a secure and strong authentication mechanism.

MTLS Data Encryption Indicates whether you want to encrypt the data that the collec

tor shares to the data archiver (DA).

For more information on how to enable MTLS Security, refer to Enable MTLS Security (on

page 632).

d. As needed, enter values in the other sections common to all collectors (on page 579).

e. Restart the collector.

2. To configure the collector using Historian Administrator:

a. Access Historian Administrator (on page 823).

b. On the Main page, in the Collectors section, double-click the collector that you want to

configure. Alternatively, you can select Collectors, and then select the collector from the

Collectors pane.

Historian | 15 - The Calculation Collector | 2103

The General section of the collector appears, displaying the properties of the collector.

c. Select Configuration, and then enter values as described in the following table.

Field Description

Calculation Timeout

(sec)

The maximum time a calculation must be performed before be

ing terminated. The default value is 10 seconds. If the calcula

tion takes longer, it is canceled, and a bad data quality sample is

stored in the destination tag with a subquality, calculation error.

Max Recovery Time (hr) The maximum time, in hours till now, that the collector will at

tempt to restore data. This is applicable only to event-based

tags. The default value is 4 hours.

If you want to disable automatic calculation of the tag, set the

value of this field to 0.

d. Pause and resume the data collection. Or restart the collector.

The collector instance is configured.

Recalculate Tag Values

Recalculate Tag Values Using Configuration Hub

When the connection between the collector and the Historian server is lost, the collector buffers data.

When the connection is lost, the buffered data is sent to the Historian server. When the buffered data

arrives, the timestamps are earlier than the most recent calculation timestamp. Since the timestamp is

earlier, polled calculations are not performed again with the new data (unlike the unsolicited calculations).

Hence, it is possible that calculations performed for tags during and after the connection loss might not

be entirely accurate. Therefore, after the Historian server restores a lost connection, you may want to

manually recalculate tag values. The recalculated data will use the most accurate values in calculations.

Note:

If you want to disable the automatic recalculation, set the Max Recovery Time to 0 in the

Configuration section of the Collector Maintenance page of the collector.

Historian | 15 - The Calculation Collector | 2104

Recalculate Tag Values Manually

When the connection between the collector and the Historian server is lost, the collector buffers data.

When the connection is lost, the buffered data is sent to the Historian server. When the buffered data

arrives, the timestamps are earlier than the most recent calculation timestamp. Since the timestamp is

earlier, polled calculations are not performed again with the new data (unlike the unsolicited calculations).

Hence, it is possible that calculations performed for tags during and after the connection loss might not

be entirely accurate.Therefore, after the Historian server restores a lost connection, you may want to

manually recalculate tag values. The recalculated data will use the most accurate values in calculations.

Note:

If you want to disable the automatic recalculation, set the Max Recovery Time to 0 in the

Configuration section of the Collector Maintenance page of the collector.

1. Access Historian Administrator (on page 823).

2. On the Main page, in the Collectors section, double-click the collector whose tag values you want

to recalculate. Alternatively, you can select Collectors, and then select the collector instance from

the Collectors section.

The General section of the collector appears, displaying the properties of the collector.

3. Select Recalculate.

The Recalculate Tags For <collector name> window appears.

Historian | 15 - The Calculation Collector | 2105

4. Provide values as described in the following table.

Field Description

Start Time Enter the start date and time. Tag values calcu

lated after this date and time will be recalculat

ed.

End Time Enter the end date and time. Tag values calcu

lated until this date and time will be recalculat

ed.

Tags to Recalculate Specify whether you want to recalculate values

for all the tags added in the collector or just the

Historian | 15 - The Calculation Collector | 2106

Field Description

selected tags. If you select Recalculate Select

ed Tags Only, the Tag Name and Description

fields are enabled.

Tag Name and Description Enter the search criteria to filter out the tags

whose values you want to recalculate. These

fields are enabled only if you select Recalculate

Selected Tags Only. After you select Browse,

the search results appear in the Browse Results

section.

5. Select Recalculate.

A message appears, asking you to confirm that you want to recalculate the data.

6. Select OK.

The tags values are recalculated.

Using the Calculation Collector

Write Data to an Arbitrary Tag

If the tags that you want to specify are also used as trigger tags or source tags of a calculation, ensure

that the Calculation collector does not read the tag data before you add the tag. To do so:

1. Access the ShouldPreReadData registry key under HKEY_LOCAL_MACHINE\Software

\Intellution, Inc.\iHistorian\Services\CalculationCollector\.

2. Create a DWORD named ShouldPreReadData, and set its value to zero.

3. Restart the collector.

You can write data to an arbitrary tag in the Historian archive through the AddData function. This function

is used in a calculation formula to write values, errors, time stamps and qualities of one or more tags to

the Historian archive.

Use the following syntax to write data to an arbitrary tag:

errs = AddData(TagNames, Values, Timestamps, Qualities)

The following table provides information on the parameters.

Historian | 15 - The Calculation Collector | 2107

Parameter Description

TagNames Identifies the names of the tags. A value is required, and must exist

in the archive to which you want to send the tag data. You can pro

vide a single tag name or an array of tag names, enclosed in double

quotation marks.

Values Identifies the values of the tags. A value is required, and must be

a single value or an array of values, depending on whether the tag

name is a single name or an array. Values must be enclosed in dou

ble quotation marks. You can enter only a single value for each tag

name.

Timestamp Identifies the timestamp of the tag data. Enter an absolute time val

ue, enclosed in double quotation marks ("24/12/20242:32:15 PM").

If you do not want to enter a value, enter NULL, and the current time

will be considered. Do not enter a future timestamp.

Qualities Identifies the quality of the tag data. Enter an integer from 0 to 100,

with 0 indicating bad quality and 100 indicating good quality.

Tip:

You can refer to Examples of Using the AddData Function (on page 2107). For information on

the status codes and their descriptions, refer to Status Codes of the AddData Function (on page

2109).

Examples of Using the AddData Function

This topic provides examples of using the AddData function.

Writing a Single Tag Value
The following example is used to write a single value, the current time, and a good quality value to a single

tag.

errs = AddData("Bucket Brigade.UInt4", 9, "Now", 100)

Writing an Array of Tags
The following example is used to write an array of tags and their values.

Dim Tags(3)

Tags(0) = "Bucket Brigade.Boolean"

Historian | 15 - The Calculation Collector | 2108

Tags(1) = "Bucket Brigade.Int4"

Tags(2) = "Bucket Brigade.Real8"

Tags(3) = "Bucket Brigade.String"

Dim Values(3)

Values(0) = True

Values(1) = 5

Values(2) = 172.3

Values(3) = "Hello, World"

errs = AddData(Tags, Values, Null, Null)

Writing Timestamps and Qualities
The following example is used to write an array of tags and their values in addition to timestamp and

quality values.

Dim Tags(3)

Tags(0) = "Bucket Brigade.Boolean"

Tags(1) = "Bucket Brigade.Int4"

Tags(2) = "Bucket Brigade.Real8"

Tags(3) = "Bucket Brigade.String"

Dim Values(3)

Values(0) = True

Values(1) = 5

Values(2) = 172.3

Values(3) = "Hello, World"

Dim Timestamps(3)

Timestamps(0) = "Today"

Timestamps(1) = "Now"

Timestamps(2) = "Yesterday"

Timestamps(3) = "24/12/2004 2:32:15 PM"

Dim Qualities(3)

Qualities(0) = 100

Qualities(1) = 0

Qualities(2) = 100

Historian | 15 - The Calculation Collector | 2109

Qualities(3) = 0

Dim errs

errs = AddData(Tags, Values, Timestamps, Qualities)

Status Codes of the AddData Function

This topic describes the status codes that appear when you use the AddData function. These status

codes are stored in the Errs output variable as an array of status codes, one for each tag. The following

table describes the status codes.

Status Code String Description

0 ihSTATUS_OK The values have been success

fully written to the tags.

-1 ihSTATUS_FAILED The operation has failed.

-2 ihSTATUS_API_ TIMEOUT The operation has timed out

while connecting to Historian.

-3 ihSTATUS_NOT_ CONNECTED The Calculation collector cannot

connect to Historian.

-4 ihSTATUS_INTERFACE_ NOT_FOUND You cannot connect to the Calcu

lation collector.

-5 ihSTATUS_NOT_ SUPPORTED The write operation is not sup

ported.

-6 ihSTATUS_DUPLICATE_ DATA The write operation has created

duplicate data in the archive.

-7 ihSTATUS_NOT_VALID_ USER The username used to connect to

the Historian archive is not valid.

-8 ihSTATUS_ACCESS_ DENIED The username used to connect to

Historian does not have write ac

cess to the archive.

-9 ihSTATUS_WRITE_IN_ FUTURE The timestamp that you have en

tered is set to a time in future.

Historian | 15 - The Calculation Collector | 2110

Status Code String Description

-10 ihSTATUS_WRITE_ ARCH_OFFLINE The archive is currently offline.

-11 ihSTATUS_ARCH_ READONLY The archive is set to read-only.

-12 ihSTATUS_WRITE_ OUTSIDE_ACTIVE An attempt has been made to

write data to a time before the

archive has been created.

-13 ihSTATUS_WRITE_NO_ ARCH_AVAIL No archive is available for writ

ing.

-14 ihSTATUS_INVALID_ TAGNAME The tag names that you have en

tered do not exist in the archive.

-15 ihSTATUS_LIC_TOO_MANY_TAGS You have attempted to add more

tags than the current license al

lows.

-16 ihSTATUS_LIC_TOO_ MANY_USERS There are currently too many

users connected to the archive.

-17 ihSTATUS_LIC_ INVALID_LIC_DLL The Historian license is expired

or invalid.

-18 ihSTATUS_NO_VALUE You have not entered a tag value.

-19 ihSTATUS_DUPLICATE_ INTERFACE Two collectors with the same

name exist.

-20 ihSTATUS_NOT_ LICENSED The Historian license is not acti

vated.

-21 ihSTATUS_CALC_CIRC_ REFERENCE A circular reference has been en

tered in the calculation formula.

-22 ihSTATUS_BACKUP_ EXCEEDED_S

PACE

The archive has reached the Min

imum Hard Drive Space setting,

and no new archives are being

created.

-23 ihSTATUS_INVALID_ SERVER_

VERSION

The archive is not compatible

with the Calculation collector.

Historian | 15 - The Calculation Collector | 2111

Status Code String Description

-24 ihSTATUS_DATA_ RETRIEVAL_

COUNT_ EXCEEDED

There are too many data points

to retrieve.

Creating Triggers

Types of Triggers

You can create the following types of triggers for a calculation:

• Polled or scheduled: Used to trigger a calculation based on a scheduled time interval. For example,

you can calculate the average value of tag data collected every hour.

The polled type trigger functions the same as the other collectors. Although Historian internally

optimizes calculation execution times, the data for polled tags is timestamped on the data

collection interval. For example, if the calculation engine is unable to process the polled triggers as

scheduled, the calculations will be executed later, but with data interpolated back to the scheduled

time. If there are too many triggers to be processed, some triggers will be dropped and no samples

are logged for that calculation time.

For information on creating a polled trigger, refer to Create a Polled Trigger (on page 2112).

• Unsolicited or event-based: Used to trigger a calculation based on an event. For example, you can

calculate the average value of tag data when the data exceeds a certain value.

When you set an event-based trigger, you must also set up a dependency list of one or more tags.

Event-based triggers will keep calculations as up to date as possible. They are also useful when

you want to do on-demand calculations. You can use a trigger tag that is written to by an external

program or operation.

If you want to perform raw sample replication you would use an event-based trigger. To retrieve

data from a tag, use the formula:

Result=CurrentValue("Tag1")+CurrentValue("Tag2")

If you are using recovery mode, all referenced tags in an unsolicited calculation must be listed as

trigger tags because recovery will be performed only for the configured trigger tags.

Event-based triggers have a dependency list of trigger tags. The trigger fires whenever there is a

data change for the trigger tag (for example, changes in the quality and value of a trigger tag). The

Historian | 15 - The Calculation Collector | 2112

value of a trigger tag can change when the tag exceeds the collector compression (if you enabled

collector compression).

The calculation is processed each time any tag in the dependency list changes. If you have multiple

tags in the list and they change even one millisecond apart, then you will have multiple events, and

the calculation formula will be processed for each.

However, the following actions do not trigger a calculation:

◦ Deletion of a tag that is in the dependency list.

◦ Re-addition of a tag in the dependency list.

The calculation is triggered at the same time as the timestamp of the sample in the trigger tag. The

values of all other tags in the formula are interpolated forward to this time so that the timestamps

of all input tags are the same. Even if these are sequential events, they have the same timestamp.

The calculation time becomes the timestamp for the sample stored in the destination tag.

Event-based triggers have a collection interval. The Calculation collector notifies the archiver not to

send notification of changes to trigger tags any faster than the collection interval setting.

For information on creating an unsolicited trigger, refer to Create an Unsolicited Trigger (on page

2114).

Create a Polled Trigger

1. To create a poller trigger using Configuration Hub:

a. Access Configuration Hub (on page 336).

b. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

A list of tags appears.

c. From the list of tags, select the Calculation tag (say, tag 2).

d. In the Collection Options section, select Polled from Collection Type, and specify.

e. Set the Collection Interval Value and Collection Offset values. For example, if you want to

set a trigger every day, set these values to 24 hours and 8 hours, respectively.

f. In the upper left corner of the page select Save.

The triggers are created.

2. To create a polled trigger using Historian Administrator:

Historian | 15 - The Calculation Collector | 2113

a. Access Historian Administrator (on page 823).

b. Select Tags.

c. In the Tags section, select the tag to which you want to apply the trigger.

d. In the Collection section, select Polled from the Collection Type.

e. Set the Collection Interval and Collection Offset values. For example, if you want to set a

trigger every day, set these values to 24 hours and 8 hours, respectively. Depending on the

trigger that you want to set, enter the appropriate VBScript code in the Calculation pane. For

examples, refer to Examples of Scheduling Polled Triggers (on page 2113).

f. Select Update.

Examples of Scheduling Polled Triggers

You can schedule calculations using polled triggers, as shown in the following examples.

Scheduling a Trigger every Monday
Since Monday is the second day of a week, enter the following VBScript code in the Calculation pane:

Dim curDate curDate=CurrentTime

IF (Weekday(curDate))=2 THEN

Result=50 <Place your calculation here>

END IF

Notice that the CurrentTime built-in function is used in this example instead of Now.

Scheduling a Trigger on the First Day of Every Month
Enter the following VBScript code in the Calculation pane:

Dim curDate curDate=CurrentTime

IF (day(curDate))=1 THEN

Result=50 <Place your calculation here>

END IF

Notice that the CurrentTime built-in function is used in this example instead of Now.

Scheduling a Trigger on the Last Day of Every Month
Enter the following VBScript code in the Calculation pane:

Dim curDate curDate=CurrentTime

IF (day(curDate))=1 THEN

Historian | 15 - The Calculation Collector | 2114

Result=50 <Place your calculation here>

END IF

Notice that the CurrentTime built-in function is used in this example instead of Now.

Example 5: Creating a Controlled Sequence of Polled Tags Using a Collection Offset

A controlled sequence is a calculation that is based on the result of another calculation. The following is

an example of how to configure a controlled sequence of polled tags by using the collection offset. The

collection offset is greater than 0 in this example.

A tag named SumOfData has a Collection Interval of 60 seconds and the Collection Offset of 0

milliseconds.

SumofData performs the first calculation:

Result = CurrentValue("DataTag1") + CurrentValue("DataTag2")

Another tag, named CorrectedUnits, uses a Collection Interval of 60 seconds, but a Collection Offset of

1000 milliseconds.

CorrectedUnits fires and performs another calculation based on the output of the first calculation:

Result = CurrentValue("SumOfData") *.0001

Create an Unsolicited Trigger

This topic describes how to create an unsolicited trigger for a calculation, and how to set up a

dependency list:

1. Create the tag that you want to use to create a trigger (say, tag1).

2. Create another tag in the Calculation collector whose value you want to update based on the

trigger (say, tag2).

3. Ensure that the Calculation collector is running.

1. To create an unsolicited trigger using Configuration Hub:

a. Access Configuration Hub (on page 336).

b. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

A list of tags appears.

c. From the list of tags, select the Calculation tag (say, tag 2).

Historian | 15 - The Calculation Collector | 2115

d. In the Collection Options section, select Unsolicited from the Collection Type, and specify

an interval.

e. Select Calculation Triggers and select .

The Calculation Triggers window appears.

f. Search for tags or select tags from the list as trigger tags.

g. You can remove the selected tags by selecting X from the Selected Tags list.

h. Select Insert Trigger.

The trigger tag count will be displayed.

i. In the upper left corner of the page select Save.

The triggers are created.

2. To create an unsolicited trigger using Historian Administrator:

a. Access Historian Administrator (on page 823).

b. Select Tags, and then select the tag to which you want to apply the trigger.

c. In the Collection section, select Unsolicited from the Collection Type, and specify an

interval.

d. Select Calculation.

e. Select Add to add a trigger.

The Insert Function window appears.

f. In the Trigger Tag field, enter the name of the trigger tag that you want to use in the

calculation.

The wizard automatically populates the Trigger Tag field and updates the Function Preview

field, as shown in the following figure:

Historian | 15 - The Calculation Collector | 2116

g. Select Insert.

The trigger is added to the Calculation Triggers section.

Historian | 15 - The Calculation Collector | 2117

In addition, the trigger list appears when using the Insert Function window to build a

calculation formula for an event based tag.

h. Select Update.

The unsolicited trigger is created.

Examples of Scheduling Unsolicited Triggers

Example1: Using One Trigger Tag in a Formula

The following is an example of an event-based calculation with one trigger tag:

Result=CurrentValue("Tag2") + CurrentValue("Tag3")

You can configure Tag1, which is not in the formula, to be the calculation trigger for this example. Tag2 and

Tag3 are not trigger tags. Trigger tags do not have to reside in the formula. There is no relation between

formula tags and trigger tags. However, if you are planning to use recovery mode, you want all formula

tags to be triggers.

Historian | 15 - The Calculation Collector | 2118

Example 2: Using Multiple Trigger Tags in a Formula

The following is an example of an event-based calculation with multiple trigger tags:

Result=CurrentValue("Tag1") + CurrentValue("Tag2")

Configure Tag1 and Tag2 to be the calculation triggers for this example.

Example 3: Creating a Controlled Sequence of Unsolicited Tags Using Trigger Tags

A controlled sequence is a calculation that is based on the result of another calculation. The following is

an example of how to create a controlled sequence of unsolicited tags using trigger tags. In this example,

you create a calculation tag that is based on the result of another calculation tag.

For CalcTag1, the calculation is as follows:

Result = CurrentValue("TagA") + CurrentValue("TagB")

TagA and TagB are the calculation triggers for CalcTag1:

For CalcTag2, the calculation is as follows:

Result = CurrentValue("CalcTag1") * CurrentValue("TagC")

CalcTag1 is the calculation trigger for CalcTag2.

Calculation Formulas

About Calculation Formulas

To perform a calculation using the Calculation collector, you must define the calculation formula. You can

do so in one of the following ways:

• Using the Insert Function wizard (on page 2123), which helps you use any of the built-in functions

(on page 2127) orcreate your own function (on page 2125).

• Entering the syntax of the formula directly in the form of a VBScript code (on page 2121).

Before you create calculation formulas, refer to the general guidelines (on page 2119).

There are two predefined global values called Result and Quality. These global values control the value

and quality of the output sample. If the Result is not set in the formula, then no sample is stored.

Historian | 15 - The Calculation Collector | 2119

General Guidelines for Defining a Calculation Formula

This section provides guidelines that you must follow when defining a calculation formula.

Identify Time Intensive Calculations

Use the Calculation Execution Time property of each tag to identify time-intensive queries. In Historian

Administrator, look for the Execution Time on the Calculation section for an estimate of how long, on

average, it takes for the calculation per tag (starting from the time the collector was started).

You can also include that column when you export tags to Excel using the Excel Add-In feature. For

information, refer to Exporting Tags (on page 2746).

You can also include that column (AverageCollectionTime) when you query the ihTags table using the

Historian OLE DB Provider. Sorting by this column will let you find them fast.

Troubleshoot Issues with Large Configurations

If the timestamps of your raw samples appear slightly old, do not assume that the collector has stopped

working. It is possible that the collector is just running behind.

For instance, if you have a report rate of 15,000, but the newest raw sample that you see is 20-30 minutes

old, wait for 1-2 minutes, and review the newest raw sample again. If the collector stopped, the newest

raw sample will be unchanged. If it did change, then the engine is still running, but is lagging behind. If

that happens, check if the collector overrun count is increasing. If yes, the collector is dropping samples,

and you must decrease the load.

Error Handling in VBScript

Start each script with the On Error Resume Next statement so that errors are trapped. If you use this

statement, the script runs even if a run-time error occurs. You can then implement error handling in your

VBScript.

It is a good practice to include statements in your VBScript that catch errors when you run the script. If

there is an unhandled error, a value of 0 with a bad data quality is stored. When you catch an error in the

VBScript, consider including a statement in your calculation that sets the Quality=0 when the error occurs.

(The 0 value means that the quality is bad.) If you do not specifically include this setting in your script,

Historian stores a good data quality point (Quality=100), even if an error has occurred in your formula. If

Quality=100 is not appropriate for your application, consider setting the quality to 0.

You cannot use the On Error GoTo Label statement for error handling, as it is not supported in VBScript. As

a workaround, you can write code in the full Visual Basic language and then place it in a .DLL so that you

Historian | 15 - The Calculation Collector | 2120

can call it from within your VBScript using the CreateObject function. For examples of calculations that

use the CreateObject function, refer to Examples of Calculation Formulas (on page 2138).

Unsupported VBScript Functions

You can use any VBScript syntax to build statements in a calculation formula with the exception of the

following functions:

• MsgBox

• InputBox

Milliseconds not Supported in VBScript

The CDate() function does not support the conversion of a time string with milliseconds in it. Whenever

you use the CDate() function, a literal time string, or a time string with a shortcut, do not specify

milliseconds in the time criteria. Milliseconds are not supported in VBScript.

You cannot use milliseconds in times passed into built-in functions such as the PreviousTime and

NextValue functions. For example, you cannot loop through raw samples with millisecond precision.

Notes on VBScript Time Functions

Using the VBScript time functions such as Now, Date, or Time can lead to unexpected results, especially

in recalculation or recovery scenarios. To avoid these issues, use the CurrentTime built-in function

provided by Historian, instead of Now, Date, or Time. For example, the VBScript Now is always the clock

time of the computer and is likely not useful when recalculating or recovering data for times in the past.

However, the "Now" time shortcut is equivalent to CurrentTime and can be used as input to the other built

in functions.

Using Quotation Marks in VBScript

If you want to use quotation marks in a tag name, you must insert a double quotes for each quotation

mark that you want to use, as required for proper VBScript syntax. For example, if you want to get the

current value of a tag named TagCost"s, you must enter:

Result = CurrentValue("TagCost""s")

In this example, note the double quotation marks that appear before the letter s in the TagCost"s name in

the formula.

Avoiding Circular References in VBScript

Historian | 15 - The Calculation Collector | 2121

Do not use circular references in calculation formulas. For instance, if the tag name is Calc1, a formula

with a circular reference would be Result=CurrentValue("Calc1"). Whether the tag is polled or unsolicited,

you get a bad value back using the circular reference.

Uninterrupted Object Method Calls

Object method calls are not interrupted. It is possible to exceed the Calculation Timeout setting if you

have a method call that takes a long time to execute. The Calculation Timeout error still occurs, but only

after the method completes.

Help for VBScript

You can get detailed Help for VBScript by referencing the Microsoft documentation on the MSDN web

site. A VBScript User's Guide and Language Reference is available here: http://msdn.microsoft.com/en-

us/library/t0aew7h6.aspx

Avoiding Deleted Tags

You can reference a deleted tag in a calculation formula, without an error appearing. For instance, you

could enter a formula such as Result=CurrentValue("DeletedTag"), where DeletedTag is the name of the

deleted tag. You can do this because when you delete a tag, Historian removes deleted tags from the Tag

Database (so you cannot browse for it), but it retains the data for that tag in the archive.

However, it is recommended that you do not reference deleted tag names in your calculation formulas,

because if the archive files are removed with the data for the deleted tag, the calculation will not work

properly.

Create a Calculation Formula Using a VBScript Code

This topic describes how to create a calculation formula by entering a VBScript code. You can also create

a calculation formula using the Insert Function wizard (on page 2123).

Important:

If a tag contains bad data quality, you cannot store its value through a calculation formula. For

example, if your VBScript includes: Result = 7 Quality = 0, Historian does not store the 7, it

stores 0.

Tip:

For examples, refer to Examples of Scheduling Polled Triggers (on page 2113) and Examples of

Scheduling Unsolicited Triggers (on page 2117).

http://msdn.microsoft.com/en-us/library/t0aew7h6.aspx
http://msdn.microsoft.com/en-us/library/t0aew7h6.aspx

Historian | 15 - The Calculation Collector | 2122

Create the tag that you want to use to store the calculation results. You can create the tag manually using

Configuration Hub (on page 473), Historian Administrator (on page 2057) or the Web Admin console (on

page 2059). Or, you can copy a tag (on page 2060).

1. To create a calculation formula using Configuration Hub:

a. Access Configuration Hub (on page 336).

b. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

A list of tags appears.

c. Select a Calculation tag, right-click or select more options, and then select Calculation.

The calculation editor appears.

d. Enter the VB script in the editor.

e. To test the function, select .

A message appears, stating whether the syntax is correct.

f. In the upper-left corner of the page, select Save.

The calculation formula is created.

2. To create a calculation formula using Historian Administrator:

a. Access Historian Administrator (on page 823).

b. Select Tags, select the tag for which you want to create a calculation formula, and then

select Calculation.

c. In the Calculation Triggers section, select Add.

The Insert Function Wizard window appears.

d. Under Select Function, in the Type field, select Add A Calculation Trigger.

e. Under Tag Browse Criteria, enter the search criteria to find the tag.

The search results appear in the Browse Results section.

f. Select the tag that you want to add, and then select Insert.

g. In the Calculation field, enter the calculation formula using the VBScript syntax.

h. To verify that the syntax is correct, select Test.

A message appears, stating whether the syntax is correct.

Historian | 15 - The Calculation Collector | 2123

Create a Calculation Formula Using the Pre-built Functions

This topic describes how to create a calculation formula using the pre-built functions. You can also create

a calculation formula using a VBScript code (on page 2121).

For information on a list of the available types and associated functions, refer to Types of Functions

Supported (on page 2135). For information on each pre-defined function, refer to Built-In Functions (on

page 2127). In addition to the built-in functions, you can create your own customized functions (on page

2136).

1. Create the tag that you want to use to store the calculation results. You can create the tag manually

using Configuration Hub (on page 473), Historian Administrator (on page 2057) or the Web Admin

console (on page 2059). Or, you can copy a tag (on page 2060).

2. Access the advanced options of the collector, and then disable the On-line Tag Configuration

Changes option using Historian Administrator (on page 2057). In Configuration Hub (on page

473) this property is available in Collector Options section. If you do so, each time you update a

calculation formula, the collector does not reload tags.

1. To create a calculation formula using Configuration Hub:

a. Access Configuration Hub (on page 336).

b. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

A list of tags appears.

c. Select a calculation tag, right-click or select more options, and then select Calculation.

The calculation editor appears.

d. In the CALCULATION section, remove Null (and retain the Result =).

e. In the Calculation editor, place the cursor in the location where you want to insert the pre-

built function.

f. In the DETAILS section, under Pre-Built Functions, in the Function Type field, select a

function type.

Depending on the function type you have selected, a list of functions appears in the

Function field.

g. In the Function field, select a function.

Based on the selected function, the related fields will be displayed.

h. Enter values in the other fields that appear after selecting a function.

Historian | 15 - The Calculation Collector | 2124

i. In the Input Tag field, select , and then select the tag where applicable.

The function preview appears below the calculation editor.

j. Select Insert Function.

The function is inserted at the cursor position.

k. To test the function, select .

A message appears, stating whether the syntax is correct.

l. In the upper-left corner of the page, select Save.

The calculation formula is created.

2. If you want to create a calculation formula using Historian Administrator:

a. Access Historian Administrator (on page 823).

b. Select Tags, select the tag for which you want to create a calculation formula, and then

select Calculation.

c. In the Calculation section, remove Null (retain Result =).

Tip:

Avoid selecting other tags until you save your changes or you will lose your code

changes.

d. Select Wizard.

The Insert Function Wizard window appears.

e. Under Select Function, select values in the available fields, and then select Insert.

f. If you want to perform an unsolicited (also called event-based) calculation, in the Type field,

select Add A Calculation Trigger. Search and select the tag that you want to add, and then

select Insert.

The calculation formula is created.

g. To verify that the syntax is correct, select Test.

A message appears, stating whether the syntax is correct.

Historian | 15 - The Calculation Collector | 2125

Create a User-Defined Function

This topic describes how to create your own function to use in a calculation formula. For more

information, refer to User-defined Functions (on page 2136). You can also use any of the built-in functions

(on page 2127).

Create the tag that you want to use to store the calculation results. You can create the tag manually using

Configuration Hub (on page 473), Historian Administrator (on page 2057) or the Web Admin console (on

page 2059). Or, you can copy a tag (on page 2060).

1. To create a user-defined function using Configuration Hub:

a. Access Configuration Hub (on page 336).

b. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

A list of tags appears.

c. Select a calculation tag, right-click or select more options, and then select Calculation.

The calculation editor appears.

d. In the CALCULATION section, remove Null (retain Result =).

e. In the calculation editor, place the cursor in the location where you want to insert the user-

defined function.

f. In the DETAILS section, under User Defined Functions, select .

The Add/Edit User Defined Functions (UDF) window appears.

g. Select Add New.

A function is created with the following naming convention: UserFunction<number>. The

same function is used in the function editor. You can change the function name by entering

the new name in the function editor and selecting Update UDF.

h. Enter the VB script for the function. Or, if you want to use a pre-built function, select the

function type and function in the respective fields under Pre-Built Functions. And, enter

values in the other fields that appear after selecting a function.

The function appears in the function preview below the function editor.

i. Select Insert Preview.

The function is included in the function editor at the cursor position.

j. To test the function syntax, select .

Historian | 15 - The Calculation Collector | 2126

A message appears, stating whether the function syntax is correct.

k. Select Update UDF.

The user-defined function is created.

l. To use the function in the calculation formula, select Insert UDF.

The function is inserted in the calculation formula at the cursor position.

m. To test the calculation formula, select .

A message appears, stating whether the syntax is correct.

n. In the upper-left corner of the page, select Save.

The calculation formula is created.

2. To create a user-defined function using Historian Administrator:

a. In Historian Administrator, select Tags, select the tag for which you want to create a

calculation formula, and then select Calculation.

b. In the Calculation section, remove Null (retain Result =).

Tip:

Avoid selecting other tags until you save your changes or you will lose your code

changes.

c. Select Functions.

The User Defined Functions window appears.

d. Select New.

The Edit Function window appears.

e. Define the function.

You can build formulas using the wizard, or create it manually by entering functions in the

Edit Function box. For information, refer to User-defined Functions (on page 2136).

f. Select Syntax to check for errors.

g. Select Update.

Your function appears in the list, and is available for use in other calculations as well.

h. To use the function, select Insert Function.

The function is inserted in your calculation formula.

Historian | 15 - The Calculation Collector | 2127

Built-in Functions

This topic describes the built-in functions that you can use to create a calculation formula. You can also

create your own calculation function (on page 2136).

Note:

• In this table, Time refers to the actual time; this time can include absolute and relative time

shortcuts. Refer to the Date/Time Shortcuts (on page 2138) section for more information.

• You cannot control the timestamp of the stored sample. It is determined by the triggering

tag or polling schedule.

• You cannot use microseconds for any of the built-in calculation functions.

For all the functions that retrieve previous values, it is similar to performing a RawByNumber

query with a count of 1 and direction of backward. A less-than operation (not less-than-or-

equal-to) is used on the timestamp to get the sample. Similarly, for all the functions that

retrieve next values, it is similar to performing a RawByNumber query with a count of 1 and

direction of forward. A greater-than operation (not greater-than-or-equal-to) is used on the

timestamp to get the sample.

Function

Name
Description

Current

Value(<tag

name>)

The value of the tag, interpolated to the calculation execution time. The CurrentValue

function returns 0 if the quality is 0 (bad quality). This occurs if you initialized it to 0, or if

a previous call failed.

CurrentQual

ity(<tag

name>)

The current quality of the tag (0 for bad quality and 100 for good quality).

CurrentTime The calculation execution time, which becomes the timestamp of the stored value.

For real time processing of polled tags, the calculation execution time is the time when

the calculation is triggered. For unsolicited tags, the calculation execution time is the

timestamp delivered with the subscription.

Historian | 15 - The Calculation Collector | 2128

Function

Name
Description

Note:

When a calculation is performed, the timestamp of the result is the time that the

calculation has begun, not the time that it completed.

For recovery of polled or unsolicited tags, the calculation execution time is the time when

the calculation would have been performed if the collector were running.

Previous

Value(<tag

name>, Time)

The tag value of the raw sample prior to the current time.

Previous

Quality(<tag

name>, Time)

The quality of the tag (0 for bad quality and 100 for good quality) prior to the current time.

Previous

GoodVal

ue(<tag

name>, Time)

The latest good value of the raw sample prior to the current time.

Previous

GoodQual

ity(<tag

name>, Time)

The good quality of the raw sample prior to the current time.

Previous

Time(<tag

name>, Time)

The timestamp of the raw sample prior to the current time.

Previ

ousGood

Time(<tag

name>, Time)

The timestamp of the latest good quality of the raw sample prior to the current time.

NextVal

ue(<tag

name>, Time)

The value of the raw sample after the current timestamp.

Historian | 15 - The Calculation Collector | 2129

Function

Name
Description

NextQual

ity(<tag

name>, Time)

The quality of the tag (0 for bad quality and 100 for good quality) after the current time.

Next

Time(<tag

name>, Time)

The timestamp of the raw sample after the current timestamp.

NextGood

Value(<tag

name>, Time)

The value of the good raw sample after the current time.

NextGood

Quality(<tag

name>, Time)

The good quality of the raw sample after the current time.

NextGood

Time(<tag

name>, Time)

The timestamp of the good raw sample after the current time.

Interpolat

edValue(<tag

name>, Time)

The tag value, interpolated to the time that you enter.

Calculation Unfiltered calculated data query that returns a single value, similar to the Excel Add-In

feature. For a list of the calculation mode, refer to Calculation Modes (on page 1073).

AdvancedCal

culation

Unfiltered calculated data query that returns a single value, similar to the Excel Add-In

feature. For a list of the calculation mode, refer to Calculation Modes (on page 1073).

AdvancedFil

teredCalcu

lation

Advanced Filtered calculated data query that returns a single value, similar to the Excel

Add-In feature.

FilteredCal

culation

Filtered calculated data query that returns a single value, similar to the Excel Add-In fea

ture.

LogMes

sage(string_

message)

Allows you to write messages to the Calculation collector or the Server-to-Server collec

tor log file for debugging purposes. The collector log files are located in the Histori

an\LogFiles folder.

Historian | 15 - The Calculation Collector | 2130

Function

Name
Description

Note:

The LogMessage function is the only function that does not appear in the wizard.

GetMulti

FieldVal

ue(Vari

able, <field

name>)

Returns the value of the field that you have specified. The variable contains the current

value of all the fields of a multi-field tag. Before using this function, you must read the tag

into a variable, using the CurrentValue() function. You can then use the GetMultiField

Value function to access the value of the field.

The value of the field that you enter must be the same as the name of the field in the user

defined type. If the field name is not found, a null value is returned.

GetMulti

FieldQual

ity(Vari

able, <field

name>)

Returns the quality (0 for bad quality and 100 for good quality) of the field that you have

specified. The variable contains the current value of all the fields of a multi-field tag. Be

fore using this function, you must read the tag into a variable, using the CurrentValue()

function. You can then use the GetMultiFieldValue function to access the value of the

field.

The value of the field that you enter must be the same as the name of the field in the

user-defined type. If the field name is not found, a null value is returned.

If the user-defined type can store individual quality, you get the field quality. Otherwise,

you get the sample quality.

SetMulti

FieldVal

ue(Vari

able, <field

name>, Val

ue, Quality)

Sets the value and the quality for the field that you have specified.

You can use this function to construct a multifield value containing values for each field,

and then use the result= syntax to store the value in Historian.

Counting the Number of Bad Quality Samples

The following example shows how to loop through samples of a tag named C2 to count the number of

bad quality samples.

Dim count, starttime, endtime, tagquality count=0

StartTime=CurrentTime EndTime=DateAdd("n",-1,StartTime) Do while StartTime>EndTime

TagQuality=PreviousQuality("C2",StartTime)

Historian | 15 - The Calculation Collector | 2131

startTime=PreviousTime("C2",StartTime) IF TagQuality=0 THEN

count=count + 1

END IF loop Result=count

Counting the Number of Collected Digital 1s For a Tag

The following example counts the number of collected digital 1s for a tag so that, for instance, you can

determine how many times a pump is turned ON and OFF.

Dim count, starttime, endtime,tagquality,TagValue

count=0

StartTime=CurrentTime

EndTime=DateAdd("h",-1,StartTime)

On error resume next

Do while StartTime>=EndTime

TagValue=PreviousValue("FIX.DI.F_CV",StartTime)

TagQuality=PreviousQuality("FIX.DI.F_CV",StartTime)

startTime=PreviousTime("FIX.DI.F_CV",StartTime)

IF TagQuality=100 AND TagValue=1 then

count=count + 1

END IF

loop

Result=count

Determining the Trigger When Using Multiple Trigger Tags

The following example shows how to determine which tag triggered the calculation, from a list of two

possible trigger tags. The example compares the two trigger tags and determines which one has the

newest raw sample. This method of getting the newest raw sample can also be used to determine if a

remote collector is sending data or is disconnected from the server.

In this example, archive compression is disabled for both of these tags.

dim timetag1

dim timetag2

dim tag1

dim tag2

tag1 = "BRAHMS.AI1.F_CV"

tag2 = "BRAHMS.AI2.F_CV"

Historian | 15 - The Calculation Collector | 2132

' Get the timestamp of the newest raw sample for tag1:

timetag1 = previousTime(tag1, CurrentTime)

' Get the timestamp of the newest raw sample for tag2:

timetag2 = previousTime(tag2, CurrentTime)

if timetag1 > timetag2 then

' If tag1 triggered me, then:

result = 1 else

' If tag2 triggered me, then:

result = 2

end if

Using Array or Multifield Data in Calculation

You can create tags of arrays and multifield types and use the Calculation collector, Server-to-Server

collector, Server-to-Server distributor with these tags.

Arrays

To use the Array data as input to a calculation formula you can use the name of the array

tag like "Array1" or the individual element of the array like "Array1[4]". For example, if you

have an array tag "Array1" of floating point values and a calculation tag "FloatCalc1" of float

data type, then you can use the array as input to calculate a float value.

result = currentvalue("Array1[4]")+5

You can use Calculation() function to read the array tag as shown in the following code.

Result = Calculation("Array1","Average","Now 1Minute","Now",Quality)

In this example, the calculation tag should be an array tag because the average of an array is

an array, not a single value. Each element is averaged over the time range. Since an average

of an integer or float array is a floating point value, the calculation tag must be a single or

double float array.

If you want to find the minimum of array elements in a given time, then use vbscript code to

compute and store the result in a Float tag as shown.

if CurrentValue("Array1[0]") < CurrentValue("Array1[1]") then

 Result = CurrentValue("Array1[0]")

Historian | 15 - The Calculation Collector | 2133

else

 Result = CurrentValue("Array1[1]")

end if

Multifield

If you have a user-defined type "MySample" with fields "r;FloatVal" and "r;IntVal" you can

create Tag1 and use the value of one field in an Integer Calc Tag. The destination tag is not a

multifield tag.

result = currentvalue("Tag1.IntVal")+5

Storing Array or Multifield data in Calculation tags

Array

If your calculation tag is an array tag, then you can copy the entire array values into it. For

example, you can copy the entire values from Array1 into Array2 using the given code.

result = CurrentValue("Array1")

You can take an array value collected from a field device and adjust the values before

storing it in another array tag Array2 using this code:

dim x

x=CurrentValue("Array1")

x(1) = x(1)+10

result = x

You can simply construct an array value inside your formula and store it in Array2, for

example:

dim MyArray(2)' The 2 is the max index not the size

MyArray(0)=1

MyArray(1)=2

MyArray(2)=3 result = MyArray

Multifield

You can have the collector combine collected data into a multifield tag. Create a calculation

Tag1 using the user-defined Type "MySample," then use this formula to fill in the fields:

Dim InputValue, myval,x,y

' get the current value of another multifield tag

InputValue = CurrentValue("tag1")

Historian | 15 - The Calculation Collector | 2134

' get the values of each of the fields

x = GetMultiFieldValue(InputValue, "IntVal")

y = GetMultiFieldValue(InputValue, "floatval")

' store the field values in this tag

SetMultiFieldValue myval,"IntVal",x,100

SetMultiFieldValue myval,"floatval",y,100

Result = myval

Using Array or Multifield data to trigger calculation

Array

You can use the array tag as a trigger tag for your float or array calculation tags. For

example, you can use Array1 as a trigger so that when it changes, the "CalcArray1" tag will

be updated. You cannot use an individual array element such as "Array1[3]" as a trigger,

you must use the entire array tag as the trigger tag.

Multifield

You can use a multifield tag as a trigger tag by either using the tagname "Tag1" or tagname

with the field name "Tag1.FloatVal".

Sending Array or Multifield data to a Remote Historian

Array

You can use the Server to Server Collector or Server to Server Distributor to send array data

to a destination Historian. If the destination Historian is version 6.0 or later, you can simply

browse the tags and add them.

You cannot send an array to the older versions of archiver (Pre 6.0 versions) as these

archivers will store the array tags as a blob data type in the destination and you will not be

able to read them. However, you can send individual elements of an array to these archivers,

for example, result = currentvalue("Array1 [4]").

Multifield

The destination needs to be Historian 6.0 or above to store a multifield tag but you can send

individual fields to a pre Historian 6.0 archiver.

For multifield tags, you must create the User Defined Type manually at the destination

Historian | 15 - The Calculation Collector | 2135

You can write an entire multified tag data sample in one write or you can create multiple

tags in the destination, one for each field you want to copy. For example, if you have one tag

"Tag1" with two fields "FloatVal" and "IntVal" on a source archiver, then you can create two

tags ("Tag1.FloatVal" and "Tag1.IntVal") on the destination.

Note:

If you change a field name or add or remove fields you must update your collection

and your destination tags.

Reading and writing a Multifield tag using MultiField functions

The following example shows how to read an entire multifield tag, using the GetMultiFieldValue function

and to write the value to a field in another tag using the SetMultiFieldValue function.

Dim CurrMultifieldValue

' Read the value of a multi field tag into a variable

CurrMultifieldValue = CurrentValue("MyMultifieldTag")

' Read the field value of multifield tag into the temporary variable

F1 = GetMultiFieldValue(CurrMultifieldValue, "Temperature Field")

' Perform a calculation on the value

Celcius = (F1 32)/ 9* 5

' Set the calculated value to another field of the multifield tag

SetMultiFieldValue(CurrMultifieldValue, "Temperature Field Celcius", Celcius, 100)

result = CurrMultifieldValue

Types of Functions Supported

The following table describes the types of actions supported. All the value functions return a single value.

Type of Action Available Functions for the Action

Insert a value • Current value

• Previous value

• Next value

• Interpolated value

Historian | 15 - The Calculation Collector | 2136

Type of Action Available Functions for the Action

Insert a calculation • Unfiltered calculation

• Filtered calculation

Insert a timestamp • Time shortcut

• Previous value timestamp

• Next value timestamp

• Current time

Check data quality • Current value quality

• Previous value quality

• Next value quality

Set data quality • Set Quality Good

• Set Quality Bad

Add data value Value

Insert a tag name Tagname

Insert an alarm calculation • Previous Alarm

• Next Alarm

• Get Alarm Property

• Set Alarm Property

• Add Event

• New Alarm

• Update Alarm

• Return to Normal

Insert a multifield operation • GetMultiFieldValue

• GetMultiFieldQuality

• SetMultiFIeldValue

User-defined Functions

In addition to the built-in functions (on page 2127), you can create custom calculation functions. After

you create a custom calculation function, it is available for use with other calculations as well.

Functions are useful as shortcuts for large blocks of source code. By creating a function out of commonly

used calculation formulas, you can save time and effort instead of typing a few lines of calculation

formula every time you want to perform the same operation, it is compressed to a single line.

Historian | 15 - The Calculation Collector | 2137

The syntax of a function is simple:

Function functionname (variable list)

 [calculation formulas]

End Function

The operations a function performs are contained within the Function / End Function statements. If you

need to send data to the function a tag name, for example you simply create a variable in the function's

parameters to receive the data. Multiple variables must be separated by commas. These variables exist

only within the function.

The following is an example of a function. This function, named checkValue(), looks at a tag and assigns

it an alarm if it is over a specified value.

A Function to Assign an Alarm to a Tag Based on a Condition
The following function, named checkValue, assigns an alarm to a tag if the tag value reaches a specified

value.

Function checkValue (tagname,sourcename,value)

 If CurrentValue(tagname) > value Then

 Set AlarmObj = new Alarm

 AlarmObj.SubConditionName = "HI"

 AlarmObj.Severity = 750

 AlarmObj.NewAlarm

 "alarmname", "Simulated", "tagname", "Now"

 checkValue = true

Else

 checkValue = false

 End If

End Function

If you want to use this function, enter the values for tag name, source name, and value, as shown in the

following example:

alm_set = checkValue("DD098.FluidBalance","FluidBalance_ALM",5000)

In this example, if the value of the DD098.FluidBalance tag exceeds 5000, the function returns a true

value, indicating that the alarm was set; the alm_set variable will be set to true. Otherwise, the alm_set

variable will be set to false.

Historian | 15 - The Calculation Collector | 2138

Date/Time Shortcuts

The following table outlines the date/time shortcuts that you can use in calculation formulas.

Table 374. Date/Time Shortcuts

Shortcut Description

Now Now (the time and date that you execute the query)

Today Today at midnight

Yesterday Yesterday at midnight

BOY First day of year at midnight

EOY Last day of year at midnight

BOM First day of month at midnight

EOM Last day of month at midnight

Relative Date/Time Shortcuts

Optionally, you can add or subtract relative times to the following absolute times. You must use them

in conjunction with the date/time shortcuts listed in the preceding table (for example, Today+5h+3min

instead of 5h3min).

• Second

• Minute

• Hour

• Day

• Week

Converting a Collected Value

The following code sample converts a temperature value from degrees Celsius to degrees Fahrenheit.

Result=CurrentValue("Temp F")*(9/5)+32

Calculations Inside Formulas

The following code sample contains a calculation within a formula. In this case, we are taking the average

of values of the tag Simulation00001 over the previous hour. Typically, use a polled trigger to schedule the

execution of the formula.

Historian | 15 - The Calculation Collector | 2139

Result=Calculation("Simulation00001","Average","Now-1hour","Now",Quality)

Conditional Calculation

The following code sample stores the value of a tag only if it is 100.

IF CurrentQuality("Simulation00001")=100 THEN

Result=CurrentValue("Simulation00001")

END IF

Combining Tag Values and Assigning a Trigger

The following code sample adds current values of multiple tags using two calculation triggers.

Result=CurrentValue("SERVER1.Simulation00003")+CurrentValue("SERVER1.Simulation00006")

The calculation triggers used in the sample are SERVER1.Simulation0003 and SERVER1.Simulation0006.

The calculation is triggered if the value of either Server1.Simulation0003 or Server1.Simulation0006

changes.

Using CreateObject in a Formula

The following code sample reads data from another Historian Server using the Historian OLE DB provider,

and stores it in a destination tag. When using this example, specify the username and password.

'connection and recordset variables

Dim Cnxn

Dim rsCurrentValueFromOtherServer

'open connection

Set Cnxn = CreateObject("ADODB.Connection")

'connect to default server using current username and password

'establish connection

Cnxn.Open "Provider=ihOLEDB.iHistorian.1;User Id=;Password="

'Create and open first Recordset using Connection execute

Set rsCurrentValueFromOtherServer = CreateObject("ADODB.Recordset")

'Get the value from the other server

Set rsCurrentValueFromOtherServer = Cnxn.Execute("select value from ihRawData

where SamplingMode=CurrentValue and tagname = Simulation00001")

'Set the result to the current value of other tag

Result=rsCurrentValueFromOtherServer("Value")

'Clean up

IF rsCurrentValueFromOtherServer.State = adStateOpen THEN

Historian | 15 - The Calculation Collector | 2140

rsCurrentValueFromOtherServer.Close

END IF

IF Cnxn.State = adStateOpen THEN Cnxn.Close

END IF

Set rsCurrentValueFromOtherServer = Nothing

Set Cnxn = Nothing

Using a File

The following code sample shows how to read and write text files during a calculation. You may have

data in a file to use as input to a calculation, or you may want to write debug values to a text file instead of

using the LogMessage function.

Dim filesys, writefile, count,readfile

'need to create a file system object since there is no

'file I/O built into VBScript

Set filesys = CreateObject("Scripting.FileSystemObject")

'open the text file, or create it if it does not exist

set readfile = filesys.OpenTextFile("C:\somefile.txt", 1, true)

'try to read from the file

IF readfile.AtEndOfLine <> true THEN

count= readfile.ReadAll

END IF

'add one to the number stored in the count count = count+1

'close the file for reading

readfile.Close

'open the same file but for writing

Set writefile= filesys.OpenTextFile("C:\somefile.txt", 2, true)

'write the updated count writefile.Write count

'close file for writing

writefile.Close

Result = count

Converting a Number to a String

If your device and collector expose data as numeric codes, you can change to a string description. This

examples also demonstrates that a calculation can output a string.

DIM X

x=CurrentValue ("tag1")

Historian | 15 - The Calculation Collector | 2141

select case x

case 1

Result="one"

case 2

Result="two"

case else

Result="other"

End select

Detecting Recovery Mode Inside a Formula

The following code sample detects the recovery mode or recalculation inside a formula. If there are

individual tags, you do not want to perform a recovery.

Dim MAXDIFF, TimeDiff

'Maximum difference in timestamps allowed (Must be > 2,

'units = seconds) MAXDIFF = 10

'Calculate time difference

TimeDiff = DateDiff("s", CurrentTime(), Now)

'Compare times, if difference is < MAXDIFF seconds perform calc

If TimeDiff < MAXDIFF Then

'Place calculation to be performed here:

Result = CurrentValue("DENALI.Simulation00001") Else

'Place what is to be done when no calc is performed here

Result = Null

End If

Looping Through Data Using the SDK

The following code sample uses the SDK to perform a query on a data set. It determines the minimum

raw value over a one-hour time period.

on error resume next

Dim MyServer 'As Historian_SDK.Server

Dim I

Dim J

Dim K

Dim strComment

Dim lngInterval

Dim TagCount

Historian | 15 - The Calculation Collector | 2142

Dim strDataQuality

Dim iDataRecordset

Dim iDataValue

Dim lEndTime, lStartTime, lNumSamples

Dim lNumSeconds, lNumSamplesPerSecond

Dim RawMin

'Instantiate The SDK

Set MyServer = CreateObject("iHistorian_SDK.Server")

'Attempt Connection

If Not MyServer.Connect("DENALI", "administrator","") Then

result = err.description

else

Set iDataRecordset = MyServer.Data.NewRecordset

'Find the number of samples.

'build query

With iDataRecordset

.Criteria.Tagmask = "EIGER.Simulation00001"

.Criteria.StartTime = DateAdd("h",-1,Now)

.Criteria.EndTime = Now

.Criteria.SamplingMode = 4 'RawByTime

.Criteria.Direction = 1 'forward

.Fields.AllFields

'do query

If Not .QueryRecordset Then

result = err.description

End If

'Some Large number so that real samples are less

RawMin = 1000000

For I = 1 To iDataRecordset.Tags.Count

For J = 1 To iDataRecordset.Item(I).Count

Set iDataValue = iDataRecordset.Item(I).Item(J)

' if the value is good data quality

if iDataValue.DataQuality = 1 then

if iDataValue.Value < RawMin then

rawMin = iDataValue.Value

end if

end if

Historian | 15 - The Calculation Collector | 2143

lNumSamples = lNumSamples + 1

Next

Next

End With

End If

Result = RawMin

'Disconnect from server

MyServer.Disconnect

Using an ADO Query

The following code sample uses a query combining Historian data with ADO data. In the example, you

convert a collected value, number of barrels per day (BarrelsUsedToday), to a dollar amount. The code then

obtains the price per barrel (CostOfBarrel) from the SQL server, and finally stores the total dollars in an

integer tag (TotalCostToday).

You can also do this with a linked server and the Historian OLE DB provider, but this example maintains a

history of the results.

Dim CostOfBarrel, BarrelsUsedToday, TotalCostToday

'Calculate the total number of barrels used over

'the previous 24hours.

BarrelsUsedToday = Calculation("BarrelsUsedTag","Total","Now 1Day","Now",Quality)

'Retrieve cost per barrel used

Dim SQLExpression

Dim Cnxn

Dim rsCurrentValue

SQLExpression = "SELECT Barrel_Cost AS Value1 FROM RawMaterial_Costs WHERE Barrel_Type = CrudeOil and

samplingmode = CurrentValue"

'open connection

Set Cnxn = CreateObject("ADODB.Connection")

'connect to default server using current username and password

'establish connection

Cnxn.Open "Provider=SQLOLEDB.1;User ID=sa; Password=;Initial Catalog=Northwind"

'Create and open first Recordset using Connection execute

Set rsCurrentValue = CreateObject("ADODB.Recordset")

'Get the value from the other server

Set rsCurrentValue= Cnxn.Execute(SQLExpression)

'Set the result to the current value of other tag

Historian | 15 - The Calculation Collector | 2144

CostOfBarrel = rsCurrentValue("Value1")

'Clean up

If rsCurrentValue.State = adStateOpen then

rsCurrentValue.Close

End If

If Cnxn.State = adStateOpen then

Cnxn.Close

End If

Set rsCurrentValue = Nothing

Set Cnxn = Nothing

'Retrieve number of barrels used

BarrelsUsedToday = Calculation("BarrelsUsed","Count","Now 1Day","Now",Quality)

'Calculate total cost of barrels today

TotalCostToday = CostOfBarrel * BarrelsUsedToday

Windows Performance Statistics Physical Memory Usage

The following code sample creates a formula that collects data reflecting private byte usage.

`Get a reference to the local data archiver process object

Set RawProc = GetObject("winmgmts:Win32_PerfRawdata_Perfproc_process.name='ihDataArchiver.'")

`Scale the virtual bytes number to a value within

`the tag's EGU range

result =RawProc.PrivateBytes *.001

Windows Performance Statistics Virtual Memory Usage

The following code sample creates a formula that collects data reflecting virtual byte usage.

`Get a reference to the local data archiver process object

 Set RawProc = GetObject("winmgmts:Win32_PerfRawdata_Perfproc_process.name='ihDataArchiver.'")

`Scale the virtual bytes number to a value within the

`tag's EGU range

result =RawProc.VirtualBytes *.0001

Determining Collector Downtime

The following code sample determines the amount of downtime, in seconds, that the Calculation collector

has experienced over the last day. Downtime occurs when there are two consecutive bad quality data

points for the pulse tag. If the last known data point for the pulse tag is bad quality, all the time between

Historian | 15 - The Calculation Collector | 2145

its timestamp and the current time is regarded as downtime. In the following sample, the pulse tag is

configured to be polled, with a collection interval of one day.

Dim pulseTag, totalDownTime, startTime, endTime

Dim prevTime, prevQuality, lastPrevTime, lastPrevQuality

pulseTag = "calcPulseTag"

totalDownTime = 0

endTime = CurrentTime()

startTime = DateAdd("d", -1, endTime)

lastPrevTime = curTime lastPrevQuality = 0

Do

 'get the timestamp and quality of the tag value previous to the last one we checked

 On Error Resume Next

 prevTime = PreviousTime(pulseTag, lastPrevTime)

 If Err.Number <> 0 Then

 'no more values for this tag exit gracefully

 Exit Do

End If

prevQuality = PreviousQuality(pulseTag, lastPrevTime)

'if we have two consecutive bad data points, add to the downtime

If prevQuality = 0 And lastPrevQuality = 0 Then

 If prevTime > startTime Then

 totalDownTime = totalDownTime + DateDiff("s", prevTime, lastPrevTime)

Else

 totalDownTime = totalDownTime + DateDiff("s", startTime, lastPrevTime)

End If

End If

 'store the timestamp and quality for comparison with the next values

lastPrevQuality = prevQuality

 lastPrevTime = prevTime

Loop While lastPrevTime > startTime

Result = totalDownTime

Analyzing the Collected Data

The following code sample analyzes the collected data to determine the amount of time that a condition

was true and had good quality in the last day.

Historian | 15 - The Calculation Collector | 2146

Dim tagName, startTime, endTime

tagName = "testTag"

startTime = "Now 1Day"

endTime = "Now"

Result = CalculationFilter(tagName, "TotalTimeGood", startTime, endTime, 100, tagName, "AfterTime", "Equal", 1)

Simulating Demand Polling

To simulate demand polling, create the following tags.

Tag Description

Polled Tag A polled tag with a collection interval of the longest period you want be

tween raw samples. Do not enable collector or archive compression. This

tag should point to the same source address as the unsolicited tag.

Unsolicited Tag An unsolicited tag with a 0 or 1 second collection interval. This tag ensures

you will be notified whenever changes occur. This tag should point to the

same source address as the polled tag.

Combined Tag An unsolicited calculation tag that is triggered by either the polled tag or the

unsolicited tag, and combines the raw samples of both into a single tag. Use

a 0 or 1 second collection interval and use the following formula:

dim timetag1

dim timetag2

dim tag1

dim tag2

Dim x

tag1 = "T20.di-1.F_CV"

tag2 = "t20.T20.DI-1.F_CV"

x = DateAdd("s", 1,CurrentTime) ' add 1 second to calc time

' Get the timestamp of the newest raw sample for tag1:

timetag1 = previousTime(tag1, x)

' Get the timestamp of the newest raw sample for tag2:

timetag2 = previousTime(tag2, x)

if timetag1 > timetag2 then

' If tag1 triggered me, then:

result = PreviousValue(tag1,CurrentTime)

else

Historian | 15 - The Calculation Collector | 2147

Tag Description

' If tag2 triggered me, then:

result = PreviousValue(Tag1, CurrentTime)

end if

Native Alarms and Events Functions

About Native Alarms and Events Functions

In addition to using the calculation wizard to create calculation formulas within your calculation tag, you

can enter functions manually. The following sections list the functions available, along with their usage.

Retrieving and Setting Alarm Properties Manually

Alarm and event properties can also be set manually in the Calculation collector.

1. To retrieve alarm properties, append the property name to the alarm object, using the following

syntax:

variable = AlarmObj.Property

Example

The following example retrieves the alarm's severity and places it in a variable named

ALM_Severity.

ALM_Severity = AlarmObj.Severity

2. To set alarm properties manually, append the property name to the alarm object and supply a new

value for the property using the following syntax:

AlarmObj.Propertyname = "Property Name"

Important:

The Set Alarm Property function will not save changes to the alarm database. A call to

UpdateAlarm must be made after the Set Alarm Property function is called.

Example

The following example sets an alarm's severity to 100, then updates the alarm in the Historian

archive.

Historian | 15 - The Calculation Collector | 2148

AlarmObj.Severity = 100

AlarmObj.UpdateAlarm "Now"

Insert Calculation Functions Manually

In addition to using the Calculation Wizard to create your alarms and events calculations, you can also

enter them manually. The following functions are available:

NextAlarm

The NextAlarm function returns the next alarm for a tag or source on or after a given time

stamp.

Syntax

set AlarmObj = NextAlarm (source, condition, timestamp)

Example Code

The following example will get the next alarm based on the properties of the current alarm

object.

Set AlarmObj = NextAlarm (AlarmObj.Source, AlarmObj.ConditionName,

DateAdd("s", 1, AlarmObj.Timestamp))

NextAlarmForTag

The NextAlarmForTag function is identical to the NextAlarm function, but takes a tag name as

its input instead of a source.

Syntax

Set AlarmObj = NextAlarmForTag (tag name, condition, timestamp)

Example Code

The following example will get the next alarm for the tag SYN4450_Flow with a LevelAlarm

condition on or after the current alarm's timestamp.

Set AlarmObj = NextAlarmForTag ("SYN4450_Flow", "LevelAlarm", AlarmObj.Timestamp)

PreviousAlarm

The PreviousAlarm function returns the previous alarm for a tag or source on or before a

given timestamp.

Historian | 15 - The Calculation Collector | 2149

Syntax

set AlarmObj = PreviousAlarm (source, condition, timestamp)

Example Code

The following example will get the previous alarm based on the properties of the current

alarm object.

Set AlarmObj = NextAlarm (AlarmObj.Source, AlarmObj.ConditionName, AlarmObj.Timestamp)

PreviousAlarmForTag

The PreviousAlarmForTag function is identical to the PreviousAlarm function, but takes a tag

name as its input instead of a source.

Syntax

Set AlarmObj = PreviousAlarmForTag (tag name, condition, timestamp)

Example Code

The following example will get the previous alarm for the tag SYN4450_Flow with a LevelAlarm

condition on or before the current time.

Set AlarmObj = PreviousAlarmForTag ("SYN4450_Flow", "LevelAlarm", "Now")

AddEvent

The AddEvent method will create a new event with the current alarm properties.

Syntax

AlarmObj.NewAlarm source, tag, time stamp

Example Code

The following example creates a new event for the Simulation00001 tag on Simulation

source with a severity of 50, a message of Test Message, and the current time.

Set AlarmObj = new Alarm

AlarmObj.Severity = 50

AlarmObj.Message = "Test Message"

AlarmObj.AddEvent "Simulation", "Simulation00001", "Now"

NewAlarm

The NewAlarm method will create a new alarm, based on the current alarm object properties.

Historian | 15 - The Calculation Collector | 2150

Syntax

AlarmObj.NewAlarm source, condition, tag, time stamp

Example Code

The following example creates a new alarm for the Simulation00001 tag on Simulation

source with a severity of 50, a condition of Low Fluid Levels, and the current time.

Set AlarmObj = new Alarm

AlarmObj.Severity = 50

AlarmObj.Message = "SomeMsg"

AlarmObj.NewAlarm "Simulation", "Low Fluid Levels", "Simulation00001", "Now"

NextAlarm

The NextAlarm function returns the next alarm for a tag or source on or after a given time

stamp.

Syntax

set AlarmObj = NextAlarm (source, condition, timestamp)

Example Code

The following example will get the next alarm based on the properties of the current alarm

object.

Set AlarmObj = NextAlarm (AlarmObj.Source, AlarmObj.ConditionName,

DateAdd("s", 1, AlarmObj.Timestamp))

GetVendorAttribute

The GetVendorAttribute method will get the value of the given vendor attribute on the

current alarm object and place it into a supplied variable.

Syntax

variable = AlarmObj.GetVendorAttribute (Vendor_Attribute)

Example Code

The following example retrieves a vendor attribute called Cause_Comment from the alarm

object, and places it into the ALM_Cause_Comment variable.

ALM_Cause_Comment = AlarmObj.GetVendorAttribute ("Cause_Comment")

Historian | 15 - The Calculation Collector | 2151

SetVendorAttribute

The SetVendorAttribute method sets the value of the given vendor attribute on the current

alarm object.

Syntax

AlarmObj.SetVendorAttribute Vendor_Attribute, Value

Example Code

The following example sets values for the vendor attributes Cause_Comment and Status_Code,

then updates the alarm in the Historian archive.

AlarmObj.SetVendorAttribute "Cause_Comment", "This alarm was caused by..."

AlarmObj.SetVendorAttribute "Status_Code", 5032

AlarmObj.UpdateAlarm "Now"

Important:

The SetVendorAttribute method will not save changes to the alarm database. A call

to UpdateAlarm must be made after the SetVendorAttribute method is set.

UpdateAlarm

The UpdateAlarm function updates the current alarm with whatever changes have been made

to an alarm's properties.

Syntax

AlarmObj.UpdateAlarm timestamp

Example Code

AlarmObj.UpdateAlarm "Now"

ReturnToNormal

The ReturnToNormal method sets the end time for the current alarm.

Syntax

AlarmObj.ReturnToNormal timestamp

Example Code

Historian | 15 - The Calculation Collector | 2152

The following example sets the end time for the alarm to the current time.

AlarmObj.ReturnToNormal "Now"

Data Input

Calculation and Server-to-Server Collectors

The Calculation and Server-to-Server collectors have some unique behavior not found in other standard

collectors. This section provides details about Recovery (on page 2152) and Manual Recalculation (on

page 2153).

Recovery

This feature is unique to Calculation and Server-to-Server collectors. If the calculation engine is not

running for a period of time, recovery makes it look like it was running. Recovery can also be used to fill in

a hole of time where the collector was not able to communicate with the source archiver.

Recovery is applicable to both unsolicited and polled tags. Messages are also recovered. Comments are

not recovered.

Normally, it is impossible to go back to the past and collect data. However, since these collectors are

'deriving' data instead of 'collecting' data, it is possible to recover past data, especially since the source of

the derived data is archived in the Historian. It is important to understand that while recovery is possible

in the calculation and Server-to-Server collectors, it only makes sense for certain types of calculation

formulas.

Intended candidates for data recovery are formulas whose only inputs are Historian tags, since past

data for these tags can be interpolated. Formulas that use data from external text files or from ADO via

CreateObject will most likely not recover correct data because the inputs are not historized. If you are

using these types of formulas, you should turn off recovery for the whole collector or insert VBScript

code in the formula of individual tags to detect recovery. An example of this is given in the Historian

documentation. A similar approach can be used to set a Max Recovery Time on a tag basis, overriding the

collector wide setting.

Even calculation tags using only Historian tags as inputs have some caveats for recovery. If you are

deriving calculated data from other calculated data, be sure to set up a trigger tag for each of the tags

used in your formula. This way the tags will be processed in chain order. All tags are processed in time

order.

Historian | 15 - The Calculation Collector | 2153

The recovery logic is not intended to overcome polled collection overruns. If you configure too much

collection, then you will get overruns.

You can control the amount of recovered data using Max Recovery Time configuration setting. You can

turn off the recovery by setting it to zero.

Manual Recalculation

The Manual re-calc/re-replicate option is often the best choice for generating past derived data.

Note:

If you perform a server-to-server recalculation on source and destination servers whose

clocks are not synchronized, extra data points may appear and original data points may not be

recalculated. To ensure this does not occur, ensure the time is synchronized on both source and

destination servers.

S2S/S2C collector Backfill procedure

With the Recalculate feature you can recalculate all tags for the time period during and after the

connection loss. The recalculated tags will use the most accurate values in calculations.

During the period of connection loss, the collector buffers the data. When the connection is restored, the

buffered data is forwarded to the Historian Server. When the buffered data arrives, the timestamps show

earlier time than the most recent calculation timestamp.

Since the timestamp is earlier, the polled calculations will not execute again with the new data but the

unsolicited calculations will re-trigger. Therefore, it is possible that calculations performed for tags during

and after the connection loss might be not be entirely accurate.

Run S2C Backfill via Command line

ihServerToServerCollector.exe RELOADFILENAME=[file location]

RELOADUSERNAME=[Username] <start time> <end time>

Example: C:\Program Files\Proficy\Proficy Historian\x86\Server>ihServerToServerCollector.exe

RELOADFILENAME=c:\taglist.txt RELOADUSERNAME=\Administrator 1516875659 1516875785

For multi-instance support, the command requires the interface name as shown in the following example:

Example for Multi-instance Support: C:\Program Files (x86)\GE Digital\Historian Server to Server

Collector\Server>ihServerToServerCollector.exe RELOADFILENAME=c:\taglist.txt RELOADUSERNAME=

\Administrator 1669462600 1669463200 REG=sekhartest05_To_PredixOFFSS

Historian | 15 - The Calculation Collector | 2154

See the following information about the parameters:

• RELOADFILENAME: This is an optional parameter. File name should be absolute path, this file

consists of the tag names, for which Backfill should be performed, each tag should be separated

by new line. Any discrepancies in the file/no file exists/parameter not provided leads to Backfill all

the tags related to the collector at the current time. After the Backfill, file gets deleted.

• RELOADUSERNAME: This is an optional parameter. This username is used only when destination

server is Historian for auditing purpose, and gets ignored when the destination is cloud.

• TIMESTAMP: This parameter accepts Start and end time in seconds in epoch format for which

Backfill should happen. https://www.epochconverter.com/

How Data Recovery works:

• When the recovery logic is executed, the collector will setup subscriptions for all the trigger tags.

• Next, it will recover data. The collector first determines how long it has been since the last write.

It compares the current time to data in the registry key LastCalcRepWriteTime, which stores the

last time data was written to the archive. The collector compares this to the Max Recovery Time

that is specified in the user settings and performs a raw data query on the shorter of these two

periods. Then it will take the shorter of these two and do a raw data query for all trigger tags. It will

then process the returned samples in sequential order based on time. For example, if the collector

was shut down for 8 hours, but Max Recovery Time was 4 hours, only 4 hours of data would be

recovered.

• Recovery is performed before real time processing. Once recovery is complete, it will start polling

and processing subscriptions in real time. The subscriptions in real time are queued up till the

recovery is done.

https://www.epochconverter.com/

Historian | 15 - The Calculation Collector | 2155

• Recovery logic will place an end-of-collection marker at the point in time where the collector was

shut down. This end-of-collection marker may or may not be there once the recovery is complete.

As part of recovery logic, if it calculates a data point exactly at that timestamp where the end-of-

collection marker is there, then it will be overwritten with the calculated good data.

• The recovery logic does not write samples to trigger tags or tags that are just in the formula. It is

intended to write samples to the calculation tags.

• Messages are added to the log file that indicate when entering and exiting recovery mode.

Examples

The examples below assume the following tag configuration.

• Machine 1:

Runs Data Archiver, iFIX collector (Collector 1), and Calculation collectors.

• Machine 2:

Runs iFIX collector (Collector 2), which collects and sends data to the archiver in Machine 1 (as a

Remote Collector).

TagA and TagB are the iFix tags coming from Collector1 and Collector2, respectively. Both of these

tags are scanned at a 1-minute poll rate.

The following example demonstrates the recovery function for an unsolicited 1-minute interval calculation

tag that has a simple current value function.

Create an event based 1-minute interval Calculation Tag (CalcTag1) in Machine 1 consisting of the

following calculation: Result=CurrentValue (TagA)

Stop the Calculation collector for 5 minutes and then restart it to trigger data recovery for the 5-minute

shutdown period. For the following example, the Calculation collector was stopped at 2002-12-27

17:05:36 and started at 2002-12-27 17:10:48.

Since there is no interruption for the iFIX collector, the raw data query for TagA results the following

output:

Raw Data Query for TagA during shutdown period

114) 81 [2002-12-27 17:02:00:00000] Good NonSpecific

115) 72 [2002-12-27 17:03:00:00000] Good NonSpecific

Historian | 15 - The Calculation Collector | 2156

116) 64 [2002-12-27 17:04:00:00000] Good NonSpecific

117) 56 [2002-12-27 17:05:00:00000] Good NonSpecific

118) 39 [2002-12-27 17:06:00:00000] Good NonSpecific

119) 31 [2002-12-27 17:07:00:00000] Good NonSpecific

120) 22 [2002-12-27 17:08:00:00000] Good NonSpecific

121) 14 [2002-12-27 17:09:00:00000] Good NonSpecific

122) 6 [2002-12-27 17:10:00:00000] Good NonSpecific

A raw data query for CalcTag1 during the shutdown period generates the following:

Raw Data Query for CalcTag1 (before recovery)

96) 81 [2002-12-27 17:02:00:00000] Good NonSpecific

97) 72 [2002-12-27 17:03:00:00000] Good NonSpecific

98) 64 [2002-12-27 17:04:00:00000] Good NonSpecific

99) 56 [2002-12-27 17:05:00:00000] Good NonSpecific

100) 0 [2002-12-27 17:05:36:00000] Bad OffLine

Note that an end-of-collection marker is placed at the shutdown point (that is, at 17:05:36) with a bad data

quality.

Once the recovery is complete, this is what we see for the recovered CalcTag1. Note that data during the

shutdown period is recovered completely. Compare this result set with the one for TagA. Both are the

same.

Raw Data Query for CalcTag1 (after recovery)

96) 81 [2002-12-27 17:02:00:00000] Good NonSpecific

97) 72 [2002-12-27 17:03:00:00000] Good NonSpecific

98) 64 [2002-12-27 17:04:00:00000] Good NonSpecific

99) 56 [2002-12-27 17:05:00:00000] Good NonSpecific

100) 0 [2002-12-27 17:05:36:00000] Bad OffLine

Historian | 15 - The Calculation Collector | 2157

101) 39 [2002-12-27 17:06:00:00000] Good NonSpecific

102) 31 [2002-12-27 17:07:00:00000] Good NonSpecific

103) 22 [2002-12-27 17:08:00:00000] Good NonSpecific

104) 14 [2002-12-27 17:09:00:00000] Good NonSpecific

105) 6 [2002-12-27 17:10:00:00000] Good NonSpecific

Also note that the end-of-collection marker is not overwritten by the recovery logic here. If it calculated a

data point exactly at the end-of-collection marker, then it would have been overwritten by the calculated

good value.

The following example demonstrates the recovery function for an unsolicited calculation tag that has

multiple triggers.

Create an event based Calculation Tag (CalcTag2) in Machine 1 consisting of the following calculation:

Result=CurrentValue (TagA) + CurrentValue (TagB)

where TagA and TagB are both trigger tags, coming from Collector1 and Collector2 respectively. Set the

collection offset of 5 seconds for TagA and 10 seconds for TagB, forcing the calculation to be performed

twice per minute.

Stop the Calculation collector for 5 minutes, and then restart it to trigger data recovery for this 5-minutes

shutdown period. For the following example, the Calculation collector was stopped at 02/18/2003

12:15:33 and started at 02/18/2003 12:21:53.

Since the iFIX collector was not interrupted, a raw data query for TagA and TagB values generates the

following output:

Raw Data Query for TagA during the shutdown period

10) 13 [2003-02-18 12:10:05:00000] Good NonSpecific

11) 12 [2003-02-18 12:11:05:00000] Good NonSpecific

12) 11 [2003-02-18 12:12:05:00000] Good NonSpecific

13) 11 [2003-02-18 12:13:05:00000] Good NonSpecific

14) 10 [2003-02-18 12:14:05:00000] Good NonSpecific

15) 18 [2003-02-18 12:15:05:00000] Good NonSpecific

Historian | 15 - The Calculation Collector | 2158

16) 17 [2003-02-18 12:16:05:00000] Good NonSpecific

17) 16 [2003-02-18 12:17:05:00000] Good NonSpecific

18) 16 [2003-02-18 12:18:05:00000] Good NonSpecific

19) 15 [2003-02-18 12:19:05:00000] Good NonSpecific

20) 14 [2003-02-18 12:20:05:00000] Good NonSpecific

21) 13 [2003-02-18 12:21:05:00000] Good NonSpecific

Raw Data Query for TagB during the shutdown period

10) 35 [2003-02-18 12:10:10:00000] Good NonSpecific

11) 34 [2003-02-18 12:11:10:00000] Good NonSpecific

12) 33 [2003-02-18 12:12:10:00000] Good NonSpecific

13) 32 [2003-02-18 12:13:10:00000] Good NonSpecific

14) 31 [2003-02-18 12:14:10:00000] Good NonSpecific

15) 31 [2003-02-18 12:15:10:00000] Good NonSpecific

16) 39 [2003-02-18 12:16:10:00000] Good NonSpecific

17) 38 [2003-02-18 12:17:10:00000] Good NonSpecific

18) 37 [2003-02-18 12:18:10:00000] Good NonSpecific

19) 36 [2003-02-18 12:19:10:00000] Good NonSpecific

20) 36 [2003-02-18 12:20:10:00000] Good NonSpecific

21) 35 [2003-02-18 12:21:10:00000] Good NonSpecific

A raw data query for CalcTag2 during the shutdown period generates the following:

Raw Data Query for CalcTag2 (before recovery)

12) 50 [2003-02-18 12:09:05:00000] Good NonSpecific

13) 50 [2003-02-18 12:09:10:00000] Good NonSpecific

14) 49 [2003-02-18 12:10:05:00000] Good NonSpecific

Historian | 15 - The Calculation Collector | 2159

15) 48 [2003-02-18 12:10:10:00000] Good NonSpecific

16) 47 [2003-02-18 12:11:05:00000] Good NonSpecific

17) 46 [2003-02-18 12:11:10:00000] Good NonSpecific

18) 45 [2003-02-18 12:12:05:00000] Good NonSpecific

19) 44 [2003-02-18 12:12:10:00000] Good NonSpecific

20) 44 [2003-02-18 12:13:05:00000] Good NonSpecific

21) 43 [2003-02-18 12:13:10:00000] Good NonSpecific

22) 42 [2003-02-18 12:14:05:00000] Good NonSpecific

23) 41 [2003-02-18 12:14:10:00000] Good NonSpecific

24) 49 [2003-02-18 12:15:05:00000] Good NonSpecific

25) 49 [2003-02-18 12:15:10:00000] Good NonSpecific

26) 0 [2003-02-18 12:15:11:00000] Bad OffLine

Once data recovery is complete, this is what we see for the recovered data for CalcTag2. Note that data

during the shutdown period is completely recovered:

Raw Data Query for CalcTag2 (after recovery)

12) 50 [2003-02-18 12:09:05:00000] Good NonSpecific

13) 50 [2003-02-18 12:09:10:00000] Good NonSpecific

14) 49 [2003-02-18 12:10:05:00000] Good NonSpecific

15) 48 [2003-02-18 12:10:10:00000] Good NonSpecific

16) 47 [2003-02-18 12:11:05:00000] Good NonSpecific

17) 46 [2003-02-18 12:11:10:00000] Good NonSpecific

18) 45 [2003-02-18 12:12:05:00000] Good NonSpecific

19) 44 [2003-02-18 12:12:10:00000] Good NonSpecific

20) 44 [2003-02-18 12:13:05:00000] Good NonSpecific

Historian | 15 - The Calculation Collector | 2160

21) 43 [2003-02-18 12:13:10:00000] Good NonSpecific

22) 42 [2003-02-18 12:14:05:00000] Good NonSpecific

23) 41 [2003-02-18 12:14:10:00000] Good NonSpecific

24) 49 [2003-02-18 12:15:05:00000] Good NonSpecific

25) 49 [2003-02-18 12:15:10:00000] Good NonSpecific

26) 0 [2003-02-18 12:15:11:00000] Bad OffLine

27) 48 [2003-02-18 12:16:05:00000] Good NonSpecific

28) 56 [2003-02-18 12:16:10:00000] Good NonSpecific

29) 55 [2003-02-18 12:17:05:00000] Good NonSpecific

30) 54 [2003-02-18 12:17:10:00000] Good NonSpecific

31) 54 [2003-02-18 12:18:05:00000] Good NonSpecific

32) 53 [2003-02-18 12:18:10:00000] Good NonSpecific

33) 52 [2003-02-18 12:19:05:00000] Good NonSpecific

34) 51 [2003-02-18 12:19:10:00000] Good NonSpecific

35) 50 [2003-02-18 12:20:05:00000] Good NonSpecific

36) 50 [2003-02-18 12:20:10:00000] Good NonSpecific

37) 49 [2003-02-18 12:21:05:00000] Good NonSpecific

38) 48 [2003-02-18 12:21:10:00000] Good NonSpecific

39) 47 [2003-02-18 12:22:05:00000] Good NonSpecific

40) 46 [2003-02-18 12:22:10:00000] Good NonSpecific

The following example demonstrates the recovery function for an unsolicited calculation tag that has

multiple triggers, but for which none of the triggers is in the formula.

TagA and TagB are the iFix tags coming from Collector1 and Collector2, respectively. Both tags are

scanned at a 1-minute poll rate. This example uses two more iFix tags, TagC and TagD, coming from

Collector1.

Historian | 15 - The Calculation Collector | 2161

Create an event-based Calculation Tag (CalcTag3) in Machine 1 consisting of the following calculation:

Result=CurrentValue (TagA) + CurrentValue (TagB)

Make sure that the trigger tags for this calculation tag are TagC and TagD, which are not in the formula.

Set the collection offset of 5 seconds for TagC and 10 seconds for TagD, forcing the calculation to be

performed twice per minute.

Stop the Calculation collector for 5 minutes, and then restart it to trigger data recovery for this 5-minutes

shutdown period. For the following example, the Calculation collector was stopped at 02/18/2003

02:24:37 and started at 02/18/2003 02:31:44.

Since the iFIX collector was not interrupted, a raw data query for TagA and TagB values generates the

following output:

Raw Data Query for TagA during shutdown period

56) 13 [2003-02-18 14:21:05:00000] Good NonSpecific

57) 12 [2003-02-18 14:22:05:00000] Good NonSpecific

58) 11 [2003-02-18 14:23:05:00000] Good NonSpecific

59) 11 [2003-02-18 14:24:05:00000] Good NonSpecific

60) 10 [2003-02-18 14:25:05:00000] Good NonSpecific

61) 19 [2003-02-18 14:26:05:00000] Good NonSpecific

62) 18 [2003-02-18 14:27:05:00000] Good NonSpecific

63) 17 [2003-02-18 14:28:05:00000] Good NonSpecific

64) 16 [2003-02-18 14:29:05:00000] Good NonSpecific

65) 16 [2003-02-18 14:30:05:00000] Good NonSpecific

66) 15 [2003-02-18 14:31:05:00000] Good NonSpecific

Raw Data Query for TagB during shutdown period

141) 36 [2003-02-18 14:20:10:00000] Good NonSpecific

142) 36 [2003-02-18 14:21:10:00000] Good NonSpecific

143) 35 [2003-02-18 14:22:10:00000] Good NonSpecific

Historian | 15 - The Calculation Collector | 2162

144) 34 [2003-02-18 14:23:10:00000] Good NonSpecific

145) 33 [2003-02-18 14:24:10:00000] Good NonSpecific

146) 32 [2003-02-18 14:25:10:00000] Good NonSpecific

147) 31 [2003-02-18 14:26:10:00000] Good NonSpecific

148) 31 [2003-02-18 14:27:10:00000] Good NonSpecific

149) 39 [2003-02-18 14:28:10:00000] Good NonSpecific

150) 38 [2003-02-18 14:29:10:00000] Good NonSpecific

151) 37 [2003-02-18 14:30:10:00000] Good NonSpecific

152) 36 [2003-02-18 14:31:10:00000] Good NonSpecific

A raw data query for CalcTag3 during the shutdown period generates the following:

Raw Data Query for CalcTag3 (before recovery)

6) 49 [2003-02-18 14:21:05:00000] Good NonSpecific

7) 49 [2003-02-18 14:21:10:00000] Good NonSpecific

8) 48 [2003-02-18 14:22:05:00000] Good NonSpecific

9) 47 [2003-02-18 14:22:10:00000] Good NonSpecific

10) 46 [2003-02-18 14:23:05:00000] Good NonSpecific

11) 45 [2003-02-18 14:23:10:00000] Good NonSpecific

12) 45 [2003-02-18 14:24:05:00000] Good NonSpecific

13) 44 [2003-02-18 14:24:10:00000] Good NonSpecific

14) 0 [2003-02-18 14:24:11:00000] Bad OffLine

A data query for the recovered CalcTag3 values once data recovery is complete generates the following.

Note that data during the shutdown period is completely recovered:

Raw Data Query for CalcTag3 (after recovery)

6) 49 [2003-02-18 14:21:05:00000] Good NonSpecific

Historian | 15 - The Calculation Collector | 2163

7) 49 [2003-02-18 14:21:10:00000] Good NonSpecific

8) 48 [2003-02-18 14:22:05:00000] Good NonSpecific

9) 47 [2003-02-18 14:22:10:00000] Good NonSpecific

10) 46 [2003-02-18 14:23:05:00000] Good NonSpecific

11) 45 [2003-02-18 14:23:10:00000] Good NonSpecific

12) 45 [2003-02-18 14:24:05:00000] Good NonSpecific

13) 44 [2003-02-18 14:24:10:00000] Good NonSpecific

14) 0 [2003-02-18 14:24:11:00000] Bad OffLine

15) 43 [2003-02-18 14:25:05:00000] Good NonSpecific

16) 42 [2003-02-18 14:25:10:00000] Good NonSpecific

17) 51 [2003-02-18 14:26:05:00000] Good NonSpecific

18) 50 [2003-02-18 14:26:10:00000] Good NonSpecific

19) 49 [2003-02-18 14:27:05:00000] Good NonSpecific

20) 49 [2003-02-18 14:27:10:00000] Good NonSpecific

21) 48 [2003-02-18 14:28:05:00000] Good NonSpecific

22) 56 [2003-02-18 14:28:10:00000] Good NonSpecific

23) 55 [2003-02-18 14:29:05:00000] Good NonSpecific

24) 54 [2003-02-18 14:29:10:00000] Good NonSpecific

25) 54 [2003-02-18 14:30:05:00000] Good NonSpecific

26) 53 [2003-02-18 14:30:10:00000] Good NonSpecific

27) 52 [2003-02-18 14:31:05:00000] Good NonSpecific

28) 51 [2003-02-18 14:31:10:00000] Good NonSpecific

29) 49 [2003-02-18 14:32:05:00000] Good NonSpecific

30) 49 [2003-02-18 14:32:10:00000] Good NonSpecific

Historian | 15 - The Calculation Collector | 2164

31) 48 [2003-02-18 14:33:05:00000] Good NonSpecific

32) 47 [2003-02-18 14:33:10:00000] Good NonSpecific

Troubleshoot Calculation Collector

Troubleshooting Calculation collector

If you observer errors with Calculation collector, you should:

1. Examine the collector log files in the Historian\LogFiles folder and scan for errors in the log

that may explain your problem.

2. Check the connection to the source.

For example, if you lose connection to the source, all tags for that collector stop collecting. What

that means is that even if you hard-code the formula results, the collector will not collect them. If

you enter a formula such as result=7 on a polled, 1-second tag in the Server-to-Server Collector,

Historian does not log any raw samples to the destination computer. This action occurs even

though the result is hardcoded.

3. Ensure that you are following the guidelines described in General Guidelines for Designing a

Calculation Formula (on page 2119).

Tip:

use the LogMessage function to include messages in your formula when certain points of

a calculation executes so that you can isolate errors. Refer to Writing Messages to the

Collector Log File for Debugging Purposes (on page 2165) for details.

Unsupported Data Types for Calculation Tags

Calculation tags with Quad Integer and Unsigned Quad Integer data types return bad quality values due a

limitation in Visual Basic (VB).

Unsupported Calculations in Calculation collector

Calculation collector supports only the calculations performed using the current value calculation. It does

not support other calculations due to a Visual Basic script limitation.

Historian | 15 - The Calculation Collector | 2165

Writing Messages to the Collector Log File for Debugging Purposes

If you want to include debugging messages after certain parts of your formula execute, you can you can

use the LogMessage function when creating a formula in the Calculation pane. The syntax of this function

is as follows:

LogMessage(message_string)

where message_string is the message that you want to appear in the log file for the Calculation or Server-

to-Server Collector. If the message_string is not a string variable, use double quotes around the text for

message_string value. For instance, a properly formatted text string with double quotes would appear like

this:

LogMessage("This is a message")

Note:

The LogMessage function does not appear in the wizard.

Importing Calculations with Line Breaks into Historian

You can import calculations with line breaks into Historian when you use the File collector or the Excel

Add-in.

1. To create a line break in a .CSV file for the File collector, you insert the *CR* character sequence

where you want each line break to occur.

2. To create a calculation with multiple lines in Excel, press Alt+Enter at the end of each line where

you want a line break to occur within a cell.

You can also use the *CR* character sequence to denote a line break in the formula.

Example of a .CSV File that Includes a Calculation with Multiple Lines

In the following example the bold *CR* characters identify where the line breaks occur in the

calculation formula.

[Tags]

Tagname,Description,DataType,HiEngineeringUnits,LoEngineeringUnits,Calculation,

CollectorType,CollectorName,CollectionType,CalculationDependencies

CalTag16,Multiline calc tag sample,SingleFloat,35000,0, "'multiline calc comment*CR*IF CurrentQuality

(^Fixlab15.simulation00001^)=100 THEN*CR*Result=CurrentValue(^Fixlab15.simulation00002^)

*CR*END IF",Calculation,Fixlab15_Calculation,Unsolicited,Fixlab15.simulation00001

Historian | 15 - The Calculation Collector | 2166

Important:

For this example to work, only include three line breaks: one after the word [Tags], one after

the word CalculationDependencies on line 3, and one at the very end of the example. It is

important that the last 4 lines of this example all appear on the same line in the actual

.CSV file. The example only includes extra line breaks so that the text is more easily

readable, and does not flow off the page.

Recovery Mode

Recovery logic is activated when the Calculation collector and Historian Server reestablish connection

after a connection loss. Recovery mode allows the collector to recover data when the connection between

the collector and the server is reestablished. Recovery mode produces calculated values for time when

the Calculation collector was not running.

When using recovery mode, all referenced tags in an unsolicited calculation must be listed as trigger tags.

For more information, refer to About Recovery Mode (on page 2503).

Chapter 16. The CygNet Collector

Overview of the CygNet Collector
The CygNet collector collects data from a CygNet server and stores it in the Historian server.

Topology: The CygNet collector supports a distributed model, where the CygNet server, the collector, and

the Historian server are installed on different machines. Typically, however, the collector is installed on the

same computer as the CygNet server and sends data to a remote Historian server.

Features:

• You can browse the source for tags and their attributes on a CygNet server that supports browsing.

• Both the polled as well as unsolicited data collection are supported. During unsolicited data

collection, when changes to the CygNet tags are detected, they are forwarded to the Historian

server. The collector duplicates raw samples from the CygNet server into the Historian data

archive.

• The supported timestamp resolution is 100ms.

• The collector support manual recalculation of tag data.

• Floating point, integer, and string data are supported.

Components:

• System API

• Collector Toolkit

How it works:

1. When you browse for tags, the CygNet collector connects with CygNet using the CxScript64.dll API.

2. The collector queries the CygNet faculty service and point service associated with the Current

Value service (CVS).

3. The CygNet point value is mapped to the Historian server as a collector tag.

4. The collector stores the Value Historian service (VHS) and points Uniform Data Codes as the tag

source address.

5. Once all the CygNet points associated with the selected CVS/VHS have been mapped with the

Historian tags, the collector begins querying from VHS to collect data from CygNet.

Supported data types:

Historian | 16 - The CygNet Collector | 2168

The CygNet collector collects analog, digital, and string types of data. The following table provides the

data types recommended for use with Historian.

CygNet Data Types Recommended Data Type in Historian

Analog Float

Enumeration Integer

Digital Boolean

String Variable String

Supported tag attributes:

• Tagname

• Source Address

• Engineering Unit Description

• Data Type

• Hi Engineering Units and Lo Engineering Units (applicable only to analog and discrete data types)

Note:

Although you can browse and query some of these attributes, they are not displayed in the

browse interface. These attributes are used when you add a tag, but are not visible to you,

regardless of attributes available from the server.

Configuration

Add and Configure a CygNet Collector

A CygNet collector collects data from a CygNet server and stores it in the Historian server. For more

information, refer to Overview of the CygNet Collector (on page 2167).

Note:

You cannot send data to a cloud destination using a CygNet collector.

This topic describes how to add a collector instance using Configuration Hub. You can also add a

collector instance using the RemoteCollectorConfigurator utility (on page 797), which does not require you

to install Web-based Clients.

Historian | 16 - The CygNet Collector | 2169

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors in the default system appears.

3. In the upper-right corner of the main section, select .

The Add Collector Instance: <system name> window appears, displaying the Collector Selection

section. The MACHINE NAME field contains a list of machines on which you have installed

collectors.

4. In the MACHINE NAME field, select the machine in which you want to add a collector instance.

5. In the COLLECTOR TYPE field, select Cygnet Collector, and then select Get Details.

The INSTALLATION DRIVE and DATA DIRECTORY fields are disabled and populated.

6. Select Next.

The Source Configuration section appears.

7. In the SERVER SITE field, enter the host name or IP address of the CygNET server from which you

want to collect data.

8. Select Next.

The Destination Configuration section appears. Under CHOOSE DESTINATION, the Historian

Server option is selected by default; the other options are disabled.

9. If you created security groups or enabled a strict client/collector authentication, enter the

USERNAME and PASSWORD of the on-premises Historian server that you created during the

installation of the collector.

If you entered the USERNAMEand PASSWORD, select Test Connection. This will help you to test if

the Historian server that you are trying to connect is valid or if the credentials that you entered are

valid.

If the entered credentials are valid, a successful connection message appears.

Historian | 16 - The CygNet Collector | 2170

10. Select Next.

The Collector Initiation section appears. The COLLECTOR NAME field is populated with a value in

the following format: <Historian server name>_Cygnet

11. If needed, modify the value in the COLLECTOR NAME field.

The value that you enter:

◦ Must be unique.

◦ Must contain the string Cygnet.

◦ Must not exceed 15 characters.

◦ Must not contain a space.

◦ Must not contain special characters except a hyphen, period, and an underscore.

12. In the RUNNING MODE field, select one of the following options.

◦ Service - Local System Account: Select this option if you want to run the collector as a

Windows service using the credentials of the local user (that is, the currently logged-in user).

By default, this option is selected, and the USERNAME and PASSWORD fields are disabled.

◦ Service Under Specific User Account: Select this option if you want to run the collector as

a Windows service using a specific user account. If you select this option, you must enter

values in the USERNAME and PASSWORD fields.

If you have enabled the Enforce Strict Collector Authentication option in Historian

Administrator, you must provide the credentials of a user who is added to at least one of the

following security groups:

▪ iH Security Admins

▪ iH Collector Admins

▪ iH Tag Admins

You can also configure the collector to start automatically when you start the computer.

13. Select Add.

The collector instance is added. The fields specific to the collector section appear in the DETAILS

section.

14. Under COLLECTOR SPECIFIC CONFIGURATION, configure values as described in the following

table.

Field Description

Re

covery

Time

The maximum time, in hours, for which the collector will attempt to recover data after

the collector is started or when connection between the collector and the CygNet serv

er is re-established. This time is calculated as the duration between the current time and

the last known write time.

Historian | 16 - The CygNet Collector | 2171

Field Description

Continuous data collection is resumed only after the previous data has been recovered.

By default, this value is set to 0, which means data recovery is not attempted. The maxi

mum value you can provide is 168 hours (that is, 7 days).

Thread

Count

The maximum number of threads that you want to collector to use to query data from

the CygNet server.

CygNet

Debug

Mode

The debug mode for the collector. You can enter a value between 0 and 255, where 0

turns off debugging and 255 enables detailed debugging (with query transactions).

Note:

Do not turn on debugging for a long period. If you do so, very large log files are

created, which can consume a great deal of disk space. We recommend a maxi

mum of 10 minutes.

Gen

eral

Opti

mized

Indicates whether you want to apply optimization on the tag data reads.

Ser

vice

Site

Identifies the CygNet site or data source from which the CygNet collector collects data.

A value is required.

MTLS

Secu

rity

Indicates whether you want to use Mutual TLS (MTLS) protocol to enforce a secure and

strong authentication mechanism.

MTLS

Da

ta En

cryp

tion

Indicates whether you want to encrypt the data that the collector shares to the data

archiver (DA).

For more information on how to enable MTLS Security, refer to Enable MTLS Security (on page

632).

15. If needed, enter values in the other sections common to all collectors (on page 579).

16. In the upper-left corner of the page, select Save.

Historian | 16 - The CygNet Collector | 2172

The changes to the collector instance are saved.

17. If needed, restart the collector.

Specify the tags (on page 357) whose data you want to collect using the collector.

Configure the CygNet Collector Using Historian Administrator

1. Access Historian Administrator (on page 823).

2. Select Collectors, and then select the CygNet collector instance that you want to configure.

3. Select Configuration.

The Configuration section appears.

4. Enter values as specified in the following table.

Historian | 16 - The CygNet Collector | 2173

Field Description

Recovery Time The maximum time, in hours, for which the collector will attempt

to recover data after the collector is started or when connection

between the collector and the CygNet server is re-established.

This time is calculated as the duration between the current time

and the last known write time.

Continuous data collection is resumed only after the previous

data has been recovered.

By default, this value is set to 0, which means data recovery

is not attempted. The maximum value you can provide is 168

hours (that is, 7 days).

Thread Count The maximum number of threads that you want to use to query

data from the CygNet server.

CygNet Debug Mode The debug mode for the collector. You can enter a value be

tween 0 and 255, where 0 turns off debugging and 255 enables

detailed debugging (with query transactions).

Note:

Do not turn on debugging for a long period. If you do so,

very large log files are created, which can consume a

great deal of disk space. We recommend maximum 10

minutes.

General Optimized Indicates whether you want to apply optimization on the tag da

ta reads.

ServiceSite Identifies the CygNet site or data source from which the CygNet

collector collects data. A value is required.

Note:

You can also modify these parameters in the registry under HKEY_LOCAL_MACHINE

\SOFTWARE\GE Digital\iHistorian\Services\CygNetCollector. The following table provides

the mapping between the parameters in the Registry and the UI.

Historian | 16 - The CygNet Collector | 2174

Registry Parameters Parameters in the UI

General2 Recovery Time

General3 Thread Count

General4 CygNet Debug Mode

General5 General Optimized

For a list of the general parameters, refer to General Parameters of a Collector (on page 814).

5. Select Update.

6. Restart the collector.

The collector is configured.

Specifying Tags for Data Collection

Add Tags for the Data Store Using Configuration Hub

• Add the collector instance (on page 357) using which you want to collect data. Ensure that the

collector is running.

• By default, the tag data is stored in the user data store, which is created automatically when you

set up Configuration Hub. If, however, you want to store the data in a different data store, create it

(on page 370).

This topic describes how to specify the tags for which you want to collect data by browsing through the

tags in the data source. For example, for an iFIX collector, if there are 1,00,000 tags in the iFIX server, you

must specify the ones for which you want to collect data. Only then data is collected for those tags.

In addition to adding tags from the data source, you can create tags manually (on page 473).

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

3. Select .

Historian | 16 - The CygNet Collector | 2175

The Add Tag-<system name> page appears. The Add Tags from Collector option is selected by

default.

4. Enter values as described in the following table.

Field Description

COLLECTOR NAME Select the collector instance that you want to use to collect da

ta. A value is required.

COLLECTED TYPE Specify whether you want to browse through all the tags in the

data source or only from the tags that you have not added yet. A

value is required.

SOURCE TAG NAME Enter the name of the tag (either completely or partially) to nar

row down the search results.

SOURCE TAG DESCRIPTION Enter the description of the tag (either completely or partially) to

narrow down the search results.

5. Select Search Tags.

A list of tags that match all the criteria that you have specified appears. If a tag is already added, it

is disabled.

6. Select the check box corresponding to each tag for which you want to collect data.

Historian | 16 - The CygNet Collector | 2176

7. In the DATA STORE field, if you want to store the data in a different data store than the user data

store, select the same.

8. Select Add Tag.

Data collection begins for the selected tags.

As needed, configure each tag by providing values for the tag properties. For information on the delta

query modes, refer to Counter Delta Queries.

Specify the Tags for Data Collection Using Historian Administrator

Install the CygNet ODBC driver on the collector machine, which is required for the CygNet collector to

connect to the server. Note that the CygNet ODBC driver is not available with Historian.

If your CygNet server supports hierarchical organization of tags in a tree structure, you can use the

hierarchy to browse for tags and add them to the collector for data collection.

1. Access Historian Administrator (on page 823).

2. Select Collectors, and then select the CygNet collector instance to which you want to add tags.

3. Select Configuration.

The Configuration section appears.

Historian | 16 - The CygNet Collector | 2177

4. Select Add Tags.

The Add Multiple Tags from Collector window appears.

Historian | 16 - The CygNet Collector | 2178

5. In the Collector field, select the CygNet collector to which you want to add tags.

A hierarchical tree of tags appears in the Browse Results section.

6. If you want to view only the tags for which data is not collected, in the Show Only field, select

Source Tags Not Collected. You can search for a tag by entering search criteria in the Source Tag

Name or Description field.

7. Navigate to the node in the tree that you want to browse, and then select Browse.

Tip:

◦ To browse automatically, select the Auto Browse check box. The available tags

appear in the Browse Results window whenever a node is selected in the tree.

◦ To show all child elements within a hierarchy, select the Show All Children check

box. All tags at or below the hierarchical level of the selected node in the tree

appear in the Browse Results window.

The tags within the selected portion of the CygNet server tag hierarchy appear.

Historian | 16 - The CygNet Collector | 2179

8. Select the tags for which you want to collect data, and then select Add Selected Tags.

The tags are added to the collector. They appear in black text in the list of tags.

Disable Bad Offline Values
By default, the CygNet collector adds a bad offline value when the collector is started or when a tag is

modified. This topic describes how to disable this feature.

1. Access the following registry key: HKEY_LOCAL_MACHINE\SOFTWARE\Intellution, Inc.\iHistorian

\Services\CygNetCollector\<entry>

2. Add the WriteBadOfflineAtStartup (DWORD) DWORD, and set it to 0 to disable adding bad offline

values.

Bad offline values will no longer be added.

Disable Deleting Values Before Recalculation
By default, before recalculating tag values, the CygNet collectordeletes any previously stored values. This

topic describes how to disable this feature.

1. Access the following registry key: HKEY_LOCAL_MACHINE\SOFTWARE\Intellution, Inc.\iHistorian

\Services\CygNetCollector\<entry>

2. Add the DeleteBeforeRecalc (DWORD) DWORD, and set it to 0.

Previously stored tag values will no longer be deleted before recalculation.

Troubleshooting the CygNet Collector
The CygNet collector generates logs during initialization, configuration, and general operation. You can

find them at C:\Proficy Historian Data\LogFiles.

Troubleshooting Tips

Troubleshoot the collector by:

• Examining the log files for information.

• Examining the Windows Event Viewer for error/warnings.

• Verifying that the CygNet server is running before you start the collector.

• Verifying that CygNet ODBC Client Tools are installed.

Additional log information can be gathered by using the CygNet Debug Mode described above for

debugging the CygNet to Collector interface.

Historian | 16 - The CygNet Collector | 2180

Turn on the Debug Mode

1. Access the following folder in the registry: HKEY_LOCAL_MACHINE\SOFTWARE\GE Digital

\iHistorian\Services\CygNetCollector\<entry>

2. Double-click DebugMode DWORD .

3. Set Base as Decimal.

4. In the Value data field, enter 255.

5. Select OK.

6. Restart the collector.

7. Close the registry and open the Proficy OPC Classic HDA server trace log file.

Note:

◦ Do not turn on both CygNet Debug Mode and DebugMode at the same time.

◦ Do not turn on CygNet Debug Mode or the DebugMode key for an extended period,

10 minutes should be more than sufficient. Leaving it on will create very large log

files and that could use up a great deal of disk space.

CygNet APIs Not Installed

Error message: Error Setting CygNet GlobalFunctions object: 'Class not registered'

Root cause: The CygNet 64 bit APIs are not installed.

Solution: Run the following command to install CxScript64.dll: regsvr32 "C:\...\8.1.2 Install

\CygNet 812\Support64\CxScript64.dll"

Chapter 17. The File Collector

Overview of the File Collector
The File collector imports CSV and XML files into Historian. Since the files can contain data, tags, tag

properties, and messages, the File collector is a very useful tool for importing third-party data into

Historian.

Features:

• You can import CSV and XML files.

• The supported timestamp resolution is 1ms.

• Floating point, integer, and string data are supported. Binary data is not supported.

• The collector accepts device timestamps.

• The collector reads data, tags, and messages.

• You can set file specifications and the import interval. The timestamps for data or messages may

be at intervals less than the import interval.

• You can create Historian tags.

• You can create Python Expression Tags for those collectors that support them.

Since a File collector is really an import function rather than a data collection operation, standard collector

features such as compression, buffering, browsing, start/stop collection are not applicable.

Note:

You can import files using ANSI encoding only.

How it works:

The File collector uses the ImportFiles folder for its operations, which is available in the Historian

program folder. It is created only after you run the collector. It contains the following subfolders:

Directory Function

Error Contains the CSV and XML files that contains errors. These files will

not be processed by the collector.

Incoming Contains files that are to be processed by the collector. All the files

that you want to import using the collector must be placed here.

Processed Contains files that have been imported.

Historian | 17 - The File Collector | 2182

Directory Function

Working Contains files that the collector is importing.

1. Place the files that you want to import in the Incoming folder.

2. At the beginning of each cycle, the collector processes the files, stores the result in an archive file

and moves the files to the Processed folder.

3. While processing the files, the collector moves the files to the Working folder, and renames the

files using the following format: YMDHMS-Data (for example, 010810103246-data.csv).

4. After processing the files, the collector restores the original file names. If an error occurs while

processing the files, they are moved to the Error folder, and error messages are logged in the

Filecollector_YMDHMS.log file.

5. After a specified duration has passed, the imported files are deleted from the Processed folder.

However, files are not deleted from the Error folder.

Supported date formats:

System Date Format
Supported Date For

mat in the XML Files

Supported Date For

mat in the CSV Files

dd-MMM-yy • dd-MMM-yy

• yyyy-MM-dd

• yy/MM/dd

• MM/dd/yyyy

• MM/dd/yy

• M/d/yy

• M/d/yyyy

• yyyy-MM-dd

• yy/MM/dd

• MM/dd/yyyy

• MM/dd/yy

• M/d/yyyy

yyyy-MM-dd • dd-MMM-yy

• yyyy-MM-dd

• yy/MM/dd

• MM/dd/yyyy

• MM/dd/yy

• M/d/yy

• M/d/yyyy

• dd-MMM-yy

• yyyy-MM-dd

• yy/MM/dd

• MM/dd/yyyy

• MM/dd/yy

• M/d/yy

• M/d/yyyy

yy/MM/dd • dd-MMM-yy

• yyyy-MM-dd

• yy/MM/dd

• MM/dd/yyyy

• yyyy-MM-dd

• yy/MM/dd

• MM/dd/yyyy

• MM/dd/yy

Historian | 17 - The File Collector | 2183

System Date Format
Supported Date For

mat in the XML Files

Supported Date For

mat in the CSV Files

• MM/dd/yy

• M/d/yy

• M/d/yyyy

• M/d/yy

• M/d/yyyy

MM/dd/yyyy • dd-MMM-yy

• yyyy-MM-dd

• yy/MM/dd

• MM/dd/yyyy

• MM/dd/yy

• M/d/yy

• M/d/yyyy

• yyyy-MM-dd

• yy/MM/dd

• MM/dd/yyyy

• MM/dd/yy

• M/d/yy

• M/d/yyyy

MM/dd/yy • dd-MMM-yy

• yyyy-MM-dd

• yy/MM/dd

• MM/dd/yyyy

• MM/dd/yy

• M/d/yy

• M/d/yyyy

• yyyy-MM-dd

• yy/MM/dd

• MM/dd/yyyy

• MM/dd/yy

• M/d/yy

• M/d/yyyy

M/d/yy • dd-MMM-yy

• yyyy-MM-dd

• yy/MM/dd

• MM/dd/yyyy

• MM/dd/yy

• M/d/yy

• M/d/yyyy

• dd-MMM-yy

• yyyy-MM-dd

• yy/MM/dd

• MM/dd/yyyy

• MM/dd/yy

• M/d/yy

• M/d/yyyy

M/d/yyyy • dd-MMM-yy

• yyyy-MM-dd

• yy/MM/dd

• MM/dd/yyyy

• MM/dd/yy

• M/d/yy

• M/d/yyyy

• yyyy-MM-dd

• yy/MM/dd

• MM/dd/yyyy

• MM/dd/yy

• M/d/yy

• M/d/yyyy

Historian | 17 - The File Collector | 2184

Configuration

Add and Configure a File Collector

A File collector is used to send data from one Historian server to another one.

Note:

• You cannot send data to a cloud destination using the File collector.

• You can create only one instance of the File collector.

For more information, refer to Overview of the File Collector (on page 2181).

This topic describes how to add a collector instance using Configuration Hub. You can also add a

collector instance using the RemoteCollectorConfigurator utility (on page 797), which does not require you

to install Web-based Clients.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors in the default system appears.

3. In the upper-right corner of the main section, select .

The Add Collector Instance: <system name> window appears, displaying the Collector Selection

section. The MACHINE NAME field contains a list of machines on which you have installed

collectors.

Historian | 17 - The File Collector | 2185

4. In the MACHINE NAME field, select the machine in which you want to add a collector instance. The

collector will send data to this machine.

5. In the COLLECTOR TYPE field, select File Collector, and then select Get Details.

The INSTALLATION DRIVE and DATA DIRECTORY fields are disabled and populated.

6. Select Next.

The Destination Configuration section appears. Under CHOOSE DESTINATION, the Historian

Server option is selected by default; the other options are disabled.

7. If you created security groups or enabled a strict client/collector authentication, enter the

USERNAME and PASSWORD of the on-premises Historian server that you created during the

installation of the collector.

If you entered the USERNAMEand PASSWORD, select Test Connection. This will help you to test if

the Historian server that you are trying to connect is valid or if the credentials that you entered are

valid.

If the entered credentials are valid, a successful connection message appears.

8. Select Next.

The Collector Initiation section appears. The COLLECTOR NAME field is populated with a value in

the following format: <Historian server name>_File

9. If needed, modify the value in the COLLECTOR NAME field.

The value that you enter:

◦ Must be unique.

◦ Must not exceed 15 characters.

◦ Must not contain a space.

◦ Must not contain special characters except a hyphen, period, and an underscore.

10. In the RUNNING MODE field, select one of the following options.

◦ Service - Local System Account: Select this option if you want to run the collector as a

Windows service using the credentials of the local user (that is, the currently logged-in user).

By default, this option is selected, and the USERNAME and PASSWORD fields are disabled.

◦ Service Under Specific User Account: Select this option if you want to run the collector as

a Windows service using a specific user account. If you select this option, you must enter

values in the USERNAME and PASSWORD fields. If you have enabled the Enforce Strict

Collector Authentication option in Historian Administrator, you must provide the credentials

of a user who is added to at least one of the following security groups:

▪ iH Security Admins

▪ iH Collector Admins

▪ iH Tag Admins

You can also configure the collector to start automatically when you start the computer.

Historian | 17 - The File Collector | 2186

11. Select Add.

The collector instance is added. The fields specific to the collector section appear in the DETAILS

section.

12. In the COLLECTOR SPECIFIC CONFIGURATION section, configure values as described in the

following table.

Field Description

Scan Interval The interval, in seconds, after which the collector initiates an import operation.

The maximum value that you can enter is 65.

CSV File Spec The file extension for a CSV file to be imported. You can specify more than one

extension type, such as csv, txt, dat.

XML File Spec The file extension for an XML file to be imported.

Purge

Processed

(days)

The number of days after which you want the contents of the Processed

Files folder to be automatically purged.

Purge Error

(days)

The number of days after which you want the contents of the Error Files

folder to be automatically purged.

13. Ad needed, enter values in the other sections common to all collectors (on page 579).

14. In the upper-left corner of the page, select Save.

The changes to the collector instance are saved.

15. If needed, restart the collector.

Import files using the collector (on page 2188).

Configure the File Collector Using Historian Administrator

Install collectors (on page 143), and create an instance of the collector (on page 486).

Historian | 17 - The File Collector | 2187

1. Access Historian Administrator.

2. Select Collectors, and then select the File collector instance that you want to configure.

3. Select Configuration.

The Configuration section appears.

4. Enter values as specified in the following table.

Field Description

Scan Interval The interval, in seconds, after which the collector initiates an import opera

tion. The maximum value that you can enter is 65.

CSV File Specifica

tion

The file extension for a CSV file to be imported. You can specify more than

one extension type, such as csv, txt, dat.

XML File Specifica

tion

The file extension for an XML file to be imported.

Purge Processed

Files After(days)

The number of days after which you want the contents of the Processed

folder to be automatically purged.

Purge Error Files Af

ter (days)

The number of days after which you want the contents of the Error folder

to be automatically purged.

5. Select Update.

Historian | 17 - The File Collector | 2188

6. Restart the collector.

The collector is configured.

Import Files
1. Configure the collector settings (on page 486).

2. Ensure that the files you want to import are of the CSV format (on page 2188) or the XML format

(on page 2195).

Note:

You can import files using ANSI encoding only.

Place the files that you want to import in the Incoming folder. By default, this folder is located in the

following folder: C:/Proficy Historian Data/ImportFiles.

The collector checks the Incoming folder every few seconds (based on the duration specified in the

Scan Interval field while configuring the collector (on page 486)). The files are imported to Historian and

are moved to the Processed folder. If an error occurs, however, they are moved to the Error folder. If

that happens, refer to Troubleshooting the File Collector (on page 2205).

CSV File Format

Specify the collector source address and the tag source address fields in the CSV file. Otherwise, the

collector and source names are not added to the tags created by the File collector.

The format for a CSV file is as follows:

[<command>]

<Header keywords separated by commas>

<values separated by commas>

*Comments

Note:

• The order of the values must match the order in the header. For example, if you are

importing a tagname, timestamp, value, and quality, use the following syntax:

[Data]

Tagname,TimeStamp,Value,DataQuality TIGER.IMPORT_TAG1.F_CV,7/20/01 11:07,1,Good

Historian | 17 - The File Collector | 2189

• Data values for a single entry must be placed on a single line.

• You cannot import Last Modified User, Last Modified Date, and Calculation Execution Time

fields on a tag.

Refer to the following sections for valid values and examples.

Valid Values for Command

• [Tags]

• [Data]

• [Messages]

• [Alarms]

Valid Values for Header Keywords

DataQuality Value

Tagname Description

EngineeringUnits Comment

DataType StringLength

Note:

StringLength is twice the number of characters (ASCII, Single Byte). For

example, "ABC" = 6 StringLength.

StoreMilliseconds CollectorName

CollectorType SourceAddress

Note:

A value is required for the source name to be added to tags created by

the collector.

CollectorType CollectionInterval

CollectionOffset CollectionDisabled

LoadBalancing TimeStamp

Historian | 17 - The File Collector | 2190

DataQuality Value

Note:

The timestamp resolution is milliseconds.

Type TimeZoneBias

HiEngineeringUnits LoEngineeringUnits

InputScaling HiScale

LoScale CollectorCompression

CollectorDeadband

PercentRange

CollectorCompressionTimeout

ArchiveCompression ArchiveDeadbandPercentRange

ArchiveCompression

Timeout

Timeout

CollectorGeneral1 CollectorGeneral2

CollectorGeneral3 CollectorGeneral4

CollectorGeneral5 ReadSecurityGroup

WriteSecurityGroup AdministratorSecurityGroup

Calculation CalculationDependencies

Acked Condition

SubCondition EventCategory

Message Source

Severity StartTime

EndTime TimestampType

SpikeLogic SpikeLogicOverride

InterfaceAbsolute

Deadband

InterfaceAbsoluteDeadbanding

LastModified LastModifiedUser

Historian | 17 - The File Collector | 2191

DataQuality Value

ArchiveAbsoluteDead

band

ArchiveAbsoluteDeadbanding

StepValue Value

SpikeLogic SpikeLogicOverride

NumberOfElements CalcType

For alarms and events, only the following header keywords are considered:

• Acked

• Acktime

• Actor

• AlarmID

• Condition

• DataSource

• Enabled

• EndTime

• EventCategory

• ItemID

• Message

• Quality

• Severity

• Source

• StartTime

• SubCondition

• Tagname

• Timestamp

A CSV File that Imports Tags

[Tags]

Tagname,Description,DataType,HiEngineeringUnits,LoEngineeringUnits

TIGER.IMPORT_TAG1.F_CV,Import Tag 1,SingleFloat,35000,0

TIGER.IMPORT_TAG2.F_CV,Import Tag 2,SingleFloat,35000,0

TIGER.IMPORT_TAG3.F_CV,Import Tag 3,SingleFloat,35000,0

TIGER.IMPORT_TAG4.F_CV,Import Tag 4,SingleFloat,35000,0

TIGER.IMPORT_TAG5.F_CV,Import Tag 5,SingleFloat,35000,0

Historian | 17 - The File Collector | 2192

TIGER.IMPORT_TAG6.F_CV,Import Tag 6,SingleFloat,35000,0

TIGER.IMPORT_TAG7.F_CV,Import Tag 7,SingleFloat,35000,0

TIGER.IMPORT_TAG8.F_CV,Import Tag 8,SingleFloat,35000,0

TIGER.IMPORT_TAG9.F_CV,Import Tag 9,SingleFloat,35000,0

TIGER.IMPORT_TAG10.F_CV,Import Tag 10,SingleFloat,35000,0

A CSV File that Imports Data and Data Quality

[Data]

Tagname,TimeStamp,Value,DataQuality

TIGER.IMPORT_TAG1.F_CV,7/20/01 11:07,1,Good

TIGER.IMPORT_TAG1.F_CV,7/20/01 11:08,2,Good

TIGER.IMPORT_TAG1.F_CV,7/20/01 11:09,3,Good

TIGER.IMPORT_TAG1.F_CV,7/20/01 11:10,4,Good

TIGER.IMPORT_TAG1.F_CV,7/20/01 11:11,5,Bad

TIGER.IMPORT_TAG1.F_CV,7/20/01 11:12,6,Bad

TIGER.IMPORT_TAG1.F_CV,7/20/01 11:13,7,Good

TIGER.IMPORT_TAG1.F_CV,7/20/01 11:14,8,Bad

TIGER.IMPORT_TAG1.F_CV,7/20/01 11:15,9,Good

TIGER.IMPORT_TAG1.F_CV,7/20/01 11:16,10,Good

TIGER.IMPORT_TAG1.F_CV,7/20/01 11:17,11,Good

TIGER.IMPORT_TAG1.F_CV,7/20/01 11:18,12,Good

TIGER.IMPORT_TAG1.F_CV,7/20/01 11:19,13,Bad

TIGER.IMPORT_TAG1.F_CV,7/20/01 11:20,14,Good

TIGER.IMPORT_TAG1.F_CV,7/20/01 11:21,15,Good

TIGER.IMPORT_TAG1.F_CV,7/20/01 11:22,16,Bad

TIGER.IMPORT_TAG1.F_CV,7/20/01 11:23,17,Good

A CSV File that Imports Messages

[Messages]

TimeStamp,Topic,Username,MessageNumber,MessageString,Substitutions

28-Aug-2002 19:39:30.567,General,User1,0,A Test Message value 2 with milliseconds,,

28-Aug-2002 19:40:00.000,General,User1,0,A Test Message value 0,,

A CSV File that Imports Tags with Step Values

[Tags]

Tagname,Description,DataType,HiEngineeringUnits,LoEngineeringUnits

TIGER.IMPORT_TAG1.F_CV,Import Tag 1,SingleFloat,35000,0

Historian | 17 - The File Collector | 2193

TIGER.IMPORT_TAG2.F_CV,Import Tag 2,SingleFloat,35000,0

TIGER.IMPORT_TAG3.F_CV,Import Tag 3,SingleFloat,35000,0

TIGER.IMPORT_TAG4.F_CV,Import Tag 4,SingleFloat,35000,0

TIGER.IMPORT_TAG5.F_CV,Import Tag 5,SingleFloat,35000,0

TIGER.IMPORT_TAG6.F_CV,Import Tag 6,SingleFloat,35000,0

TIGER.IMPORT_TAG7.F_CV,Import Tag 7,SingleFloat,35000,0

TIGER.IMPORT_TAG8.F_CV,Import Tag 8,SingleFloat,35000,0

TIGER.IMPORT_TAG9.F_CV,Import Tag 9,SingleFloat,35000,0

TIGER.IMPORT_TAG10.F_CV,Import Tag 10,SingleFloat,35000,0

A CSV File that Imports Alarms

[Alarms]

DataSource,Condition,Source,StartTime,TimeStamp

FileCollector,HI,Mixer,3/10/2005 12:52:02,3/10/2005 12:52:02

FileCollector,HIHI,Mixer,3/10/2005 12:52:02,3/10/2005 12:59:12

A CSV File that Imports Enumerated Set

[EnumeratedSet]

SetName,SetDescription,StateLowValue,StateHighValue,StateDescription,StateName,StateRawValueDataType,

LastModified,LastModifiedUser,AdministerSecurityGroup,NumberOfStatesInThisSet

TestSet5,TestDesc,1,10,State1Desc,State1,DoubleFloat,,,,2

TestSet5,TestDesc,11,20,State2Desc,State2,DoubleFloat,,,,2

A CSV File that Imports Array Tags

[Tags]

Tagname,Description,DataType,HiEngineeringUnits,LoEngineeringUnits,NumberOfElements

TIGER.IMPORT_TAG1.F_CV,Import Tag 1,SingleFloat,35000,0,-1

TIGER.IMPORT_TAG2.F_CV,Import Tag 2,SingleFloat,35000,0,0

TIGER.IMPORT_TAG3.F_CV,Import Tag 3,SingleFloat,35000,0,-1

TIGER.IMPORT_TAG4.F_CV,Import Tag 4,SingleFloat,35000,0,-1

A CSV File that Imports Array Tag Data

[Data]

Tagname,TimeStamp,Value,DataQuality

ArrayTag[0],6/11/2013 09:00:00,1,Good

ArrayTag[1],6/11/2013 09:00:00,2,Good

ArrayTag[2],6/11/2013 09:00:00,3,Good

Historian | 17 - The File Collector | 2194

ArrayTag[3],6/11/2013 09:00:00,4,Good

ArrayTag[0],6/11/2013 09:10:00,5,Good

ArrayTag[1],6/11/2013 09:10:00,6,Good

ArrayTag[2],6/11/2013 09:10:00,7,Good

A CSV File that Imports MultiField Tag Data

[Data]

Tagname,TimeStamp,Value,DataQuality

MultiField.F1,05-22-2013 14:15:00,4,Good

MultiField.F1,05-22-2013 14:15:01,7,Good

MultiField.F1,05-22-2013 14:15:02,9,Good

MultiField.F2,05-22-2013 14:15:00,241,Good

MultiField.F2,05-22-2013 14:15:01,171,Good

MultiField.F2,05-22-2013 14:15:02,191,Good

Note:

Before importing MultiField tag data in this format, you must add the User Defined Type using

Historian Administrator and associate that type to the MultiField tag.

Importing s User-Defined Type
The following example allows you to import a user defined type UDT1 with two fields, Field1, Field2. After

creating, UDT1 associates with a tag called Mfield.

[UserDefinedType]

UserDefinedTypeName,UserDefinedTypeDescription,FieldName,FieldDescription,FieldDataType,IsMasterField,NumberOfFields

UDT1,UDTdesc,Field1,F1desc,SingleInteger,FALSE,2

UDT1,UDTdesc,Field2,F2desc,DoubleInteger,FALSE,2

[Tags]

Tagname,Description,DataType,UserDefinedTypeName

Mfield,mfdesc,MultiField,UDT1

A CSV File that Imports Python Expression Tags

[Tag]

Tagname,CollectorName,CalcType,SourceAddress,DataType,Description

TagDerivedFromRawValue,SimulationCollector,PythonExpr,"{""imports"":[""math""],

""script"":""tag.value + math.pow10,tag.value/70)"",""parameters"":[{""name"":

Historian | 17 - The File Collector | 2195

""tag"",""source"":{""address"":""Simulation00001"",""dataType"":""SingleFloat""}}]}",

SingleFloat,Python Expression Tag example

Note:

• Python Expression tags do not support array or multi-field tags.

• It is important to include the CalcType header and set it to PythonExpr for each Python

Expression tag. If the file contains a mix of tags that are Python Expression tags with those

that are not, then the tags that are not Python Expression tags must have the CalcType

field set to Raw.

• For Python Expression tags, the SourceAddress must contain the tag's minified

JSON configuration constructed as described in the topic on Constructing the JSON

Configuration for a Python Expression Tag. (Mini- fied JSON has no newline characters or

comments. There are tools which can help you minify JSON.)

• Note that the example in the CSV file uses repeated quotation marks ("") in order to escape

quotation marks (").

• It is important that your JSON is valid, since no validation will be performed on the JSON at

tag creation.

XML File Format

Format to import a List of Tags

<Import>

 <TagList>

 <Tag>

 <Tagname></Tagname>

 <Description> Test </Description>

 </Tag>

 </TagList>

</Import>

Format to Import Data

<Import>

 <Datalist>

 <Tag>

 <Data>

Historian | 17 - The File Collector | 2196

 <Timestamp>..... </Timestamp>

 <Value>.... </Value>

 </Data>

 </Tag>

 </Datalist>

</Import>

Format to Import Messages

<Import>

 <MessageList>

 <Data>

 <Timestamp>..... </Timestamp>

 <Topic>.... </Topic>

 <Username>.... </Username>

 <MessageNumber>.... </MessageNumber>

 <MessageString>.... </MessageString>

 <Substitutions>.... </Substitutions>

 </Data>

 </MessageList>

</Import>

The following table provides a list of tag properties that you can import:

DataQuality Value

Tagname Description

EngineeringUnits Comment

DataType StringLength

Note:

StringLength is twice the number of characters (ASCII, Single Byte). For

example, "ABC" = 6 StringLength.

StoreMilliseconds CollectorName

CollectorType SourceAddress

Historian | 17 - The File Collector | 2197

DataQuality Value

Note:

A value is required for the source name to be added to tags created by

the collector.

CollectorType CollectionInterval

CollectionOffset CollectionDisabled

LoadBalancing TimeStamp

Note:

The timestamp resolution is milliseconds.

Type TimeZoneBias

HiEngineeringUnits LoEngineeringUnits

InputScaling HiScale

LoScale CollectorCompression

CollectorDeadband

PercentRange

CollectorCompressionTimeout

ArchiveCompression ArchiveDeadbandPercentRange

ArchiveCompression

Timeout

Timeout

CollectorGeneral1 CollectorGeneral2

CollectorGeneral3 CollectorGeneral4

CollectorGeneral5 ReadSecurityGroup

WriteSecurityGroup AdministratorSecurityGroup

Calculation CalculationDependencies

Acked Condition

SubCondition EventCategory

Message Source

Severity StartTime

Historian | 17 - The File Collector | 2198

DataQuality Value

EndTime TimestampType

SpikeLogic SpikeLogicOverride

InterfaceAbsolute

Deadband

InterfaceAbsoluteDeadbanding

LastModified LastModifiedUser

ArchiveAbsoluteDead

band

ArchiveAbsoluteDeadbanding

StepValue Value

SpikeLogic SpikeLogicOverride

NumberOfElements CalcType

An XML File that Imports Tags

<Import>

 <TagList Version="1.0.71">

 <Tag Name="TIGER.IMPORT_TAG1.F_CV">

 <Tagname>TIGER.IMPORT_TAG1.F_CV</Tagname>

 <Description>Import Tag 1</Description>

 <EngineeringUnits> PSI </EngineeringUnits>

 </Tag>

 <Tag Name="TIGER.IMPORT_TAG11.F_CV">

 <Tagname>TIGER.IMPORT_TAG11.F_CV</Tagname>

 <Description>Import Tag 1</Description>

 <EngineeringUnits> PSI </EngineeringUnits>

 </Tag>

 <Tag Name="TIGER.IMPORT_TAG12.F_CV">

 <Tagname>TIGER.IMPORT_TAG12.F_CV</Tagname>

 <Description>Import Tag 2</Description>

 <EngineeringUnits> PSI </EngineeringUnits>

 </Tag>

 <Tag Name="TIGER.IMPORT_TAG13.F_CV">

 <Tagname>TIGER.IMPORT_TAG13.F_CV</Tagname>

 <Description>Import Tag 3</Description>

 <EngineeringUnits> PSI </EngineeringUnits>

Historian | 17 - The File Collector | 2199

 </Tag>

 <Tag Name="TIGER.IMPORT_TAG14.F_CV">

 <Tagname>TIGER.IMPORT_TAG14.F_CV</Tagname>

 <Description>Import Tag 4</Description>

 <EngineeringUnits> PSI </EngineeringUnits>

 </Tag>

 <Tag Name="TIGER.IMPORT_TAG15.F_CV">

 <Tagname>TIGER.IMPORT_TAG15.F_CV</Tagname>

 <Description>Import Tag 5</Description>

 <EngineeringUnits> PSI </EngineeringUnits>

 </Tag>

 <Tag Name="TIGER.IMPORT_TAG2.F_CV">

 <Tagname>TIGER.IMPORT_TAG2.F_CV</Tagname>

 <Description>Import Tag 2</Description>

 <EngineeringUnits> PSI </EngineeringUnits>

 </Tag>

 <Tag Name="TIGER.IMPORT_TAG21.F_CV">

 <Tagname>TIGER.IMPORT_TAG21.F_CV</Tagname>

 <Description>Import Tag 1</Description>

 <EngineeringUnits> PSI </EngineeringUnits>

 </Tag>

 </TagList>

</Import>

Example of an XML file that Imports Data and Data Quality

<Import>

 <DataList Version="1.0.71">

 <Tag Name="TIGER.IMPORT_TAG1.F_CV">

 <Data>

 <TimeStamp>20-Jul-2001 11:00:18.000</TimeStamp>

 <Value>0</Value>

 <DataQuality>Good</DataQuality>

 </Data>

 <Data>

 <TimeStamp>20-Jul-2001 11:00:36.000</TimeStamp>

 <Value>0</Value>

 <DataQuality>Good</DataQuality>

Historian | 17 - The File Collector | 2200

 </Data>

 <Data>

 <TimeStamp>20-Jul-2001 11:00:54.000</TimeStamp>

 <Value>0</Value>

 <DataQuality>Bad</DataQuality>

 </Data>

 <Data>

 <TimeStamp>20-Jul-2001 11:01:12.000</TimeStamp>

 <Value>0</Value>

 <DataQuality>Good</DataQuality>

 </Data>

 </Tag>

 </DataList>

</Import>

An XML file that Imports Messages

<Import>

 <MessageList Version="1.0.71">

 <Data>

 <TimeStamp>28-Aug-2002 19:42:00.000</TimeStamp>

 <Topic>General</Topic>

 <Username>XMLUser</Username>

 <MessageNumber>0</MessageNumber>

 <MessageString>Another test message</MessageString>

 <Substitutions></Substitutions>

 </Data>

 <Data>

 <TimeStamp>28-Aug-2002 19:48:00.000</TimeStamp>

 <Topic>General</Topic>

 <Username>XMLUser</Username>

 <MessageNumber>1</MessageNumber>

 <MessageString>Message One</MessageString>

 <Substitutions></Substitutions>

 </Data>

 </MessageList>

</Import>

Historian | 17 - The File Collector | 2201

An XML file that Imports a Tag with a Step Value

<Import>

 <TagList Version="1.0.71">

 <Tag Name="TAG6">

 <Tagname>TAG6</Tagname>

 <StepValue> TRUE </StepValue>

 </Tag>

 </TagList>

</Import>

An XML file that Imports Alarms

<Import>

 <AlarmList Version="1.0.71">

 <Alarm>

 <Attribute name="Acked" value="false"/>

 <Attribute name="Actor" value="TheActor"/>

 <Attribute name="Condition" value="Condition"/>

 <Attribute name="DataSource" value="File collector"/>

 <Attribute name="Enabled" value="true"/>

 <Attribute name="EndTime" value="12/25/2005 12:47:59.003"/>

 <Attribute name="EventCategory" value="Process"/>

 <Attribute name="Message" value="My message."/>

 <Attribute name="Quality" value="Good"/>

 <Attribute name="Severity" value="250"/>

 <Attribute name="Source" value="SourceXML000003"/>

 <Attribute name="StartTime" value="12/25/2005 12:47:59.003"/>

 <Attribute name="SubCondition" value="Hi"/>

 <Attribute name="TagName" value="TheTagName"/>

 <Attribute name="Timestamp" value="12/09/2005 12:47:59.003"/>

 </Alarm>

 <Alarm>

 <Attribute name="Acked" value="false"/>

 <Attribute name="Actor" value="TheActor"/>

 <Attribute name="Condition" value="Condition"/>

 <Attribute name="DataSource" value="File collector"/>

 <Attribute name="Enabled" value="true"/>

 <Attribute name="EndTime" value="12/25/2005 12:47:59.004"/>

Historian | 17 - The File Collector | 2202

 <Attribute name="EventCategory" value="Process"/>

 <Attribute name="Message" value="My message."/>

 <Attribute name="Quality" value="Good"/>

 <Attribute name="Severity" value="250"/>

 <Attribute name="Source" value="SourceXML000004"/>

 <Attribute name="StartTime" value="12/25/2005 12:47:59.004"/>

 <Attribute name="SubCondition" value="Hi"/>

 <Attribute name="TagName" value="TheTagName"/>

 <Attribute name="Timestamp" value="12/25/2005 12:47:59.004"/>

 </Alarm>

 </AlarmList>

</Import>

An XML file that Imports Enumerated Set

<Import>

 <EnumeratedSetList>

 <EnumeratedSet SetName="TestSet7">

 <EnumeratedState StateName="State1">

 <SetName>TestSet7</SetName>

 <SetDescription>TestDesc</SetDescription>

 <StateLowRawValue>1</StateLowRawValue>

 <StateHighRawValue>10</StateHighRawValue>

 <StateDescription>State1Desc</StateDescription>

 <StateName>State1</StateName>

 <StateRawValueDataType>DoubleFloat</StateRawValueDataType>

 <LastModified>9/17/2012 16:37:48.260000</LastModified>

 <LastModifiedUser>GECORPORATE\312006949</LastModifiedUser>

 <AdministratorSecurityGroup></AdministratorSecurityGroup>

 <NumberOfStatesInThisSet>2</NumberOfStatesInThisSet>

 </EnumeratedState>

 <EnumeratedState StateName="State2">

 <SetName>TestSet7</SetName>

 <SetDescription>TestDesc</SetDescription>

 <StateLowRawValue>11</StateLowRawValue>

 <StateHighRawValue>20</StateHighRawValue>

 <StateDescription>State2Desc</StateDescription>

 <StateName>State2</StateName>

Historian | 17 - The File Collector | 2203

 <StateRawValueDataType>DoubleFloat</StateRawValueDataType>

 <LastModified>9/17/2012 16:37:48.260000</LastModified>

 <LastModifiedUser>GECORPORATE\312006949</LastModifiedUser>

 <AdministratorSecurityGroup></AdministratorSecurityGroup>

 <NumberOfStatesInThisSet>2</NumberOfStatesInThisSet>

 </EnumeratedState>

 </EnumeratedSet>

 </EnumeratedSetList>

</Import>

An XML File that Imports Array Tags

<Import>

 <TagList Version="1.0.71">

 <Tag Name="ArrayTag1">

 <Tagname>ArrayTag</Tagname>

 <Description>Import array Tag 1</Description>

 <EngineeringUnits> PSI </EngineeringUnits>

 <NumberOfElements>-1</NumberOfElements>

 </Tag>

 <Tag Name="ArrayTag2">

 <Tagname>ArrayTag2</Tagname>

 <Description>Import array Tag 2</Description>

 <EngineeringUnits> PSI </EngineeringUnits>

 <NumberOfElements>-1</NumberOfElements>

 </Tag>

 </TagList>

</Import>

An XML File that Imports Array Tag data

<Import>

 <DataList Version="1.0.71">

 <Tag Name="ArrayTag[0]">

 <Data>

 <TimeStamp>11-June-2013 11:00:18.000</TimeStamp>

 <Value>1</Value>

 <DataQuality>Good</DataQuality>

 </Data>

Historian | 17 - The File Collector | 2204

 <Data>

 <TimeStamp>11-June-2013 11:01:18.000</TimeStamp>

 <Value>2</Value>

 <DataQuality>Good</DataQuality>

 </Data>

 </Tag>

 <Tag Name="ArrayTag[1]">

 <Data>

 <TimeStamp>11-June-2013 11:00:18.000</TimeStamp>

 <Value>3</Value>

 <DataQuality>Good</DataQuality>

 </Data>

 <Data>

 <TimeStamp>11-June-2013 11:01:18.000</TimeStamp>

 <Value>4</Value>

 <DataQuality>Good</DataQuality>

 </Data>

 </Tag>

 </DataList>

</Import>

An XML File that Imports Python Expression Tags

<Import>

 <TagList Version="1.0.71">

 <Tag Name="TagDerivedFromRawValue">

 <Tagname>TagDerivedFromRawValue</Tagname>

 <CollectorName>OpcServerCollector</CollectorName>

 <SourceAddress>

 "{"imports":["math"],"script":"tag.value + math.pow(10,tag.value/70)","parameters":

 [{"name":"tag","source":{"address":"IO/READONLY/Temperature","dataType":"DoubleFloat"}}]}"

 </SourceAddress>

 <CalcType>PythonExpr</CalcType>

 <DataType>DoubleFloat</DataType>

 <Description>Python Expression Tag example</Description>

 </Tag>

 </TagList>

</Import>

Historian | 17 - The File Collector | 2205

Note:

• Python Expression tags do not support array or multi-field tags.

• It is important to include the CalcType header and set it to PythonExpr for each Python

Expression tag. If the file contains a mix of tags that are Python Expression tags with those

that are not, then the tags that are not Python Expression tags must have the CalcType

field set to Raw.

• For Python Expression tags, the SourceAddress must contain the tag's minified

JSON configuration constructed as described in the topic on Constructing the JSON

Configuration for a Python Expression Tag. (Mini- fied JSON has no newline characters or

comments. There are tools which can help you minify JSON.)

• Note that the example in the CSV file uses repeated quotation marks ("") in order to escape

quotation marks (").

• It is important that your JSON is valid, since no validation will be performed on the JSON at

tag creation.

Troubleshooting the File Collector
Accessing the Log File

By default, the log file of the collector is saved in the following folder: C:\Proficy Historian Data

\LogFiles.

If you are experiencing any problems with the collector, use the log file to troubleshoot. The log file

sometimes logs errors that are not processed to Historian Administrator. For example, if you have

no archives in your system and you attempt to import a .CSV file with formatting errors, the file is not

processed and no alerts are sent to Historian Administrator (if there are no archives created, the message

database has not been created). But this error does appear in the log file.

Typical Error Messages and Suggested Solutions

Error Message Troubleshooting Tips

12-Aug-0113:38:00 - Import Line Error: Input

past end of file

12-Aug-0113:38:00 - Error Occurred On

Line12: General Format Error

There is an extra line in the file. Remove it.

Historian | 17 - The File Collector | 2206

Error Message Troubleshooting Tips

10-Aug-01 15:47:02 - Import Line Error: Type

mismatch

10-Aug-01 15:47:02 - Error Occurred On Line

2: General Format Error

Two fields were combined into one due to a missing

comma. Add a comma.

12-Aug-01 14:18:12 - Invalid Import Field:

TimeResolution

12-Aug-01 14:18:12 - zProcessFragment>>

Aborted Import Due To Formatting Errors

If an import field is invalid (in this case Time resolution

should be StoreMilliseconds), the import will abort.

Identifying Lines in which an Error Occurs

Suppose the log file contains an error description as follows:

20-Jul-01 10:1717 - Import Line Error: Input past end of file

20-Jul-01 10:1717 - Error occurred on Line 7:General Format Error

The line number in the log is produced by the SDK, not the File collector. This means that the line number

is counted relative to the header or field list for each section of the file, ignoring comments and blank

lines.

CSV File Import Issues

A CSV file may not be imported if:

• It contains an extra line.

• It contains extra commas on the data line.

• The file size is greater than 10 MB. Ideally, the file size must be between 1 and 2 MB.

• The data in the file goes beyond the Archive Active Hours value (by default, 1 month).

• The first archive is not yet created.

If you view the CSV file using Microsoft Excel, some characters are not visible. We recommend that you

use a text editor to examine files that are causing format errors when you attempt to import them.

Troubleshooting Large File Import

To prevent a locked file scenario when building large files for import into the Incoming directory, first build

the file under a temporary file name or directory that will be ignored by the File collector, then rename or

move the file to the real file name or Import directory when the file is fully built.

Historian | 17 - The File Collector | 2207

Unable to Access Historian Administrator After Installing the File Collector

If you encounter problems in accessing Historian Administrator after installing the File collector, upgrade

the Historian Server. On upgrading the File collector from 7.0 SP2\7.0 SP3\7.0 SP4 to 7.0 SP5 or later, you

will notice the following:

• The previous version of the collector is in the stopped state and the new version of the collector is

in the running state.

• The data collection is stopped for the tags added in the older version.

To avoid this issue:

• Change the collector to the newer version in Tag properties for all the tags which were added using

the older version of the collector.

• Delete the older version of the collector from the Collectors section in Historian Administrator.

File Collector is not available in Admin clients

If the File collector is running, but still not available in Admin clients, then you should register the following

DLLs:

32-bit machine

• c:\windows\system32\regsvr32 ihAPICOM.dll

• c:\windows\system32\regsvr32 ihaSDK.dll

64-bit machine

• c:\windows\syswow64\regsvr32 ihAPICOM.dll

• c:\windows\syswow64\regsvr32 ihaSDK.dll

Chapter 18. The HAB Collector

Overview of the HAB Collector
The HAB collector collects data from Habitat, which is a SCADA application that contains real-time data.

The collector interacts with the Habitat Sampler application to fetch data from the Habitat database

records and stores the data in a Historian server.

Features:

• Tags as well as alarms data collection: The collector can collect data for tags as well as alarms.

Although a single collector instance can be used for both, we recommend that you use separate

collector instances for tags and alarms.

• High availability: You can achieve high availability by configuring redundant collector instances

connected to redundant Habitat servers. For more information, refer to High Availability (on page

2210).

• Automatic tag sync: The HAB collector creates tags automatically in Historian. When additional

tags are added in Habitat, or when tags are renamed or deleted, the changes are reflected

automatically in Historian. You can, however, choose to do it manually if you want to review the

changes first. When you do so, only after you approve the changes, they are reflected in Historian.

For more information, refer to Approve Tag Changes (on page 2243).

• Tag deletion versus disablement: When a tag is deleted in Habitat, you can choose to delete it in

Historian or disable data collection for the tag. For more information, refer to Configure the HAB

Collector for Tags (on page 2219) and Configure the HAB Collector for Alarms (on page 2230).

• Multiple instances: You can create multiple instances of the HAB collector either on the same

machine or on different ones. For example, one instance can collect data for tags with a faster

streaming rate, while the other instance can collect data for tags with a slower streaming rate.

For each instance, you must create a configuration file. For more information, refer to Configure

the HAB Collector for Tags (on page 2219) and Configure the HAB Collector for Alarms (on page

2230).

• No dependency on an external database: Since data is stored in archive files, you do not require an

external database (especially for alarms data, which is huge).

• Supported timestamp resolution: The supported timestamp resolution is 1 second.

• Unsolicited as well as polled data collection: For tags, both the polled as well as unsolicited data

collection are supported. For alarms, only the unsolicited data collection is supported.

• Supported data types: Floating point, integer, string, and binary data are supported.

• The collector accepts device timestamps.

Historian | 18 - The HAB Collector | 2209

How it works when automatic tag sync is enabled:

1. You specify the site details of Habitat and collection definitions in the configuration file, and start

the collector.

2. The collector connects to the Habitat Sampler application.

3. Depending on the key value that you have provided in the configuration file, tags are created in

Historian with the following naming convention: <host name of the Habitat server>.<composite

key>.<field name in Habitat>

4. Data collection begins.

5. When tags are added, renamed, or deleted later in Habitat, the changes are reflected automatically

in Historian. No manual steps are required.

How it works when automatic tag sync is disabled:

1. You specify the site details of Habitat and collection definitions in the configuration file, and start

the collector.

2. The collector connects to the Habitat Sampler application.

3. Depending on the key value that you have provided in the configuration file, tags in Habitat are

listed in the <collector name>_Tag_Unconfirmed.xml file under the ProposedTags section.

These tags use the following naming convention: <host name of the Habitat server>.<composite

key>.<field name in Habitat>

4. You approve the tags (on page 2243) that must be created in Historian.

5. The tags that you approve are created in Historian.

6. Data collection begins.

7. When tags are added, renamed, or deleted later in Habitat, you must again approve these changes

(on page 2243). Only then they are reflected in Historian.

The tags created in Historian contain the MRID and composite key values of the corresponding Habitat

record. Although MRID is constant for a tag, the composite key value can change if there is a change in

the transmission/distribution lines. Therefore, the collector uses the MRID value to identify whether a tag

is a newly added one or an old one that has been renamed. And the composite key is used in naming the

tags created in Historian.

Supported data types:

• Float

• Integer

• String

• Boolean

Historian | 18 - The HAB Collector | 2210

High Availability

High availability of the Habitat server and the HAB collector provides uninterrupted data collection. You

can configure a stand-by Habitat server and/or a second instance of the HAB collector to achieve high

availability.

You can choose one of the following types of configuration:

• Single collector instance and single Habitat server: In this configuration, a single HAB collector

instance collects data from a single Habitat server.

To set up this configuration, create a collector instance (on page 489), and provide the details of

the Habitat site (on page 2219) in the configuration file of the collector instance.

• Redundant collector instances and single Habitat server: In this configuration, a single Habitat

server is connected to two collector instances - one active and the other one standby. If the active

collector instance is not available, data is collected by the standby collector instance.

Historian | 18 - The HAB Collector | 2211

To set up this configuration, create two instances of the collector (on page 489), and provide and

same site details (on page 2219) for both of them.

• Single collector instance and redundant Habitat servers: In this configuration, a single collector

instance is connected to two Habitat servers - one active and the other one is standby. If the active

server is down, the standby server accepts requests from the collector and sends data.

Historian | 18 - The HAB Collector | 2212

To set up this configuration, create a collector instance (on page 489), and provide the details

(on page 2219) of the active and standby Habitat servers in the Node1 and Node2 parameters

respectively in the configuration file.

• Redundant collector instances and redundant Habitat servers: In this configuration, two collector

instances are connected to two Habitat servers. The active collector instance collects data

from the active Habitat server. If the active collect instance is not available, data is collected by

the standby collector instance. If the active Habitat server is down, the standby server accepts

requests from the active collector instance.

Historian | 18 - The HAB Collector | 2213

To set up this configuration:

1. Create two instances of the collector (on page 489).

2. For both the instances, provide the details (on page 2219) of the active and standby Habitat

servers in the Node1 and Node2 parameters respectively in the configuration file.

In addition to the high availability options provided by the collector and the Habitat server, you can set up

data mirroring in the Historian server. For information, refer to About Data Mirroring (on page 367). Or you

can install Historian in a cluster environment (on page 119).

Configuration

Add and Configure a HAB Collector

The HAB collector collects data from Habitat, which is a SCADA application that contains real-time data.

The collector interacts with the Habitat Sampler application to fetch data from the Habitat database

records and stores the data in a Historian server. For more information, refer to Overview of the HAB

Collector (on page 2208).

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors in the default system appears.

3. On the right, next to Settings in the main section, select .

Historian | 18 - The HAB Collector | 2214

The Add Collector Instance: <system name> window appears, displaying the Collector Selection

section. The MACHINE NAME field contains a list of machines on which you have installed

collectors.

4. In the MACHINE NAME field, select the machine in which you want to add a collector instance.

5. In the COLLECTOR TYPE field, select Hab Collector, and then select Get Details.

The INSTALLATION DRIVE and DATA DIRECTORY fields are disabled and populated.

6. Select Next.

The Source Configuration section appears.

7. Enter values as described in the following table.

Field Description

SERVER SITE Enter name that you want to assign to the site. A value is re

quired and must be unique. It is used by Habitat to identify the

collector instance. By default, this field is populated with a value

in the following format: <Historian server name>Hab

SERVER 1 (under NODE 1) Enter the host name or IP address of the Habitat server in the

primary site from which you want to collect data. This server

acts as the primary/active server from which the collector re

ceives data. A value is required.

SERVER 1 (under NODE 2) Enter the host name or IP address of the Habitat server in the

second/backup site from which you want to collect data. This

server acts as a standby server in case server 1 under node 1

fails. A value is required. If you do not have a secondary/backup

site, enter the same value as SERVER 1 under node 1.

SERVER 2 (under NODE 1) Enter the host name or IP address of the Habitat server that you

want to use as a standby server in the same site as server 1.

This server acts as a standby server in case server 1 under node

2 fails.

SERVER 2 (under NODE 2) Enter the host name or IP address of the Habitat server in the

secondary/backup site from which you want to collect data.

This server acts as a standby server in case server 2 under node

1 fails.

For example, suppose Machine A and Machine B are in node

AB, and Machine X and Machine Y are in node XY. Suppose you

Historian | 18 - The HAB Collector | 2215

Field Description

want to use Machine A as the primary server and the remaining

machines as standby servers. In that case, enter values as fol

lows:

◦ SERVER 1 (under Node 1): Machine A

◦ SERVER 2 (under Node 1): Machine B

◦ SERVER 1 (under Node 2): Machine X

◦ SERVER 2 (under Node 2): Machine Y

If Machine A fails, the Machine B becomes active. If Machine B

fails, Machine X becomes active. If Machine X fails, Machine Y

becomes active.

SOCKET The socket number (port number) used by the Habitat Sampler

application to connect. Each collector instance can connect to

only one socket. The default value is 8040.

RETRY The duration, in seconds, after which the collector tries to com

municate with the site. The default value is 5 seconds.

8. Select Next.

The Destination Configuration section appears. Under CHOOSE DESTINATION, the Historian

Server option is selected by default. The other options are disabled because you cannot send data

to a cloud destination using the HAB collector.

9. If you created security groups or enabled a strict client/collector authentication, enter the

USERNAME and PASSWORD of the on-premises Historian server that you created during the

installation of the collector.

If you entered the USERNAMEand PASSWORD, select Test Connection. This will help you to test if

the Historian server that you are trying to connect is valid or if the credentials that you entered are

valid.

If the entered credentials are valid, a successful connection message appears.

10. Select Next.

The Collector Initiation section appears. By default, the COLLECTOR NAME field is populated with

a value in the following format: <Historian server name>_Hab

11. If needed, modify the value in the COLLECTOR NAME field.

The value that you enter:

◦ Must be unique.

◦ Must not exceed 15 characters.

Historian | 18 - The HAB Collector | 2216

◦ Must not contain a space.

◦ Must not contain special characters except a hyphen, period, and an underscore.

12. In the SamplerID field, enter the user ID to connect to Habitat Sampler.

By default, this field contains the Collector Name. You can first provide the Collector Name and

update the Sample ID field as this filed will automatically takes the Collector Name.

13. In the RUNNING MODE field, select one of the following options.

◦ Service - Local System Account: Select this option if you want to run the collector as a

Windows service using the credentials of the local user (that is, the currently logged-in user).

If you select this option, the USERNAME and PASSWORD fields are disabled. By default, this

option is selected.

◦ Service Under Specific User Account: Select this option if you want to run the collector as

a Windows service using a specific user account. If you select this option, you must enter

values in the USERNAME and PASSWORD fields.

If you have enabled the Enforce Strict Collector Authentication option in Historian

Administrator, you must provide the credentials of a user who is added to at least one of the

following security groups:

▪ iH Security Admins

▪ iH Collector Admins

▪ iH Tag Admins

14. Select Add.

The collector instance is added. The fields specific to the collector appear in the DETAILS section.

15. Depending on whether you want to configure tags or alarms, select next to the corresponding

field under Collection Definitions.

Historian | 18 - The HAB Collector | 2217

The Data Collections or Alarm Collections section appears.

16. Select , and then enter values in the available fields for data collection and/or alarm collection

(on page 495). You can also copy a collection definition by right-clicking it and selecting Duplicate.

17. Under COLLECTOR SPECIFIC CONFIGURATION, configure values as described in the following

table.

Field Description

Auto Tag Sync If you enable this option, the collector creates tags automati

cally in Historian based on the key value. In addition, any tag

changes in Habitat (such as adding, renaming, and deleting

tags) will reflect automatically in Historian. No manual steps are

required.

If you disable this option, any tag changes in Habitat will be cap

tured in the <collector name>_Tag_Unconfirmed.xml

file. Only after you approve these changes (on page 2243), they

are reflected in Historian.

Tag Deletion Type Specify whether deleted tags in Habitat that you have approved

must be deleted or disabled for data collection in Historian. En

ter one of the following values:

Historian | 18 - The HAB Collector | 2218

Field Description

◦ DISABLE_TAG (this is the default value)

◦ DELETE_TAG

MTLS Security Indicates whether you want to use Mutual TLS (MTLS) protocol

to enforce a secure and strong authentication mechanism.

MTLS Data Encryption Indicates whether you want to encrypt the data that the collec

tor shares to the data archiver (DA).

For more information on how to enable MTLS Security, refer to Enable MTLS Security (on page

632).

18. As needed, provide values in the the other sections common to all collectors (on page 579).

19. In the upper-left corner of the page, select Save.

The changes to the collector instance are saved.

20. Start the collector (on page 637).

If you have disabled the automatic tag sync option in the configuration file, tag changes in Habitat (such

as adding, renaming, and deleting tags) are captured in the <collector_name>_tag.xml file. You

must approve the changes so that they are reflected in Historian. To do so:

1. Right-click the HAB collector instance that you have created, and then select Confirm Queued

Tags.

A list of tags that have been changed appears.

2. Select the check boxes corresponding to the tags whose changes you want to approve, and then

select Confirm. You can filter the list using the TAG TYPE field.

The tag changes are approved. The status of the tags is updated in the

<collector_name>_tag.xml file (that is, the Confirmed parameter is set to true).

Historian | 18 - The HAB Collector | 2219

Configure the HAB Collector for Tags

Create an instance of the HAB collector (on page 489).

A configuration file is created when you install collectors. This file contains the following types of

information, which are required for the Sampler application to connect to Habitat.

• Site parameters: Contains the location details of Habitat from which you want to collect data.

A single site can contain one or two nodes (the two nodes are used for a primary/standby

configuration).

A configuration file can contain only one Site section.

• Collector parameters: Contains the following parameters:

◦ Automatic tag sync: If the automatic tag sync option is enabled in the configuration

file, when tags are added, renamed, or deleted in Habitat, the changes are reflected

automatically in Historian. No manual steps are required; data collection begins

automatically depending on the collection definition that you have provided in the

configuration file. If, however, the automatic tag sync in disabled, you must approve tag

changes, and only then they are reflected in Historian. For more information, refer to

Approve Tag Changes (on page 2243). Depending on the collection definition that you

have provided in the configuration file, tags are created in Historian, and data collection is

initiated.

◦ Tag deletion versus disablement: For tags deleted in Habitat, you must specify whether they

must be deleted in Historian or just disabled for data collection.

A configuration file can contain only one CollectorParameter section.

• Collection definition parameters: Specifies which data to collect and how. For example, the Habitat

application, database, and the family from which you want to collect data, whether the data is

polled or unsolicited (that is, periodic or exception), the mapping between tag properties and the

corresponding fields in Habitat, etc. There are two types of collection definition parameters: tag

data collection and alarm data collection.

A configuration file can contain multiple DataCollectionDefinition sections. If you do not want to

use a collection definition for now, you can set the State parameter to DISABLED.

In addition to tags, you can specify values for these parameters for alarms. We recommend that you

create a separate collector instance to collect alarm data. You must then configure alarms (on page

2230) in a separate file.

Historian | 18 - The HAB Collector | 2220

1. Access the <collector name>_Config.xml file. By default, it is located at C:\Program

Files\GE Digital\Historian HAB Collector\Server.

2. Enter values as specified in the following tables.

Table 375. Site Parameters

Parameter Description

Name The name that you want to assign to the site.

Node1 The host name or IP address of the Habitat server (node) in the

site from which you want to collect data. This server acts as the

primary/active server from which the collector receives data.

Node2 If you want to achieve high availability by connecting to redun

dant Habitat servers, provide the host names or IP addresses

of both the servers - the active server in Node1 and the standby

server in Node2.

Note:

You can provide the IP addresses of up to four Habitat

servers - two of them in Node1 and other two in Node2,

separated by commas.

For example, if you want to connect to MachineA, Ma

chineB, MachineC, and MachineD, enter:

<Node1>MachineA,MachineB</Node1>

<Noade2>MachineC,MachineD</Node2>

If you do so, MachineA becomes the active Habitat

server, and in case of a failover, MachineB, Machine

C, and MachineD each become active servers - one-by-

one, in that order.

For information on the various ways of achieving high availabili

ty, refer to High Availability (on page 2210).

Socket The socket number (port number) used by the Habitat Sampler

application to connect. Each collector instance can connect to

only one socket. The default value is 8040.

Historian | 18 - The HAB Collector | 2221

Parameter Description

Retry The duration, in seconds, after which the collector tries to com

municate with the site. The default value is 5.

Example:

<Site>

 <Name>Site1</Name>

 <Node1>Host1</Node1>

 <Node2>Host2</Node2>

 <Socket>8040</Socket>

 <Retry>5</Retry>

</Site>

Table 376. Collector Parameters

Parameter Description Valid Values

AutoTagSync Indicates whether tags must be created initially when the

collector is connected to the Habitat Sampler application.

It also indicates whether tags must be created, renamed,

or deleted later automatically when the corresponding

changes are done in Habitat.

If you disable this option, you must manually confirm

these changes. For example, if 10 tags are added in Habi

tat, you must confirm which of them must be created in

Historian. For instructions, refer to Approve Tag Changes

(on page 2243).

◦ TRUE

◦ FALSE

TagDeletionType Specifies whether tags deleted in Habitat must be delet

ed or just disabled for data collection in Historian.

◦ DISABLE_

TAG

◦ DELETE_

TAG

Example:

<CollectorParameter>

 <AutoTagSync>TRUE</AutoTagSync>

 <TagDeletionType>DISABLE_TAG</TagDeletionType>

</CollectorParameter>

Historian | 18 - The HAB Collector | 2222

Table 377. Collection Definition Parameters

Parameter Description Valid Values

Name The name of the collection defini

tion. A value is required and must be

unique.

Important:

You must not change the

name after the collector

starts collecting data. If, how

ever, you want to change the

name after the collector has

started collecting data, refer

to FAQs on HAB Collector (on

page 2246).

id Identifies the collection definition. A

value is required and must be unique.

Important:

You must not change the ID

after the collector starts col

lecting data. If, however, you

want to change the ID after

the collector has started col

lecting data, refer to FAQs

on HAB Collector (on page

2246).

Site The name of the site in Habitat from

which you want to collect data. Pro

vide the same value as the one you

provided for the Name parameter in

the Site section.

Historian | 18 - The HAB Collector | 2223

Parameter Description Valid Values

Valid Indicates whether the collection defi

nition is valid.

◦ TRUE: Indicates that the col

lection definition is valid.

◦ FALSE: Indicates that an error

has occurred while process

ing the collection definition.

In this case, the collector al

so sets the State parameter

to DISABLED so that this col

lection definition is not consid

ered.

State Indicates whether the collection defi

nition is enabled.

◦ ENABLED: Indicates that the

collector is processing the col

lection definition.

◦ DISABLED: Indicates that this

data collection is not being

used. You can manually dis

able a collection definition. Or

if an error has occurred while

processing the collection def

inition, the collector automat

ically sets this parameter to

DISABLED.

Application The name of the Habitat application

from which you want to collect data

(for example, SCADA).

Database The name of the Habitat database

from which you want to collect data

(for example, SCADAMOM).

Family The name of the Habitat family from

which you want to collect data (for

example, EMS, DTS). A value is re

quired and must be unique.

Historian | 18 - The HAB Collector | 2224

Parameter Description Valid Values

RecordType The name of the HDB record from

which you want to collect data (for

example, ANALOG,POINT,COUNT).

Any record type that contains the

composite key and MRID fields (be

cause the collector uses these two

fields to create tags).

CollectionType Indicates whether you want to per

form polled or unsolicited data collec

tion.

◦ Polled: Indicates a periodic da

ta collection, where data is col

lected at a regular time inter

val (indicated as PERIODIC in

Habitat).

◦ Unsolicited: Indicates that da

ta is collected only when val

ues have changed since the

last time data was collected

(indicated as EXCEPTION in

Habitat).

Key The value that will be used to filter

tags for data collection. You can

use the wildcard character * to get a

range of values. For example, if you

want to collect data from all tags that

begin with SUBSTN.LAKEVIEW, enter:

SUBSTN.LAKEVIE*.*.*.*.*

TagPrefix The prefix that you want to use for

tags. You can provide a different

value for each collection definition,

which helps you identify tags based

on the collection definition.

TagNameField The composite key of the record.

A value is required. If, however, the

composite key is not available, en

ter any other unique identifier of the

record.

MRIDField The MRID of the record. A value is re

quired. If, however, MRID is not avail

Historian | 18 - The HAB Collector | 2225

Parameter Description Valid Values

able, enter the composite key or any

other unique identifier of the record.

TagDescField The description of the tag. A value is

required.

ValueFields The list of fields in Habitat that con

tain tag values that you want to col

lect. A value is required.

For example, if tag values are stored

in the DIS_ANALOG field in Habitat,

respectively, enter:

<TagTemplate>

 <TagPrefix>GENTAG</TagPrefix>

 <TagNameField>$KEY_PLC</TagNameField>

 <MRID>MRID_PLC</MRID>

 <ValueFields>DIS_ANALOG</value>

 <Timestamp>SCTIME_ANALOG</Timestamp>

 <Quality>DFLAGS_ANALOG</Quality>

</TagTemplate>

For the Value parameter, you can en

ter multiple values, separated by com

mas. The values will then be concate

nated in the corresponding Histori

an tag (for example, <Value>DIS_ANA

LOG,ESTIMATE_ANALOG SCTIME_ANA

LOG,DFLAGS_ANALOG</Value>).

For the Timestamp parameter, you

can use a HDB timestamp or cus

tom/alias timestamps.

For analog, you can use:

Historian | 18 - The HAB Collector | 2226

Parameter Description Valid Values

◦ FIELDTIME: A combination of

FLDTIME_ANALOG and FLD

MSEC_ANALOG, in the hour:

min:sec: millisec format.

◦ SCADATIME: Used to capture

SCTIME_ANALOG in the hour:

min:sec: millisec format.

◦ SAMPLETIME: The time at

which the data sample was

collected in Habitat in the hour:

min:sec format.

For point, you can use:

◦ FIELDTIME: A combination

of FLDTIME_POINT and FLD

MSEC_POINT, in the hour:

min:sec: millisec format.

◦ SCADATIME: Used to capture

SCTIME_POINT in the hour:

min:sec: millisec format.

◦ SAMPLETIME: The time at

which the data sample was

collected in Habitat in the hour:

min:sec format.

For count, you can use:

◦ FIELDTIME: A combination of

FLDTIME_COUNT and FLD

MSEC_COUNT, in the hour:

min:sec: millisec format.

◦ SAMPLETIME: The time at

which the data sample was

collected in Habitat in the hour:

min:sec format.

You can edit the names of these cus

tom/alias timestamps using the reg

Historian | 18 - The HAB Collector | 2227

Parameter Description Valid Values

istry entries FieldTimeCustomField

Name, ScadaTimeCustomFieldName,

and SampleTimeCustomFieldName

respectively.

TimestampFields The name of the property that stores

the timestamp of a tag in Habitat.

You can use a HDB timestamp or cus

tom/alias timestamps.

Examples:

For analog, you can use:

◦ FIELDTIME: A combination of

FLDTIME_ANALOG and FLD

MSEC_ANALOG, in the hour:

min:sec: millisec format.

◦ SCADATIME: Used to capture

SCTIME_ANALOG in the hour:

min:sec: millisec format.

◦ SAMPLETIME: The time at

which the data sample was

collected in Habitat in the hour:

min:sec format.

For point, you can use:

◦ FIELDTIME: A combination

of FLDTIME_POINT and FLD

MSEC_POINT, in the hour:

min:sec: millisec format.

◦ SCADATIME: Used to capture

SCTIME_POINT in the hour:

min:sec: millisec format.

◦ SAMPLETIME: The time at

which the data sample was

collected in Habitat in the hour:

min:sec format.

For count, you can use:

Historian | 18 - The HAB Collector | 2228

Parameter Description Valid Values

◦ FIELDTIME: A combination of

FLDTIME_COUNT and FLD

MSEC_COUNT, in the hour:

min:sec: millisec format.

◦ SAMPLETIME: The time at

which the data sample was

collected in Habitat in the hour:

min:sec format.

You can edit the names of these cus

tom/alias timestamps using the reg

istry entries FieldTimeCustomField

Name, ScadaTimeCustomFieldName,

and SampleTimeCustomFieldName

respectively.

QualityFields The name of the property that stores

the tag quality in Habitat.

SampleOptions Contains the following elements:

◦ SampleRate: The rate at which

you want to collect data.

◦ SampleUnit: The unit of mea

surement for the sample rate.

◦ Permanent: Indicates whether

you want to store the data in

buffer files in Habitat in the

event of a connection loss. We

strongly recommend that you

set this parameter to true to

prevent loss of data.

For example, if you want to collect da

ta every 5 seconds, enter:

<SampleOptions>

 <SampleRate>5</SampleRate>

 <SampleUnit>sec</SampleUnit>

 <Permanent>TRUE</Permanent>

</SampleOptions>

Valid values for SampleUnit:

◦ sec

◦ min

◦ hour

◦ day

◦ week

◦ month

Valid values for Permanent:

◦ TRUE

◦ FALSE

Historian | 18 - The HAB Collector | 2229

Example:

<DataCollectionDefinitions>

 <DataCollectionDefinition>

 <Name>ANALOG_HIST</Name>

 <id>1</id>

 <Site>Site1</Site>

 <Valid>TRUE</Valid>

 <Status>DISABLED</Status>

 <Family>DTS1</Family>

 <Application>SCADA1</Application>

 <Database>SCADAMOM1</Database>

 <RecordType>ANALOG</RecordType>

 <CollectionType>Unsolicited</CollectionType>

 <Key>*</Key>

 <TagTemplate>

 <TagPrefix>Collection_1</TagPrefix>

 <TagNameField>$KEY_PLC</TagNameField>

 <MRID>MRID_PLC</MRID>

 <ValueFields>DIS_ANALOG</value>

 <Timestamp>SCTIME_ANALOG</Timestamp>

 <Quality>DFLAGS_ANALOG</Quality>

 </TagTemplate>

 <SampleOptions>

 <SampleRate>5</SampleRate>

 <SampleUnit>sec</SampleUnit>

 <Permanent>FALSE</Permanent>

 </SampleOptions>

 </DataCollectionDefinition>

 <DataCollectionDefinition>

 <Name>ANALOG_HIST</Name>

 <id>2</id>

 <Site>Site1</Site>

 <Valid>TRUE</Valid>

 <Status>ENABLED</Status>

 <Family>DTS2</Family>

 <Application>SCADA2</Application>

Historian | 18 - The HAB Collector | 2230

 <Database>SCADAMOM2</Database>

 <RecordType>ANALOG</RecordType>

 <CollectionType>Polled</CollectionType>

 <Key>*</Key>

 <TagTemplate>

 <TagPrefix>Collection_2</TagPrefix>

 <TagNameField>$KEY_PLC</TagNameField>

 <MRID>MRID_PLC</MRID>

 <ValueFields>DIS_ANALOG</value>

 <Timestamp>SCTIME_ANALOG</Timestamp>

 <Quality>DFLAGS_ANALOG</Quality>

 </TagTemplate>

 <SampleOptions>

 <SampleRate>5</SampleRate>

 <SampleUnit>sec</SampleUnit>

 <Permanent>TRUE</Permanent>

 </SampleOptions>

 </DataCollectionDefinition>

</DataCollectionDefinitions>

3. Save and close the file.

The HAB collector is configured.

Start the collector (on page 2242).

Configure the HAB Collector for Alarms

Create an instance of the HAB collector (on page 489).

A configuration file is created when you install collectors. This file contains the following types of

information, which are required for the Sampler application to connect to Habitat.

• Site parameters: Contains the location details of Habitat from which you want to collect data.

A single site can contain one or two nodes (the two nodes are used for a primary/standby

configuration).

A configuration file can contain only one Site section.

• Collector parameters: Contains the following parameters:

Historian | 18 - The HAB Collector | 2231

◦ Automatic tag sync: If the automatic tag sync option is enabled in the configuration

file, when tags are added, renamed, or deleted in Habitat, the changes are reflected

automatically in Historian. No manual steps are required; data collection begins

automatically depending on the collection definition that you have provided in the

configuration file. If, however, the automatic tag sync in disabled, you must approve tag

changes, and only then they are reflected in Historian. For more information, refer to

Approve Tag Changes (on page 2243). Depending on the collection definition that you

have provided in the configuration file, tags are created in Historian, and data collection is

initiated.

◦ Tag deletion versus disablement: For tags deleted in Habitat, you must specify whether they

must be deleted in Historian or just disabled for data collection.

A configuration file can contain only one CollectorParameter section.

• Collection definition parameters: Specifies which data to collect and how. For example, the Habitat

application, database, and the family from which you want to collect data, whether the data is

polled or unsolicited (that is, periodic or exception), the mapping between tag properties and the

corresponding fields in Habitat, etc. There are two types of collection definition parameters: tag

data collection and alarm data collection.

A configuration file can contain multiple DataCollectionDefinition sections. If you do not want to

use a collection definition for now, you can set the State parameter to DISABLED.

If you have created multiple instances of the collector, you must create one configuration file for each

instance.

In addition to alarms, you can specify values for these parameters for tags. We recommend that you

create a separate collector instance to collect tag data. You must then configure tags (on page 2219) in a

separate file.

1. Access the <collector name>_Config.xml file. By default, it is located at C:\Program

Files\GE Digital\Historian HAB Collector\Server.

2. Enter values as specified in the following tables.

Table 378. Site Parameters

Parameter Description

Name The name that you want to assign to the site.

Node1 The host name or IP address of the Habitat server (node) in the

site from which you want to collect data. This server acts as the

primary/active server from which the collector receives data.

Historian | 18 - The HAB Collector | 2232

Parameter Description

Node2 If you want to achieve high availability by connecting to redun

dant Habitat servers, provide the host names or IP addresses

of both the servers - the active server in Node1 and the standby

server in Node2.

Note:

You can provide the IP addresses of up to four Habitat

servers - two of them in Node1 and other two in Node2,

separated by commas.

For example, if you want to connect to MachineA, Ma

chineB, MachineC, and MachineD, enter:

<Node1>MachineA,MachineB</Node1>

<Noade2>MachineC,MachineD</Node2>

If you do so, MachineA becomes the active Habitat

server, and in case of a failover, MachineB, Machine

C, and MachineD each become active servers - one-by-

one, in that order.

For information on the various ways of achieving high availabili

ty, refer to High Availability (on page 2210).

Socket The socket number (port number) used by the Habitat Sampler

application to connect. Each collector instance can connect to

only one socket.

Retry The duration, in seconds, after which the collector tries to com

municate with the site. The default value is 5.

Example:

<Site>

 <Name>Site1</Name>

 <Node1>Host1</Node1>

 <Node2>Host2</Node2>

 <Socket>8040</Socket>

Historian | 18 - The HAB Collector | 2233

 <Retry>5</Retry>

</Site>

Table 379. Collector Parameters

Parameter Description Valid Values

AutoTagSync Indicates whether tags must be created initially

when the collector is connected to the Habitat

Sampler application. It also indicates whether

tags must be created, renamed, or deleted later

automatically when the corresponding changes

are done in Habitat.

If you disable this option, you must manually

confirm these changes. For example, if 10 tags

are added in Habitat, you must confirm which

of them must be created in Historian. For in

structions, refer to Approve Tag Changes (on

page 2243).

◦ TRUE

◦ FALSE

TagDeletionType Specifies whether tags deleted in Habitat must

be deleted or just disabled for data collection in

Historian.

◦ DISABLE_TAG

◦ DELETE_TAG

Example:

<CollectorParameter>

 <AutoTagSync>TRUE</AutoTagSync>

 <TagDeletionType>DISABLE_TAG</TagDeletionType>

</CollectorParameter>

Table 380. Collection Definition Parameters

Parameter Description Valid Values

Name The name of the collection def

inition. A value is required and

must be unique.

Important:

You must not change

the name after the col

Historian | 18 - The HAB Collector | 2234

Parameter Description Valid Values

lector starts collecting

data. If, however, you

want to change the

name after the collec

tor has started collect

ing data, refer to FAQs

on HAB Collector (on

page 2246).

id Identifies the collection defin

ition. A value is required and

must be unique.

Important:

You must not change

the ID after the col

lector starts collect

ing data. If, however,

you want to change

the ID after the collec

tor has started collect

ing data, refer to FAQs

on HAB Collector (on

page 2246).

Site The name of the site in Habi

tat from which you want to col

lect data. Provide the same val

ue as the one you provided for

the Name parameter in the Site

section.

Valid Indicates whether the collec

tion definition is valid.

◦ TRUE: Indicates that the

collection definition is

valid.

◦ FALSE: Indicates that an

error has occurred while

Historian | 18 - The HAB Collector | 2235

Parameter Description Valid Values

processing the collec

tion definition. In this

case, the collector also

sets the State parame

ter to DISABLED so that

this collection definition

is not considered.

Status Indicates whether the collec

tion definition is enabled.

◦ ENABLED: Indicates that

the collector is process

ing the collection defini

tion.

◦ DISABLED: Indicates

that this data collection

is not being used. You

can manually disable a

collection definition. Or

if an error has occurred

while processing the

collection definition, the

collector automatically

sets this parameter to

DISABLED.

Application The name of the Habitat ap

plication from which you want

to collect data (for example,

ALARM).

Database The name of the Habitat data

base from which you want

to collect data (for example,

ALARMLST).

Family The name of the Habitat family

from which you want to collect

data (for example, EMS, DTS).

Historian | 18 - The HAB Collector | 2236

Parameter Description Valid Values

A value is required and must

be unique.

RecordType The name of the HDB record

from which you want to collect

data (for example, CIRCLG).

Any record type that contains

the composite key and MRID

fields (because the collector

uses these two fields to create

tags).

CollectionType Indicates the collection type.

For alarms, only unsolicited

data collection is supported,

which indicates that data is

collected only when values

have changed since the last

time data was collected.

Unsolicited (indicated as EX

CEPTION in Habitat).

Key This parameter is not applica

ble to alarms. Enter *.

AlarmFilter The list of options to filter

alarm data. It contains the fol

lowing parameters:

◦ Enabled: Enter TRUE

or FALSE to specify

whether you want to fil

ter alarm data. The de

fault value is TRUE.

◦ Location, Area, Catego

ry, Priority, Exception:

For each of these pa

rameters, enter the cri

teria using which you

want to filter alarm da

ta. You can enter multi

ple values separated by

commas (for example,

LAKEVIEW,RICHVIEW).

Historian | 18 - The HAB Collector | 2237

Parameter Description Valid Values

The default value is *,

which indicates that da

ta for that parameter is

not filtered.

For example, if you want to

retrieve only the alarm da

ta related to LAKEVIEW and

RICHVIEW, in the area Aus

tralia, with priority 3, enter:

<AlarmFilter>

 <Enabled>True</Enabled>

 <Location>LAKEVIEW,RICHVIEW</Loc

ation>

 <Area>Australia</Area>

 <Category>SCADATOP</Category>

 <Priority>3</Priority>

 <Exception>*</Exception>

</AlarmFilter>

Note that data is filtered only if

the criteria for all the parame

ters is satisfied.

Important:

The property names

of the parameters for

which you want to fil

ter data must be in

cluded in the <Val

ue> parameter under

<TagTemplate>. For

example, if the loca

tion, area, and prior

ity are stored in the

LOC_CIRCLG, AREA_

Historian | 18 - The HAB Collector | 2238

Parameter Description Valid Values

CIRCLG, and PRIOR_

CIRCLG fields respec

tively, enter <Val

ue>LOC_CIRCLG,AREA_

CIRCLG,PRIOR_CIR

CLG</Value>

TagNameFields Determines how the tags creat

ed in Historian must be named.

For example, if you want the

tags to be named after the val

ue in the LOC_CIRCLG field, en

ter <TagNameFields>LOC_CIR

CLG</TagNameFields>. When

you do so, if the value in the

LOC_CIRCLG field in Habitat is

DOUGLAS, the tag created in

Historian will be named <Tag

Prefix value>.<AlarmPrefix val

ue>.DOUGLAS.

You can enter multiple values

separated by commas.

For example, if you want the

tags to be named after the val

ues in the LOC_CIRCLG and

PRIOR_CIRCLG fields, enter:

<TagNameFields>LOC_CIRCLG,PRIOR_C

IRCLG</TagNameFields>

When you do so, if the val

ues in the LOC_CIRCLG and

PRIOR_CIRCLG fields are

Douglas and 1 respective

ly, the tag created in Histo

rian will be named <TagPre

Historian | 18 - The HAB Collector | 2239

Parameter Description Valid Values

fix value>.<AlarmPrefix val

ue>.DOUGLAS.1.

TagPrefix The prefix that you want to use

for tags. You can provide a dif

ferent value for each collec

tion definition, which helps you

identify tags based on the col

lection definition.

TagTemplate The list of tag properties for

which you want to collect data.

In Historian, we use the Value

tag property.

You must map these proper

ties with the corresponding

ones in Habitat. For example,

if the value of a tag is stored in

the TEXT_CIRCLG field in Habi

tat, enter:

<TagTemplate>

 <Value>TEXT_CIRCLG</value>

 <Timestamp></Timestamp>

 <Quality></Quality>

</TagTemplate>

For the Value parameter, if you

want to collect data from mul

tiple fields, enter them separat

ed by commas. The values will

then be concatenated in the

corresponding Historian tag

(for example, <Value>TEXT_CIR

CLG, PRIOR_CIRCLG, TIME_CIR

CLG</Value>).

Historian | 18 - The HAB Collector | 2240

Parameter Description Valid Values

Important:

◦ Quality is not

applicable to

alarms. In ad

dition, to pro

vide the time

stamp column

name, include

it in the <Val

ue> element it

self separat

ed by a com

ma. Therefore,

do NOT enter

values for the

<Timestamp>

and <Quality>

elements, but

retain the ele

ments.

◦ If you have

provided filter

criteria under

<AlarmFilter>,

enter the names

of those fields

in the <Value>

parameter.

SampleOptions Contains the following ele

ments:

Valid values for SampleUnit:

◦ sec

◦ min

◦ hour

Historian | 18 - The HAB Collector | 2241

Parameter Description Valid Values

◦ SampleRate: The rate at

which you want to col

lect data.

◦ SampleUnit: The unit

of measurement for the

sample rate.

◦ Permanent: Indicates

whether you want to

store the data in buffer

files in Habitat in the

event of a connection

loss. We strongly rec

ommend that you set

this parameter to true to

prevent loss of data.

For example, if you want to col

lect data every 5 seconds, en

ter:

<SampleOptions>

 <SampleRate>5</SampleRate>

 <SampleUnit>sec</SampleUnit>

 <Permanent>TRUE</Permanent>

</SampleOptions>

◦ day

◦ week

◦ month

Valid values for Permanent:

◦ TRUE

◦ FALSE

Example:

<AlarmCollectionDefinitions>

 <AlarmCollectionDefinition>

 <Name>ALARM</Name>

 <id>1</id>

 <Site> Site1</Site>

 <Valid>TRUE</Valid>

 <Status>ENABLED</Status>

 <Family>DTS</Family>

 <Application>ALARM</Application>

 <Database>ALARMLST</Database>

Historian | 18 - The HAB Collector | 2242

 <RecordType>CIRCLG</RecordType>

 <CollectionType>Unsolicited</CollectionType>

 <Key>*</Key>

 <AlarmFilter>

 <Enabled>True</Enabled>

 <Location>LAKEVIEW,RICHVIEW</Location>

 <Area>Australia</Area>

 <Category>SCADATOP</Category>

 <Priority>3</Priority>

 <Exception>*</Exception>

 </AlarmFilter>

 <TagNameFields>LOC_CIRCLG</TagNameFields>

 <TagPrefix>ALARM.</TagPrefix>

 <TagTemplate>

 <Value>TEXT_CIRCLG,PRIOR_CIRCLG,LOC_CIRCLG,AREA_CIRCLG</Value>

 <Timestamp>SCADATIME</Timestamp>

 <Quality></Quality>

 </TagTemplate>

 <SampleOptions>

 <SampleRate>5</SampleRate>

 <SampleUnit>sec</SampleUnit>

 <Permanent>FALSE</Permanent>

 </SampleOptions>

 </AlarmCollectionDefinition>

</AlarmCollectionDefinitions>

3. Save and close the file.

The HAB collector is configured.

Start the collector (on page 2242).

Start the HAB Collector

Configure the collector for tags (on page 2219) and alarms (on page 2230).

1. Access Windows services.

2. Right-click the HAB collector instance that you want to start, and then select Start.

The collector is started, and fetches data from the Habitat site details that you provided in the

configuration file.

Historian | 18 - The HAB Collector | 2243

If you have disabled the automatic tag sync option in the configuration file, tag

changes in Habitat (such as adding, renaming, and deleting tags) are captured in the

<collector_name>_tag_Unconfirmed.xml file. Approve the changes (on page 2243) so that they

are reflected in Historian.

Note:

If you have enabled the automatic tag sync option, tag changes are automatically reflected in

Historian; no manual steps are needed.

Approve Tag Changes

Start the collector (on page 2242).

After you create a collector instance and configure it, you can choose between the following options:

1. Automatic tag sync: If you enable this option in the configuration file, the collector creates tags

automatically in Historian based on the key value. In addition, any tag changes in Habitat (such as

adding, renaming, and deleting tags) will reflect automatically in Historian. No manual steps are

required.

2. Manual tag changes: If you disable the automatic tag sync option, any tag changes in Habitat will

be captured in the <collector name>_Tag_Unconfirmed.xml file. Only after you approve

these changes, they are reflected in Historian.

This topic describes how to approve tag changes manually if you have disabled the automatic

tag sync option. You can do so using Configuration Hub or by updating the <collector

name>_Tag_Unconfirmed.xml directly.

1. To approve changes using Configuration Hub:

a. Access Configuration Hub (on page 336).

b. In the NAVIGATION section, select Collectors.

c. Right-click the HAB collector whose changes you want to approve, and then select Confirm

Queued Tags.

A list of tags that have been changed appears.

Historian | 18 - The HAB Collector | 2244

d. Select the check boxes corresponding to the tags whose changes you want to approve, and

then select Confirm.

The tag changes are approved. The status of the tags is updated in the

<collector_name>_tag.xml file (that is, the Confirmed parameter is set to true).

2. To approve changes using the <collector name>_Tag_Unconfirmed.xml file:

a. Access the <collector name>_Tag_Unconfirmed.xml file. By default, it is located at

C:\Program Files\GE Digital\Historian HAB Collector\Server.

Note:

This file is named <collector name>_Tag_Unconfirmed.xml only if

there are changes for you to approve. Otherwise, it is named <collector

name>_Tag.xml, which indicates that there have been no changes since your last

approval.

The file contains a list of tags, each tag listed under one of the following sections:

▪ ProposedTags: Contains a list of tags in Habitat that are supposed to be created in

Historian. They will be created after your approval.

▪ DeletedTags: Contains a list of tags deleted in Habitat, but are not yet deleted/

disabled in Historian.

▪ RenamedTags: Contains a list of tags that have been renamed in Habitat, but still

contain the old names in Historian.

b. For each tag for which you want the changes to reflect in Historian, set the Confirmed

parameter to true.

For example, the following code sample indicates that a tag named

SUBSTN.LAKEVIEW.VOLTAGE is created in Habitat, but is not yet created in Historian:

<ProposedTags>

 <TAG>

 <TagName value="SUBSTN.LAKEVIEW.VOLTAGE"/>

 <CompositeKey value="SUBSTN.LAKEVIEW.T1"/>

 <MRID value="D3FR67H-F453-4859-SHDKRIBNSJ345"/>

 <SourceAddress value="D3FR67H-F453-4859-SHFURNSOV4853J">

 <CollectionType value="Unsolicited"/>

 <Confirmed value="false">

Historian | 18 - The HAB Collector | 2245

 </TAG>

</ProposedTags>

To create this tag in Historian, set the Confirmed value to true as follows:

<ProposedTags>

 <TAG>

 <TagName value="SUBSTN.LAKEVIEW.VOLTAGE"/>

 <CompositeKey value="SUBSTN.LAKEVIEW.T1"/>

 <MRID value="D3FR67H-F453-4859-SHDKRIBNSJ345"/>

 <SourceAddress value="D3FR67H-F453-4859-SHFURNSOV4853J">

 <CollectionType value="Unsolicited"/>

 <Confirmed value="true">

 </TAG>

</ProposedTags>

c. Save and close the file.

d. Rename the <collector name>_Tag_Unconfirmed.xml file to <collector

name>_Tag.xml.

The changes are reflected in Historian:

• Newly added tags that you have approved are created in Historian and data collection in initiated

for them. They are removed from the ProposedTags section in the file.

• Renamed tags that you have approved are renamed in Historian. They are removed from the

RenamedTags section in the file.

• Deleted tags that you have approved are either deleted or disabled for data collection depending on

the value for the TagDeletionType parameter in the configuration file. For more information, refer to

Configure the HAB Collector for Tags (on page 2219) and Configure the HAB Collector for Alarms

(on page 2230). These tags are removed from the DeletedTags section of the <collector

name>_Tag.xml file.

Delete an Instance of the HAB Collector

Stop the collector from Windows services.

1. Open command prompt.

2. Change to the directory in which the CollectorInstanceUtility file is located. By default,

it is located in the following folder: C:\Program Files\GE Digital\Historian HAB

Collector\Server

Historian | 18 - The HAB Collector | 2246

3. Run the following command:

CollectorInstanceUtility.exe -Delete <collector instance name>

where <collector instance name> is the name assigned to the collector instance.

For example:

CollectorInstanceUtility.exe -Delete Hab1 MyHistServer "C:\Proficy Historian Data"

The collector instance is deleted.

FAQs on HAB Collector

How to change the name or ID of a collection definition after data collection begins?

Suppose you have provided the following information in the configuration file:

<Name>ANALOG_HIST</Name>

<id>1</id>

<Key>SUBSTN.KIRKLAND.*.*.*.*</Key>

Suppose you want to change the name and ID as follows:

<Name>ANALOG_HIST_NEW</Name>

<id>3</id>

<Key>SUBSTN.KIRKLAND.*.*.*.*</Key>

To make these changes:

1. Stop the collector instance:

a. Access Windows services.

b. Right-click the HAB collector instance that you want to stop, and then select Stop.

2. Update the configuration file (on page 2219).

3. Search and select all the tags related to the collection definition, and remove them (on page 2063).

Important:

Do not delete them permanently; just remove them so that the tags and their data will still

be available.

4. Start the collector instance.

a. Access Windows services.

b. Right-click the HAB collector instance that you want to start, and then select Start.

Historian | 18 - The HAB Collector | 2247

Tags will be created based on the new collection definition details. You can also retrieve data for the older

tags.

How to split a collection definition into two?

Suppose you have provided the following information in the configuration file:

<Name>ANALOG_HIST</Name>

<id>1</id>

<Key>SUBSTN.KIRKLAND.*.*.*.*</Key>

Suppose you want to split the collection definition into two as follows:

<Name>ANALOG_HIST</Name>

<id>1</id>

<Key>SUBSTN.KIRKLAND.BUS.*.*.*</Key>

<Name>ANALOG_HIST_HIST2</Name>

<id>2</id>

<Key>SUBSTN.KIRKLAND.LN.*.*.*</Key>

To make these changes:

1. Stop the collector instance:

a. Access Windows services.

b. Right-click the HAB collector instance that you want to stop, and then select Stop.

2. Update the configuration file (on page 2219).

3. Search and select all the tags related to the collection definition, and remove them (on page 2063).

Important:

Do not delete them permanently; just remove them so that the tags and their data will still

be available.

4. Start the collector instance.

a. Access Windows services.

b. Right-click the HAB collector instance that you want to start, and then select Start.

Tags will be created based on the new collection definition details. You can also retrieve data for the older

tags.

Historian | 18 - The HAB Collector | 2248

Can I add an alarm filter in a collection definition after data collection begins?

Yes.

Suppose you have the following collection definition:

<Name>ALARM</Name>

<id>1</id>

<Site>Site1</Site>

<Valid>TRUE</Valid>

<Status>ENABLED</Status>

<Family>EMS</Family>

<Application>ALARM</Application>

<Database>ALARMLST</Database>

<RecordType>CIRCLG</RecordType>

<CollectionType>Unsolicited</CollectionType>

<Key>*</Key>

<TagNameFields>LOC_CIRCLG</TagNameFields>

<TagPrefix>ALARM.</TagPrefix>

<AlarmFilter>

 <Enabled>TRUE</Enabled>

 <Location>*</Location>

 <Area>*</Area>

 <Category>*</Category>

 <Priority>*</Priority>

 <Exception>*</Exception>

</AlarmFilter>

...

Since you have not specified any location, area, etc. in the alarmfilter parameter, tags will be created for all

the locations, areas, etc. (that is, no filter is applied).

Suppose you want to filter out the tags for the location Kirkland.

To do so, include the location as follows:

<Name>ALARM</Name>

<id>1</id>

<Site>Site1</Site>

<Valid>TRUE</Valid>

<Status>ENABLED</Status>

Historian | 18 - The HAB Collector | 2249

<Family>EMS</Family>

<Application>ALARM</Application>

<Database>ALARMLST</Database>

<RecordType>CIRCLG</RecordType>

<CollectionType>Unsolicited</CollectionType>

<Key>*</Key>

<TagNameFields>LOC_CIRCLG</TagNameFields>

<TagPrefix>ALARM.</TagPrefix>

<AlarmFilter>

 <Enabled>TRUE</Enabled>

 <Location>KIRKLAND</Location>

 <Area>*</Area>

 <Category>*</Category>

 <Priority>*</Priority>

 <Exception>*</Exception>

</AlarmFilter>

<TagTemplate>

 <Value>TEXT_CIRCLG,TIME_CIRCLG,PRIOR_CIRCLG,LOC_CIRCLG</Value>

...

After you restart the collector, data collection will occur only for one tag: ALARM.KIRKLAND even though

other tags were created. You can choose to delete these additional tags.

Note that you must also include LOC_CIRCLG in the <Value> parameter as highlighted.

If a tag is renamed and deleted in Habitat, and then if the tag is recreated with the
original name in Habitat, will it be created in Historian?

Yes, but only after you perform a few steps.

Suppose a tag named has been renamed in Habitat as follows:

• Original name: A

• New name: B

If automatic tag sync is enabled, the tag in Historian will be renamed automatically. Otherwise, the tag will

be renamed only after you approve the changes (on page 2243).

Now, suppose tag B is deleted in Habitat. Depending on the value you have set for the TagDeletionType

parameter, tag B will be disabled or deleted in Historian.

Historian | 18 - The HAB Collector | 2250

Now, suppose a new tag named A is created in Habitat. Accordingly, tag A will be created in Historian only

if you perform the following steps:

1. Stop the collector instance:

a. Access Windows services.

b. Right-click the HAB collector instance that you want to stop, and then select Stop.

2. Remove tag B (on page 2063).

Important:

Do not delete the tag permanently; just remove it so that the tag and its data will still be

available.

3. Start the collector instance.

a. Access Windows services.

b. Right-click the HAB collector instance that you want to start, and then select Start.

Chapter 19. iFIX Collector

Overview of the iFIX Data Collectors
The iFIX collectors collect data from iFIX and store it in the Historian server. They include:

• The iFIX collector

• The iFIX Alarms and Events collector

They use the Easy Data Access (EDA) protocol to retrieve data from a running iFIX system.

When you install collectors, if iFIX is installed on the same machine as the collectors, instances of the iFIX

collectors are created automatically. You can begin using these collectors, or create more instances (on

page 357) as needed using Configuration Hub.

Features:

• You can browse the source for tags and their attributes.

• Only the polled data collection is supported; unsolicited collection is not supported. The minimum

poll interval is 100ms.

• The supported timestamp resolution is milliseconds or seconds.

• The collector accepts device timestamps.

• Floating point, integer, string, and binary data are supported.

• You can create Python Expression Tags for those collectors that support them.

Supported tag attributes:

• Tagname

• Source Address

• Engineering Unit Description

• Data Type

• Hi Engineering Units

• Lo Engineering Units

• Is Array Tag

About Adding an iFIX Collector Instance
This topic provides guidelines on how to configure the iFIX collector using Configuration Hub based on

the running mode of iFIX. It also describes the collector behaviour and recommended configuration in

each case.

Historian | 19 - iFIX Collector | 2252

iFIX Running Mode
Recommended Configura

tion for the iFIX Collector

Collector Behaviour After You

Add the Collector Instance

iFIX is running in service mode

and is secured.

The iFIX Alarms and Events and

the OPC Alarms and Events

Servers are running as service.

Configure the iFIX collector ser

vices under a user account un

der which iFIX is running as a ser

vice. While adding an instance

of the iFIX collector or the iFIX

Alarms and Events collector us

ing Configuration Hub, select

Service Under Specific User Ac

count.

• The iFIX collector starts

running as a service. It ap

pears in the collectors list

in Configuration Hub.

• You can run the collector

at a command prompt us

ing the Collector Start ac

tion. A shortcut is creat

ed in the Windows Start

menu so that you can run

the collector in the com

mand-line mode.

• By default, when not start

ed as an SCU task, the iFIX

collector points to the iFIX

nodename. You must con

figure the iFIX node in the

Collector Configuration

section in Historian Ad

ministrator.

iFIX is running as a service and is

not secured.

The iFIX Alarms and Events and

the OPC Alarms and Events

servers are running as service.

You can configure the iFIX col

lector service using a local sys

tem account or a specific user

account.

• The iFIX collector starts

running as a service.

• You can run the collector

at a command prompt us

ing the Collector Start ac

tion. A shortcut is creat

ed in the Windows Start

menu so that you can run

the collector in the com

mand-line mode.

• By default, when not start

ed as an SCU task, the iFIX

collector points to the iFIX

nodename. You must con

Historian | 19 - iFIX Collector | 2253

iFIX Running Mode
Recommended Configura

tion for the iFIX Collector

Collector Behaviour After You

Add the Collector Instance

figure the iFIX node in the

Collector Configuration

section in Historian Ad

ministrator.

iFIX is not running as a service

mode and is secured.

Configure the iFIX collector ser

vices under a user account that

is added in the IFIXUSERS group.

Do not configure as a local sys

tem service. While adding an in

stance of the iFIX collector or the

iFIX Alarms and Events collector

using Configuration Hub, select

Service Under Specific User Ac

count.

• Since Remote Collector

Manager tries to start the

collector as a service, and

iFIX is not running as a

service, an error message

appears while adding a

collector instance. How

ever, the instance is con

figured successfully al

though it does not appear

in the collectors list in

Configuration Hub.

• A shortcut is created in

the Windows Start menu

so that you can run the

collector in the com

mand-line mode, and the

related registry folder is

created.

• You must start the collec

tor manually for the first

time using the shortcut.

It will then connect to the

Historian server, and it will

then appear in the collec

tors list in Configuration

Hub.

• Once connected to server,

you can start/stop it at a

command prompt.

Historian | 19 - iFIX Collector | 2254

iFIX Running Mode
Recommended Configura

tion for the iFIX Collector

Collector Behaviour After You

Add the Collector Instance

iFIX is not running as a service

mode, and is not secured.

You can configure the iFIX col

lector service using a local sys

tem account or a specific user

account.

• Since Remote Collector

Manager tries to start the

collector as a service, and

iFIX is not running as a

service, an error message

appears while adding a

collector instance. Howev

er, the instance is config

ured successfully.

• A shortcut is created in

the Windows Start menu

so that you can run the

collector in the com

mand-line mode, and the

related registry folder is

created.

• You must start the collec

tor manually for the first

time using the shortcut.

It will then connect to the

Historian server.

• Once connected to server,

you can start/stop it at a

command prompt.

iFIX is not running. You can configure the iFIX col

lector service using a local sys

tem account or a specific user

account, as per the security con

figuration of iFIX.

• Since Remote Collector

Manager tries to start the

collector as a service, and

iFIX is not running as a

service, an error message

appears while adding a

collector instance. How

ever, the instance is con

figured successfully al

though it does not appear

Historian | 19 - iFIX Collector | 2255

iFIX Running Mode
Recommended Configura

tion for the iFIX Collector

Collector Behaviour After You

Add the Collector Instance

in the collectors list in

Configuration Hub.

• A shortcut is created in

the Windows Start menu

so that you can run the

collector in the com

mand-line mode, and the

related registry folder is

created.

• After you start iFIX, you

must start the collector

manually for the first time

using the shortcut. It will

then connect to the Histo

rian server.

• Once connected to server,

you can start/stop it at a

command prompt.

Specify the Tags for Data Collection
1. Access Historian Administrator.

2. Select Collectors, and then select the iFIX collector instance to which you want to add tags.

3. Select Configuration.

The Configuration section appears.

Historian | 19 - iFIX Collector | 2256

4. Select Add Tags.

The Add Multiple Tags from Collector window appears.

5. In the Collector field, select the collector to which you want to add tags.

A hierarchical tree of tags appears in the Browse Results section.

6. If you want to view only the tags for which data is not collected, in the Show Only field, select

Source Tags Not Collected. You can search for a tag by entering search criteria in the Source Tag

Name or Description field.

7. Navigate to the node in the tree that you want to browse, and then select Browse.

Tip:

◦ To browse automatically, select the Auto Browse check box. The available tags

appear in the Browse Results window whenever a node is selected in the tree.

◦ To show all child elements within a hierarchy, select the Show All Children check

box. All tags at or below the hierarchical level of the selected node in the tree

appear in the Browse Results window.

The tags within the selected portion of the iFIX server tag hierarchy appear.

8. Select the tags for which you want to collect data, and then select Add Selected Tags.

The tags are added to the collector. They appear in black text in the list of tags.

9.

Historian | 19 - iFIX Collector | 2257

10. Select fields for each of the blocks that you want included in your browse of the node for tags.

a. In the Historian Non-Web Administrator, select the Block type from the Block window.

b. Select the desired check boxes beside the fields.

The Block name changes from black to blue, if any of its fields are selected.

11. Select Update to apply your selection.

12. Select Add Tags at the bottom of the page after you have selected the field.

The Browse Tags window appears.

13. Select Browse in the Browse Tags window to execute the browse operation.

Editing FixTag.dat File
Overview

The most common block and field types are included in the default FixTags.dat file. You can edit this file

to add or remove block and field types. The FixTags.dat file is an XML (eXtensible Markup Language) file.

You can edit it with either a text editor like Notepad or with a third-party XML editing tool.

For Historian Non-Web Administrators, the FixTag.dat file is typically located in the Program Files

\Proficy\Historian\NonWebAdmin directory of each individual Historian Non-Web Administrator client.

Changes you make to the file apply only to that specific client and are not global to all Historian Non-Web

Administrator clients

Because changes made to one FixTag.dat file are not automatically duplicated in other FixTags.dat files,

it is recommended that you set up a standard procedure to ensure that all such files track changes made

in any single file. One suggested method is to keep a master copy. To make a change, edit the master

copy, deploy the changed file, and test it. If the change provides the desired effect, copy the new file to

the non-web Historian Administrator directories, and save the new file as the master backup copy. All

Administrators will then be using the same set of block and field types.

The FixTags.dat file has two main sections. The first section lists the configured FIX database block types

and their descriptions. The second section lists field extensions for each of the block types defined in the

first section. In addition, the second section also has an entry called Selected, which can be either True

or False. This is used by Historian Administrator to indicate whether or not that block and field extension

combination are included in a browse.

Example of First Section

<XML ID="dsoTags"><MYLIST>..<ONEITEM> <VALUE>DI</VALUE> <DATA>DI Digital Input</DATA></ONEITEM>.

.</MYLIST></XML>

Historian | 19 - iFIX Collector | 2258

Example of Second Section

<XML ID="DI"><MYLIST> <ONEITEM> <VALUE>F_CV</VALUE> <DATA>F_CV</DATA> <SELECTED>False</SELECTED> </ONEITEM>

 <ONEITEM> <VALUE>B_CUALM</VALUE> <DATA>B_CUALM</DATA> <SELECTED>False</SELECTED> </ONEITEM></MYLIST></XML>

To Add a Field Extension to an Existing Block Type Using Notepad

• In the FixTag.dat file, locate the entry that starts with <XML ID = "**">, where ** is the block name

(such as AA, AI, DI, etc).

• Copy one of the existing <ONEITEM>...</ONEITEM> blocks of text and edit it for your new field.

Each field extension is contained in a block of text contained within the text: <ONEITEM>...</

ONEITEM>.

There are two entries <VALUE> and <DATA> which comprise the new field extension to be added, and a

<SELECTED> section, which is either True or False, depending on whether or not you want the item to be

included in the browse.

Note:

The True and False states change, depending on your selection in Historian Administrator.

An example for the Digital Input (DI) tag is shown below, where we have added the A_ALMLASTTIME field,

which identifies the last time the block went into alarm.

<XML ID="DI"><MYLIST> <ONEITEM> <VALUE>F_CV</VALUE> <DATA>F_CV</DATA> <SELECTED>False</SELECTED> </ONEITEM>

<ONEITEM> <VALUE>A_ALMLASTTIME </VALUE> <DATA>A_ALMLASTTIME </DATA> <SELECTED>False</SELECTED> </ONEITEM>

<ONEITEM> <VALUE>B_CUALM</VALUE> <DATA>B_CUALM</DATA> <SELECTED>False</SELECTED> </ONEITEM></MYLIST>

Add a New Database Block Using Notepad

Note:

You must add at least one field.

1. Within the <XML ID="dsoTags"> and <MYLIST> sections, add a new <ONEITEM> entry with the tag name

and description. There are two entries, <VALUE> and <DATA>, which will be the new tag name (AA,

AI, DI, etc.) to be added and the tag description (e.g., AA Analog Alarm) that will be displayed in

Historian Administrator.

2. Create the fields that will be available for the tag. This is similar to modifying the field extensions

discussed above, but in this case you must create the <XML ID = "**"> structure (where ** is your

Historian | 19 - iFIX Collector | 2259

tag name.) Again, this is most easily performed by copying and pasting an existing XML ID structure

and modifying it for the new tag.

Note:

The XML ID section MUST be placed before the last three lines of the file:

</MYLIST>

</XML>

</BlockList>

Example: Restarting the iFIX Collector Using a Heartbeat
Many applications commonly use a heartbeat to indicate when a program stops. If you want to use a

heartbeat with the iFIX collector, you need to configure it through Historian Administrator and the iFIX

Database Manager.

In the iFIX Database Manager, configure this address to an Analog Output (AO) block and use a separate

Program (PG) block to check the status of the collector heartbeat output and restart the collector if it

stopped. Then, in Historian Administrator, define a Heartbeat Output Address on the Advanced section of

the Collector Maintenance page for the specified iFIX collector

Once configured and started, the Historian iFIX collector sends a value of 1 to the specified Heartbeat

Output Address every 60 seconds. If that heartbeat value is not sent, then iFIX detects this status and

restarts the iFIX collector.

If your iFIX database PDB is quite large, you may need to increase the Delay Collection at Startup field on

the Advanced section of the Collector Maintenance page in Historian Administrator. Doing so prevents

excessive collector log entries if Historian cannot obtain a value before it initializes the source address.

In this example, an iFIX collector runs on NODE1 and the heartbeat output address is NODE1.HOA_2.F_

CV. We create an Analog Output Block is named HOA_2 and the Program block is named HB_HOA_1

in a new iFIX database. There are two parts to this example: configuration in iFIX and then Historian

Administrator.

Part A: Configuration in iFIX

Follow these steps to configure the heartbeat for an iFIX Data Collector:

1. Start iFIX.

2. From the iFIX WorkSpace, open the Database Manager.

Historian | 19 - iFIX Collector | 2260

3. Select New from the Database menu.

4. Select Add from the Block menu. The Select Block Type window appears.

5. Select AO and select OK. The Analog Output window appears.

6. Enter HOA_2 as the Tag Name and select Save.

7. Select Add from the Block menu. The Select Block Type window appears.

8. Select PG and select OK. The Program window appears.

9. Enter HB_HOA_1 as the Tag Name for the block.

10. (Optional) Enter a description for the tag name.

11. Enter the programming statements shown in the following figure for lines 0 through

8.

12. Enter the programming statements shown in the following figure for lines 0 through 8.

13. Select Save. A message box appears asking you if you want to put the block on scan.

14. Select No.

15. Select Reload from the Database menu in the iFIX Database Manager. The Reload window appears

16. Select the database you currently have loaded and select Reload. A message box appears to

confirm the reload.

17. Select Yes to continue.

Historian | 19 - iFIX Collector | 2261

In about a minute, you should notice the iFIX collector start. The status of the Collector should change on

the Collector Maintenance page of Historian Administrator.

Part B: Configuration in Historian Administrator

Follow these steps to configure the heartbeat in Historian Administrator:

1. From Historian Administrator, select on the Collector Maintenance page.

2. Select the iFIX collector.

3. Select Advanced.

4. Enter NODE1.HOA_2.F_CV in the Heartbeat Output Address field as shown in the following figure.

5. Select Update.

Using an STK with the iFIX collector
To collect or browse tags with the iFIX collector when you use a system toolkit (STK) or Direct Driver

Access (DDA) driver, which is also an STK, you need to edit the Fixtag.dat file to include the block types

and field types for the STK. If you use a STK, there is no way to determine which block types the STK

loads. Contact your STK vendor for more information.

Historian | 19 - iFIX Collector | 2262

Example: Using the BR3 STK

The Bristol Babcock BR3 driver uses the 160, 161, 162, and 163 block types. The following example

shows how to add a TYPE_160 block type with three field types (F_CV, F_160, and F_XMITCNT) for the BR3. For

each new block type that you add, you need to follow the steps outlined in this example. So, if you want to

add new block types for the 161, 162, and 163, you must repeat the steps outlined in this example.

Adding a New Block Type

Within the <XML ID="dsoTags"> and <MYLIST> sections of the Fixtag.dat file, add a new

<ONEITEM> entry for the new block type that you want to display in Historian Administrator.

Enter the item name in the <VALUE> field and a description in the <DATA> field.

The following XML code shows what a TYPE_160 entry for the BR3 might look like in the

first portion of the Fixtag.dat file.

<ONEITEM>

<VALUE>TYPE_160</VALUE>

<DATA>The 160</DATA>

</ONEITEM>

Adding Field Types for a New Block Type

At the end of the Fixtag.dat file, before the </BlockList> tag, add field types for each new

block type that you want to add for the BR3 driver. Each field type is contained in a block

of text that starts and ends with these tags: <ONEITEM> . . . </ONEITEM>. You must enter

three values, <VALUE>, <DATA>, and <SELECTED> for each field type that you want to display in

Historian Administrator for the specified block type.

The <VALUE> and <DATA> tags include the new field type you want to add. The <SELECTED> tag

contains either the word True or False, depending on whether or not you want the item to be

included in the browse. The True and False states will change, however, depending on your

selection in Historian Administrator.

The following XML code shows an example of three field types, F_CV, F_160, and F_XMITCNT,

added for the TYPE_160 block type created for the BR3.

<XML ID="TYPE_160">

<MYLIST>

<ONEITEM>

<VALUE>F_CV</VALUE>

<DATA>F_CV</DATA>

Historian | 19 - iFIX Collector | 2263

<SELECTED>False</SELECTED>

</ONEITEM>

<ONEITEM>

<VALUE>F_160</VALUE>

<DATA>F_160</DATA>

<SELECTED>False</SELECTED>

</ONEITEM>

<ONEITEM>

<VALUE>F_XMITCNT</VALUE>

<DATA></DATA>

<SELECTED>False</SELECTED>

</ONEITEM>

</MYLIST>

</XML>

After you add the block types and item types to the Fixtag.dat file and save the file, you can

view them in Historian Administrator program.

Setting Up

Upgrading the iFIX Collectors

Before you upgrade the iFIX collectors, back up the collector registry folders. This is because the custom,

user-added Registry folders are not retained after you upgrade.

When you upgrade the iFIX collector and the iFIX Alarms and Events collectors, services are created for

instances created by the installer in the previous version.

If an iFIX collector instance created in version 9.0 exists, after you upgrade collectors, another instance of

the iFIX collector is created. Because of this, the Remote Collector Manager (RCM) will not work correctly.

Therefore, if you want to use RCM, you must delete one of the instances. If needed, you can manually

create another instance of the iFIX collector using Configuration Hub or the RemoteCollectorConfigurator

utility. This is applicable to the iFIX Alarms and Events collector as well.

After upgrading an iFIX collector, if you cannot manage iFIX services using Configuration Hub, refer to

Troubleshooting Remote Collector Management Issues (on page 820).

Historian | 19 - iFIX Collector | 2264

The Configuration Section for iFIX collectors

To access the Configuration section for an iFIX collector, select an iFIX collector from the list on the left

and select Configuration. The following page appears. The Collector-Specific Configuration (iFIX) (on

page 2264) topic describes the information that appears in this section.

Collector-Specific Configuration (iFIX)

The Configuration section displays the following information.

Field Description

Node Browse Criteria Displays the mask used to select tags when performing a browse of col

lector node. The default is the iFIX SCADA or Client node name on which

you installed the collector.

If you want to browse for tags on other iFIX nodes via FIX networking, you

can enter the other node name(s) here, separated by commas with no

spaces. You must have the iFIX system configured for networking. For

more information, refer to the iFIX product documentation on iFIX net

working.

Historian | 19 - iFIX Collector | 2265

Field Description

Note:

If you have modified iFIX node name, then you must also update

the Nodes to Browse list before browsing tags from the iFIX col

lector.

When you browse multiple nodes for tags to add to an iFIX collec

tor, do not use space characters between node names or between

the required comma and next node name. All characters after the

space are ignored.

Tag Browse Criteria See Specify the Tags for Data Collection (on page 2255) for more infor

mation.

Note:

If you need to add block or field types to the list, edit the Fix

Tag.dat file for Historian Administrator you are using. See Editing

FixTag.dat File (on page 2257) for more information.

Configuration of iFIX Data Collector-Specific Fields

Adding a Historian tag with the selected database block source address allows you to collect the history

of the collector's events per minute. This is very useful for troubleshooting and optimization analysis. The

following table outlines the iFIX Data Collector-specific fields.

Field Description

Rate Output Address NTF in the iFIX database into which the collector writes the current value

of the events/minute output, letting an operator or the HMI/SCADA appli

cation know the performance of the collector.

Use an iFIX tag for the output address. Enter the address as

NODE.TAG.FIELD (for example, MyNode.MySIM_AO.F_CV).

This value displays the same statistic as the Report Rate field of the iFIX

Data Collector in the System Statistics page of Historian Administrator.

Status Output Address NTF in the iFIX database into which the collector writes the current value

of the collector status (for example, running) output, letting an operator or

Historian | 19 - iFIX Collector | 2266

Field Description

the HMI/SCADA application know the current status of the collector. This

address should be connected to a writable text field of at least 8 charac

ters. This value is only updated upon a change in status of the collector

Use an iFIX tag for the output address. Enter the address as

NODE.TAG.FIELD (for example, MyNode.MyCollector_TX.A_CV).

The text string usually displays either Running or Stopped matching the

Status column value displayed for the iFIX Data Collector in the System

Statistics page of Historian Administrator.

Heartbeat Output Address Address in the source database into which the collector writes the heart

beat signal output. This address should be connected to a writable analog

field.

Use an iFIX tag for the output address. Enter the address as

NODE.TAG.FIELD (for example, MyNode.MyCollector_AO.F_CV)

The iFIX Data Collector writes a value of 1 to this location every 60 sec

onds while it is running.

Many applications use a heartbeat to indicate when something has

stopped. For example, you could program the iFIX database to generate

an alarm if the heartbeat output address is not written to once every 60

seconds notifying you that the iFIX Data Collector has stopped.

Note:

Adding a Historian tag with the selected database block source address allows you to collect

the history of the collector's events per minute. This is very useful for troubleshooting and

optimization analysis.

Starting an iFIX Collector Instance

To start an instance of the iFIX collector, use one of the following options:

Historian | 19 - iFIX Collector | 2267

• Using iFIX SCU: Add the collector to the iFIX System Configuration (SCU) startup list. The collector

then starts automatically whenever you start iFIX. This is the preferred way of starting the collector.

◦ To run the default iFIX collector instances (the ones created during the installation of

collectors), set the task parameters to runasdos as shown in the following image.

◦ To run additional instances of the iFIX collectors, set the task parameters to NOSERVICE

REG=<<CollectorInterfaceName>>, as shown in the following image for a collector with the

interface name win2019dj2_iFix_1.

Historian | 19 - iFIX Collector | 2268

Note:

To find out the collector interface name:

▪ If you have added the iFIX collector using Configuration Hub, the interface

name is displayed in the COLLECTOR NAME column in the Collectors

section.

▪ If you have added the iFIX collector using the RemoteCollectorConfigurator

utility, the interface name is the value that you have provided for the

InterfaceName parameter while adding the collector instance.

If you set the start-up mode to normal, you can manage the instances using Configuration Hub.

• As a console application: From the Windows Start menu, select Historian iFix Collector > Start iFIX

Collector. Similarly, to start an iFIX Alarms and Events collector, select Historian iFix Alarms and

Events Collector > Start iFIX AE Collector.

• Using Configuration Hub: You can start collector instances (on page 637) and manage them (on

page 627) using Configuration Hub. For information on the expected behavior and recommended

configuration of the iFIX collectors based on the running mode of iFIX, refer to About Adding an

iFIX Collector Instance (on page 501).

Troubleshooting Issues with iFIX and Historian
Running iFIX as a Service with iFIX Workspace Listed in the SCU Task List: Prior to iFIX 5.1, if you have

configured iFIX to run as a service, you should not have WORKSPACE.EXE listed as a configured task in

the Task Configuration window of the SCU. If WORKSPACE.EXE is listed as a configured task, it may lead

to unpredictable results. For example, if you are also running Historian, no servers will appear in the Server

Name field of the Configure the Historian Server window and you will not be able to browse Historian tags

in the iFIX Expression Editor.

To rectify this, remove WORKSPACE.EXE from the list of configured tasks in the SCU.

iFIX WorkSpace delay when remote session is lost: If the connection between iFIX and a remote

Historian session is lost, you may experience a 90 second delay in the iFIX Workspace Configuration

environment, chart, or Expression Builder when accessing a pen associated with that Historian session.

In the Run Time Environment, all pens in a chart disappear for 90 seconds when the session to a remote

Historian session is lost, even if they are associated with a local Historian server.

Historian | 19 - iFIX Collector | 2269

Starting iFIX when a remote Historian session is unavailable: If you are using Historian with iFIX, the iFIX

Workspace attempts to connect to the Historian Server when it starts up. If a remote Historian server is

unavailable, it may take one minute or longer for iFIX Workspace to display for each unavailable server.

Accessing Mission Control when a remote Historian session is lost: If a remote Historian session is lost

while you are accessing the HTC section of Mission Control in the iFIX Workspace, the HTC section may

become unresponsive for a minute or longer.

Accessing tags in the iFIX chart after setting OPC "Collector to Made After Restart": If you add tags in

Historian Administrator to a Server from an OPC Collector that has Configuration Changes set to Made

After Collector Restart, you will be able to see those tags in the iFIX Expression Builder. You can add

them to a chart, for example, but they have no collected data until you manually stop and restart the OPC

Collector.

Collecting data in an iFIX chart with Time Assigned By Source: If you are retrieving data in an iFIX Chart

from a Historian Server, have set the Time Assigned by field to Source, and have collectors running behind

the Server time, the chart will display a flatline up to the current time of the local machine.

Note:

You must set Time Assigned by field to Source if you have unsolicited tags getting data from an

OPC Collector.

Synchronizing the time on iFIX SCADA Servers and View Clients: To ensure that acknowledgements are

not lost or attributed to the wrong alarm, synchronize the clocks on SCADA servers and iFIX View Client

machines. If the clocks are not synchronized, alarms generated on the SCADA nodes and acknowledged

on the iFIX View Client nodes could have significantly different timestamps. You can synchronize the

clocks using the NET TIME command. Refer to the Windows Help system for more information.

The Historian REST API Reference manual specifies port 443 in examples and sample code. If you copy

and paste the sample code from this Help manual, you must change this port number to your installed

port.

If you have a previous install of Historian, and you have installed PHA/PKC 6.0/6.1, you will need to

uninstall and then reinstall Historian.

Chapter 20. Migrating iFix Data

Migrating iFix Data to Historian

About Migrating iFix to Historian

The iFIX migration tools are intended for users who are responsible for migrating their Classic or

Advanced Historian systems and iFIX Alarms and Events collector data to Historian. This manual

assumes that you are familiar with the iFIX and the Advanced Historian or Classic Historian environments.

This manual describes the steps for planning your Historian migration and performing the migration of

your data from both the Advanced Historian and Classic Historian environments.

For more information on running iFIX, refer to the iFIX Help. If you are planning to implement Electronic

Signatures and Electronic Records or Historian Security, it is recommended that you perform migration

prior to setting up or initializing these features. If the migration will be a gradual process over time, please

refer to Using Historian in a Regulated Environment, Using Historian and Implementing Security During

Migration (on page 2274).

Before You Begin

Before you start migrating your Classic or Advanced Historian data, be aware of the following:

• Confirm that your Historian environment is set up. For more information, refer to the Getting

Started with Historian (on page 65) manual.

• Confirm that you have ample disk space on the archive machine. Assume that you need to have

at least as much free space as the amount of data that you intend to migrate. For example, if you

have 300MB of Advanced Historian data, you need at least 300MB free disk space on the Historian

Server to accept that data.

• Do not uninstall Advanced Historian until you have migrated all the data to your Historian.

Advanced Historian must be running and must have all its components in place for migration.

The Historian Server that you are migrating to does not need to be on the same computer as the

Advanced Historian or Classic data that you are migrating.

• Migrating a large amount of data from Advanced or Classic Historian into Historian may take a

substantial amount of time, depending on the size of the database and the processing power of

your machines. For more information, refer to Estimating Migration time (on page 2275).

• When migrating Historical data from a SCADA node to an Historian Server, it is recommended

that you have an iFIX database loaded for the corresponding iFIX historical tags (on the source

machine) prior to migration so that descriptions and EGUs can be retrieved.

Historian | 20 - Migrating iFix Data | 2271

• When migrating Historical data to Historian, it is recommended that you migrate the data in

chronological order from the oldest to the newest. This prevents adding data out of order, which

may impact migration performance and disk space usage.

• Migrate collection groups before historical data to maintain collection rates and deadbands.

• For migrating alarms and events data, determine the location and time range of your iFIX alarms

logged via Alarm ODBC.

Historian Migration Utilities

Historian provides three utilities that allow you to migrate your existing Classic and Advanced Historian

configuration and data into the Historian environment and migrate alarms and events data from iFIX. The

Historian migration tools are designed to help you migrate your data quickly and easily. The tools allow

you to:

• Select which Advanced Historian tags or Classic Historian archive files to migrate.

• Set up configuration options.

• Migrate data into your Historian system.

• Migrate alarms and events data logged via iFIX Alarm ODBC into your Historian system.

Plan Your Migration Strategy

In order to successfully migrate your data and alarms from existing iFIX or Advanced Historian

applications into the Historian system, you should first plan out a sound migration strategy. Consider the

following questions when planning your migration:

Questions Refer to section

How should I be adding tags to the archive? Adding Tags to the Archive (on page 2272)

Should I compress my data? Planning Compression (on page 2272)

In what order should I migrate my data? Recommended Migration Order (on page 2272)

Do I need any security rights to migrate my data? Implementing Security During Migration (on page

2274)

What if my data is being migrated into an already

active Historian system?

Planning Migrations with Online Systems (on page

2273)

Should I account for Daylight Savings Time or Time

Zone differences?

Planning Daylight Savings Time (on page 2274)

How long will my migration take? Estimating Migration Time (on page 2275)

Historian | 20 - Migrating iFix Data | 2272

Questions Refer to section

What if my ADH archives have been moved around

or I'm attempting to migrate backups of older ADH

archives?

Registering Advanced Historian Archives (on page

2275)

Is there anything I should do after migrating? After Migrating Your Data (on page 2276)

Adding Tags to the Archive

You must have tags in Historian to hold the migrated data. You can add tags automatically during group

migration, data migration, or manually prior to migration using Historian Administrator. When you add

tags by migration, you can set the maximum number of tag properties when the migration program has

access to the real time database. Having access to the iFIX real time database allows the program to

retrieve the Description, HI and LO Engineering Units, and Engineering Unit descriptions. These are not

stored in the Classic Historian data or group files.

Migrating group files will add tags for immediate collection. Immediate collection occurs as a result of

migrating the collection interval during the process of migrating the group files. Qualifier and phase values

are not preserved, deadband values are preserved.

Planning Compression

Collector compression is automatically configured for collection groups that have a configured deadband

in HTA when those collection groups are migrated to Historian.

By default, tags are migrated with archive compression turned off. Only archive compression has any

effect on migration.

To enable archive compression during migration:

1. Add the tags through Historian Administrator, or, Migrate the historical groups.

2. After the tags are added to Historian, enable archive compression for each tag through Historian

Administrator before migrating the Classic Historian data.

3. Subsequent migrated data can then pass through archive compression during migration.

Recommended Migration Order

When migrating historical data to Historian, it is recommended that you migrate the data in a

chronological order from oldest to newest. This prevents adding data out of order, which may impact

migration performance. It is also recommended that you migrate collection groups before data.

Historian | 20 - Migrating iFix Data | 2273

Planning Migrations with Online Systems

Typically, migration is performed after configuring and running new collection. Depending on the amount

of data migrated, the process may take hours or days.

Alarm and event migration can take a significant amount of time. You can mitigate the risk of data loss

by configuring the alarm collectors before starting the migration. You may also choose to migrate your

alarms and events data in blocks of time ranges.

If you are migrating Classic Historian data and decide to select the Overwrite Existing Tags option in the

Migration Options window, the existing Historian tag properties are replaced by the migrated Classic

Historian tag properties and some configuration properties are overwritten. If you decide to clear the

Overwrite Existing Tags option, tag information will not migrate into the Historian tag database. If you are

migrating your Historian data into an existing Historian tag database, you may discover that tags with the

same name exist in both the Historian database and the iFIX or Advanced Historian database.

Note:

Do not attempt to migrate the currently collecting Classic Historian file. If you do, you may receive

an Error -9.

If you are migrating Advanced Historian data and decide to select the Allow Updates to Existing Data

option in the Advanced Historian to Historian Migration Utility, the existing Historian tag data will be

replaced by migrated Advanced Historian tag data if the data points have the same timestamps. If you

decide to clear the Allow Updates to Existing Data option, the data will not be migrated (replaced) where

there is existing data with duplicate timestamps in Historian.

Limit Processing Load on Server During Migration

Both data migration utilities provide you with the ability to limit the amount of processing load on the

server during migration. This allows your online Historian Server to continue processing data efficiently

while migration occurs. By modifying the Events rate/second field in the Classic Historian Migration

Options window or the Max values/sec field in the Advanced Historian to Historian Migration Utility,

you can specify how much data is sent and therefore how much processing power the Migration Utility

receives on your system. The minimum you can set this rate to is 10,000 (or 0, meaning no throttle); the

maximum you can set this field to is 100,000.

If you are performing a migration on a computer that is also processing other data or applications, you

may want to set the event processing speed lower to allow your other applications to process well. The

Historian Classic Migration and Advanced Historian Migration defaults to 10,000 events per second. The

Historian | 20 - Migrating iFix Data | 2274

default value allows you to throttle back the Migration Utility to allow for other applications processing,

as well as continue running your Migration Utility at a reduced speed. If you are not running other data or

applications on your machine and you want to run the Migration Utility at maximum speed, set the Events

rate/second or Max Values/sec fields to 0.

Tip:

It is recommended that you do not set the events per second past 25,000 or below 10,000 (unless

to 0). The higher the events per second, the faster your Migration Utility processes the migration.

For example, the migration may take twice as long at 10,000 as it will at 20,000 but it will take

less CPU time.

Note:

You cannot change this entry while migrating. It must be set prior to or changed after migration.

Implementing Security During Migration

In order to migrate data and alarms into the Historian System, you must be a member of the appropriate

predefined Historian Security Groups if you have implemented Historian security. Refer to the Historian

Group Rights section for information on the individual groups required for each task.

If any existing Historian Security groups are defined, you must supply a username and password before

migrating your data in either the Migration Options window (for Classic Historian) or the Advanced

Historian to Historian Migration Utility window (for Advanced Historian) or in the Alarm Destination

window (for alarm migration).

Applying Daylight Savings Time

When migrating alarms or Classic Historian data, you can select whether or not you want to apply Daylight

Savings Time (DST) bias to timestamps. The Migration Utility converts the timestamps of migrated

samples to UTC time (universal time format for storing timestamps) before writing the data to Historian.

If you select this option, the Migration Utility will apply the DST offset before converting to UTC time.

The timestamps are converted to UTC time by adjusting the time based on the local computer time zone

offset and DST setting.

If you enabled DST in your operating system during data or alarm logging, you must select the Treat as

DST Timestamp option. With Classic Historian, a switch from Daylight Time to Standard Time results in

a loss of one hour of data between 1:00:00 and 1:59:59 AM. With Historian, no loss of data occurs when

you switch from Daylight Time to Standard Time.

Historian | 20 - Migrating iFix Data | 2275

Note:

The migration utilities assume that the computer you are migrating your data from and the

computer that you are migrating your data to are in the same Time Zone.

Estimating Migration Time

Migrating a large historical database from either Advanced or Classic Historian into Historian may take

hours or days, depending on the size of the database and the processing power of your machines.

To estimate migration time, refer to the total file size of the migration files. For Classic Historian

migration, it takes approximately one minute to migrate 3 to 8.3 MBs of data. For the quickest migration, it

is recommended that you clear the Migrate Current Alarm and the Readback Values option, if they are not

required, in the Classic Historian Migration Options window.

For Advanced Historian data, it takes approximately 30 minutes to migrate 100 MB of data. This

estimation assumes a default throttling of 10,000 events per second. If you have modified your Max

Values/sec field in Advanced Historian, your migration time may vary. For more information, refer to Limit

Processing Load on Server During Migration (on page 2273).

Note:

In addition to migration file size, migration time depends upon the processing power of the

computer running the migration utility. It is highly recommended that you select a computer with

high processing power to run the migration program.

Alarm migration performance is bounded to the CPU power of both the migrating machine and the alarm

archiver machine.

Register Your Advanced Historian Archives

If you have changed the original location of your archives or you have backups of older archives that you

wish to migrate, you must enable those archives by registering them.

Use the following guidelines when registering your archives:

• No other archive can hold data in the same time frame.

• Archives must be registered using PIARTOOL -AR {Full Path of file}.

• PIARTOOL - AL must show that the archive is registered prior to migration.

Note that any unregistered archive will not be migrated.

Historian | 20 - Migrating iFix Data | 2276

For more information on registering your archives, refer to step 2 of Migrating Remote Advanced Historian

Data (on page 2288).

After Migrating Your Data

After migrating your data, ensure that you are no longer running Historical Collect (HTC). If you have HTC

configured to start automatically from the iFIX WorkSpace, remove HTC from the SCU task startup list

and replace it with the iFIX collector.

You may choose to do a Historian backup of your newly created Historian archives containing the

migrated data.

After migrating your alarms, you may choose to change the data source name of the alarms so they

match the data collector and appear as if they were collected along with the real time collector. For more

information, see the Alarms and Events collector (on page 2390).

Adding the Historian Toolbar

To configure the toolbar to appear in the WorkSpace:

1. Start iFIX v4.0 or greater. The iFIX WorkSpace appears, if configured so.

2. Select Toolbars from the WorkSpace menu. The Toolbars window appears.

3. Select the Customize button. The Customize Toolbars window appears.

4. Select the Import button. The Import Toolbars window appears.

5. Select Historian.

6. Select the Import button. The Historian Toolbar appears.

7. Select the Close button to close the Import Toolbars window.

8. Select the Close button to return to the WorkSpace.

Configure Historian Server Buttons

The Configure Historian Server button in the Historian Toolbar specifies the location of historical data

retrieval for the WorkSpace, not the location of the historical data storage. You can view/retrieve data

stored on these listed servers while you select a pen for a chart display. The Configure Historian Servers

window also determines where HDA programs and historical ODBC retrieve data from, which is always the

default server.

Migration Checklist

The following is a list of general tasks for migrating your data to an online or new Historian system.

Historian | 20 - Migrating iFix Data | 2277

1. Verify that you are familiar with the setup recommendations. How (on page 2270)?

2. Estimate the number of archives that Historian will create during migration and verify that you have

enough disk space to accommodate the new archives and backups of those archives. How (on

page 2270)?

3. Migrate all collection groups. How (on page 2287)?

If you are migrating to an online Historian system and tags exist in the iFIX database, the collector

begins collecting on those tags.

4. Export tag configuration information.

5. Migrate Classic Historical data or, How (on page 2278)?

6. Migrate Advanced Historical data or, How (on page 2284)?

7. Backup the newly created archives. How?

8. Start your collectors if they are not already running.

9. Verify migrated data through one of the following options:

◦ iFIX chart

◦ Raw data dump into OLE DB

◦ Classic Historian log file

◦ Data Readback Verification option in the Classic (optional) and Advanced (automatic)

Migration utilities.

Migrating Classic Historical Data

About Migrating Classic Historical Data

Historian supplies a utility that allows you to migrate your existing Classic Historian data (used in iFIX)

into your Historian database. Before migrating your Classic Historian data, plan your migration thoroughly.

Refer to Plan Your Migration (on page 2271) for more information.

Once you have planned your Classic Historian migration, perform the following:

1. Add the Historian Toolbar to the iFIX WorkSpace. How (on page 2276)?

2. Configure Classic Historian Migration Options. How (on page 2280)?

3. Migrate existing groups. How (on page 2278)?

4. Migrate your Classic Historian Data. How (on page 2278)?

Historian | 20 - Migrating iFix Data | 2278

Migrating Classic Historian Data to Your Historian Database

The following procedure describes how to migrate Classic Historian data into your Historian database.

For more information and tips on migrating data into an online system (one that is currently collecting

new data as well), refer to the Plan Migrations with Online Systems (on page 2273).

Note:

When migrating data, Classic Historian nodes must be online with a loaded database so that

descriptions and EGU values are retrieved. If the Classic Historian nodes are not online with a

loaded database, the migration utility will create tags that may have incorrect descriptions and

EGU values.

To migrate Classic Historian data into the Historian:

1. In Classic Historian, select the Historian Migration Button, shown in the following figure, to open

the Historian Migration Utility.

2. Select Configure Options from the Options menu.

3. Enter or modify any specific configuration information. For more information, refer to the

Configuring Classic Migration Options section.

4. Select Migrate Collection Groups from the File menu. The Utility prompts you to specify if you

would like to migrate all groups.

The Historian Classic Migration Utility connects to the specified server and migrates the groups.

Note:

When migrating groups, Qualifier and Phase parameters are not migrated. If a group is not

active, it is still migrated to the Historian. Groups are not preserved in Historian. All tags

are added to Historian with the collection rate for the group.

5. Select Migrate Historical Data from the File menu. The Select Historical Data File(s) window

appears.

6. Select one or more historical files and select Open.

Historian | 20 - Migrating iFix Data | 2279

The Migration Utility attempts to migrate all selected historical data files. The title bar displays the

current file status (1 of 5, for example). Refer to the Migration Utility main page for information on

the progress of the migration and any encountered errors.

Note:

The Migration Utility page only displays the most recent lines of the log file. For the full

set of logged messages, refer to the log file, typically located in C:\Program Files

(x86)\GE\iFIX\Local\iFIX2IhMigration.Log.

Migrating Classic Historian 10 Character L24 Files

Classic Historian supported both 10 character and 30 character lab data files (L24). The Historian

Migration Utility successfully migrates 30 character L24 files, while 10 character L24 files cannot be

successfully migrated.

Attention:

Do not attempt to migrate 10 character L24 files.

Comparing Classic Historian Data Plots and Historian Plots

If you compare plots of average, minimum, and maximum data in Classic Historian with similar plots in

Historian, you may notice the following differences:

• The sample pens match, but the plot of the average value differs. Classic Historian computes the

average during the “next” period and Historian computes the average over the “previous” period.

• Classic Historian also records the minimum/maximum value from raw data values, whereas

Historian uses interpolated values to compute the minimum/maximum value.

• Historian uses interpolated value because Historian works with compressed data. When you work

with compressed data, interpolated values let you project what the likely minimum/maximum

values were during a given time interval that includes few raw data values due to compression.

Historian | 20 - Migrating iFix Data | 2280

Configuring Classic Migration Options

1. Open the Migration Options window, by selecting Configure Options from the Options menu in the

Historian Classic Migration Utility.

Figure 9. Classic Historian Migration Options window

The Classic Historian Migration Tool automatically detects the default server and displays the

default migration options.

2. Some of the options that you can configure include:

◦ Historian Server Options (on page 2280)

◦ THISNODE Options (on page 2281)

◦ Tag Add Options (on page 2281)

◦ Logfile Options (on page 2282)

◦ Readback Options (on page 2283)

Historian Server Options

Allows you to set up your server information, limit or expand the application processing time, and input

any needed security information. The Historian Server Options include:

Historian | 20 - Migrating iFix Data | 2281

Field Description

Historian Server The default server (set during installation). If you do not want to write

data to the default server, enter the desired server in this field.

Historian Username and Pass

word

If you have created and established Security Groups in your Historian

Security Environment, you may need to enter the user name and pass

word here. By default, if you do not supply any information, the current

logged in user will be used in security checking. For more information

about Historian Security, refer to Implementing Historian Security (on

page 251) chapter of the Getting Started manual.

Event rate/sec Allows you to limit the amount of server load caused by the Migration

Utility. By reducing the Events/rate per second field in the Migration

Options window, you can allocate more time to real time collection.

The default rate is 10,000. For more information, refer to Limit Pro

cessing Load on Server During Migration (on page 2273).

THISNODE Option

Specifies the Node name to use if you are migrating data collected using THISNODE. The utility

automatically defaults to the name of the local iFIX node. If you want to change the Node name, enter a

different Node name in this field.

Tag Add Options

Allows you to set the following options:

Field Description

Overwrite Existing Tags Selecting this option allows Historian to replace certain tag properties if the

tags already exist in the Historian tag database.

Migrate Current Alarm Whether or not the Migration Utility creates a tag and migrates the Current

Alarm of each data sample (B_CUALM). Classic Historian paired the B_

CUALM tag inside another tag and counted it as one. If this is enabled, the

Historian Classic Migration Utility will separate these tags and add them

both to the tag database.

Historian | 20 - Migrating iFix Data | 2282

Field Description

Important:

If you wish to migrate alarms and events data from iFIX to Histori

an, use the iFIX Alarms and Events collector Migration Tool.

For example:

The Classic Historian Tag:

FIX.TAG1.F_CV

will convert to the Historian Tags:

FIX.TAG1.F_CV,FIX.TAG1.B_CUALM

Note:

If you clear the Migrate Current Alarm check box, the Current

Alarm tags are not created and the alarm information is not trans

ferred into Historian.

Data Add Options

Overwrite Existing Values

Whether or not the Classic Migration Utility overwrites existing values that

have the same timestamp as the values being migrated in an active Histori

an database during migration.

Time Options

Treat as DST Timestamp

Whether the migration should consider Daylight Savings Time (DST) when

determining a UTC timestamp for migrated data. The timestamps are con

verted to UTC time by adjusting the time based on the local computer time

zone offset and DST setting. For more information, refer to Managing Day

light Savings Time (on page 2274).

Logfile Options

Allows you to configure the following options:

Field Description

Logfile Location Modify the default location of the iFIX2IhMigration.LOG file.

Log Migrated Samples Create a log file of all raw samples migrated. This will cause all the

values, timestamps, and qualities to appear in the log file.

Historian | 20 - Migrating iFix Data | 2283

Field Description

Important:

Selecting this option significantly slows the performance

of historical data migration.

Overwrite Logfile Set whether or not the log file gets overwritten with each migration.

By default, there is one log file (iFIX2IhMigration.LOG) that is

overwritten each time you migrate data. Clearing this option caus

es the Historian Classic Migration Utility to append to the log file

each time you migrate data.

Readback Options

Allows you to set the following options:

Field Description

Readback Values Immediately read back samples after they are written. This verifies

that the migration was successful. All samples that were written, in

cluding bad data quality and shutdown markers, are read back.

Important:

Selecting the Readback Values option puts additional load

on the archiver and can slow the migration process.

If samples are not found during the readback, the Migration Util

ity sends a message to the migration log file (\dynamics\lo

cal\ifix2ihmigration.log). It does not stop the migration.

Write Values to Server The data writes and tag adds are written to the Archiver.

If you want to perform a readback-only migration, clear this option

and select the Readback Values option. This allows you to select

a specific Classic historical file and perform a readback to confirm

that all samples in the Classic file exist in Historian. If samples are

not found during the readback, the Migration Utility sends a mes

sage to the migration log file (\dynamics\local\ifix2ihmi

gration.log). It does not stop the migration.

Historian | 20 - Migrating iFix Data | 2284

Migrating Advanced Historian Data

Migrating Advance Historian Data

The Advanced Historian to Historian Migration Utility allows you to migrate Advanced Historian data into

Historian.

Plan your Advance Historian data migration thoroughly. Refer to Plan Your Migration (on page 2271) for

more information and establish your migration options.

1. Add the Historian Toolbar to the iFIX v2.5 or later WorkSpace. How (on page 2276)?

2. Explore the Advanced Migration Utility Options. How (on page 2284)?

3. Use the Classic Historian Migration Utility to migrate historical tag groups. How (on page 2287)?

Important:

If you plan to run the Advanced Historian to Historian Migration Utility on a non-SCADA

node, migrate the groups after running the utility. If you try to migrate the groups first, you

will not have correct EGU information for the iFIX/Advanced Historian historical tags.

4. Migrate Advanced Historian Local Data. How (on page 2284)?

5. Migrate Advanced Historian Remote Data. How (on page 2288)?

Advanced Historian to Historian Migration Utility

You can open the Advanced Historian to Historian Migration Utility by selecting Migration Tool for

Advanced Historian from the Historian directory in the Start menu. Some of the options you can configure

include:

• Advanced Historian Connection Information (on page 2285) Displays information for the

Advanced Historian machine you are migrating your historical data from.

• Historian Information (on page 2285) Displays the information for the Historian Server that you

want to migrate your historical data to.

• Migration Options (on page 2285) Allows you to select all or specific tag masks and set the time

range for migration.

• Migration Status (on page 2286) Displays the current status of the migration.

• Migration History (on page 2286) Displays the history of all migrations that have occurred on that

machine.

Historian | 20 - Migrating iFix Data | 2285

Advance Historian Connection Information

The Advanced Historian Connection Information section displays information for the Advanced Historian

machine you are migrating your historical files from.

Field Description

Computer Name The name of the machine you want to migrate the Advanced

Historian data from.

Username and Password The username and password, if you had Advanced Historian

security configured for archives.

Historian Information

The Historian Information section displays the information for the Historian Server that you want to

migrate your historical data to.

Field Description

Computer Name The Historian Server to migrate Advanced Historian tags and da

ta to.

Username and Password If you have created and established Security Groups in your His

torian Security Environment, you may need to enter the username

and password here. By default, if you do not supply any informa

tion, the current logged in user will be checked. For more infor

mation on setting up Historian Security, refer to Implementing

Historian Security (on page 251).

Migration Option

The Migration Options section allows you to select all or specific tagmasks and set the time range for

migration

Field Description

Tagname Mask Specify certain tags for migration only (NODE1:* for instance)

or select all tags (*).

Starting Date Select a starting date for migrating data.

Ending Date Set an ending date for migrating data.

Historian | 20 - Migrating iFix Data | 2286

Field Description

Note:

The Migration Utility migrates data up to but not in

cluding the specified Ending Date. Carefully select your

Ending Date to ensure that you include all required data

in the migration.

Configure New Tags As Required Specify whether the Migration Utility automatically creates tags

upon migration, or migrates data only for tags that already exist

in the Historian tag database. This allows you to manually cre

ate the tags you want to migrate in Historian first, then run the

migration only for those tags.

Use Tag Configuration from iFIX Maintains tag specific configuration for iFIX tags. If you do not

select this option, Historian uses its tag configuration default

settings when migrating iFIX tags.

For example, if you have an EGU set to 25-55 in an iFIX tag and

you clear this option, the tag migrates with an EGU of 0-100.

Allow Updates to Existing Data Allows Historian to replace data if data already exists for the

tag at that timestamp.

End of Collection Marker Write a bad data quality data point for each tag when the migra

tion concludes. Select this option if you do not want your trend

applications to display a continuous plot of the last good sam

ple for that Historian tag.

Migration Status

Displays the current status of the migration progress. The Migration Status window provides real time

migration status including the currently migrating tag and the tag range (2 of 1000) status. Migration

Status window also allows you to start the migration process and abort it once it has started.

Migration History

Displays a log of what times and tag masks were migrated and the status (success/failure) of that

migration. The information displayed in the Migration History window is also available in the log file,

typically located in the C:\Historian Data\LogFiles folder.

Historian | 20 - Migrating iFix Data | 2287

Migrating Your Groups

Migrate your groups using the Classic Historian Migration Tool. This allows you to maintain any

configured collection rates and deadbands.

Important:

If you plan to run the Advanced Historian to Historian Migration Utility on a non-SCADA node,

migrate the groups after running the utility. If you try to migrate the groups first, you will not have

correct EGU information for the iFIX/Advanced Historian historical tags.

1. Open the Classic Migration Utility from the Historian Toolbar.

2. Select Configure Options from the Options menu.

3. Select or clear the Overwrite Existing Tags option. This is the only option that applies to group

migration. For more information, refer to the Configuring Classic Migration Options (on page 2280)

section.

4. Select Migrate Collection Groups from the File menu. The Utility prompts you to specify if you

would like to migrate all groups.

The Historian Classic Migration Utility connects to the specified server and migrates the groups.

Note:

When migrating groups, Qualifier and Phase parameters are not migrated. If a group is not

active, it is still migrated to the Historian with a collection rate.

Migrating Existing Advance Historian Data

When migrating Advanced Historian data, you can only run the migration from a node that either has the

Advanced Historian Server or the Advanced Historian client installed. Also, ensure that Automatically

Create Archives is enabled in Historian Administrator.

To migrate Advanced Historian data from an existing Advanced Historian node to your Historian Server:

Note:

Before you begin, ensure the client's time is synchronized with the server's time and that there is

enough free space on the Historian server to store the migrated data.

1. From the Start menu, select the Migration Tool for Advanced Historian from the Historian

directory.

The Advanced Historian to Historian Migration Utility (on page 2284) window appears.

Historian | 20 - Migrating iFix Data | 2288

2. Enter the name of the Computer from which you are migrating the Advanced Historian data.

3. If you configured Advanced Historian security, enter the username and password for security.

4. The Advanced Historian Migration Tool automatically detects and displays the default server in the

Historian Connection Information Computer Name field.

If you want to change the server you migrate data to, enter that server name in the Computer Name

field of the Historian Connection Information section.

5. If necessary, enter a username and password in the Historian Connection Information Username

and Password fields.

If you do not provide a username and password, security defaults to check the currently logged in

user.

Note:

You must have Write, Tag Administrator, and Read privileges in order to run the migration.

It is recommended that Security Administrators run the migration, for best performance.

6. If you do not wish to migrate all tags, enter a tagname mask for selected tags.

7. Select a start and end date from the drop-down calendars.

For more information on estimating migration time, please refer to the Estimate Migration Time (on

page 2275) section of this manual.

8. If you want the Migration Tool to create tags automatically if they do not exist, leave the Configure

New Tags as Required option selected.

For more information on this setting, refer to the Plan Migrations with Online Systems (on page

2273) section.

9. If you do not wish to overwrite existing values with migrated values containing the same

timestamp, clear the Allow Updates to Existing Data option.

10. If you do not want your trend applications to display a continuous plot of the last good sample for

that Historian tag, select the End of Collection marker.

For more information on this setting, refer to Migration Options (on page 2285).

11. Select the Start Migration button.

12. Refer to the Migration History window and the log file for information on the success of the tag

migration and any errors or problems encountered during migration.

You can re-run the migration utility for any time period.

Migrating Remote Advanced Historian Data

This section describes how to migrate your Advanced Historian Data from a remote machine.

Historian | 20 - Migrating iFix Data | 2289

Ensure that you have installed the required software correctly. Refer to the Recommended Software

Installation Order (on page 2290) section for more information.

If this procedure is not run as listed, you may experience problems inserting a chart control into the

iFIX WorkSpace, running any programs using fixtools.dll or fixhdadll.dll, or running certain

Historian features. Several *.dll(s) are replaced by older versions by the Advanced Historian . When

Advanced Historian is removed, it replaces the older versions with the originals and Historian works

correctly.

1. Ensure that PI services are running on the remote machine.

a. Double-click the Services icon in the Control Panel.

The Services window appears.

b. Locate the Services beginning with 'PI'. Start all PI services except the PI Shutdown service.

2. Ensure that all needed archives are listed as registered. a.

a. Open the MSDOS prompt.

b. Navigate to the Dynamics\AdvancedHistorian\adm directory.

c. Enter `piartool al' to list the registered archive files. –

d. Register any unregistered archive files that you need to migrate by typing `piartool ar ` +

{fully qualified archive name.} –

Example - piartool ar C:\Program Files (x86)\GE\iFIX\archives

\DynamicArchive.001–

3. On the local machine (machine with Historian loaded), run the Migration Utility.

a. From the Start menu, select the Migration Tool for Historian in the Historian directory.

The Advanced Historian to Historian Migration Utility (on page 2284) appears.

b. Enter the name of the remote computer you are migrating the Advanced Historian data

from.

c. If you configured Advanced Historian security, enter the username and password for

security.

d. The Advanced Historian Migration Tool automatically detects and displays the default

server in the Historian Connection Information Computer Name field.

If you want to change the server to which you will migrate data, enter that server name in the

Computer Name field of the Historian Connection Information section.

Historian | 20 - Migrating iFix Data | 2290

e. If you have set up security on your Historian Server, enter a username and password in the

Historian Connection Information Username and Password fields. If you do not provide a

username and password, security defaults to check the currently logged in user.

If you are already logged into Windows Server 2003 or Windows Serve 2008 with an

account with rights to the Historian Server, you do not need to supply a new username and

password.

You must have Write, Tag Administrator, and Read privileges in order to run the migration. It

is recommended that Security Administrators run the migration, for best performance.

f. If you do not wish to migrate all tags, enter a tagname mask for selected tags.

g. Select a start and end date from the drop-down calendars.

It is recommended migrating data in two month time blocks, from the oldest data to the

newest. For more information on estimating migration time, please refer to the Estimate

Migration Time (on page 2275) section of this manual.

h. If you want the Migration Tool to create tags automatically when they don't exist, leave the

Con-figure New Tags as Required option selected.

For more information on this setting, refer to the Plan Migrations with Online Systems (on

page 2273) section.

i. If you do not wish to overwrite any information in existing tags, clear the Allow Updates to

Existing Data option.

j. If you do not want your trend applications to display a continuous plot of the last good

sample for that Historian tag, select the End of Collection marker.

For more information on this setting, refer to Migration Options (on page 2285)

k. Select the Start Migration button.

l. Refer to the Migration History window and the log file for information on the success of the

tag migration and any errors or problems encountered during migration.

Recommended Software Installation Order

Before migrating your remote Advanced Historian Data, ensure that you have installed the required

software correctly on your local machine. The following installation order is recommended:

1. Install iFIX 4.5 or higher.

2. Reboot your computer.

Historian | 20 - Migrating iFix Data | 2291

3. Install Advanced Historian

a. Select Custom Installation with ONLY Client install.

b. Reboot your computer.

4. Install Historian completely.

Removing Advanced Historian (From Local Machine)

After you have completely migrated your remote Advanced Historian Data, it is recommended that you

remove Advanced Historian from your local machine.

1. Stop all PI services from the Control Panel Services window.

a. Double-click the Services Icon in the Control Panel.

The Services window appears.

b. Locate the PI Network Manager Service and select the Stop button.

2. Another window appears asking if you would like all the other services stopped.

Select Yes.

3. Locate the bufserv service and stop it.

4. Completely remove Advanced Historian using the uninstall feature in the Add/Remove Programs

window.

5. Reboot your computer.

6. Delete the \AdvancedHistorian directory from the Dynamics base path.

Note:

You may want to stop PI Services again, as detailed in step 1.

7. Use the AHClean utility located on the GE Automation web site in the Developers Corner.

8. Run AHClean.exe and select the Clean Registry button.

9. Reboot your computer.

Migrating iFIX Alarms and Events Collector

Migrating iFIX Alarms and Events collector

The following procedure describes how to migrate iFIX Alarms and Events collector data into your

Historian database.

Historian | 20 - Migrating iFix Data | 2292

1. Locate and double-click the ifixalmmig.exe file in the C:\Program Files (x86)\GE\iFIX

\Local directory.

2. Set up the alarm source (on page 2293) options:

a. From the Options menu, choose Alarm Source. The Alarm Source Options window appears.

b. Configure the ODBC Login (on page 2293) information.

c. Enter the table name for the database, and select on Fetch Columns.

The table's associated columns appear in the SQL Column Name and iFIX Field Name table.

For more information, refer to the Database Configuration (on page 2293) .

d. Configure Severity Mapping (on page 2293).

3. Select OK.

4. Set up the Alarm Destination (on page 2295) options:

a. From the Options menu, choose Alarm Destination. The Alarm Destination Options window

appears.

b. Configure the Historian Server Options (on page 2295).

c. Configure the Logfile (on page 2295).

d. Configure the Time Options (on page 2295).

5. Select OK.

6. From the File menu, choose Migrate Alarms.

7. Select a start and end time for the alarm migration.

Note:

If the ODBC driver does not support the CAST function, It is recommended that you create

the DATETIME data type filed in your Alarm ODBC table and update the field by combining

The ALM_DATELAST and the ALM_TIMELAST using a concatenation and cast or convert

function. If the data source does not include a native time, the start and end times will be

disabled, and the entire table will be queried. This may result in an "out of resources" state.

See your Alarm ODBC backend Data Base documentation for more information.

8. Select OK. The window closes, and migration commences.

Activity is logged to both the page and the log file configured in the Alarm Destination Options

window.

9. Update the datasource name of your migrated alarms to match collected alarms.

Historian | 20 - Migrating iFix Data | 2293

iFIX Alarms and Events collector Migration Options Configuration

Configuration of the iFIX Alarms and Events collector Migration tool is contained in two windows. The

Alarm Source Options window contains configuration for the iFIX system you wish to migrate alarms and

events data from. The Alarm Destination Options window contains configuration for the Historian archive

you wish to migrate alarms and events data to.

In general, configuration of the alarm migration options should match the configuration of your iFIX

Alarms and Events collector server. By doing this, your migrated and collected alarms are stored in the

same format, easing the development of alarm analysis and reporting applications.

Alarm Source Options

The Alarm Source Options window is split into four sections:

• ODBC Login Information

• Attribute Names

• Severity Mapping

• Database Configuration

ODBC Login Information

The following configuration fields are shown in the ODBC Login Information section of the Alarm Source

Options window. In general, the settings in this section should match the settings used in your iFIX Alarm

ODBC Configuration in the iFIX SCU.

Option Description

Database Type The type of database your iFIX alarms are stored

in. The following options are available:

• Access

• Oracle

• SQL Server

• Sybase

Note:

If you are unsure of which database your

iFIX alarms are stored in, contact your sys

tems administrator

Historian | 20 - Migrating iFix Data | 2294

Option Description

User Name The user name required to authenticate with your

database.

Password The password required to authenticate with your

database.

Database Identifier The name of the database your iFIX alarms are

stored in. Select the Browse button to bring up the

Database IDs Available window.

Note:

If you are migrating on a machine other

than the machine running Alarm ODBC,

you may have to configure a DSN in the

control panel before entering it in the Data

base Identifier.

Attribute Names

Use this section only if you have logged alarm user and/or extension fields AND you want to control

the name of the fields created in Historian. If you have changed the default names in the iFIX Real Time

Alarms and Events Server, edit the configuration in this section to match.

Option Description

iFIX Field Name The iFIX Field name of the alarm.

Attribute Name The mapped attribute name of the alarm.

Severity Mapping

If you have changed the default severity settings in the real-time AE Server, edit the configuration in this

section to match.

Option Description

Low The severity to assign to low priority alarms.

Medium The severity to assign to medium priority alarms.

High The severity to assign to high priority alarms.

Historian | 20 - Migrating iFix Data | 2295

Database Configuration

If you have set up custom column names in the iFIX Alarm ODBC configuration, you may need to map the

SQL Column Names to iFIX Field Names. If you have kept the default column names in the iFIX Alarm

ODBC configuration, you should not have to make any changes in this section.

Option Description

Table Name Enter the name of the database table in which iFIX Alarms and

Events collector data is stored.

Fetch Columns Selecting this button will fetch all columns from the table.

SQL Column Name Identifies the name of the column within the database table.

iFIX Field Name Identifies which iFIX Field name the SQL Column name maps to.

Clear Column Settings Select to clear all column settings.

Save Column Settings Select to save all column settings in the window.

SQL columns and their iFIX meanings are automatically matched up when the columns are fetched. You

only need to configure iFIX meanings if you have used a non-default column name. If you want to exclude

columns from migration to save space in Historian, set the iFIX meaning to blank. For example, if you

logged both Native Time Last and Time Last in Alarm ODBC, you only need to migrate the Native Time

Last field. Set the iFIX meaning of Time Last to blank.

If you use the Save Column Settings option, iFIX meanings are saved to C:\Program Files (x86)\GE

\iFIX\local\ifixalmmig.ini. When working with a different database table, you can erase the iFIX

meanings by deleting the ifix-almmig.ini file or selecting the Clear Column Settings button.

Note:

The Alarms and Events database version must match the SQL Server version that it is running on.

Alarm Destination Options

The Alarm Destination Options window has three sections:

• Historian Server Options

• Logfile Options

• Time Options

Historian | 20 - Migrating iFix Data | 2296

Historian Server Options

Option Description

Historian Server The server name of the Historian server you wish

to migrate the iFIX Alarms and Events collector da

ta to.

Historian Username The username required to authenticate with the

Historian server.

Historian Password The password required to authenticate with the

Historian server.

Logfile Options

Option Description

Logfile Location Modify the location of the iFIXAlmMigration.Log

file.

Overwrite Logfile Set whether or not the log file gets overwritten with

each migration. By default, there is one log file (i

FIXAlmMigration.Log) that is appended each

time you migrate alarms. Clearing this option caus

es the iFIX Alarm Migration Utility to overwrite the

log file each time you migrate alarms.

Time Options

Option Description

Treat as DST timestamp If enabled, the migration utility will treat all time

stamps as if they are Daylight Savings Time.

Refer to Manage Daylight Savings Time (on page

2274) for more information.

Historian | 20 - Migrating iFix Data | 2297

Troubleshoot iFIX Alarms and Events collector

Wrong Data Source Name on Migrated alarms

The data source of an alarm starts as the interface name of the alarms and events collector that sent it. If

the alarms and events collector is not associated with a data collector, then the data source is converted

to match the data collector's interface name. When migrating alarms, however, the original data source

name will be retained. This can cause a disconnect between migrated data and newly collected data, and

cause problems when analyzing alarms and events data.

To resolve this issue:

1. Select the File menu, then select Update Alarms.

2. In the Old Datasource field, enter the original data source name.

3. In the New Datasource field, enter the new data source name.

4. Select OK.

Datetime Column Not Found

iFIX prior to v2.6 did not have a datetime column.

No Columns Returned

If no columns are returned after entering a table name and selecting Fetch Columns, you may have

incorrectly entered the Alarm ODBC table name. Re-enter the Alarm ODBC table name and select Fetch

Columns.

Chapter 21. The MQTT Collector

Overview of the MQTT Collector
The MQTT collector collects data published to a topic using an MQTT broker.

Note:

We have tested with the MQTT brokers Mosquitto 2.0.15 and HiveMQ-4.2.1. You can, however,

use other MQTT brokers as well.

Supported MQTT versions:

• MQTT V5

• MQTT V3.1.1

Supported data formats:

• Sparkplug B V1.0

Note:

The MQTT collector supports Sparkplug B payload and processes only NDATA or DDATA

messages, discarding the other messages.

• KairosDB (that is, the Predix Timeseries format)

Topology: The MQTT collector supports a distributed model, that is, the MQTT broker, the collector, and

the Historian server can be installed on the same machine or on different machines.

Features:

• You can subscribe to multiple-level topics using a wildcard.

• Only the unsolicited data collection is supported; polled collection is not supported.

• The timestamp resolution is seconds, milliseconds, and microseconds.

• Array, boolean, floating point, integer, and string data types are supported.

Historian | 21 - The MQTT Collector | 2299

Note:

Although the Recalculate button in Historian Administrator is enabled, the functionality is not

available because the MQTT collector is a non-historic collector (the source broker does not store

the historical data).

How it works:

1. The MQTT collector connects to an MQTT broker and subscribes to a topic. You can use

username/password-based authentication or certificate-based authentication. Transport Layer

Security (TLS) authentication is used for subscribing the data from message broker to avoid

middleware attacks so that the data is securely transferred from message broker to the MQTT

collector.

2. The collector converts the data from the Sparkplug B v1.0 or the KairosDB format to a Historian-

understandable format.

3. It verifies whether the tag is available in Historian; if not, it will add the tag and then add the data

samples, and streams the data to the Historian server or a cloud destination.

KairosDB Message Format:

{

"body":

[

 {

 "attributes":{"machine_type":"<value>"},

 "datapoints":[[<value>,<value>,<value>]],

 "name":"<value>"}],

 "messageId":"<value>"}

The following table describes these parameters.

Historian | 21 - The MQTT Collector | 2300

JSON Parameter Description Required/Optional

machine_type The name of the machine from

which you want to collect data.

Optional

datapoints Time (in epoch format), value,

and quality.

Required

name The tag name Required

messageId The type of the message Optional

Note:

For the parameters marked optional, you need not enter values. However, you must enter the

parameter names. For example:

{"body":[{"attributes":{"machine_type":" "},

"datapoints":[[1558110998983,9547909,3]],"name":"QuadInteger"}],"messageId":" "}

Supported Data Types

Source Data Type Historian Data Type

Array ihArray

DoubleFloat, DoubleInteger, FixedByte, QuadInte

ger, SingleFloat

ihDoubleFloat

ByteString, String ihVariableString

Boolean ihBool

Configuration

Add and Configure an MQTT Collector

1. Ensure that you have an MQTT broker.

Note:

We have tested with the MQTT brokers Mosquitto 2.0.15 and HiveMQ-4.2.1. You can,

however, use other MQTT brokers as well.

Historian | 21 - The MQTT Collector | 2301

2. If you want to use username/password-based authentication or certificate-based authentication to

connect the MQTT broker and the MQTT collector, configure the authentication in the MQTT broker.

3. If you want to use certificate-based authentication, ensure that the following files are available on

your collector machine:

◦ CA server root file

◦ Private key file

◦ Client certificate file

The MQTT collector collects data published to a topic using an MQTT broker. For more information, refer

to Overview of the MQTT Collector (on page 2298).

This topic describes how to add a collector instance using Configuration Hub. You can also add a

collector instance using the RemoteCollectorConfigurator utility (on page 797), which does not require you

to install Web-based Clients.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors in the default system appears.

3. In the upper-right corner of the main section, select .

The Add Collector Instance: <system name> window appears, displaying the Collector Selection

section. The MACHINE NAME field contains a list of machines on which you have installed

collectors.

4. In the MACHINE NAME field, select the machine in which you want to add a collector instance.

5. In the COLLECTOR TYPE field, select MQTT Collector, and then select Get Details.

The INSTALLATION DRIVE and DATA DIRECTORY fields are disabled and populated.

Historian | 21 - The MQTT Collector | 2302

6. Select Next.

The Source Configuration section appears.

7. Enter values as described in the following table.

Field Description

MQTT BROKER ADDRESS Enter the host name of the MQTT broker using which you want

to collect data. A value is required.

MQTT BROKER PORT Enter the port number of the MQTT broker. A value is required.

TOPIC Enter the MQTT topic from which you want to collect data. A val

ue is required. You can enter multiple topics separated by com

mas.

If you want to use the Sparkplug B format, enter a value in the

following format: namespace/group_id/message_type/edge_n

ode_id/device_id

where:

◦ namespace is the Sparkplug version. Enter spBv1.0.

◦ group_id is the ID of the group of nodes from which you

want to collect data.

◦ message_type is the message type from which you want

to collect data. The collector processes data only from

NDATA and DDATA message types.

◦ edge_node_id is used to identify the MQTT EoN node with

in the infrastructure.

◦ device_id a device attached to the MQTT EoN node ei

ther physically or logically.

You can use the wildcard character # for any of these parame

ters (except for namespace).

USERNAME Enter the username to connect to the MQTT broker. A value is

required if you have configured username/password-based au

thentication in the MQTT broker.

PASSWORD Enter the password to connect to the MQTT broker. A value is

required if you have configured username/password-based au

thentication in the MQTT broker.

Historian | 21 - The MQTT Collector | 2303

Field Description

CA SERVER ROOT FILE Enter the path to the CA server root file to connect to the

MQTT broker. A value is required if you have configured certifi

cate-based authentication in the MQTT broker.

PRIVATE KEY FILE Enter the path to the private key file to connect to the MQTT bro

ker. A value is required if you have configured certificate-based

authentication in the MQTT broker.

CLIENT CERTIFICATE FILE Enter the path to the client certificate file to connect to the

MQTT broker. A value is required if you have configured certifi

cate-based authentication in the MQTT broker.

REQUESTED QUALITY OF

SERVICE (QOS) LEVEL

Select the quality of service that you want to use while collect

ing data from an MQTT broker.

◦ QoS 0: Indicates that the message is delivered at most

once or it is not delivered at all.

◦ QoS 1: Indicates that the message is always delivered at

least once.

◦ QoS 2: Indicates that the message is delivered once.

For more information, refer to https://www.hivemq.com/blog/

mqtt-essentials-part-6-mqtt-quality-of-service-levels/.

MQTT VERSION Select the version of the MQTT that you want to use.

CLEAN SESSION Select one of the following options:

◦ True: Select this option if you do not want to create a

new session when the MQTT broker and the collector are

disconnected from each other.

◦ False: Select this option if you want to retain the session

when the MQTT broker and the collector are disconnect

ed from each other. This ensures that there is no loss of

data. If you want to choose this option, ensure that you

have selected QoS 1 or QoS 2 in the REQUESTED QUALI

TY OF SERVICE (QOS) LEVEL field.

SESSION EXPIRY INTERVAL Enter the duration, in seconds, after which the data will be dis

carded when connection between the MQTT broker and collec

tor is re-established.

https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels/
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels/

Historian | 21 - The MQTT Collector | 2304

Field Description

For example, if you enter 100 in this field, and if the MQTT bro

ker and collector are disconnected for 90 seconds, the data is

collected. If, however, the MQTT broker and the collector are

disconnected for more than 100 seconds, the data will be dis

carded.

This field is applicable only for MQTT V5 and only if you set the

CLEAN SESSION field to False.

CONTENT TYPE Select the format that you want to use for the payload:

◦ JSON: Select this option if you want to use the KairosDB

format.

◦ SparkPlug B v1.0: Select this option if you want to use

the Sparkplug format.

8. Select Next.

The Destination Configuration section appears. The collector machine name provided by you is

selected as the Source Configuration by default.

Under CHOOSE DESTINATION, the Historian Server option is selected by default. In addition, the

DESTINATION HISTORIAN SERVER field is disabled and populated with the collector machine

name.

9. Select the destination to which you want to send data, and then enter the values in the

corresponding fields. You can send data to an on-premises Historian server or to a cloud

destination.

a. If you need to send data to a cloud destination, select the cloud destinations as needed.

▪ Predix Timeseries- Select this if you need to send data to Predix cloud. For more

information, refer to Predix Cloud (on page 621).

▪ Azure IoT Hub- Select this if you need to send data to Azure Cloud in KairosDB

format. For more information, refer to Azure IoT Hub (KairosDB format) (on page

608).

▪ MQTT- Select this if you need to send data to any of the following cloud destination.

▪ Alibaba cloud. For more information, refer to Alibaba Cloud (on page 587).

▪ AWS cloud. For more information, refer to AWS Cloud (on page 594).

▪ Google cloud. For more information, refer to Google Cloud (on page 614).

b. If you need to send data to an on-premises Historian server, select Historian Server.

Historian | 21 - The MQTT Collector | 2305

If you created security groups or enabled a strict client/collector authentication, enter the

USERNAME and PASSWORD of the on-premises Historian server that you created during the

installation of the collector.

If you entered the USERNAMEand PASSWORD, select Test Connection. This will help you to

test if the Historian server that you are trying to connect is valid or if the credentials that you

entered are valid.

If the entered credentials are valid, a successful connection message appears.

10. Select Next.

The Collector Initiation section appears.

11. If needed, modify the value in the COLLECTOR NAME field. The value must be unique, must contain

the string MQTT, and must not contain a space.

The value that you enter:

◦ Must be unique.

◦ Must contain the string MQTT.

◦ Must not exceed 15 characters.

◦ Must not contain a space.

◦ Must not contain special characters except a hyphen, period, and an underscore.

12. In the RUNNING MODE field, select one of the following options.

◦ Service - Local System Account: Select this option if you want to run the collector as a

Windows service using the credentials of the local user (that is, the currently logged-in user).

If you select this option, the USERNAME and PASSWORD fields are disabled.

◦ Service Under Specific User Account: Select this option if you want to run the collector as

a Windows service using a specific user account. If you select this option, you must enter

values in the USERNAME and PASSWORD fields.

If you have enabled the Enforce Strict Collector Authentication option in Historian

Administrator, you must provide the credentials of a user who is added to at least one of the

following security groups:

▪ iH Security Admins

▪ iH Collector Admins

▪ iH Tag Admins

You can also configure the collector to start automatically when you start the computer.

13. Select Add.

The collector instance is added. The fields specific to the collector section appear in the DETAILS

section.

Historian | 21 - The MQTT Collector | 2306

14. In the COLLECTOR SPECIFIC CONFIGURATION and INSTANCE CONFIGURATION sections,

configure the values as described in the following table.

COLLECTOR SPECIFIC CONFIGURATION

Field Description

MTLS Security Indicates whether you want to use Mutual TLS

(MTLS) protocol to enforce a secure and strong

authentication mechanism.

MTLS Data Encryption Indicates whether you want to encrypt the da

ta that the collector shares to the data archiver

(DA).

For more information on how to enable MTLS Security, refer to Enable MTLS Security (on page

632).

INSTANCE CONFIGURATION

Field Description

MQTT Broker Address Enter the host name of the MQTT broker using which you want

to collect data. A value is required.

MQTT Broker Topic Enter the MQTT topic from which you want to collect data. A val

ue is required. You can enter multiple topics separated by com

mas.

If you want to use the Sparkplug B format, enter a value in the

following format: namespace/group_id/message_type/edge_n

ode_id/device_id

where:

◦ namespace is the Sparkplug version. Enter spBv1.0.

◦ group_id is the ID of the group of nodes from which you

want to collect data.

◦ message_type is the message type from which you want

to collect data. The collector processes data only from

NDATA and DDATA message types.

Historian | 21 - The MQTT Collector | 2307

Field Description

◦ edge_node_id is used to identify the MQTT EoN node with

in the infrastructure.

◦ device_id a device attached to the MQTT EoN node ei

ther physically or logically.

You can use the wildcard character # for any of these parame

ters (except for namespace).

MQTT Brker Port Enter the port number of the MQTT broker. A value is required.

Username Enter the username to connect to the MQTT broker. A value is

required if you have configured username/password-based au

thentication in the MQTT broker.

Password Enter the password to connect to the MQTT broker. A value is

required if you have configured username/password-based au

thentication in the MQTT broker.

CA Server Root File Enter the path to the CA server root file to connect to the

MQTT broker. A value is required if you have configured certifi

cate-based authentication in the MQTT broker.

Private Key File Enter the path to the private key file to connect to the MQTT bro

ker. A value is required if you have configured certificate-based

authentication in the MQTT broker.

CLIENT Certificate File Enter the path to the client certificate file to connect to the

MQTT broker. A value is required if you have configured certifi

cate-based authentication in the MQTT broker.

Requested Quality Of Service

(QoS) Level

Select the quality of service that you want to use while collect

ing data from an MQTT broker.

◦ QoS 0: Indicates that the message is delivered at most

once or it is not delivered at all.

◦ QoS 1: Indicates that the message is always delivered at

least once.

◦ QoS 2: Indicates that the message is delivered once.

For more information, refer to https://www.hivemq.com/blog/

mqtt-essentials-part-6-mqtt-quality-of-service-levels/.

MQTT Version Select the version of the MQTT that you want to use.

https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels/
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels/

Historian | 21 - The MQTT Collector | 2308

Field Description

CLEAN Session Select one of the following options:

◦ True: Select this option if you do not want to create a

new session when the MQTT broker and the collector are

disconnected from each other.

◦ False: Select this option if you want to retain the session

when the MQTT broker and the collector are disconnect

ed from each other. This ensures that there is no loss of

data. If you want to choose this option, ensure that you

have selected QoS 1 or QoS 2 in the REQUESTED QUALI

TY OF SERVICE (QOS) LEVEL field.

SESSION Expiry Interval Enter the duration, in seconds, after which the data will be dis

carded when connection between the MQTT broker and collec

tor is re-established.

For example, if you enter 100 in this field, and if the MQTT bro

ker and collector are disconnected for 90 seconds, the data is

collected. If, however, the MQTT broker and the collector are

disconnected for more than 100 seconds, the data will be dis

carded.

This field is applicable only for MQTT V5 and only if you set the

CLEAN SESSION field to False.

Content Type Select the format that you want to use for the payload:

◦ JSON: Select this option if you want to use the KairosDB

format.

◦ SparkPlug B v1.0: Select this option if you want to use

the Sparkplug format.

15. As needed, enter values in the other sections common to all collectors (on page 579).

16. In the upper-left corner of the page, select Save.

Historian | 21 - The MQTT Collector | 2309

The changes to the collector instance are saved.

17. If needed, restart the collector.

Specify the tags whose data you want to collect using the collector. In the CHOOSE CONFIGURATION

field,

• If you have selected Historian Configuration, specify the tags using Configuration Hub (on page

357).

• If you have selected Offline Configuration, modify the offline configuration file of the collector.

By default, the file is available in the following location: <installation folder of

Historian>\GE Digital\<collector name>. For information, refer to Offline Configuration

for Collectors (on page 2039). This option is applicable only if you have selected a cloud

destination.

Configure the MQTT Collector Using Historian Administrator

If you want to connect the MQTT collector with an MQTT broker using a username/password-based or a

certificate-based authentication, configure the same in the MQTT broker.

1. Access Historian Administrator.

2. Select Collectors, and then select the MQTT collector instance that you want to configure.

3. Select Configuration.

The Configuration section appears.

Historian | 21 - The MQTT Collector | 2310

4. Enter values as specified in the following table.

Field Description

Source

Host

Name

The hostname or IP address of the machine on which the MQTT message broker is

running.

Source

Topic

The topic for which you want to get the data from the message broker.

Source

Port

The port number of the machine on which the MQTT message broker is running.

Authenti

cation

The authentication details to connect to the MQTT broker.

If you want to use MQTT V3.1.1, enter a value in the following format: username=<val

ue>|password=<value>|cafile=<path to the CA server root file|certfile=<path

Historian | 21 - The MQTT Collector | 2311

Field Description

to the client certificate file>|privatekeyfile=<path to the private key file>|

qos=<quality of service value>|version=MQTT_V311

If you want to use MQTT V5, enter a value in the following format: username=<val

ue>|password=<value>|cafile=<path to the CA server root file|certfile=<path

to the client certificate file>|privatekeyfile=<path to the private key file>|

qos=<quality of service value>|version=MQTT_V5|clean-session=<true or false>|

session-expiry-interval=<interval in seconds>|content-type=<json or SparkPlug B

v1.0>

Note:

For information on setting the quality of service value, refer to https://

www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels/.

5. Select Update.

6. Restart the collector.

The collector is configured.

https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels/
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels/

Chapter 22. The MQTT Sparkplug B Collector

Overview of the MQTT Sparkplug B Collector

The MQTT Sparkplug B collector enables you to connect as a Primary Host application and collect data

based on the MQTT Sparkplug B specification (Sparkplug 3.0.0). Specifically, you can subscribe to a

topic that was published using the Sparkplug B payload and collect time-series data in a structured and

understandable format.

In general, a topic will be published in the following format:

Namespace/Groupname/<Message Type>/NodeID/<DeviceID>

For example,

spBv1.0/MyAdminGroup/NBIRTH/AdminNode1/ABC-12345

The table below lists the message types that are sent as a topic:

Message type Description

NBIRTH Message to notify the client (MQTT Sparkplug B

Collector) that data is sent from a node. This mes

sage includes information such as tag information,

data types, names, and alias if any.

NDEATH Message to notify the client (MQTT Sparkplug B

Collector) that there is no data to be sent from the

node.

DBIRTH Message to notify the client (MQTT Sparkplug B

Collector) that data is sent from a device. This

message includes information such as tag infor

mation, data types, names, and alias if any.

DDEATH Message to notify the client (MQTT Sparkplug B

Collector) that there are no data to be sent from

the device.

NDATA Message to notify the client (MQTT Sparkplug B

Collector) that the actual data (metric) from the

node is available to be collected.

Historian | 22 - The MQTT Sparkplug B Collector | 2313

Message type Description

DDATA Message to notify the client (MQTT Sparkplug B

Collector) that the actual data (metric) from the de

vice is available to be collected.

NCMD Message to notify the Publisher that the client

(MQTT Sparkplug B Collector) is receiving NDATA

without receiving the NBIRTH payload.

DCMD Message to notify the Publisher that the client

(MQTT Sparkplug B Collector) is receiving DDATA

without receiving the DBIRTH payload.

STATE The collector's state message. This message is

sent by the client (MQTT Sparkplug B Collector) to

the Publisher through a Broker stating the status

of the Collector. If the cient is active, the Publisher

will send the needed data through the MQTT Bro

ker.

Example message format:

Topic- spBv1.0/STATE/<hostname>

Payload-

{ online : true,

 timestamp : 1702879923}

#The payload is in JSON format.

Supported MQTT Versions:

• MQTT V5

• MQTT V3.1.1

Supported data format:

• Sparkplug B V1.0

Topology: The MQTT Sparkplug B collector supports a distributed model, that is, the MQTT broker, the

collector, and the Historian server can be installed on the same machine or on different machines.

Historian | 22 - The MQTT Sparkplug B Collector | 2314

Features:

• You can subscribe to multiple-level topics based on Sparkplug B paylod using a wildcard.

• You can collect time-series data.

• You can specify a device or node from which you need to collect data from.

• You can collect the data more specifically by providing device ID, node ID, and group ID.

• You can configure tag mask as needed by selecting the interfacename, groupid, edge nodeid,

deviceid along with delimiter.

• You can select what tags you want to be added in Historian by using Tags to Add mask.

• You can select what tags you do not want to be added in Historian by using Tags to Exclude mask.

• Only the unsolicited data collection is supported; polled collection is not supported.

• The timestamp resolution is seconds, milliseconds, and microseconds.

• Boolean, floating point, integer, and string data types are supported.

Note:

Although the Recalculate button in Historian Administrator is enabled, the functionality

is not available because the MQTT collector is a non-historic collector (the source broker

does not store the historical data).

How it works:

1. The Publisher connects to the MQTT Broker and subscribes to topics. The topics include STATE,

NCMD, and DCMD.

2. The MQTT Sparkplug B collector connects to the MQTT broker and subscribes to a topic based on

the Device ID and Node Id that you provide while creating an instance. The topics include STATE,

NBIRTH, DBIRTH, NDATA, DDATA, NDEATH, and DDEATH.

You can use username/password-based authentication or certificate-based authentication.

Transport Layer Security (TLS) authentication is used for subscribing the data from message

broker to avoid middleware attacks so that the data is securely transferred from message broker to

the MQTT Sparkplug B collector.

Note:

It is recommended to use a certificate based authentication for a secured data transfer.

3. The MQTT Sparkplug B collector publishes the STATE message topic to the MQTT Broker.

4. The MQTT Broker then publishes this topic to the Publisher.

Historian | 22 - The MQTT Sparkplug B Collector | 2315

5. When there is data in the Device or Node, the publisher publishes a DBIRTH or NBIRTH message

topic to the MQTT Broker.

6. The MQTT Broker then publishes this topic to the MQTT Sparkplug B collector.

7. The Publisher then publishes the DDATA or NDATA to the MQTT Broker.

8. The MQTT Broker publishes the data (metrics) to the MQTT Sparkplug B collector.

9. The collector converts the data from the Sparkplug B v1.0 format to a Historian-understandable

format. It verifies tag availability in the Historian and, if not present, adds the tag, then adds the

data samples, streaming the data to the Historian server or a cloud destination.

The process explains how the topics and data are published among the Publisher, MQTT Sparkplug

B collector, and MQTT Broker. Similarly, when there is no data or a Device or Node is inactive,

the Publisher publishes DDEATH or NDEATH message topics to the MQTT Spakplug B collector

through the MQTT Broker.

Note:

Sometimes, the publisher might send DDATA or NDATA without sending the corresponding

BIRTH message, in such cases, the MQTT Sparkplug B collect sends the DCMD or NCMD

message to the MQTT Broker. The the Broker sends the message to the publisher.

Historian | 22 - The MQTT Sparkplug B Collector | 2316

Sparkplug B Message format:

{

 "timestamp": <timestamp>,

 "metrics": [{

 "name": "<metric>",

 "alias": <alias>,

 "timestamp": <timestamp>,

 "dataType": "<data Type>",

 "value": "<value>"

 }],

 "seq": <sequence_number>

}

JSON Parameter Description

timestamp The time at which the message was published. For

example, 1642496400000 (time in milliseconds).

Generally, the timestamp format is a 64-bit inte

ger in milliseconds or microseconds since the Unix

epoch.

metrics The metrics or the data that was published. For ex

ample,

• name: BoilerTag1

• alias: BT1Temp

• timestamp: 1642496400000

• dataType: Float

• value: 80.5

Historian | 22 - The MQTT Sparkplug B Collector | 2317

JSON Parameter Description

seq The unique sequence number of the message. The

first message will have the seq as 0. This will incre

ment by one for every other messages.

Supported Data Types:

Source Data Type Historian Data Type

DoubleFloat, DoubleInteger, FixedByte, QuadInte

ger, SingleFloat

ihDoubleFloat

ByteString, String ihVariableString

Boolean ihBool

Adding an MQTT Sparkplug B Collector Instance

Add an MQTT Sparkplug B Collector Instance using Configuration Hub

1. Install the Historian server (on page 104) and collectors (on page 142).

2. Ensure that you have an MQTT broker.

3. If you want to use username/password-based authentication or certificate-based authentication to

connect the MQTT broker and the MQTT Sparkplug B collector, configure the authentication in the

MQTT broker.

4. If you want to use certificate-based authentication, ensure that the following files are available on

your collector machine:

◦ CA server root file

◦ Private key file

◦ Client certificate file

This topic describes how to add and configure an MQTT Sparkplug B collector instance using

Configuration hub. You can also add and configure an MQTT Sparkplug B collector instance using

RemoteCollectorConfigurator.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors in the default system appears.

3. In the upper-right corner of the main section, select .

Historian | 22 - The MQTT Sparkplug B Collector | 2318

The Add Collector Instance: <system name> window appears, displaying the Collector Selection

section. The MACHINE NAME field contains a list of machines on which you have installed

collectors.

4. In the MACHINE NAME field, select the machine in which you want to add a collector instance.

5. In the COLLECTOR TYPE field, select MQTT Sparkplug B Collector, and then select Get Details.

Note:

The INSTALLATION DRIVE and BASE DATA DIRECTORY fields cannot be changed. This

is the drive location and the data directory folder that you provided during Collectors

installation.

The INSTALLATION DRIVE and DATA DIRECTORY fields are populated with the drive location and

the data directory folder.

6. Select Next.

The Source Configuration section appears.

7. Enter the values as described in the following table:

Field Description

BROKER CONFIGURATION

BROKER ADDRESS Enter the host name of the MQTT broker using

which you want to collect data. A value is re

quired.

BROKER PORT Enter the port number of the MQTT broker. A

value is required.

CLIENT ID Enter the client ID of the MQTT Sparkplug B col

lector is running. This is required if you want to

send the data to a cloud destination. If you do

not have a client ID set up, by default, the inter

face name is taken.

Historian | 22 - The MQTT Sparkplug B Collector | 2319

Field Description

PRIMARY HOST ID Enter the unique host ID of the Collector. The

Collector will publish the STATE message top

ic using this host ID and then the Publisher will

subscribe and start publishing the topics to this

host ID.

REORDER TIMEOUT Enter the duration for waiting before sending

a CMD message if a sequence is skipped. You

can enter the duration in milliseconds.

MQTT VERSION Select the version of the MQTT that you want to

use. The following versions are supported:

◦ MQTT_V311

◦ MQTT_V5

TOPIC: The parameters that need to be included in the topic:

Namespace/Groupname/<Message Type>/NodeID/<DeviceID>

You can also use wildcards in the GROUP ID, EDGE NODE ID, and DEVICE ID fields. The following

wildcards are supported:

◦ + (single-level wildcard): Supported for all the three fields.

◦ # (Multi-level wildcard): Supported for the EDGE NODE ID and DEVICE ID

+ (Single-level wildcard): Can be used to subscribe to only one topic level. For example, if you

subscribe to a topic <Admin>/+/<ABC-123>, you will receive messages from all the nodes corre

sponding to the group and device. That is,

<Admin>/Node1/<ABC-123>

<Admin>/Node2/<ABC-123>

<Admin>/Node3/<ABC-123>

...

<Admin>/Noden/<ABC-123>

(Multi-level wildcard): Can be used to subscribe to any number of levels within a topic. For ex

ample, if you subscribe to a topic <Admin>/#, you will receive messages from all the nodes and de

vices corresponding to the group,

Historian | 22 - The MQTT Sparkplug B Collector | 2320

Field Description

<Admin>/Node1/<ABC-123>

<Admin>/Node2/<ABC-123>

<Admin>/Node3/<ABC-123>

<Admin>/Node1/<ABC-124

<Admin>/Node2/<ABC-124>

...

<Admin>/Noden/<Devicen>

GROUP ID Enter the Sparkplug B group name to which

you want your collector to subscribe. If this is

empty along with the other fields below TOPIC,

the collector will subscribe to all the available

groups, nodes, and devices.

EDGE NODE ID Enter the Sparkplug B edge node ID to which

you want your collector to subscribe. If this is

empty, then the Collector will subscribe to all

the edge nodes corresponding to the entered

GROUP ID. If the GROUP ID and DEVICE ID are

also empty, then the collector will subscribe to

all the available groups, nodes and devices.

DEVICE ID Enter the Sparkplug B device name. If this is

empty, the collector subscribes to node mes

sages if a NODE ID is entered, otherwise, if a

DEVICE ID is entered, it subscribes to device

messages.

TAG CONFIGURATION

TAG NAME PREFIX FORMAT

ELEMENT Enter a prefix to be included in the tag. By us

ing this field, you can clearly identify a tag. For

example, you can clearly differentiate the tags

that are collected.

The following options are available:

Historian | 22 - The MQTT Sparkplug B Collector | 2321

Field Description

◦ <interfacename>

◦ <groupid>

◦ <edgenodeid>

◦ <deviceid>

For example, if all four fields are provided and

the interface/collector name is "sparkplug1"

and the Topic contains group id = g1 edge

node id = n1, device id = d1 then device tags

will be created in Historian as “sparkplug1.g1.

n1.d1.tag1”.

DELIMITER Enter a delimiter you need to be included in the

tag. You can use any special characters as de

limiter. However, it is recommended that you

use a delimiter that is ideal and clear to be iden

tified. For example, "/", ".", "_".

Note:

"?" and "*" are not allowed.

PREVIEW The preview of how the tags will be created

and stored based on the TAG PREFIX and the

DELIMTER that you selected.

TAG MASK

TAGS TO ADD Provide a mask along with wildcard to collect

those tags that include the mask you provid

ed and store in Historian. For example, *Pres

sure*. This will collect all the tags that begin

with "Pressure". If you enter Pressure*, all the

tags that end with "Pressure" will be collected.

Similarly, if you enter *Pres?, all the tags that

contain "pres" at the beginning will be collected.

It can be "Pressure", "Press", or "Pres1".

Historian | 22 - The MQTT Sparkplug B Collector | 2322

Field Description

Note:

Whenever a new tag is collected, the

collector verifies the tag availability in

the Historian and, if not present, adds

the tag, then adds the data samples,

streaming the data to the Historian

server or a cloud destination.

TAGS TO EXCLUDE Provide a mask along with wildcard to exclude

those tags that include the mask you provided.

For example, *Pressure*. This will exclude all

the tags that begin with "Pressure". If you enter

Pressure*, all the tags that end with "Pressure"

will be excluded. Similarly, if you enter *Pres?,

all the tags that contain "pres" at the beginning

will be excluded. It can be "Pressure", "Press", or

"Pres1".

AUTHENTICATION

USER CREDENTIALS

USERNAME Enter the username to connect to the MQTT

broker. A value is required if you have config

ured username/password-based authentication

in the MQTT broker.

PASSWORD Enter the password to connect to the MQTT

broker. A value is required if you have config

ured username/password-based authentication

in the MQTT broker.

SSL/TLS

CA SERVER ROOT FILE Enter the path to the CA server root file to con

nect to the MQTT broker. A value is required if

you have configured certificate-based authenti

cation in the MQTT broker.

Historian | 22 - The MQTT Sparkplug B Collector | 2323

Field Description

PRIVATE KEY FILE Enter the path to the private key file to connect

to the MQTT broker. A value is required if you

have configured certificate-based authentica

tion in the MQTT broker.

CLIENT CERTIFICATE FILE Enter the path to the client certificate file to

connect to the MQTT broker. A value is required

if you have configured certificate-based authen

tication in the MQTT broker.

8. Select Next.

The Destination Configuration section appears.

Under CHOOSE DESTINATION, the Historian Server option is selected by default. In addition, the

DESTINATION HISTORIAN SERVER field is disabled and populated with the collector machine

name.

9. Select the destination to which you want to send data, and then enter the values in the

corresponding fields. You can send data to an on-premises Historian server or to a cloud

destination.

a. If you need to send data to a cloud destination, select the cloud destinations as needed.

▪ Predix Timeseries- Select this if you need to send data to Predix cloud. For more

information, refer to Predix Cloud (on page 621).

▪ Azure IoT Hub- Select this if you need to send data to Azure Cloud in KairosDB

format. For more information, refer to Azure IoT Hub (KairosDB format) (on page

608).

▪ MQTT- Select this if you need to send data to any of the following cloud destination.

▪ Alibaba cloud. For more information, refer to Alibaba Cloud (on page 587).

▪ AWS cloud. For more information, refer to AWS Cloud (on page 594).

▪ Google cloud. For more information, refer to Google Cloud (on page 614).

b. If you need to send data to an on-premises Historian server, select Historian Server.

If you created security groups or enabled a strict client/collector authentication, enter the

USERNAME and PASSWORD of the on-premises Historian server that you created during the

installation of the collector.

Historian | 22 - The MQTT Sparkplug B Collector | 2324

If you entered the USERNAMEand PASSWORD, select Test Connection. This will help you to

test if the Historian server that you are trying to connect is valid or if the credentials that you

entered are valid.

If the entered credentials are valid, a successful connection message appears.

10. After you selected the destination, select Next.

The Collector Initiation section appears.

11. If needed, modify the value in the COLLECTOR NAME field.

Note:

If you will be using the collector in Historian Administrator, the COLLECTOR NAME must

include Sparkplug B in it.

The value that you enter:

◦ Must be unique.

◦ Must not exceed 15 characters.

◦ Must not contain a space.

◦ Must not contain special characters except a hyphen, period, and an underscore.

12. In the RUNNING MODE field, select one of the following options.

◦ Service - Local System Account: Select this option if you want to run the collector as a

Windows service using the credentials of the local user (that is, the currently logged-in user).

If you select this option, the USERNAME and PASSWORD fields are disabled.

◦ Service Under Specific User Account: Select this option if you want to run the collector as

a Windows service using a specific user account. If you select this option, you must enter

values in the USERNAME and PASSWORD fields.

If you have enabled the Enforce Strict Collector Authentication option in Historian

Administrator, you must provide the credentials of a user who is added to at least one of the

following security groups:

▪ iH Security Admins

▪ iH Collector Admins

▪ iH Tag Admins

You can also configure the collector to start automatically when you start the computer.

13. Select Add.

The collector instance is added. The fields specific to the collector section appear in the DETAILS

section.

14. If needed, enter values in available fields (on page 579).

Historian | 22 - The MQTT Sparkplug B Collector | 2325

15. In the upper-left corner of the page, select Save.

16. If needed, restart the collector.

• Specify the tags whose data you want to collect using the collector. In the CHOOSE

CONFIGURATION field,

◦ If you have selected Historian Configuration, specify the tags using Configuration Hub (on

page 357).

◦ If you have selected Offline Configuration, modify the offline configuration file of the

collector. By default, the file is available in the following location: <installation folder

of Historian>\GE Digital\<collector name>. For information, refer to Offline

Configuration for Collectors (on page 2039). This option is applicable only if you have

selected a cloud destination.

• If needed, you can configure the collector instance (on page 2331).

Add an MQTT Sparkplug B Collector Instance using RemoteCollector
Configurator

1. Install the Historian server (on page 104) and collectors (on page 142).

2. Ensure that you have an MQTT broker.

3. If you want to use username/password-based authentication or certificate-based authentication to

connect the MQTT broker and the MQTT Sparkplug B collector, configure the authentication in the

MQTT broker.

4. If you want to use certificate-based authentication, ensure that the following files are available on

your collector machine:

◦ CA server root file

◦ Private key file

◦ Client certificate file

This topic describes how to add and configure an MQTT Sparkplug B collector instance using

RemoteCollectorConfigurator utility. If you want to add an offline collector instance, refer to Add an Offline

Collector Instance (on page 819).

1. Run the RemoteCollectorConfigurator.exe file. By default, it is located in the following

folder: C:\Program Files\GE Digital\NonWebCollectorInstantiationTool.

A list of options to manage collector instances appears.

2. Connect to the collector machine by entering 1 or 2, depending on whether collectors are installed

locally or on a remote machine.

Historian | 22 - The MQTT Sparkplug B Collector | 2326

3. To create a collector instance using the RemoteCollectorConfigurator utility, you need to provide

parameters in a JSON format. For this you can create a sample JSON using this tool. To create

sample JSON, enter 7.

4. To create a sample JSON file for MQTT Sparkplug B collector, enter 21.

5. To set Historian as the destination type, enter 1.

6. Enter the folder path where you want the sample JSON file to be created. By default, the file will be

created in the same folder in which the RemoteCollectorConfigurator utility is located.

A sample JSON file with name “SampleSparkplugB.json” is created in the given location.

Sample JSON File

{

"CollectorSystemName":"TESTSYSTEM",

"DestinationHistorian":"TESTSYSTEM",

"General1":"HostName=localhost|Port=|ClientId=|PrimaryHostId=|GroupId=test|EdgeNodeId=#|DeviceId=|Username=|Pas

sword=|Cafile=|Certfile=|PrivateKeyfile=|Version=MQTT_V311|ReorderTimeout=",

"General2":"<interfacename>.<groupid>.<edgenodeid>.<deviceid>.",

"General3":"*",

"General4":"",

"General5":"",

"InterfaceDescription":"Sample SparkplugB Collector",

"InterfaceName":"SampleSparkplugBCollector",

"InterfaceSubType":"SparkplugB",

"SourceHistorianUserName":"",

"SourceHistorianPassword":"",

"Type":"16",

"SamplerId":"",

"MTLSEnable":"false",

"DataPathDirectory":"C:\\Proficy Historian Data",

"CollectorDestination":"Historian",

"DestinationHistorianUserName":"",

"DestinationHistorianPassword":"",

"mode":"1",

"winUserName":"",

"winPassword":""

}

7. Configure the values as specified the following table:

Historian | 22 - The MQTT Sparkplug B Collector | 2327

Table 381.

Field Descriprion

CollectorSystemName (Mandatory) Name of the machine on which the Collector is

installed.

DestinationHistorian (Mandatory) Name of the destination Historian machine.

General1

HostName (mandatory) MQTT broker Ip or hostname.

Port (mandatory) MQTT broker port.

ClientID Unique name to identify the client.

PrimaryHostID (mandatory) The unique host ID of the Collector. The Collec

tor will publish the STATE message topic us

ing this host ID and then the Publisher will sub

scribe and start publishing the topics to this

host ID.

GroupId (mandatory) The Sparkplug B group name to which you

want your collector to subscribe. If this is emp

ty along with the other fields below TOPIC,

the collector will subscribe to all the available

groups, nodes, and devices. Use of the wildcard

"+" is supported.

EdgeNodeId (mandatory) The Sparkplug B edge node ID to which you

want your collector to subscribe. If this is emp

ty, then the Collector will subscribe to all the

edge nodes corresponding to the entered

GROUP ID. If the GROUP ID and DEVICE ID are

also empty, then the collector will subscribe to

all the available groups, nodes and devices. Use

of the wildcards "+" and "#" are supported.

DeviceId (mandatory) The Sparkplug B device name. If this is empty,

the collector subscribes to node messages if a

NODE ID is entered, otherwise, if a DEVICE ID is

Historian | 22 - The MQTT Sparkplug B Collector | 2328

Field Descriprion

entered, it subscribes to device messages. Use

of the wildcards "+" and "#" are supported.

Username The username to connect to the MQTT broker.

A value is required if you have configured user

name/password-based authentication in the

MQTT broker.

Password The password to connect to the MQTT broker.

A value is required if you have configured user

name/password-based authentication in the

MQTT broker.

Cafile The path to the CA server root file to connect

to the MQTT broker. A value is required if you

have configured certificate-based authentica

tion in the MQTT broker.

Certfile The path to the client certificate file to connect

to the MQTT broker. A value is required if you

have configured certificate-based authentica

tion in the MQTT broker.

PrivateKeyfile The path to the private key file to connect to the

MQTT broker. A value is required if you have

configured certificate-based authentication in

the MQTT broker.

ReorderTimeout Enter the duration for waiting before sending

a CMD message if a sequence is skipped. You

can enter the duration in milliseconds.

Version The version of the MQTT that you want to use.

That is, MQTT_V311 or MQTT_V5.

General2

<interfacename>.<groupid>.<edgenodeid>.<de

viceid>.

The prefix to be included in the tag. By using

this field, you can clearly identify a tag. For ex

ample, you can clearly differentiate the tags

that are collected.

Historian | 22 - The MQTT Sparkplug B Collector | 2329

Field Descriprion

The following options are available:

◦ <interfacename>

◦ <groupid>

◦ <edgenodeid>

◦ <deviceid>

For example, if all four fields provided and the

interface / collector name is "sparkplug1" and

the Topic contains group id = g1 edge node id =

n1, device id = d1 then device tags will be creat

ed in Historian as “sparkplug1.g1. n1.d1.tag1”.

General3

"*" Tag include mask field The mask along with wildcard to collect those

tags that include the mask you provided and

store in Historian. For example, *Pressure*.

This will collect all the tags that begin with

"Pressure". If you enter Pressure*, all the tags

that end with "Pressure" will be collected. Sim

ilarly, if you enter *Pres?, all the tags that con

tain "pres" at the beginning will be collected. It

can be "Pressure", "Press", or "Pres1".

Note:

Whenever a new tag is collected, the

collector verifies the tag availability in

the Historian and, if not present, adds

the tag, then adds the data samples,

streaming the data to the Historian

server or a cloud destination.

General4

"" Tag exclude mask field The mask along with wildcard to exclude those

tags that include the mask you provided. For

example, *Pressure*. This will exclude all the

Historian | 22 - The MQTT Sparkplug B Collector | 2330

Field Descriprion

tags that begin with "Pressure". If you enter

Pressure*, all the tags that end with "Pressure"

will be excluded. Similarly, if you enter *Pres?,

all the tags that contain "pres" at the beginning

will be excluded. It can be "Pressure", "Press", or

"Pres1".

General5

InterfaceDescription A description of the collector instance.

InterfaceName A name of the collector instance.

Note:

If you will use this collector on Histo

rian Administrator, the name must in

clude Sparkplug B in it.

InterfaceSubType Sparkplug B. Do not change this field.

SourceHistorianUserName (optional) username of the source Historian.

SourceHistorianPassword (optional) password of the source Historian.

Type 16. Do not change this field.

SamplerId (optional) The ID of the sampler.

MTLSEnable False.

DataPathDirectory The directory path where you want the data to

be stroed. It is recommended to use C:\\Proficy

Historian Data.

CollectorDestination Historian. Do not change this field.

DestinationHistorianUserName (optional) username of the destination Historian.

DestinationHistorianPassword (optional) password of the destination Historian.

Mode 1. Do not change this field.

winUserName (optional) username of the window user.

winPassword (optional) password of the window user.

Historian | 22 - The MQTT Sparkplug B Collector | 2331

Note:

Do not change the case of the keys in the JSON file.

8. Run the RemoteCollectorConfigurator.exe file. By default, it is located in the following

folder: C:\Program Files\GE Digital\NonWebCollectorInstantiationTool.

A list of options to manage collector instances appears.

9. Connect to the collector machine by entering 1 or 2, depending on whether collectors are installed

locally or on a remote machine.

10. To create the collector instance, enter 4.

11. To create the instance using the updated JSON file, enter 2.

12. Enter the location where the updated JSON file is saved.

13. On the keyboard, press Enter.

The MQTT Sparkplug B collector instance is created.

• Specify the tags (on page 357) whose data you want to collect using the collector.

• If you did not enter a value, modify the offline configuration file of the collector. By default, this file

is available in the following location: <installation folder of Historian>\GE Digital

\<collector name>. For information, refer to Creating Offline Configuration XML file (on page

2040).

Configuring an MQTT Sparkplug B Collector Instance

Configure an MQTT Sparkplug B Collector Instance using Configuration
Hub
This topic describes how to configure an MQTT Sparkplug B collector instance using Configuration Hub.

• Ensure that you installed the Historian server (on page 104) and collectors (on page 142).

• Ensure that you created an MQTT Sparkplug B collector instance, using

RemoteCollectorConfigurator (on page 2325) or Configuration Hub (on page 519).

1. Access Configuration Hub (on page 336).

2. Select Collectors, and then select the MQTT Sparkplug B collector instance that you want to

configure.

The configurations specific to the collector instance appear in the DETAILS section.

3. In the COLLECTOR SPECIFIC CONFIGURATION and INSTANCE CONFIGURATION sections,

configure the values as described in the following table.

Historian | 22 - The MQTT Sparkplug B Collector | 2332

COLLECTOR SPECIFIC CONFIGURATION

Field Description

MTLS Security Indicates whether you want to use Mutual TLS

(MTLS) protocol to enforce a secure and strong

authentication mechanism.

MTLS Data Encryption Indicates whether you want to encrypt the da

ta that the collector shares to the data archiver

(DA).

For more information on how to enable MTLS Security, refer to Enable MTLS Security (on page

632).

INSTANCE CONFIGURATION

Field Description

Broker Address Enter the host name of the MQTT broker using

which you want to collect data. A value is re

quired.

Broker Port Enter the port number of the MQTT broker. A

value is required.

Client ID Enter the client ID of the MQTT Sparkplug B col

lector is running. This is required if you want to

send the data to a cloud destination. If you do

not have a client ID set up, by default, the inter

face name is taken.

Primary Host ID Enter the unique host ID of the Collector. The

Collector will publish the STATE message top

ic using this host ID and then the Publisher will

subscribe and start publishing the topics to this

host ID.

REORDER TIMEOUT Enter the duration for waiting before sending

a CMD message if a sequence is skipped. You

can enter the duration in milliseconds.

Historian | 22 - The MQTT Sparkplug B Collector | 2333

Field Description

Group ID Enter the Sparkplug B group name to which

you want your collector to subscribe. If this is

empty along with the other fields below TOPIC,

the collector will subscribe to all the available

groups, nodes, and devices.

Edge Node ID Enter the Sparkplug B edge node ID to which

you want your collector to subscribe. If this is

empty, then the Collector will subscribe to all

the edge nodes corresponding to the entered

GROUP ID. If the GROUP ID and DEVICE ID are

also empty, then the collector will subscribe to

all the available groups, nodes and devices.

Device ID Enter the Sparkplug B device name. If this is

empty, the collector subscribes to node mes

sages if a NODE ID is entered, otherwise, if a

DEVICE ID is entered, it subscribes to device

messages.

You can also use wildcards in the GROUP ID, EDGE NODE ID, and DEVICE ID fields. The following

wildcards are supported:

◦ + (single-level wildcard): Supported for all the three fields.

◦ # (Multi-level wildcard): Supported for the EDGE NODE ID and DEVICE ID

+ (Single-level wildcard): Can be used to subscribe to only one topic level. For example, if you

subscribe to a topic <Admin>/+/<ABC-123>, you will receive messages from all the nodes corre

sponding to the group and device. That is,

<Admin>/Node1/<ABC-123>

<Admin>/Node2/<ABC-123>

<Admin>/Node3/<ABC-123>

...

<Admin>/Noden/<ABC-123>

(Multi-level wildcard): Can be used to subscribe to any number of levels within a topic. For ex

ample, if you subscribe to a topic <Admin>/#, you will receive messages from all the nodes and de

vices corresponding to the group,

Historian | 22 - The MQTT Sparkplug B Collector | 2334

Field Description

<Admin>/Node1/<ABC-123>

<Admin>/Node2/<ABC-123>

<Admin>/Node3/<ABC-123>

<Admin>/Node1/<ABC-124

<Admin>/Node2/<ABC-124>

...

<Admin>/Noden/<Devicen>

Tags to Add Provide a mask along with wildcard to collect

those tags that include the mask you provid

ed and store in Historian. For example, *Pres

sure*. This will collect all the tags that begin

with "Pressure". If you enter Pressure*, all the

tags that end with "Pressure" will be collected.

Similarly, if you enter *Pres?, all the tags that

contain "pres" at the beginning will be collected.

It can be "Pressure", "Press", or "Pres1".

Note:

Whenever a new tag is collected, the

collector verifies the tag availability in

the Historian and, if not present, adds

the tag, then adds the data samples,

streaming the data to the Historian

server or a cloud destination.

Tags to Exclude Provide a mask along with wildcard to exclude

those tags that include the mask you provided.

For example, *Pressure*. This will exclude all

the tags that begin with "Pressure". If you enter

Pressure*, all the tags that end with "Pressure"

will be excluded. Similarly, if you enter *Pres?,

all the tags that contain "pres" at the beginning

will be excluded. It can be "Pressure", "Press", or

"Pres1".

Historian | 22 - The MQTT Sparkplug B Collector | 2335

Field Description

Tag Prefix Enter a prefix to be included in the tag. By us

ing this field, you can clearly identify a tag. For

example, you can clearly differentiate the tags

that are collected.

The following options are available:

◦ <interfacename>

◦ <groupid>

◦ <edgenodeid>

◦ <deviceid>

For example, if all four fields provided and the

interface / collector name is "sparkplug1" and

the Topic contains group id = g1 edge node id =

n1, device id = d1 then device tags will be creat

ed in Historian as “sparkplug1.g1. n1.d1.tag1”.

Username Enter the username to connect to the MQTT

broker. A value is required if you have config

ured username/password-based authentication

in the MQTT broker.

Password Enter the password to connect to the MQTT

broker. A value is required if you have config

ured username/password-based authentication

in the MQTT broker.

CA Server Root File Enter the path to the CA server root file to con

nect to the MQTT broker. A value is required if

you have configured certificate-based authenti

cation in the MQTT broker.

Private Key File Enter the path to the private key file to connect

to the MQTT broker. A value is required if you

have configured certificate-based authentica

tion in the MQTT broker.

Client Certificate File Enter the path to the client certificate file to

connect to the MQTT broker. A value is required

Historian | 22 - The MQTT Sparkplug B Collector | 2336

Field Description

if you have configured certificate-based authen

tication in the MQTT broker.

MQTT Version Select the version of the MQTT that you want to

use. The following versions are supported:

◦ MQTT_V311

◦ MQTT_V5

4. As needed, enter values in the other sections common to all collectors (on page 579).

5. Restart the collector.

The collector instance is configured.

Configure an MQTT Sparkplug B Collector Instance using Historian
Administrator

• Ensure that you installed the Historian server (on page 104) and collectors (on page 142).

• Ensure that you created an MQTT Sparkplug B collector instance, using

RemoteCollectorConfigurator (on page 2325) or Configuration Hub (on page 519).

This topic describes how to configure an added MQTT Sparkplug B collector instance in Historian

Administrator.

1. Access Historian Administrator (on page 823).

2. Select Collectors, and then select the MQTT Sparkplug B collector instance that you want to

configure.

Historian | 22 - The MQTT Sparkplug B Collector | 2337

3. In the right-side, below the Collector: <Name of the Collector Instance>, select Configuration.

The fields specific to the collector instance appear.

4. Enter values as specified in the following table.

Table 382.

Configuration: HostName=localhost|Port=|ClientId=|PrimaryHostId=|GroupId=|EdgeNodeId=|De

viceId=|username=|password=|cafile=|certfile=|privatekeyfile=|version=MQTT_V311|reordertime

out=

HostName (mandatory) MQTT broker Ip or hostname.

Port (mandatory) MQTT broker port.

ClientID Unique name to identify the client.

PrimaryHostID (mandatory) The unique host ID of the Collector. The Collec

tor will publish the STATE message topic us

ing this host ID and then the Publisher will sub

Historian | 22 - The MQTT Sparkplug B Collector | 2338

scribe and start publishing the topics to this

host ID.

GroupId (mandatory) The Sparkplug B group name to which you

want your collector to subscribe. If this is emp

ty along with the other fields below TOPIC,

the collector will subscribe to all the available

groups, nodes, and devices. Use of the wildcard

"+" is supported.

EdgeNodeId (mandatory) The Sparkplug B edge node ID to which you

want your collector to subscribe. If this is emp

ty, then the Collector will subscribe to all the

edge nodes corresponding to the entered

GROUP ID. If the GROUP ID and DEVICE ID are

also empty, then the collector will subscribe to

all the available groups, nodes and devices. Use

of the wildcards "+" and "#" are supported.

DeviceId (mandatory) The Sparkplug B device name. If this is empty,

the collector subscribes to node messages if a

NODE ID is entered, otherwise, if a DEVICE ID is

entered, it subscribes to device messages. Use

of the wildcards "+" and "#" are supported.

username The username to connect to the MQTT broker.

A value is required if you have configured user

name/password-based authentication in the

MQTT broker.

password The password to connect to the MQTT broker.

A value is required if you have configured user

name/password-based authentication in the

MQTT broker.

cafile The path to the CA server root file to connect

to the MQTT broker. A value is required if you

have configured certificate-based authentica

tion in the MQTT broker.

Historian | 22 - The MQTT Sparkplug B Collector | 2339

certfile The path to the client certificate file to connect

to the MQTT broker. A value is required if you

have configured certificate-based authentica

tion in the MQTT broker.

privatekeyfile The path to the private key file to connect to the

MQTT broker. A value is required if you have

configured certificate-based authentication in

the MQTT broker.

version The version of the MQTT that you want to use.

That is, MQTT_V311 or MQTT_V5.

reordertimeout

TagName Prefix The prefix to be included in the tag. By using

this field, you can clearly identify a tag. For ex

ample, you can clearly differentiate the tags

that are collected.

The following options are available:

◦ <interfacename>

◦ <groupid>

◦ <edgenodeid>

◦ <deviceid>

For example, if all four fields provided and the

interface / collector name is "sparkplug1" and

the Topic contains group id = g1 edge node id =

n1, device id = d1 then device tags will be creat

ed in Historian as “sparkplug1.g1. n1.d1.tag1”.

Tag include Mask The mask along with wildcard to collect those

tags that include the mask you provided and

store in Historian. For example, *Pressure*.

This will collect all the tags that begin with

"Pressure". If you enter Pressure*, all the tags

that end with "Pressure" will be collected. Sim

ilarly, if you enter *Pres?, all the tags that con

Historian | 22 - The MQTT Sparkplug B Collector | 2340

tain "pres" at the beginning will be collected. It

can be "Pressure", "Press", or "Pres1".

Note:

Whenever a new tag is collected, the

collector verifies the tag availability in

the Historian and, if not present, adds

the tag, then adds the data samples,

streaming the data to the Historian

server or a cloud destination.

Tag Exclude Mask The mask along with wildcard to exclude those

tags that include the mask you provided. For

example, *Pressure*. This will exclude all the

tags that begin with "Pressure". If you enter

Pressure*, all the tags that end with "Pressure"

will be excluded. Similarly, if you enter *Pres?,

all the tags that contain "pres" at the beginning

will be excluded. It can be "Pressure", "Press", or

"Pres1".

5. After you configure the collector instance, select Update.

The instance is updated with the new configuration.

Chapter 23. The ODBC Collector

Overview of the ODBC Collector
The ODBC collector collects data from an application based on an ODBC driver and stores the data in an

on-premises Historian Server or a cloud destination. It supports collecting of all the Historian supported

data types of data from the ODBC server.

Topology: The ODBC collector supports a distributed model, where the ODBC server, the collector, and the

Historian server are installed on different machines. Typically, however, the collector is installed on the

same machine as the ODBC server and sends data to a remote Historian server.

Features:

• You can browse the source for tags and their attributes on an ODBC server that supports browsing.

• Only the unsolicited data collection is supported; when changes to the ODBC source tags are

detected, they are sent to the Historian server. The minimum poll interval is 100ms. The collector

duplicates raw samples from the ODBC server into the Historian data archive.

• The supported timestamp resolution is 1ms.

• Floating point, integer, and string data are supported.

Supported Data Attributes:

Historian Data Type ODBC Server Data Type

ihByte Byte

ihFloat SingleFloat

ihDoubleFloat DoubleFloat

ihInteger SingleInteger

ihDoubleInteger DoubleInteger

ihScaled Not applicable

ihFixedString Not applicable

ihVariableString Not applicable

ihBlob Not applicable

ihTime Not applicable

Historian | 23 - The ODBC Collector | 2342

Historian Data Type ODBC Server Data Type

ihInt64 Not applicable

ihUInt64 Not applicable

ihUInt32 Not applicable

ihUInt16 Not applicable

ihBool Not applicable

Limitations:

• A single collector instance can collect data from a single ODBC server. To collect data from

multiple ODBC servers, you must add multiple instances.

• Only good and bad quality types are supported. OPC Quality and OPC Subquality are not supported.

• If you want a domain user to use the ODBC collector, after you add an instance of a collector, when

you later configure it, do not provide values in the User Name and Password fields. This is because

the ODBC driver uses Windows authentication.

Historian | 23 - The ODBC Collector | 2343

Configuration

Add and Configure an ODBC Collector Using Configuration Hub

The ODBC collector collects data from an application based on an ODBC driver. For more information,

refer to Overview of the ODBC Collector (on page 2341).

This topic describes how to add a collector instance using Configuration Hub. You can also add a

collector instance using the RemoteCollectorConfigurator utility (on page 797), which does not require you

to install Web-based Clients.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors in the default system appears.

3. In the upper-right corner of the main section, select .

The Add Collector Instance: <system name> window appears, displaying the Collector Selection

section. The MACHINE NAME field contains a list of machines on which you have installed

collectors.

4. In the MACHINE NAME field, select the machine in which you want to add a collector instance.

5. In the COLLECTOR TYPE field, select ODBC Collector, and then select Get Details.

The INSTALLATION DRIVE and DATA DIRECTORY fields are disabled and populated.

6. Select Next.

The Source Configuration section appears.

7. Enter values as described in the following table.

Historian | 23 - The ODBC Collector | 2344

Field Description

ODBC SERVER Enter the host name or IP address of the ODBC

server from which you want to collect data. A

value is required.

USERNAME Enter the username to connect to the ODBC

server. A value is required.

PASSWORD Enter the password to connect to the ODBC

server. A value is required.

8. Select Next.

The Destination Configuration section appears. The collector machine name provided by you is

selected as the Source Configuration by default.

Under CHOOSE DESTINATION, the Historian Server option is selected by default. In addition, the

DESTINATION HISTORIAN SERVER field is disabled and populated with the collector machine

name.

9. Select the destination to which you want to send data, and then enter the values in the

corresponding fields. You can send data to an on-premises Historian server or to a cloud

destination.

a. If you need to send data to a cloud destination, select the cloud destinations as needed.

▪ Predix Timeseries- Select this if you need to send data to Predix cloud. For more

information, refer to Predix Cloud (on page 621).

▪ Azure IoT Hub- Select this if you need to send data to Azure Cloud in KairosDB

format. For more information, refer to Azure IoT Hub (KairosDB format) (on page

608).

▪ MQTT- Select this if you need to send data to any of the following cloud destination.

▪ Alibaba cloud. For more information, refer to Alibaba Cloud (on page 587).

▪ AWS cloud. For more information, refer to AWS Cloud (on page 594).

▪ Google cloud. For more information, refer to Google Cloud (on page 614).

b. If you need to send data to an on-premises Historian server, select Historian Server.

If you created security groups or enabled a strict client/collector authentication, enter the

USERNAME and PASSWORD of the on-premises Historian server that you created during the

installation of the collector.

Historian | 23 - The ODBC Collector | 2345

If you entered the USERNAMEand PASSWORD, select Test Connection. This will help you to

test if the Historian server that you are trying to connect is valid or if the credentials that you

entered are valid.

If the entered credentials are valid, a successful connection message appears.

10. Select Next.

The Collector Initiation section appears.

11. If needed, modify the value in the COLLECTOR NAME field.

The value that you enter:

◦ Must be unique.

◦ Must contain the string ODBC.

◦ Must not exceed 15 characters.

◦ Must not contain a space.

◦ Must not contain special characters except a hyphen, period, and an underscore.

12. In the RUNNING MODE field, select one of the following options.

◦ Service - Local System Account: Select this option if you want to run the collector as a

Windows service using the credentials of the local user (that is, the currently logged-in user).

If you select this option, the USERNAME and PASSWORD fields are disabled.

◦ Service Under Specific User Account: Select this option if you want to run the collector as

a Windows service using a specific user account. If you select this option, you must enter

values in the USERNAME and PASSWORD fields.

If you have enabled the Enforce Strict Collector Authentication option in Historian

Administrator, you must provide the credentials of a user who is added to at least one of the

following security groups:

▪ iH Security Admins

▪ iH Collector Admins

▪ iH Tag Admins

You can also configure the collector to start automatically when you start the computer.

13. Select Add.

The collector instance is added. The fields specific to the collector appear in the DETAILS section.

14. In the COLLECTOR SPECIFIC CONFIGURATION section, configure values as described in the

following table.

Field Description

Recovery Time (hours) Enter the maximum time, in hours, for which

the collector will attempt to recover data after

Historian | 23 - The ODBC Collector | 2346

Field Description

the collector is started or when connection be

tween the collector and the ODBC server is re-

established. This time is calculated as the du

ration between the current time and the last

known write time.

Continuous data collection is resumed only af

ter the previous data has been recovered.

By default, this value is set to 0, which means

data recovery is not attempted. The maximum

value you can provide is 168 hours (that is, 7

days).

Throttle (Milliseconds) Enter the frequency, in milliseconds, at which

you want the ODBC collector to query the ODBC

server for tag data. This will minimize the load

on the ODBC server. You can enter a value up to

16 hours.

Note:

If this field is blank, enter the required

minimum value of 100 milliseconds.

MTLS Security Indicates whether you want to use Mutual TLS

(MTLS) protocol to enforce a secure and strong

authentication mechanism.

MTLS Data Encryption Indicates whether you want to encrypt the da

ta that the collector shares to the data archiver

(DA).

For more information on how to enable MTLS Security, refer to Enable MTLS Security (on page

632).

15. As needed, enter values in the other sections common to all collectors (on page 579).

16. In the upper-left corner of the page, select Save.

Historian | 23 - The ODBC Collector | 2347

The changes to the collector instance are saved.

17. If needed, restart the collector.

Specify the tags whose data you want to collect using the collector. In the CHOOSE CONFIGURATION

field,

• If you have selected Historian Configuration, specify the tags using Configuration Hub (on page

357).

• If you have selected Offline Configuration, modify the offline configuration file of the collector.

By default, the file is available in the following location: <installation folder of

Historian>\GE Digital\<collector name>. For information, refer to Offline Configuration

for Collectors (on page 2039). This option is applicable only if you have selected a cloud

destination.

Configure the ODBC Collector Using Historian Administrator

You can establish a connection between the ODBC collector and an ODBC server, and set the recovery

time and throttle value by configuring the ODBC collector.

Note:

ODBC Driver for SQL is required to install the ODBC collector and connect it with the ODBC server.

If you install the ODBC collector and the ODBC server on the same machine, install the ODBC

Driver for SQL on the same machine as well.

1. Access Historian Administrator.

2. Select Collectors, and then select the ODBC collector instance that you want to connect to an

ODBC server.

3. Select Configuration.

The Configuration section appears.

Historian | 23 - The ODBC Collector | 2348

4. Enter values as specified in the following table.

Field Description

Server Name The name of the ODBC server database.

User Name The username of the ODBC server database.

Password The password of the ODBC server database.

Recovery Time (hours) The maximum time, in hours, for which the collector will attempt

to recover data after the collector is started or when connection

between the collector and the ODBC server is re-established.

This time is calculated as the duration between the current time

and the last known write time.

Continuous data collection is resumed only after the previous

data has been recovered.

Historian | 23 - The ODBC Collector | 2349

Field Description

By default, this value is set to 0, which means data recovery

is not attempted. The maximum value you can provide is 168

hours (that is, 7 days).

Throttle (Milliseconds) The frequency, in milliseconds, at which you want the ODBC

collector to query the ODBC server for tag data. This will mini

mize the load on the ODBC server. You can enter a value up to

16 hours.

Note:

If this field is blank, enter the required minimum value

of 100 milliseconds.

If you have provided incorrect ODBC server details (that is the server name, username, and

password) either in Historian Administrator or in the ODBC_Mapping.xml file, the ODBC collector

cannot connect with the OBDC server. To fix this issue:

a. Delete the ODBC collector instance.

b. Provide values for the following properties in the registry key HKLM\Softwares\GE

Digital\iHistorian\Services\ODBCCollector:

▪ General1: ODBC server name

▪ General2: ODBC server username

▪ General3: ODBC server password

c. Ensure that the mapping file is configured correctly (on page 2349).

d. Restart the collector.

If this workaround is not successful, restart the collector instance.

Map Data Format
For the ODBC collector to interpret the received data accurately, you must map the format and structure of

the data between the ODBC server and Historian.

Historian | 23 - The ODBC Collector | 2350

1. Access the ODBC_Mapping.xml file. By default, this file is located at C:\Program Files\GE

Digital\Historian ODBC Collector\Server. In the ODBC collector registry path, this file is

stored in the Mapping File variable.

2. For each data type in the ODBC server, add an entry in the equivalent Historian data type as

described in the following table. If a Historian data type does not have an equivalent ODBC data

type, enter *NA*.

Historian Data Type ODBC Server Data Type

ihByte Byte

ihFloat SingleFloat

ihDoubleFloat DoubleFloat

ihInteger SingleInteger

ihDoubleInteger DoubleInteger

ihScaled *NA*

ihFixedString *NA*

ihVariableString *NA*

ihBlob *NA*

ihTime *NA*

ihInt64 *NA*

ihUInt64 *NA*

ihUInt32 *NA*

ihUInt16 *NA*

ihBool *NA*

For example, if the ODBC server contains a Float data type named ID, enter <ihFloat>ID</ihFloat>

<DataTypeMapping>

 <ihDataTypeUndefined>*NA*</ihDataTypeUndefined>

 <ihScaled>*NA*</ihScaled>

 <ihFloat>ID</ihFloat>

 <ihDoubleFloat>*NA*</ihDoubleFloat>

 <ihInteger>2</ihInteger>

Historian | 23 - The ODBC Collector | 2351

 <ihDoubleInteger>*NA*</ihDoubleInteger>

 <ihFixedString>*NA*</ihFixedString>

 <ihVariableString>3</ihVariableString>

 <ihBlob>*NA*</ihBlob>

 <ihTime>*NA*</ihTime>

 <ihInt64>*NA*</ihInt64>

 <ihUInt64>*NA*</ihUInt64>

 <ihUInt32>*NA*</ihUInt32>

 <ihUInt16>*NA*</ihUInt16>

 <ihByte>*NA*</ihByte>

 <ihBool>*NA*</ihBool>

 <ihMultiField>*NA*</ihMultiField>

 <ihArray>*NA*</ihArray>

 </DataTypeMapping>

3. In the Quality and SubQuality elements, provide the range of values retrieved from the quality

column. For quality elements that are not applicable, enter *NA*.

For example, if the values from 0 to 97 are considered as bad quality, and if the numbers from 98 to

100 are considered as good quality, provide the values as follows:

<Quality>

 <ihOPCBad>[0,98)</ihOPCBad>

 <ihOPCUncertain>*NA*</ihOPCUncertain>

 <ihOPCNA>*NA*</ihOPCNA>

 <ihOPCGood>[99,101)</ihOPCGood>

 </Quality>

 <SubQuality>

 <ihOPCNonspecific>*NA*</ihOPCNonspecific>

 <ihOPCConfigurationError>*NA*</ihOPCConfigurationError>

 <ihOPCNotConnected>*NA*</ihOPCNotConnected>

 <ihOPCDeviceFailure>*NA*</ihOPCDeviceFailure>

 <ihOPCSensorFailure>*NA*</ihOPCSensorFailure>

 <ihOPCCommFailure>*NA*</ihOPCCommFailure>

 <ihOPCOutOfService>float</ihOPCOutOfService>

 <ihScaledOutOfRange>*NA*</ihScaledOutOfRange>

 <ihOffLine>*NA*</ihOffLine>

 <ihNoValue>*NA*</ihNoValue>

 <ihCalculationError>*NA*</ihCalculationError>

Historian | 23 - The ODBC Collector | 2352

 <ihConditionCollectionHalted>*NA*</ihConditionCollectionHalted>

 <ihCalculationTimeout>*NA*</ihCalculationTimeout>

 </SubQuality>

4. In the TagInfo element, provide the tag details, which are used to browse for tags. Provide the

column names available in the ODBC server in the corresponding tag element.

<TagInfo>

 <DBName>DB1</DBName> <!--Cannot be *NA*-->

 <TableName>Temperature</TableName> <!--Cannot be *NA*-->

 <TagName>Boiler_Temp</TagName> <!--Cannot be *NA*-->

 <Description>*NA*</Description>

 <EngineeringUnits>*NA*</EngineeringUnits>

 <DataType>*NA*</DataType>

 <MinimumEngineeringUnit>*NA*</MinimumEngineeringUnit>

 <MaximumEngineeringUnit>*NA*</MaximumEngineeringUnit>

</TagInfo>

Note:

If you enter *NA* for the DataType element, you can provide only one data type mapping

for the DataTypeMapping element and all the remaining elements must be marked *NA*

You can choose to automatically run queries from the info you provide in the TagInfo element. To

do so, enter <Mode>1<Mode> in the TagInfo element. If you want to provide queries manually, enter

<Mode>0<Mode> in the TagInfo element.

5. In the DataInfo element, provide the tag data details, which are used to create a query to collect the

data.

<DataInfo>

 <DBName>DB1</DBName> <!--Cannot be *NA*-->

 <TableName>Temperature</TableName> <!--Cannot be *NA*-->

 <TagName>Boiler_Temperature</TagName> <!--Cannot be *NA*-->

 <Timestamp>10-06-26 02:31:29,573</Timestamp> <!--Cannot be *NA*-->

 <Value>97</Value> <!--Cannot be *NA*-->

 <Quality>good</Quality> <!--Cannot be *NA*-->

 <SubQuality>*NA*</SubQuality>

</DataInfo>

Historian | 23 - The ODBC Collector | 2353

You can choose to automatically run queries from the info you provide in the DataInfo element. To

do so, enter <Mode>1<Mode> in the DataInfo element. If you want to provide queries manually, enter

<Mode>0<Mode> in the DataInfo element.

6. If you want to provide your own queries, provide them in the following format:

<Query>

 <Browse></Browse>

 <ReadData></ReadData>

 <TagCount></TagCount>

</Query>

</Mapping>

<Query>

<Browse>SELECT [TagName],[Description],[TagType],[Unit],[MinEU],[MaxEU] FROM

 [Runtime].[dbo].[TagHistory]</Browse>

<ReadData>SELECT TagName, [DateTime], Value, Quality, QualityDetail FROM History where History.TagName =

 '?Tagname?' AND wwRetrievalMode = 'FULL' AND wwVersion = 'Latest' AND DateTime > '?Start?' ORDER BY

 DateTime ASC</ReadData>

<TagCount>SELECT count(*) from [Runtime].[dbo].[TagHistory]</TagCount>

</Query>

Data Recovery

Note:

We recommend that the collector for which the data recovery is intended is in the same time zone

as the server. If there is a mismatch, there is a possibility that data recovery will be incomplete.

Automatic Data Recovery

In this mode, data is automatically recovered since the last time data has been collected.

How it works:

1. The collector determines the duration between the current time and the last time data has been

written to the Historian data archive, which is stored in the LastSampleWriteTime registry key.

2. It compares this duration with the value in the Recovery Time field specified in the collector

settings (on page 2347).

3. It uses the shorter duration to perform a raw data query on all the tags.

4. It then processes the returned samples in chronological order.

Historian | 23 - The ODBC Collector | 2354

For example, if the collector was stopped for 8 hours, but Max Recovery Time was 4 hours, only 4 hours of

data would be recovered.

As per the recovery logic, an end-of-collection marker is placed at the point in time where the collector

was stopped. This end-of-collection marker may or may not be there after the recovery is complete. As

part of the recovery logic, if recovery data point time matches the timestamp of the end-of-collection

marker, it is overwritten with the recovered good data.

Manual Data Recovery

In this mode, you can fill gaps in the data, but you cannot fill old data.

To perform a manual recovery:

1. Access Historian Administrator.

2. Select Collectors, and then select the ODBC collector instance for which you want to manually

recover data.

3. Select Recalculate.

The Recalculate window appears.

4. Enter start time, end time, and other required information. We recommend that you choose small

time intervals to reduce the load on the server and the collector.

5. Select Recalculate.

The tag data is recalculated. After the manual recalculation begins, the collector recovers data of the

selected tags data from the collector, and sends it to Historian between the start time and end time.

At the time of recovery, if the connection to server is lost, and if the reconnect mechanism is enabled, the

collector will try to connect to the server and fetch the data once connection re-establishes.

Manual Data Recovery
Assume that the collector is connected to Historian for the first time today and the archive was created

at 10 am. The user initiates manual recalculation from 1am to 2 am. For that time interval, the archives

were not even created. With respect to Historian, it is old unknown data and the data write fails. If there is

a data gap between 1am and 2 am, manual recalculation successfully fills the data gap.

Reconnect to the ODBC Server Automatically
You can reconnect to the ODBC server automatically as soon as the server is up and running. By default,

the collector polls for the server connection every 5 seconds. You can change this interval as well. The

collector is stopped until reconnected to the server.

Historian | 23 - The ODBC Collector | 2355

1. Access the following registry key: HKEY_LOCAL_MACHINE\SOFTWARE\GE Digital

\iHistorian\Services\ODBCCollector.

2. Create a DWORD named EnableReconnect.

3. Enter the decimal value 1.

4. If you want to change the reconnection interval (from the default value of 5 seconds):

a. Create a DWORD named ReconnectInterval.

b. Enter a decimal value between 5 and 60. This value represents the number of seconds for

the collector to wait before trying to reconnect to the ODBC server.

5. Select OK, then close the registry.

Troubleshooting the ODBC Collector
The ODBC collector generates logs during initialization, configuration, and general operation. By default,

you can find them in the general logging folder, C:\Proficy Historian Data\LogFiles.

Troubleshooting Tips

• Ensure that the ODBC server is running before the starting the ODBC collector.

• If the ODBC collector does not start automatically, refer to the Historian log file to view log entries

to determine the problem.

The ODBC Collector Cannot Connect to the ODBC Server

If you have provided incorrect ODBC server details (that is the server name, username, and password)

either in Historian Administrator or in the ODBC_Mapping.xml file, the ODBC collector cannot connect

with the OBDC server.

Workaround:

1. Delete the ODBC collector instance.

2. Provide values for the following properties in the registry key HKLM\Softwares\GE Digital

\iHistorian\Services\ODBCCollector:

◦ General1: ODBC server name

◦ General2: ODBC server username

◦ General3: ODBC server password

3. Ensure that the mapping file is configured correctly (on page 2349).

4. Restart the collector.

If this workaround is not successful, restart the collector instance.

Chapter 24. The OPC Classic DA Collector

Overview of the OPC Classic DA Collector
The OPC Classic Data Access (DA) collector collects data from any OPC 1.0 or OPC 2.0 compliant OPC

server (such as CIMPLICITY). The collector automatically determines the capability of the OPC server to

which it is connected and supports appropriate features based on this information.

Features:

• You can browse the source for tags and their attributes on an OPC server that supports browsing.

• Both the polled and unsolicited data collection are supported; when changes to the OPC source

tags are detected, they are sent to the Historian server. Unsolicited data collection is supported for

OPC 2.0 only. The minimum poll interval is 100ms. The collector duplicates raw samples from the

OPC server into the Historian data archive.

For unsolicited data collection, if collector compression is disabled, all new values produce an

exception. And, the deadband percentage is determined by the collector deadband percent. You

can only configure the collector deadband percent by enabling compression.

• The supported timestamp resolution is 1ms.

• Floating point, integer, binary, and string data are supported.

• Python expression tags are supported.

• Device timestamps are accepted.

Supported data types:

The OPC Data Type Recommended Data Type in Historian

I1 - 16 bit signed integer Single Integer

I4 - 32 bit signed integer Double Integer

R4 - 32 bit float Single Float

R8 - 64 bit double float Double Float

UI2 - 16 bit unsigned single integer Unsigned Single Integer

UI4 - 32 bit unsigned double integer Unsigned Double Integer

UI8 - 64 bit unsigned quad integer Unsigned Quad Integer

I8 - 64 bit quad integer Quad Integer

Historian | 24 - The OPC Classic DA Collector | 2357

The OPC Data Type Recommended Data Type in Historian

BSTR Variable String

BOOL Boolean

I1 - 8 bit single integer Byte

Note:

The collector requests data from the OPC server in the native data type. Then the collector

converts the received value to a Historian Data Type before sending it to the data archiver.

Supported tag attributes:

• Tagname

• Source Address

• Engineering Unit Description

• Data Type

• Hi Engineering Units

• Lo Engineering Units

• Is Array Tag

The Engineering Unit Description, Hi Engineering Units and Lo Engineering Units vary based on the OPC

server vendor.

Note:

While some of these attributes are queried on a browse, they are not shown in the browse

interface. These attributes are used when adding a tag, but it is not visible to you if all attributes

come from the server or not.

Configuration

Add and Configure an OPC Classic Data Access Collector

The OPC Classic Data Access (DA) collector collects data from any OPC 1.0 or OPC 2.0 compliant OPC

Classic server. For more information, refer to Overview of the OPC Classic DA Collector (on page 2356).

Historian | 24 - The OPC Classic DA Collector | 2358

This topic describes how to add a collector instance using Configuration Hub. You can also add a

collector instance using the RemoteCollectorConfigurator utility (on page 797), which does not require you

to install Web-based Clients.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors in the default system appears.

3. In the upper-right corner of the main section, select .

The Add Collector Instance: <system name> window appears, displaying the Collector Selection

section. The MACHINE NAME field contains a list of machines on which you have installed

collectors.

4. In the MACHINE NAME field, select the machine in which you want to add a collector instance.

5. In the COLLECTOR TYPE field, select OPC Collector, and then select Get Details.

The INSTALLATION DRIVE and DATA DIRECTORY fields are disabled and populated.

6. Select Next.

The Source Configuration section appears.

7. Enter values as described in the following table.

Field Description

OPC SERVER Select the machine on which you have installed

the OPC Classic DA server from which you want

to collect data.

Historian | 24 - The OPC Classic DA Collector | 2359

Field Description

MACHINE NAME Enter the host name or IP address of the OPC

server. This field appears only if you have se

lected a remote OPC server. A value is required.

OPC DA SERVER PROG ID Enter the prog ID of the OPC server. This field

appears only if you have selected a remote OPC

server. A value is required.

8. Select Next.

The Destination Configuration section appears. The collector machine name provided by you is

selected as the Source Configuration by default.

Under CHOOSE DESTINATION, the Historian Server option is selected by default. In addition, the

DESTINATION HISTORIAN SERVER field is disabled and populated with the collector machine

name.

9. Select the destination to which you want to send data, and then enter the values in the

corresponding fields. You can send data to an on-premises Historian server or to a cloud

destination.

a. If you need to send data to a cloud destination, select the cloud destinations as needed.

▪ Predix Timeseries- Select this if you need to send data to Predix cloud. For more

information, refer to Predix Cloud (on page 621).

▪ Azure IoT Hub- Select this if you need to send data to Azure Cloud in KairosDB

format. For more information, refer to Azure IoT Hub (KairosDB format) (on page

608).

▪ MQTT- Select this if you need to send data to any of the following cloud destination.

▪ Alibaba cloud. For more information, refer to Alibaba Cloud (on page 587).

▪ AWS cloud. For more information, refer to AWS Cloud (on page 594).

▪ Google cloud. For more information, refer to Google Cloud (on page 614).

b. If you need to send data to an on-premises Historian server, select Historian Server.

If you created security groups or enabled a strict client/collector authentication, enter the

USERNAME and PASSWORD of the on-premises Historian server that you created during the

installation of the collector.

Historian | 24 - The OPC Classic DA Collector | 2360

If you entered the USERNAMEand PASSWORD, select Test Connection. This will help you to

test if the Historian server that you are trying to connect is valid or if the credentials that you

entered are valid.

If the entered credentials are valid, a successful connection message appears.

10. Select Next.

The Collector Initiation section appears. The COLLECTOR NAME field is populated with a value in

the following format: <system name>_OPC_<OPC server name>

11. If needed, modify the value in the COLLECTOR NAME field.

The value that you enter:

◦ Must be unique.

◦ Must not exceed 15 characters.

◦ Must not contain a space.

◦ Must not contain special characters except a hyphen, period, and an underscore.

12. In the RUNNING MODE field, select one of the following options.

◦ Service - Local System Account: Select this option if you want to run the collector as a

Windows service using the credentials of the local user (that is, the currently logged-in user).

By default this option is selected, and the USERNAME and PASSWORD fields are disabled.

◦ Service Under Specific User Account: Select this option if you want to run the collector as

a Windows service using a specific user account. If you select this option, you must enter

values in the USERNAME and PASSWORD fields.

If you have enabled the Enforce Strict Collector Authentication option in Historian

Administrator, you must provide the credentials of a user who is added to at least one of the

following security groups:

▪ iH Security Admins

▪ iH Collector Admins

▪ iH Tag Admins

You can also configure the collector to start automatically when you start the computer.

13. Select Add.

The collector instance is added. The fields specific to the collector section appear in the DETAILS

section.

14. Under COLLECTOR SPECIFIC CONFIGURATION, configure values as described in the following

table.

Historian | 24 - The OPC Classic DA Collector | 2361

Field Description

OPC Server Prog ID The program ID of the OPC server from which you want to

collect data.

Read Mode The read mode that you want the collector to use. For in

formation, refer to the documentation of the OPC server

that you are using or the OPC specification on the OPC

Foundation website.

First Browse Criteria A comma-separated first-level search criterion for brows

ing tags from the data source. The top-level and sec

ond-level criteria are used together by the AND operation

to browse tags.

For example, if you enter USGB014 in the First Browse Cri

teria field and F_CV, B_CUALM in the Second Browse Crite

ria field, it returns all the tags that contain:

◦ USGB014

-and-

◦ F_CV or B_CUALM

Second Browse Criteria A comma-separated second-level search criterion for

browsing tags from the data source. The top-level and

second-level criteria are used together by the AND opera

tion to browse tags.

Threading Model The type of the threading model selected for the collec

tor. The model selected must match the threading model

of the OPC server.

◦ Multithreaded: Select this option for better perfor

mance. We recommend that you configure your

collector to use the default multi-threading model.

◦ Apparent: Select this option for best compatibili

ty. Some OPC servers do not work well with mul

ti-threading. If you experience problems running

your collector with multi-threading, use the apart

ment model.

Historian | 24 - The OPC Classic DA Collector | 2362

Field Description

The default setting is multi-threaded. For information, re

fer to the documentation of the OPC server you are using.

Configuration Changes Indicates whether the collector configuration changes are

processed in real time or after restarting the collector.

◦ Made On-Line: Select this option to process any

configuration changes immediately (after 30 sec

onds) after you select the Update button.

Note:

▪ Some OPC servers cannot handle

processing configuration changes

online. If you experience any insta

bility with changes made online,

use the next option.

◦ Made After Collector Restart: Select this option to

hold all configuration changes until you manually

restart the collector.

MTLS Security Indicates whether you want to use Mutual TLS (MTLS)

protocol to enforce a secure and strong authentication

mechanism.

MTLS Data Encryption Indicates whether you want to encrypt the data that the

collector shares to the data archiver (DA).

For more information on how to enable MTLS Security, refer to Enable MTLS Security (on page

632).

15. As needed, enter values in the other sections common to all collectors (on page 579).

16. In the upper-left corner of the page, select Save.

Historian | 24 - The OPC Classic DA Collector | 2363

The changes to the collector instance are saved.

17. If needed, restart the collector.

Specify the tags whose data you want to collect using the collector. In the CHOOSE CONFIGURATION

field,

• If you have selected Historian Configuration, specify the tags for data collection (on page 357).

• If you have selected Offline Configuration, modify the offline configuration file of the collector.

By default, the file is available in the following location: <installation folder of

Historian>\GE Digital\<collector name>. For information, refer to Offline Configuration

for Collectors (on page 2039). This option is applicable only if you have selected a cloud

destination.

Configure the OPC Classic DA Collector Using Historian Administrator

1. Access Historian Administrator (on page 823).

2. Select Collectors, and then select the OPC Classic DA collector instance that you want to

configure.

3. Select Configuration.

The Configuration section appears.

Historian | 24 - The OPC Classic DA Collector | 2364

4. Enter values as specified in the following table.

Field Description

OPC Server Prog ID The program ID of the OPC server from which you want to col

lect data.

Read Mode The read mode that you want the collector to use. For informa

tion, refer to the documentation of the OPC server that you are

using or the OPC specification on the OPC Foundation website.

First Browse Criteria A comma-separated first-level search criterion for browsing

tags from the data source. The top-level and second-level crite

ria are used together by the AND operation to browse tags.

For example, if you enter USGB014 in the First Browse Criteria

field and F_CV, B_CUALM in the Second Browse Criteria field, it re

turns all the tags that contain:

Historian | 24 - The OPC Classic DA Collector | 2365

Field Description

◦ USGB014

-and-

◦ F_CV or B_CUALM

Second Browse Criteria A comma-separated second-level search criterion for browsing

tags from the data source. The top-level and second-level crite

ria are used together by the AND operation to browse tags.

Threading Model The type of the threading model selected for the collector. The

model selected must match the threading model of the OPC

server.

◦ Multithreaded: Select this option for better performance.

We recommend that you configure your collector to use

the default multi-threading model.

◦ Apparent: Select this option for best compatibility. Some

OPC servers do not work well with multi-threading. If you

experience problems running your collector with mul

ti-threading, use the apartment model.

The default setting is multi-threaded. For information, refer to

the documentation of the OPC server you are using.

Configuration Changes Indicates whether the collector configuration changes are

processed in real time or after restarting the collector.

◦ Made On-Line: Select this option to process any configu

ration changes immediately (after 30 seconds) after you

select the Update button.

Note:

▪ Some OPC servers cannot handle pro

cessing configuration changes online.

If you experience any instability with

changes made online, use the next option.

◦ Made After Collector Restart: Select this option to hold

all configuration changes until you manually restart the

collector.

Historian | 24 - The OPC Classic DA Collector | 2366

Field Description

Note:

Starting and stopping the collector in the Gen

eral section of the Collector Maintenance page

of Historian Administrator does not constitute a

manual restart. You must either start and stop

the collector from the Services window or the

console application.

To allow configuration changes, you also must enable the On-

Line Tag Configuration Changes option on the Advanced sec

tion of the Collector Maintenance page of Historian Administra

tor.

5. Select Update.

6. Restart the collector.

The collector is configured.

Configure GE Intelligent Platform Drivers and Deadbands
If you want to add items of different data types to Historian using the OPC Classic DA collector to a GE

Intelligent Platform v7.x driver or an OPC server, and you are using deadbands, you must manually modify

the source address for each item you add. This is to specify the engineering unit (EGU) range for that

item.

1. Access Historian Administrator.

2. Select Tag Maintenance , and then select the item that you want to modify.

3. Select Collection.

4. In the Source Address field, add the following fields:|

SIGNALCONDITIONING,LOWEGU,HIGHEGU,HARDWAREOPTIONS

5. Repeat the steps for each item that you want to modify. If, however, you want all the items to

use the same data type, change the settings of the following registry key: \\HKEY_LOCAL_MACHINE

\SOFTWARE\In-tellution\Drivers\SI7\OPC\ItemDefaults. These values apply to all items not

specified by the source address after you restart the driver.

Historian | 24 - The OPC Classic DA Collector | 2367

Using Deadbands with the SI7 Driver

When you use the SI7 driver, it sets the global default values for EGU limits used for deadband

calculations to the following values:

• 1 Lo EGU = 0

• 1 Hi EGU = 65535

• 1 EGU Span = Hi EGU - Lo EGU = 65535

You may want change the default values for this driver if the items that you add use data types other than

Integer (such as Float).

If, however, you want all the items to use the same data type, change the settings for HiEGU and LoEGU for

the following registry key: \\HKEY_LOCAL_MACHINE\SOFTWARE\In-tellution\Drivers\SI7\OPC\ItemDefaults.

These values apply to all items not specified by the source address after you restart the driver.

Specifying Tags for Data Collection

Add Tags for the Data Store Using Configuration Hub

• Add the collector instance (on page 357) using which you want to collect data. Ensure that the

collector is running.

• By default, the tag data is stored in the user data store, which is created automatically when you

set up Configuration Hub. If, however, you want to store the data in a different data store, create it

(on page 370).

This topic describes how to specify the tags for which you want to collect data by browsing through the

tags in the data source. For example, for an iFIX collector, if there are 1,00,000 tags in the iFIX server, you

must specify the ones for which you want to collect data. Only then data is collected for those tags.

In addition to adding tags from the data source, you can create tags manually (on page 473).

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

3. Select .

Historian | 24 - The OPC Classic DA Collector | 2368

The Add Tag-<system name> page appears. The Add Tags from Collector option is selected by

default.

4. Enter values as described in the following table.

Field Description

COLLECTOR NAME Select the collector instance that you want to use to collect da

ta. A value is required.

COLLECTED TYPE Specify whether you want to browse through all the tags in the

data source or only from the tags that you have not added yet. A

value is required.

SOURCE TAG NAME Enter the name of the tag (either completely or partially) to nar

row down the search results.

SOURCE TAG DESCRIPTION Enter the description of the tag (either completely or partially) to

narrow down the search results.

5. Select Search Tags.

A list of tags that match all the criteria that you have specified appears. If a tag is already added, it

is disabled.

6. Select the check box corresponding to each tag for which you want to collect data.

Historian | 24 - The OPC Classic DA Collector | 2369

7. In the DATA STORE field, if you want to store the data in a different data store than the user data

store, select the same.

8. Select Add Tag.

Data collection begins for the selected tags.

As needed, configure each tag by providing values for the tag properties. For information on the delta

query modes, refer to Counter Delta Queries.

Specify Tags for Data Collection Using Historian Administrator

If your OPC server supports hierarchical organization of tags in a tree structure, you can use the hierarchy

to browse for tags and add them to the collector for data collection.

1. Access Historian Administrator.

2. Select Collectors, and then select the OPC Classic DA collector instance to which you want to add

tags.

A hierarchical view of tags appears in the Browse Results section.

3. If you want to view only the tags for which data is not collected, in the Show Only field, select

Source Tags Not Collected. You can search for a tag by entering search criteria in the Source Tag

Name or Description field.

Historian | 24 - The OPC Classic DA Collector | 2370

4. If you want to search by a tag name or description, enter the value in the Source Tag Name or

Description field.

5. Navigate to the node in the tree you want to browse, and then select Browse.

Tip:

◦ To browse automatically, select the Auto Browse check box. The available tags

appear in the Browse Results window whenever a node is selected in the tree.

◦ To show all child elements within a hierarchy, select the Show All Children check

box. All tags at or below the hierarchical level of the selected node in the tree

appear in the Browse Results window.

The tags within the selected portion of the OPC server tag hierarchy appear.

◦ Some OPC servers do not support data blocks with a length greater than 1. These servers

display only the first item in an array instead of showing all of them. For example, an OPC

server may contain 3000 analog values from datablock:1 to datablock:3000, but only

datablock:1 is displayed.

◦ If you want to archive data from poll records of a length greater than 1, we recommend

that you use the Excel Add-In for Historian to configure a large block of tags (including the

missing items), and then add the tags.

◦ If you are unable to browse items containing a forward slash (/) in your OPC server, you

may have to change the default separator in the collector configuration. To do so, modify

the registry key HKEY_LOCAL_MACHINE\SOFTWARE\Intellution, Inc\iHistorian\Services

\OPCCollector\<collector interface name>\OPCBrowseTreeSep key, and change the string

value to a character not available in your OPC server item IDs. Typical values include |, !, or &.

Create this key if it does not exist.

◦ If you are cannot browse readable items in your OPC server, you may need to

change the browse access mask used by the collector. To do so, modify the

registry key [HKEY_LOCAL_MACHINE\SOFTWARE\Intellution, Inc.\iHistorian

\Services\OPCCollector\<collector interface name>, and add the DWORD key

"OPCBrowseAccessRightsMask"=dword:00000003. Valid values are 0, 1, 2, 3 with 1 being the

default. Use 0 or 3 if you are unable to browse readable items. Creating or changing the

value takes effect on the next browse attempt and does not require a collector restart.

◦ Some items such as unsupported data types and user-defined items in simulation servers

may not be returned when you browse for tags. However, sometimes, even the items that do

not appear in the search results can be added using the Add Tag Manually button.

Historian | 24 - The OPC Classic DA Collector | 2371

6. Select the tags for which you want to collect data, and then select Add Selected Tags. Collected

tags will appear in black in the tag list.

The tags are added to the collector. They appear in black text in the list of tags.

OPC Group Creation
It is recommended that you limit the number of OPC groups created by the Historian system to increase

performance. To limit the number of OPC groups created on the OPC server, consider grouping Historian

tags (collected by the OPC collector) using the least amount of collection intervals possible.

Troubleshooting the OPC Classic DA Collector
Troubleshooting Tips

When reviewing the OPC Classic DA collector log file, or the log messages from Event Viewer:

• If you notice a message that states that Historian could not create the buffer files, then the issue is

most likely that you do not have enough free space available for the buffer files.

• If you notice the OPC Classic DA collector connection attempt, a COM initialization attempt, and

then a shutdown, the cause of the error is most likely that the collector is trying to start before the

OPC server fully starts.

• If you look at the log files and you do not see anything special, aside from a startup attempt and

a shutdown message, then begin by assuming that the OPC server is not fully starting. If the

workaround for that issue does not appear to work, try adjusting the buffer size.

Issue: The Collector Fails to Start

Possible Causes:

• There is not enough free space for the collector to create its buffer files on startup.

• Historian is trying to run the OPC Collector before the OPC Server fully starts.

Try the workarounds in the following sections.

Issue: Not Enough Space for Buffer Files

Workaround: Try one of the following options:

• Free up the disk space.

• Move the buffer files to a different location.

Historian | 24 - The OPC Classic DA Collector | 2372

• Change the buffer size by adding a DWORD MinimumDiskFreeBufferSize in the registry under

HKEY_LOCAL_MACHINE\SOFTWARE\Intellution, Inc.\iHistorian\Services

\OPCCollector\<collector interface name>. We recommend setting it to 10 or 20 MB.

After you save your changes, restart your machine.

Issue: The Collector does not Connect to the Historian Server

Workaround: Check the Logfiles folder on the collector machine. If the log file specifies "could not

create buffer files", repeat the workaround in the previous issue.

Issue: The Collector Tries to Start Before the OPC Server Starts

Workaround: Specify a time delay for the collector to start. To do so, add a DWORD named

MachineUpTimeDelay in the registry under HKEY_LOCAL_MACHINE\SOFTWARE\Intellution, Inc.

\iHistorian\Services\OPCCollector\<collector interface name>. We recommend that

you set its value to 120 seconds first, and restart the collector. If the problem still exists, try increasing the

value slightly until the issue is resolved.

Issue: The Collector Becomes Unresponsive After the First Polled Read

Workaround: If the polled reads take more than a few seconds to start:

1. Create a DWORD named OPCFirstReadMode in the registry under HKEY_LOCAL_MACHINE

\SOFTWARE\Intellution, Inc.\iHistorian\Services\OPCCollector\<collector

interface name>.

2. Provide one of the following values:

◦ 1: Use this value if you want the collector to perform the faster OPC_DS_CACHE read on the first

poll.

◦ 2: Use this value if you want the collector to perform the slower OPC_ DS_DEVICE read.

3. Restart the collector.

Validating Items Before Adding to Polled Collection Group

To validate items before adding them to the polled collection groups from the collector, create a DWORD

named OPCValidateBeforeAdd in the registry under HKEY_LOCAL_MACHINE\SOFTWARE\Intellution,

Inc.\iHistorian\Services\OPCCollector\<collector interface name>, and set the value

to 1.

Issues with Browsing for Tags

Workaround:

Historian | 24 - The OPC Classic DA Collector | 2373

• Some OPC servers do not support data blocks with a length greater than 1. These servers display

only the first item in an array instead of showing all of them. For example, an OPC server may

contain 3000 analog values from datablock:1 to datablock:3000, but only datablock:1 is displayed.

• If you want to archive data from poll records of a length greater than 1, we recommend that you

use the Excel Add-In for Historian to configure a large block of tags (including the missing items),

and then add the tags.

• If you are unable to browse items containing a forward slash (/) in your OPC server, you may have

to change the default separator in the collector configuration. To do so, modify the registry key

HKEY_LOCAL_MACHINE\SOFTWARE\Intellution, Inc\iHistorian\Services\OPCCollector\<collector

interface name>\OPCBrowseTreeSep key, and change the string value to a character not available in

your OPC server item IDs. Typical values include |, !, or &. Create this key if it does not exist.

• If you are cannot browse readable items in your OPC server, you may need to change the browse

access mask used by the collector. To do so, modify the registry key [HKEY_LOCAL_MACHINE\SOFTWARE

\Intellution, Inc.\iHistorian\Services\OPCCollector\<collector interface name>, and add the

DWORD key "OPCBrowseAccessRightsMask"=dword:00000003. Valid values are 0, 1, 2, 3 with 1 being

the default. Use 0 or 3 if you are unable to browse readable items. Creating or changing the value

takes effect on the next browse attempt and does not require a collector restart.

• Some items such as unsupported data types and user-defined items in simulation servers may not

be returned when you browse for tags. However, sometimes, even the items that do not appear in

the search results can be added using the Add Tag Manually button.

• If you connect the collector to a Kepware Redundancy Master with both primary and secondary

servers using Industrial Gateway Server (IGS) that share the same channel, device, and tags:

◦ After creating a tag in Historian, if you modify the tag’s source address, the tag will be

considered invalid until the collector is restarted; data is not updated for the tag and the

quality is not set to bad.

◦ Always restart the Redundancy Master service before restarting the collector.

◦ If you add IGS tags to Historian, you cannot delete them in IGS. If you try to do so, the

following error message appears in IGS: Rejecting attempt to delete reference object.

To avoid this error, first delete the tags in Historian, and then delete the device in IGS.

◦ If you cannot browse IGS for tags, restart the collector.

Chapter 25. The OPC Classic HDA Collector

Overview of the OPC Classic HDA Collector
The OPC Classic Historical Data Access (HDA) collector collects data from any OPC HDA 1.2 - compliant

OPC server (such as CIMPLICITY). The collector automatically determines the capability of the OPC

server to which it is connected and supports the appropriate features based on this information.

Topology:

The OPC Classic HDA collector and the OPC Classic HDA server support remote connectivity. If the OPC

Classic HDA server and the OPC Classic HDA collector are on different machines, ensure that:

• The DCOM setting is provided for both the server and collector machines.

• Before starting the collector, ensure that NT AUTHORITY/SYSTEM has SysAdmin privileges.

Features:

• You can browse the source for tags and their attributes on an OPC server that supports browsing.

• Only unsolicited data collection is supported; when changes to the OPC source tags are detected,

they are sent to the Historian server. The minimum poll interval is 100ms. The collector duplicates

raw samples from the OPC server into the Historian data archive.

For unsolicited data collection, if collector compression is disabled, all new values produce an

exception. And, the deadband percentage is determined by the collector deadband percent. You

can only configure the collector deadband percent by enabling compression.

Note:

You must set the Time Assigned by field to Source if you have unsolicited tags getting data

from an OPC Classic HDA collector.

• The supported timestamp resolution is 1ms.

• Floating point, integer, binary, and string data are supported.

• Device timestamps are accepted.

Supported data types:

Historian | 25 - The OPC Classic HDA Collector | 2375

The OPC Data Type
Recommended Da

ta Type in Historian

I1- 16 bit signed integer Single Integer

I4- 32 bit signed integer Double Integer

R8- 64 bit double float Single Float

UI2- 16 bit unsigned single integer Double Float

UI4- 32 bit unsigned double integer Unsigned Integer

UI8- 64 bit unsigned quad integer Unsigned Double Integer

I8- 64 bit quad integer Quad Integer

BSTR Variable Sting

BOOL Boolean

I1- 8 bit single integer Byte

Note:

The OPC Classic HDA collector requests data from the OPC Classic HDA server in the native data

type. The OPC Classic HDA collector then converts the received value to a Historian Data Type

before sending it to the data archiver.

Supported tag attributes:

• Tagname

• Source Address

• Engineering Unit Description

• Data Type

• Hi Engineering Units

• Lo Engineering Units

• Is Array Tag

The Engineering Unit Description, Hi Engineering Units and Lo Engineering Units vary based on the OPC

server vendor.

Historian | 25 - The OPC Classic HDA Collector | 2376

Note:

While some of these attributes are queried on a browse, they are not shown in the browse

interface. These attributes are used when adding a tag, but it is not visible to you if all attributes

come from the server or not.

Configuration

Add and Configure an OPC Classic HDA Collector

The OPC Classic Historical Data Access (HDA) collector collects data from any OPC HDA 1.2 - compliant

OPC Classic HDA server. For more information, refer to Configure the OPC Classic HDA Collector Using

Historian Administrator (on page 2380).

This topic describes how to add a collector instance using Configuration Hub. You can also add a

collector instance using the RemoteCollectorConfigurator utility (on page 797), which does not require you

to install Web-based Clients.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

3. In the upper-right corner of the main section, select .

The Add Collector Instance: <system name> window appears, displaying the Collector Selection

section. The MACHINE NAME field contains a list of machines on which you have installed

collectors.

4. In the MACHINE NAME field, select the machine in which you want to add a collector instance.

Historian | 25 - The OPC Classic HDA Collector | 2377

5. In the COLLECTOR TYPE field, select OPC HDA Collector, and then select Get Details.

The INSTALLATION DRIVE and DATA DIRECTORY fields are disabled and populated.

6. Select Next.

The Source Configuration section appears.

7. Enter values as described in the following table.

Field Description

OPC HDA SERVER Select the machine on which you have installed

the OPC Classic HDA server from which you

want to collect data.

MACHINE NAME Enter the host name or IP address of the OPC

server. This field appears only if you have se

lected a remote OPC server. A value is required.

OPC DA SERVER PROG ID Enter the prog ID of the OPC server. This field

appears only if you have selected a remote OPC

server. A value is required.

8. Select Next.

The Destination Configuration section appears. The collector machine name provided by you is

selected as the Source Configuration by default.

Under CHOOSE DESTINATION, the Historian Server option is selected by default. In addition, the

DESTINATION HISTORIAN SERVER field is disabled and populated with the collector machine

name.

9. Select the destination to which you want to send data, and then enter the values in the

corresponding fields. You can send data to an on-premises Historian server or to a cloud

destination.

a. If you need to send data to a cloud destination, select the cloud destinations as needed.

▪ Predix Timeseries- Select this if you need to send data to Predix cloud. For more

information, refer to Predix Cloud (on page 621).

▪ Azure IoT Hub- Select this if you need to send data to Azure Cloud in KairosDB

format. For more information, refer to Azure IoT Hub (KairosDB format) (on page

608).

▪ MQTT- Select this if you need to send data to any of the following cloud destination.

Historian | 25 - The OPC Classic HDA Collector | 2378

▪ Alibaba cloud. For more information, refer to Alibaba Cloud (on page 587).

▪ AWS cloud. For more information, refer to AWS Cloud (on page 594).

▪ Google cloud. For more information, refer to Google Cloud (on page 614).

b. If you need to send data to an on-premises Historian server, select Historian Server.

If you created security groups or enabled a strict client/collector authentication, enter the

USERNAME and PASSWORD of the on-premises Historian server that you created during the

installation of the collector.

If you entered the USERNAMEand PASSWORD, select Test Connection. This will help you to

test if the Historian server that you are trying to connect is valid or if the credentials that you

entered are valid.

If the entered credentials are valid, a successful connection message appears.

10. Select Next.

The Collector Initiation section appears.

11. If needed, modify the value in the COLLECTOR NAME field.

The value that you enter:

◦ Must be unique.

◦ Must contain the string OPCHDA.

◦ Must not exceed 15 characters.

◦ Must not contain a space.

◦ Must not contain special characters except a hyphen, period, and an underscore.

12. In the RUNNING MODE field, select one of the following options.

◦ Service - Local System Account: Select this option if you want to run the collector as a

Windows service using the credentials of the local user (that is, the currently logged-in user).

By default, this option is selected, and the USERNAME and PASSWORD fields are disabled.

◦ Service Under Specific User Account: Select this option if you want to run the collector as

a Windows service using a specific user account. If you select this option, you must enter

values in the USERNAME and PASSWORD fields.

If you have enabled the Enforce Strict Collector Authentication option in Historian

Administrator, you must provide the credentials of a user who is added to at least one of the

following security groups:

▪ iH Security Admins

▪ iH Collector Admins

▪ iH Tag Admins

You can also configure the collector to start automatically when you start the computer.

13. Select Add.

Historian | 25 - The OPC Classic HDA Collector | 2379

The collector instance is added. The fields specific to the collector section appear in the DETAILS

section.

14. As needed, under COLLECTOR SPECIFIC CONFIGURATION, configure values as described in the

following table.

Field Description

Recovery Time It indicates the maximum time, in hours, for

which the collector will attempt to recover da

ta after the collector is started or when connec

tion between the collector and the OPC server

is re-established. This time is calculated as the

duration between the current time and the last

known write time.

Continuous data collection is resumed only af

ter the previous data has been recovered.

You can enter a value between 1 and 150.

MTLS Security Indicates whether you want to use Mutual TLS

(MTLS) protocol to enforce a secure and strong

authentication mechanism.

MTLS Data Encryption Indicates whether you want to encrypt the da

ta that the collector shares to the data archiver

(DA).

For more information on how to enable MTLS Security, refer to Enable MTLS Security (on page

632).

15. As needed, enter values in the other sections common to all collectors (on page 579).

16. In the upper-left corner of the page, select Save.

Historian | 25 - The OPC Classic HDA Collector | 2380

The changes to the collector instance are saved.

17. If needed, restart the collector.

Specify the tags whose data you want to collect using the collector. In the CHOOSE CONFIGURATION

field,

• If you have selected Historian Configuration, specify the tags using Configuration Hub (on page

357).

• If you have selected Offline Configuration, modify the offline configuration file of the collector.

By default, the file is available in the following location: <installation folder of

Historian>\GE Digital\<collector name>. For information, refer to Offline Configuration

for Collectors (on page 2039). This option is applicable only if you have selected a cloud

destination.

Configure the OPC Classic HDA Collector Using Historian Administrator

1. Access Historian Administrator (on page 823).

2. Select Collectors, and then select the OPC Classic HDA collector instance that you want to

configure.

3. Select Configuration.

The Configuration section appears.

Historian | 25 - The OPC Classic HDA Collector | 2381

4. Enter values as specified in the following table.

Field Description

OPC HDA Server The program ID of the OPC server from which you want to

collect data.

Recovery Time The maximum time, in hours, for which the collector will

attempt to recover data after the collector is started or

when connection between the collector and the OPC serv

er is re-established. This time is calculated as the dura

tion between the current time and the last known write

time.

Historian | 25 - The OPC Classic HDA Collector | 2382

Field Description

Continuous data collection is resumed only after the pre

vious data has been recovered.

You can enter a value between 1 and 150.

5. Select Update.

6. Restart the collector.

The collector is configured.

Specifying Tags for Data Collection

Add Tags for the Data Store Using Configuration Hub

• Add the collector instance (on page 357) using which you want to collect data. Ensure that the

collector is running.

• By default, the tag data is stored in the user data store, which is created automatically when you

set up Configuration Hub. If, however, you want to store the data in a different data store, create it

(on page 370).

This topic describes how to specify the tags for which you want to collect data by browsing through the

tags in the data source. For example, for an iFIX collector, if there are 1,00,000 tags in the iFIX server, you

must specify the ones for which you want to collect data. Only then data is collected for those tags.

In addition to adding tags from the data source, you can create tags manually (on page 473).

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

3. Select .

Historian | 25 - The OPC Classic HDA Collector | 2383

The Add Tag-<system name> page appears. The Add Tags from Collector option is selected by

default.

4. Enter values as described in the following table.

Field Description

COLLECTOR NAME Select the collector instance that you want to use to collect da

ta. A value is required.

COLLECTED TYPE Specify whether you want to browse through all the tags in the

data source or only from the tags that you have not added yet. A

value is required.

SOURCE TAG NAME Enter the name of the tag (either completely or partially) to nar

row down the search results.

SOURCE TAG DESCRIPTION Enter the description of the tag (either completely or partially) to

narrow down the search results.

5. Select Search Tags.

A list of tags that match all the criteria that you have specified appears. If a tag is already added, it

is disabled.

6. Select the check box corresponding to each tag for which you want to collect data.

Historian | 25 - The OPC Classic HDA Collector | 2384

7. In the DATA STORE field, if you want to store the data in a different data store than the user data

store, select the same.

8. Select Add Tag.

Data collection begins for the selected tags.

As needed, configure each tag by providing values for the tag properties. For information on the delta

query modes, refer to Counter Delta Queries.

Specify the Tags for Data Collection Using Historian Administrator

If your OPC server supports hierarchical organization of tags in a tree structure, you can use the hierarchy

to browse for tags and add them to the collector for data collection.

1. Access Historian Administrator.

2. Select Collectors, and then select the OPC Classic HDA collector instance to which you want to

add tags.

3. Select Configuration.

The Configuration section appears.

Historian | 25 - The OPC Classic HDA Collector | 2385

4. Select Add Tags.

The Add Multiple Tags from Collector window appears.

Historian | 25 - The OPC Classic HDA Collector | 2386

5. In the Collector field, select the OPC Classic HDA collector to which you want to add tags.

A hierarchical tree of tags appears in the Browse Results section.

6. If you want to view only the tags for which data is not collected, in the Show Only field, select

Source Tags Not Collected. You can search for a tag by entering search criteria in the Source Tag

Name or Description field.

7. Navigate to the node in the tree that you want to browse, and then select Browse.

Tip:

◦ To browse automatically, select the Auto Browse check box. The available tags

appear in the Browse Results window whenever a node is selected in the tree.

◦ To show all child elements within a hierarchy, select the Show All Children check

box. All tags at or below the hierarchical level of the selected node in the tree

appear in the Browse Results window.

The tags within the selected portion of the OPC Classic HDA server tag hierarchy appear.

8. Select the tags for which you want to collect data, and then select Add Selected Tags.

The tags are added to the collector. They appear in black text in the list of tags.

Historian | 25 - The OPC Classic HDA Collector | 2387

Data Recovery

Note:

We recommend that the collector for which the data recovery is intended is in the same time zone

as the server. If there is a mismatch, there is a possibility that data recovery will be incomplete.

Automatic Data Recovery

In this mode, data is automatically recovered since the last time data has been collected.

How it works:

1. The collector determines the duration between the current time and the last time data has been

written to the Historian data archive, which is stored in the LastSampleWriteTime registry key.

2. It compares this duration with the value in the Recovery Time field specified in the collector

settings (on page 2347).

3. It uses the shorter duration to perform a raw data query on all the tags.

4. It then processes the returned samples in chronological order.

For example, if the collector was stopped for 8 hours, but Max Recovery Time was 4 hours, only 4 hours of

data would be recovered.

As per the recovery logic, an end-of-collection marker is placed at the point in time where the collector

was stopped. This end-of-collection marker may or may not be there after the recovery is complete. As

part of the recovery logic, if recovery data point time matches the timestamp of the end-of-collection

marker, it is overwritten with the recovered good data.

Manual Data Recovery

In this mode, you can fill gaps in the data, but you cannot fill old data.

To perform a manual recovery:

1. Access Historian Administrator.

2. Select Collectors, and then select the OPC Classic HDA collector instance for which you want to

manually recover data.

3. Select Recalculate.

The Recalculate window appears.

Historian | 25 - The OPC Classic HDA Collector | 2388

4. Enter start time, end time, and other required information. We recommend that you choose small

time intervals to reduce the load on the server and the collector.

5. Select Recalculate.

The tag data is recalculated. After the manual recalculation begins, the collector recovers data of the

selected tags data from the collector, and sends it to Historian between the start time and end time.

At the time of recovery, if the connection to server is lost, and if the reconnect mechanism is enabled, the

collector will try to connect to the server and fetch the data once connection re-establishes.

Manual Data Recovery
Assume that the collector is connected to Historian for the first time today and the archive was created

at 10 am. The user initiates manual recalculation from 1am to 2 am. For that time interval, the archives

were not even created. With respect to Historian, it is old unknown data and the data write fails. If there is

a data gap between 1am and 2 am, manual recalculation successfully fills the data gap.

Reconnect to the OPC HDA Server Automatically
You can reconnect to the OPC Classic HDA server automatically as soon as the server is up and running.

By default, the collector polls for the server connection every 5 seconds. You can change this interval as

well. The collector is stopped until reconnected to the server.

1. Access the following registry key: HKEY_LOCAL_MACHINE\SOFTWARE\GE Digital

\iHistorian\Services\OPCHDACollector.

2. Locate the Key created with the ProgID of the OPC Classic HDA server.

3. Create a DWORD named EnableOPCHDAReconnect.

4. Enter the decimal value 1.

5. If you want to change the reconnection interval (from the default value of 5 seconds):

a. Create a DWORD named ReconnectInterval.

b. Enter a decimal value between 5 and 60. This value represents the number of seconds for

the collector to wait before trying to reconnect to the OPC server.

6. Select OK, then close the registry.

Troubleshooting the OPC Classic HDA Collector
The OPC Classic HDA collector generates log files during initialization, configuration, and general

operation. By default, they are available in the following folder: C:\Proficy Historian Data

\LogFiles.

If you encounter issues with the collector:

Historian | 25 - The OPC Classic HDA Collector | 2389

• Verify that the OPC Classic HDA server is running before the OPC Classic HDA collector starts up.

• If the OPC Classic HDA collector does not start automatically, refer to the log file to identify the

issue.

• Enable the CreateOfflineArchives option in the destination Historian as the OPC Classic HDA

collector sends the old data.

Chapter 26. The OPC Classic Alarms and Events
Collector

About the OPC Classic Alarms and Events Collector
The OPC Classic Alarms and Events collector collects alarms and events data from an OPC Classic

Alarms and Events server (such as CIMPLICITY), and stores it alongside Historian process data.

The OPC Classic Alarms and Events collector does not support pre-processing raw data with Python

Expression Tags during collection.

About Event Types, Categories, and Conditions
The OPC Classic Alarms and Events collector captures all event types, categories, sub-categories, and

conditions sent to it by the OPC Alarms and Events server.

Event Types

Three basic types of events are sent by an OPC Alarms and Events server: Condition, Simple, and

Tracking. Each of these types has its own categories, sub-categories, and conditions. For example, a

Condition event may have a Level category, which itself may have several conditions, such as LO LO, LO,

HI, and HI HI.

Condition

Condition events record the transition of states in an alarm. For example, a condition event

could be recorded for an alarm when the level changes from LO to HI HI.

Tracking

Tracking events are not associated with conditions, but rather track activity between the

OPC Alarms and Events server and an OPC client. For example, if an operator acknowledges

an alarm, a tracking event is recorded.

Simple

Simple events record everything not covered by Condition or Tracking events. For example, if

a device were to fail, a simple event would be recorded.

Event Categories

Event categories are used to group similar event types and are configured on the OPC Alarms and Events

server. For example, you might set up categories for System Events, Process Events, and Batch Events.

Historian | 26 - The OPC Classic Alarms and Events Collector | 2391

You might likewise set up categories for different areas of your process, such as Premix, Dry Mix, or Bake.

Categories can hold multiple event types, and a given source can generate events for multiple categories.

Note:

Category names must be unique within the OPC Alarms and Events server.

Event Conditions

Conditions are named states of alarms and events within the OPC Alarms and Events server. Conditions

can include LO LO, LO, HI, and HI HI, as well as SYSTEM_FAILURE, LIMIT EXCEEDED, NORMAL STATE,

and others. Conditions may also contain sub-conditions, which help to narrow down the event conditions

further. Refer to your OPC server documentation for a complete listing of its conditions.

For more information, refer to your OPC server documentation.

About Event Attributes
Events usually also include attributes, which give greater detail to the status of the event. Attributes vary

from server to server; user-defined attributes as well as vendor-defined attributes may be configured on

your OPC Alarms and Events server.

Some common attributes are:

• Start time

• End time

• Acknowledgement status

• Acknowledgement time

• Operator name

• Data Source

• Quality

• Severity

Historian archives all event attributes sent to it by the OPC Alarms and Events server. Consult your OPC

Alarms and Events server documentation for more information.

Workflow for Using the OPC Alarms and Events Collector
To use the OPC Classic Alarms and Events collector, you must perform the following tasks.

Historian | 26 - The OPC Classic Alarms and Events Collector | 2392

Number Task Notes

1 Install the collector (on page

142).

This step is required. This will

place the collector binaries on

the machines.

2 Add an instance (on page 357)

of the OPC Classic Alarms and

Events collector.

This step is required.

3 Configure the general options

of the OPC Classic Alarms and

Events collector by accessing the

collector using Historian Admin

istrator.

This step is required.

4 Configure the collector-specif

ic options of the OPC Classic

Alarms and Events collector.

This step is required.

5 Specify the filtering options for

the alarms and events data (on

page 2393).

This step is required.

Configure the OPC Alarms and Events Collector
The following table provides the OPC Classic Alarms and Events collector-specific configuration fields.

1. Access Historian Administrator.

2. Access the OPC Classic Alarms and Events collector, and then select Configuration.

3. Provide values as specified in the following table.

Field Description

OPC

Server

PROGID

The PROGID of the OPC Alarms and Events server.

Link to

Data

Collec

tor

The data collector to link to the alarms and events. This allows you to join alarms and

events data with tag data when querying the Historian database for data. This is usually

located on the same server as the OPC Alarms and Events server.

Historian | 26 - The OPC Classic Alarms and Events Collector | 2393

Field Description

Filter

ing

Enables or disables filtering of the alarms and events data. For information, refer to Fil

ter Alarms and Events Data (on page 2393).

Show

Last

Alarms

Displays the last 10 collected alarms and events data points.

Close

Alarms

Opens the Close Alarms window.

Important:

Although the collector will function properly with no associated data collector, alarms and

events data will not be associated with tag data from the data collector if it is not specified

in this field. As a result, queries through the Excel Add-in or the OLE DB provider will not be

able to join tag and alarm data.

Filter Alarms and Events Data
By default, the OPC Classic Alarms and Events collector collects all the alarms and events data sent to

it, and archive it. This ensures that all your alarms and events data will be archived, without any special

configuration. If you archive all of your alarms and events data, it can impact the amount of storage

required for Historian to operate. Therefore, you may want to specify which alarms and events data you

want the OPC Classic Alarms and Events collector to collect. Alarms and Events filtering works on an

inclusive model. If filtering is not enabled, all the alarms and events data is collected. If filtering is enabled,

then data for only the selected alarms and events is collected.

This topic describes how to apply the various types of filters.

1. Access Historian Administrator.

2. Select Collectors.

3. Select the OPC Classic Alarms and Events collector instance that you want to configure.

4. Select Configuration.

5. In the Filtering section, select Enabled.

6. Select Filters.

7. Select the filter criterion as described in the following table.

Historian | 26 - The OPC Classic Alarms and Events Collector | 2394

Filtering Option Description Procedure

Severity range Includes alarms between a low

and high filter range. For exam

ple, filter alarms whose sever

ity range is between 100 and

200.

a. Select the Filter by

Severity Range check

box.

b. Enter a range of values

in the Collect From and

To boxes.

Event Type Include events based on a se

lected type (on page 2390).

a. Select the Filter by

Event Type check box.

b. Select the type of events

you want to filter.

Area Includes alarms and events

based a user-defined process

area. This is useful if you on

ly want to collect alarms from

specific process areas. This

option works only if you have

defined areas in the alarms

and events server.

a. Select the Filter by Area

check box.

b. Select Edit.

c. Select the areas by

which you want to filter,

and then select Copy.

To add an area manu

ally, enter the area you

want to filter by in the

Area box and select

Copy.

Source Includes alarms and events da

ta based on the alarm source.

This is useful if you only want

to collect alarms from specific

parts of your process.

a. Select the Filter by

Source check box.

b. Select Edit.

c. Select the sources using

which you want to filter,

and then select Copy.

To add a source man

ually, enter the source

you want to filter by in

the Source box and se

lect Copy.

Historian | 26 - The OPC Classic Alarms and Events Collector | 2395

Filtering Option Description Procedure

Event Category Includes events based on a

selected category (on page

2390).

a. Select the Filter by

Event Category check

box.

b. Select Edit.

c. In the Choose Event

Category box, select an

event category.

d. In the Categories Avail

able box, select the cat

egories using which you

want to filter data. To

add a category manu

ally, enter the category

you want to filter by in

the Category box, and

then select Copy.

Note:

You can filter alarms and events by the event category only if the Filter by Event Type

check box is selected for respective event category. For example, if you want to receive

only alarms, enable the Collect Condition Events option in Event Type, and add the Event

Category tag in the Filter by Event Category section. This is because alarms belong to the

Event Category tag, and the Event Category tag belongs to the Event Type condition. For

other mappings, refer to iFIX Message Mappings.

8. Select Update.

The filtering options you have specified are saved.

https://www.ge.com/digital/documentation/ifix/version61/Subsystems/OPCAESVR/content/oae_ifix_message_mappings.htm

Chapter 27. OPC Classic HDA Server

About OPC Classic HDA
About OPC Classic Historical Data Access (HDA)

OPC Classic HDA is widespread standard, which provides specifications to retrieve and analyze historical

process data. This data is typically stored in a process data archive, database, or a remote terminal unit

(RTU). You can analyze this data for trending, fault prediction, performance assessment, and so on.

Advantages of Using OPC Classic HDA

• With OPC Classic HDA, the exchange of historical data between an application and any data

archive is consistent. Therefore, OPC HDA client applications that implement trends, reports, or

spreadsheets can retrieve historical process data from Historian and other OPC Classic HDA

servers.

• The OPC Classic HDA specifications are based on Microsoft's Object Linking and Embedding (OLE)

and Distributed Component Object Model (DCOM) technologies. Therefore, OPC is endorsed by

Microsoft.

• You can configure DCOM client and server software programs to run on the same computer node

or distributed across a network of computers.

• The OPC Classic HDA is created to allow various automation applications to communicate with

one another based on the historical data, regardless of the manufacturer. This allows greater

flexibility and reliability when setting up automation systems.

• The OPC Classic HDA server specification provides a common view of automation information

managed by the system for which the server was written.

• Developing OPC Classic-compliant applications is simplified because only one I/O interface is

required.

• Using OPC-compliant applications increases the flexibility of your automation processes

because they can also communicate with devices other than those specified by the applications'

developers.

• Multiple OPC Classic HDA compliant client applications can communicate with an OPC Classic

HDA server simultaneously.

For more information on OPC Classic HDA, visit the OPC Foundation's website.

Data Flow

The following diagram shows the data flow between the OPC Classic HDA clients, the OPC Classic HDA

server, and Proficy Historian.

https://opcfoundation.org/

Historian | 27 - OPC Classic HDA Server | 2397

About the Historian OPC Classic HDA Server

The Historian OPC Classic HDA server retrieves historical process data from Proficy Historian, and sends

it to OPC Classic HDA clients. It dynamically updates the clients when tags are added and/or deleted

in Historian. Clients that comply with this specification can connect to the OPC Classic HDA server to

retrieve data from Historian.

Features of the OPC Classic HDA Server

• The server complies with the OPC HDA Server specification 1.2.0.

• You can browse for all the tags available in Historian.

• You can convert Historian timestamps, data types, and qualities to OPC HDA timestamps, data

types, and qualities, respectively.

• You can automatically reconnect to the Historian server when connection is lost.

• You can connect multiple instances of the OPC Classic HDA clients to the same server without

any additional configuration. The OPC Classic HDA server has been tested with the following OPC

Classic HDA clients:

◦ OPC Foundation HDA Sample client. You can download this client from

www.opcfoundation.org

◦ Advosol HDA test client. You can download this client from http://www.advosol.com/t-free-

tools.aspx

https://opcfoundation.org/
http://www.advosol.com/t-free-tools.aspx
http://www.advosol.com/t-free-tools.aspx

Historian | 27 - OPC Classic HDA Server | 2398

Limitations

• The OPC Classic HDA server supports only synchronous read raw interface.

Setting Up

Set Up the Historian OPC Classic HDA Server

• Install the HDA server and Historian Administrator. For instructions, refer to Install Client Tools (on

page 150).

• Disconnect and reconnect all the OPC HDA clients.

1. Access Historian Administrator.

2. Select Browse for Server, and select the Historian server that you want to connect with the OPC

Classic HDA server.

3. Select Set Selected Server as Target of HDA Server, and then select OK.

The selected server is set as the target Historian server.

4. Configure any external OPC HDA clients to connect to the OPC Classic HDA server. You can

connect multiple instances of the clients to a single server.

When an OPC HDA client tries to connect to the Historian OPC Classic HDA server, and if an

instance of the server is not available, the instance is started, and the client connects to the

running instance of the server. The Historian OPC Classic HDA server continues to run as long as

there are clients connected to it.

Note:

The OPC Classic HDA server uses Proficy.Historian.HDA as the program ID (ProgID).

If you have installed the OPC Classic HDA server on a remote machine, enable the firewall.

Enable Tag-Level Security

1. Access Registry, and go to the following path: HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node

\Intellution, Inc.\iHistorian\HDAServer

2. In the TargetHistorianServer registry key, enter details in following format:

MachineName,UserName,Password,Timeout

Historian | 27 - OPC Classic HDA Server | 2399

Turn On Debug Mode for Trace Log Files

The Trace Logging feature logs communications with the OPC Classic HDA server into an html file.

Advanced users can use this log file to trace a history of communication events with the OPC Classic

HDA collector server. It is designed for use by the support personnel only to assist in diagnosing issues

with the Historian OPC Classic HDA server. By default, the log file is located in the following folder: C:

\Proficy Historian Data\LogFiles.

The log file contains the following information:

• The date and time when an event has occurred.

• Errors and exceptions in parameters passed by an OPC HDA client.

• The status of an OPC HDA client.

For an example trace log file, refer to Example Trace Log File (on page 2403).

1. Access Registry, and then access the following key folder:

◦ For Windows 32-bit: HKEY_LOCAL_MACHINECLASSES_ROOT\SOFTWARE

\Intellution,inc\iHistorian\HDAServer\

◦ For Windows 64-bit: HKEY_LOCAL_ MACHINE\SOFTWARE\Wow6432Node\

\Intellution, Inc.\iHistorian\HDAServer\

2. Modify values for DebugMode DWORD as follows, and then select OK:

a. In the Base box, select Decimal.

b. In the Value box, enter 255.

The debug mode is turned on for the trace logs.

Browse Large Number of Collectors and Tags

In the OPC UA HDA server, the flat address space is used by default. This type of model is used to

browse a small number of tags. If you want to browse a large number of collectors and tags, enable the

hierarchical address space.

1. Access Registry, and then go to the following key folder: .

◦ For Windows (32-bit): HKEY_LOCAL_MACHINE\SOFTWARE\Intellution, Inc.\iHis-

torian\HDAServer\

◦ For Windows (62-bit): HKEY_LOCAL_ MACHINE\SOFTWARE\Wow6432Node\

\Intellution, Inc.\iHistorian\HDAServer\

2. Create a DWORD named HierarchicalAddressSpace.

3. In the Value box, enter 255.

Historian | 27 - OPC Classic HDA Server | 2400

Note:

For a flat address space, this value is set to 0.

4. Select OK, and then close the Registry.

5. Restart the OPC Classic HDA server by disconnecting and reconnecting all the OPC HDA clients.

Reference

Supported Attributes

The following table provides a list of the attributes supported by the OPC Classic HDA collector.

Historian Prop

erty Type

OPC Classic HDA

collector Attributes
Data Type Description

Data Type OPCHDA_ DATA_TYPE Int16 The data type for the item. For infor

mation, refer to Supported Data Types

(on page 2400).

TagDescription OPCHDA_ DESCRIPTION String The description of the item.

Engineering

Units

OPCHDA_ ENG_UNITS String The units for the item (for example,

kg/sec).

Archiving OPCHDA_ ARCHIVING Boolean Indicates whether Historian stores da

ta for this item. The following values

are valid:

• 0: Indicates that data for this

item is not stored.

• 1: Indicates that data for this

item is stored.

ItemID OPCHDA_ ITEMID String The Historian tag name. This is

used to allow filtering in Create

Browsemethod.

Supported Data Types

The following table provides a list of data types in Historian and the corresponding ones in the OPC

Classic HDA server and the OPC UA HDA server.

Historian | 27 - OPC Classic HDA Server | 2401

Data Type in

Proficy Historian
Data Type in the OPC Classic HDA server or the OPC UA HDA server.

Single Integer VT_I2&endash; 16 bit signed integer

Double Integer VT_I4- 32 bit signed integer

Quad Integer VT_I8- 64 bit quad integer

Unsigned Single Integer VT_UI2- 16 bit unsigned single integer

Unsigned Double Integer VT_UI4- 32 bit unsigned single integer

Unsigned Quad Integer VT_UI8- 62 bit quad integer

Byte VT_I1

Boolean VT_BOOL

SingleFloat VT_R4- 32 bit float

Double Float VT_R8- 64 bit double float

Variable String VT_BSTR

Fixed String VT_BSTR

Date VT_DATE

Blob VT_BSTR

Supported Quality Values

The following table provides a list of the quality values in Historian and the corresponding ones in the OPC

Classic HDA server.

Proficy Historian Quality OPC Classic HDA Quality Description

ihOPCGood OPC_ QUALITY_ GOOD Indicates that there is no need for

inspection. This quality is returned

for the tags that have all the values

archived properly.

ihOPCBad OPC_ QUALITY_ BAD Indicates a need for attention. This

quality is returned for the tags that

had problems during the collec

tion.

Historian | 27 - OPC Classic HDA Server | 2402

Proficy Historian Quality OPC Classic HDA Quality Description

ihOPCUncertain OPC_ QUALITY_ UNCERTAIN Indicates a need for inspection.

This quality is returned when the

data collection time is low and

when there is no specific quality

value.

ihOPCNA OPC_ QUALITY_ BAD Indicates a need for attention.

Supported Filter Attributes

The following table provides a list of attributes for which filtering is supported by the OPC Classic HDA

server, and the corresponding ones in Historian, along with the supported operators for each.

Historian Property Type OPC Classic HDA server Attributes Supported Operators

Data Type OPCHDA_DATA_TYPE OPC_HDA_EQUAL_TO

Tag Description OPCHDA_DESCRIPTION OPC_HDA_EQUAL_TO

Engineering Units OPCHDA_ENG_UNITS OPC_HDA_EQUAL_TO

Item ID OPCHDA_ITEMID OPC_HDA_EQUAL_TO

Important:

The OPC Classic HDA server filter strings are case-sensitive.

Although filtering is supported for the OPC_HDA_ARCHIVING attribute, do not use the filtering in the OPC

Classic HDA clients because the value of this attribute is always true. Instead, you can refer to the log file

to trace a history of communication events dealt with by the OPC Classic HDA server. You can also turn

on the debug mode to more know more details in the log file. If an invalid filter is passed by an OPC HDA

client, the OPC Classic HDA server returns all the available items in the address space.

Tip:

• The wildcard character (*) will return all the tags.

• The wildcard (key*) will return tags which begins with “key”.

• The wildcard (key) returns an exact tag name.

Historian | 27 - OPC Classic HDA Server | 2403

Example Trace Log File

The following message illustrates the type of information that the trace log file provides. In this message:

• The black color indicates the status of events.

• The blue color indicates the status of clients.

• The red color indicates errors and exceptions passed by clients.

OPC Classic HDA Aggregates

In the OPC Classic HDA server, an aggregate is a function that is used to process raw data from an OPC

Classic HDA server over a given range of time divided into discrete intervals. These aggregates can be

further used to for various purposes, such as visualizing the trends in the data.

Historian | 27 - OPC Classic HDA Server | 2404

The standard aggregates supported are:

• Minimum

• Maximum

• Average

The custom aggregates supported are:

• Nearest

• Before

• After

• Proficy Historian Interpolative

Consider the following as a Historian Source for the Minimum, Maximum and Average Aggregates:

Timestamp Value Quality Notes

Jan-01-2002 12:00:00 0 No Data First archive entry Point

Created

Jan-01-2002 12:00:10 10 Raw, Good

Jan-01-2002 12:00:20 20 Raw, Good

Jan-01-2002 12:00:30 30 Raw, Good

Jan-01-2002 12:00:40 40 Raw, Bad Scan failed, Bad data en

tered

Jan-01-2002 12:00:50 50 Raw, Good

Jan-01-2002 12:01:00 60 Raw, Good

Jan-01-2002 12:01:10 70 Raw, Bad Value is flagged as

questionable

Jan-01-2002 12:01:20 80 Raw, Good

Jan-01-2002 12:01:30 90 Raw, Good

NULL No Data No more entries, await

ing next scan.

Consider the following Historian Source for Nearest, Before and After Aggregates:

Historian | 27 - OPC Classic HDA Server | 2405

Timestamp Value Quality Notes

Feb-28-2002

12:01:30

987 Raw, Bad

Mar-01-2002

12:01:30

98765 Raw, Good

Mar-02-2002

12:01:30

9876 Raw, Bad

Jan-01-2002 12:00:00 0 No Data First archive entry Point Created

Jan-01-2002 12:00:10 10 Raw, Good

Jan-01-2002 12:00:20 20 Raw, Good

Jan-01-2002 12:00:30 30 Raw, Good

Jan-01-2002 12:00:40 40 Raw, Bad Scan failed, Bad data entered

Jan-01-2002 12:00:50 50 Raw, Good

Jan-01-2002 12:01:00 60 Raw, Good

Jan-01-2002 12:01:10 70 Raw, Bad Value is flagged as question

able

Jan-01-2002 12:01:20 80 Raw, Good

Jan-01-2002 12:01:30 90 Raw, Good

Average Aggregate

The purpose of Average aggregation is to find the average value for a given time interval. It adds up the

values of all good raw data in a specified time interval. The sum is then divided by the number of good

values. Bad values are ignored in the computation.

If the user specifies a time range where no good data exists for an interval, the quality of the aggregate for

that interval will be bad, OPCHDA_NODATA.

This aggregate returns the timestamp of the start of the interval.

Example 1

Historian | 27 - OPC Classic HDA Server | 2406

Start: Jan-01-2002 12:00:10 End: Jan-01-2002 12:00:20 Interval: 00:00:05

Timestamp Value Quality

Jan-01-2002 12:00:10 10 Calculated, Good

Jan-01-2002 12:00:15 0 No Data, Bad

Example 2

Start: Jan-01-2002 12:00:35 End: Jan-01-2002 12:01:00 Interval: 00:00:05

Timestamp Value Quality

Jan-01-2002 12:00:35 0 No Data, Bad

Jan-01-2002 12:00:40 0 Bad data in the interval

Jan-01-2002 12:00:45 0 No Data, Bad

Jan-01-2002 12:00:50 50 Calculated, Good

Jan-01-2002 12:00:55 0 No Data, Bad

Maximum Aggregate

The maximum actual time aggregate retrieves the maximum good raw value within the interval [s,e), and

returns that value the timestamp of the aggregate will always be the start of the interval for every interval.

If the same maximum exists at more than one timestamp, the oldest one is retrieved.

Example 1

Start: Jan-01-2002 12:00:10 End: Jan-01-2002 12:00:20 Interval: 00:00:05

Timestamp Value Quality

Jan-01-2002 12:00:10 10 Raw, Good

Jan-01-2002 12:00:15 0 No Data, Bad

Example 2

Start: Jan-01-2002 12:00:35 End: Jan-01-2002 12:01:00 Interval: 00:00:05

Historian | 27 - OPC Classic HDA Server | 2407

Timestamp Value Quality

Jan-01-02 12:00:35 0 No Data, Bad

Jan-01-02 12:00:40 0 No Data, Bad

Jan-01-02 12:00:45 0 No Data, Bad

Jan-01-02 12:00:50 50 Raw, Good

Jan-01-02 12:00:55 0 No Data, Bad

Minimum Aggregate

The minimum actual time aggregate retrieves the minimum good raw value within the interval [s,e),

and returns that value. The timestamp of the aggregate will always be the start of the interval for every

interval.

Example 1

Start: Jan-01-2002 12:00:10 End: Jan-01-2002 12:00:20 Interval: 00:00:05

Timestamp Value Quality

Jan-01-02 12:00:35 0 No Data, Bad

Jan-01-02 12:00:40 0 Bad data in the interval

Jan-01-02 12:00:45 0 No Data, Bad

Jan-01-02 12:00:50 50 Raw, Good

Jan-01-02 12:00:55 0 No Data, Bad

Before Aggregate

When the Before aggregate function is called with a timestamp (Start time), the previous valid value

before Start time will be fetched. This search is performed between Start time and (Start time –

MaxDurationSec). The call for the aggregation is initiated by the source client. The custom aggregations

do not require any interval value. The default value for MaxDurationSec is 100 days.

Historian | 27 - OPC Classic HDA Server | 2408

Note:

To change the value of MaxDurationSec navigate to HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node

\Intellution, Inc.\iHistorian\HDAServer. Create a string value with name MaxDurationSec and

provide the value in seconds.

Start: Apr-01-2002 12:00:10 End: NA Interval: NA

Timestamp Value Quality

Mar-01-2002

12:01:30

98765 Raw, Good

After Aggregate

When the After aggregate function is called with a timestamp (Start time), next valid value after ‘Start

time’ will be fetched. This search will happen between Start time and (Start time + MaxDurationSec).

The call for the aggregation is initiated by the source client. The custom aggregations do not require any

interval value. The default value for MaxDurationSec is 100 days.

Note:

To change the value of MaxDurationSec navigate to HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node

\Intellution, Inc.\iHistorian\HDAServer. Create a string value with name MaxDurationSec and

provide the value in seconds.

Start: Feb-01-2002 12:00:10 End: NA Interval: NA

Timestamp Value Quality

Mar-01-2002

12:01:30

98765 Raw, Good

Nearest Aggregate

When the Nearest aggregate function is called with a timestamp (Start time), the nearest valid

value of Start time will be fetched. This search is performed between Start time and (Start time ±

Historian | 27 - OPC Classic HDA Server | 2409

MaxDurationSec). The call for the aggregation is initiated by the source client. The custom aggregations

do not require any interval value. The default value for MaxDurationSec is 100 days.

Note:

To change the value of MaxDurationSec navigate to HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node

\Intellution, Inc.\iHistorian\HDAServer. Create a string value with name MaxDurationSec and

provide the value in seconds.

Start: Feb-01-2002 12:00:10 End: NA Interval: NA

Timestamp Value Quality

Mar-01-2002

12:01:30

98765 Raw, Good

Proficy Historian Interpolative Aggregate

The purpose of the interpolated aggregation is to return meaningful data for a time interval where

raw data is not present. The value at a datapoint is estimated based on the raw data present at other

datapoints.

For interpolative aggregate to return meaningful data, good values should be present at the boundary

conditions.

Chapter 28. OPC UA HDA Server

Overview of the OPC UA HDA Server
About OPC Unified Access (UA) Historical Data Access (HDA)

OPC UA HDA is widespread standard, which provides specifications to retrieve and analyze historical

process data. This data is typically stored in a process data archive, database, or a remote terminal unit

(RTU). You can analyze this data for trending, fault prediction, performance assessment, and so on.

Advantages of Using OPC UA HDA

• With OPC UA HDA, the exchange of historical data between an application and any data archive

is consistent. Therefore, OPC UA HDA client applications that implement trends, reports, or

spreadsheets can retrieve historical process data from Historian and other OPC UA HDA servers.

• OPC UA HDA is created to allow various advanced automation applications to communicate

with one another based on the historical data, regardless of the manufacturer or the platform/

programming language on which they have been created. This allows greater flexibility and

reliability when setting up automation systems.

• The OPC UA HDA server specification provides a common view of automation information

managed by the system for which the server was written.

• Developing OPC UA-compliant applications is simplified because only one I/O interface is required.

• Using OPC-compliant applications increases the flexibility of your automation processes

because they can also communicate with devices other than those specified by the applications'

developers.

• Multiple OPC UA HDA compliant client applications can communicate with an OPC UA HDA server

simultaneously.

For more information on OPC UA HDA, visit the OPC Foundation's website.

Data Flow

The following diagram shows the data flow between the OPC UA HDA clients, the OPC UA HDA server, and

Proficy Historian.

https://opcfoundation.org/

Historian | 28 - OPC UA HDA Server | 2411

About the Historian OPC UA HDA Server

The Historian OPC UA HDA server retrieves historical process data from Proficy Historian, and sends it to

OPC UA HDA clients. It dynamically updates the clients when tags are added and/or deleted in Historian.

Clients that comply with this specification can connect to the OPC UA HDA server to retrieve data from

Historian.

Features of the OPC UA HDA Server

• The server complies with the OPC HDA Server specification 1.7.2.

• The server can retrieve current data as well as historical data.

• You can browse for all the tags available in Historian.

• You can convert Historian timestamps, data types, and qualities to OPC HDA timestamps, data

types, and qualities, respectively.

• You can automatically reconnect to the Historian server when connection is lost.

• You can connect multiple instances of the OPC UA HDA clients to the same server without any

additional configuration. The OPC UA HDA server has been tested with the following OPC UA HDA

clients; you can, however, use any client that supports the encryption types supported by the OPC

UA HDA server:

Historian | 28 - OPC UA HDA Server | 2412

◦ OPC UA Client. You can download this client from https://opcfoundation.org/products/view/

opc-ua-client-free-product.

◦ Prosys OPC Client. You can download this client from https://www.prosysopc.com/

products/opc-client/.

Limitations

• The OPC UA HDA server supports only synchronous read raw interface.

• The OPC UA HDA server currently does not support aggregation and alarms and events data. It

only supports tag data.

• If you make changes to the OPC UA HDA server settings (on page 2416), restart the OPC UA HDA

Server service.

Configuration

Install the OPC UA HDA Server

Install Historian (on page 104).

Note:

You can install Historian and the OPC UA HDA server on the same machine or on different

machines.

1. Run the Historian installer.

2. Select Install Historian OPC UA HDA Server.

The welcome page appears.

3. Select Next.

The license agreement appears.

https://opcfoundation.org/products/view/opc-ua-client-free-product
https://opcfoundation.org/products/view/opc-ua-client-free-product
https://www.prosysopc.com/products/opc-client/
https://www.prosysopc.com/products/opc-client/

Historian | 28 - OPC UA HDA Server | 2413

4. Select the Accept check box, and then select Next.

The Where to install the Historian OPC UA HDA Server page appears, asking you to select the

installation drive.

5. Select the installation drive, and then select Next. You can retain the default one, or choose a

different one.

The OPC UA HDA Server Attributes page appears.

Historian | 28 - OPC UA HDA Server | 2414

6. Provide values as described in the following table, and then select Next.

Field Description

Historian OPCUA HDA Server Enter the host name or the IP address of the

machine on which you want to install the OPC

UA HDA server. By default, the local host name

appears.

Port Number Enter the port number that you want the OPC

UA HDA server to use.

URI The URI to access the OPC UA HDA server.

This field is disabled and populated with a

value in the following format: opc.tcp://<host

name>:<port number>, where <host name> and

<port number> are the values that you have en

tered in the preceding fields.

Historian | 28 - OPC UA HDA Server | 2415

The Historian Server Details page appears.

7. Provide values as described in the following table, and then select Next.

Field Description

Historian Server Name Enter the name of the Historian server that you

want to connect to the OPC UA HDA server.

Historian Server User Name Enter the username of the Historian server.

Historian Server Password Enter the password of the Historian server.

The You are ready to install page appears.

8. Select Install.

The Historian OPC UA HDA server is installed. Reboot the machine when prompted to do so.

• If you have installed the OPC UA HDA server on a remote machine, enable the firewall.

• Install an OPC UA client.

• Configure the OPC UA HDA server.

Historian | 28 - OPC UA HDA Server | 2416

The OPC UA HDA Server Workflow

This topic provides the high-level steps to get started with the Historian OPC UA HDA server. These steps

are required only for the initial setup. After you perform these steps, you can use an OPC UA HDA client to

retrieve and analyze the historical data.

Step Number Step Notes

1 Install Historian (on page 104). This step is required.

2 Install the OPC UA HDA Server (on

page 191).

This step is required. You can install Historian and

the OPC UA HDA server either on the same ma

chine or on different machines.

3 Configure the OPC UA HDA server

settings (on page 2416).

This step is required only if you want to change the

default settings or the values you provided while in

stalling the OPC UA HDA server.

4 Install an OPC UA HDA client. This step is required only if you want to use a third-

party OPC UA HDA client.

5 Connect the OPC UA HDA serv

er and the OPC UA HDA client (on

page 2420).

This step is required only if you want to use a third-

party OPC UA HDA client. In this step, the server

and the client exchange certificates to establish a

secure connection.

6 Authenticate the user to connect to

the OPC UA HDA server (on page

2421).

This step is required only if you want to use a third-

party OPC UA HDA client. You can use authenti

cation based on user credentials or a certificate.

Anonymous authentication is not supported.

Configure the OPC UA HDA Server Settings

• Install the OPC UA HDA server (on page 191).

• Install an OPC UA client that you want to use with the OPC UA HDA server.

1. Run the ihistopcuahdaserverconfigtool.exe file as an administrator. This file is located in

the following folder: <installation drive>:\Program Files\GE Digital\Historian

OPCUA HDA Server

The Proficy Historian OPC UA Server Configuration window appears.

Historian | 28 - OPC UA HDA Server | 2417

2. Provide values in the available fields as described in the following table.

Field Description

Port Enter the TCP port number on which you want

the OPC UA HDA server to run. By default, the

value in this field is 48010.

Hostname Enter the host name of the machine on which

you have installed the OPC UA HDA server.

Network Address Enter the DNS name or IP address of the ma

chine on which you have installed the OPC UA

HDA server. The network address must be the

computer name or an IP address, as this repre

sents how OPC clients will locate the OPC UA

HDA server.

Organization Name Enter the name of the organization that is de

ploying the OPC UA HDA server.

Endpoint Url Identifies the network endpoint that the OPC

clients use to communicate with the OPC UA

HDA server. This field is disabled and pop

ulated with a value in the following format:

opc.tcp://<network address>:<port>/.

Historian | 28 - OPC UA HDA Server | 2418

Field Description

Application Url Identifies a unique identifier for the OPC UA

HDA server. This field is disabled and populated

with a value in the following format: urn:<host

name>:<organization name>:HDAServer).

Machine Name Enter the name of the machine on which Histo

rian is installed.

UserName Enter the username to connect to the Historian

server.

Password Enter the password to connect to the Historian

server.

3. Select Model.

The Model section appears.

4. If you want to access the Historian model using an OPC UA HDA client:

a. Select the Yes, I want to use a model check box.

b. Under Web-based Clients Configuration, in the Server Name and Port fields, enter the host

name (or IP address) and public HTTPS port number respectively of the machine on which

you have installed Web-based Clients.

c. Select Test connection.

Connection to the machine on which you have installed Web-based Clients is verified, and

the Server Name and Port fields under Proficy Authentication Configuration are populated

with the corresponding values you provided while installing Web-based Clients.

d. Verify that the server name and port number of the machine on which you have installed

Proficy Authentication are correct, and select Test connection.

5. Select Logging.

The Logging section appears.

6. If you want to enable logging, select the Logging Enabled check box, and then provide values as

described in the following table.

Historian | 28 - OPC UA HDA Server | 2419

Field Description Default Value Valid Values

No of Log Files The maximum number

of log file backups that

you want to retain.

5 1 to 100

Max Entries per Log

file

The maximum number

of lines that you want

in the log file before

it is backed up and a

new log is created.

100000 1000 to 1000,000,000

Optimize Log Output Indicates whether the

log output is buffered

before it is saved to

disk.

False ◦ True

◦ False

Application Trace Lev

el

The level of trace infor

mation that you want

the OPC UA HDA serv

er to log.

Error ◦ None

◦ Error

◦ Warning

◦ Info

◦ Debug

Stack Log Level The level of trace infor

mation that you want

the OPC UA HDA stack

to log.

Error ◦ None

◦ Error

◦ Warning

◦ Info

◦ Debug

Log File Path The path of the log file.

You can provide a fold

er other than the de

fault one; the log file

will be created in that

folder.

<installation dri

ve>:\ProgramDa

ta\GEDigitalUA\logs

\UaSdkCppBundle

Source/HDAServer.log

7. Select Security, and provide values as described in the following table.

Historian | 28 - OPC UA HDA Server | 2420

Field Description

Allow secure communication with data privacy

(SignAndEncrypt)

If you select this option, all communication is

kept private, and the OPC clients are authenti

cated.

Allow secure communication without data pri

vacy (SingOnly)

If you select this option, all communication is

visible, but the OPC clients are authenticated.

Allow communication with no security (None) If you select this option, a certificate is not used

for communication between OPC clients and

the OPC UA HDA server. This option is not rec

ommended; you can use it only in a non-produc

tion environment.

Basic256Sha256 This policy is acceptable and more likely to be

supported by older versions of the OPC UA HDA

clients.

Aes128Sha256RsaOaep This policy is secure and is faster than the

most secure policies. However, older versions

of the OPC UA HDA clients do not support it.

Aes256Sha256RsaPss This policy is the more secure one. However,

older versions of the OPC UA HDA clients do

not support it.

Basic128Rsa15 This policy has theoretical problems and is not

recommended.

Basic256 This policy has known vulnerabilities and must

not be used unless absolutely necessary.

8. Restart the OPC UA HDA Server service.

Establish a connection between the OPC UA HDA server and the OPC UA client that you want to use (on

page 2420).

Connect the OPC UA HDA Server and the OPC UA HDA Client

Configure the OPC UA HDA server settings (on page 2416).

To establish a connection between the OPC UA HDA server and an OPC UA client:

Historian | 28 - OPC UA HDA Server | 2421

1. The OPC UA HDA server sends a certificate to the OPC UA client.

2. The OPC UA client sends a certificate to the OPC UA HDA server.

This topic describes how to perform these steps.

1. Start the OPC UA HDA server. To do so, run the Historian OPC UA HDA Server service.

2. Access the OPC UA client application, and create a connection with the endpoint URL that you

provided while configuring the OPC UA HDA server settings (on page 2416).

3. Select the security settings that you want to use for the OPC UA client.

The OPC UA HDA server sends the server certificate to the OPC UA client. A message appears,

asking you to accept the server certificate.

4. Accept the server certificate.

The OPC UA client sends a certificate to the OPC UA HDA server. However, an error message

appears, stating that verifying the certificate has failed. This happens because, by default, the

client certificate is rejected.

5. Accept the client certificate:

a. In the Proficy Historian OPC UA Server Configuration widow, select Trust List.

The client certificate appears. A icon appears next to the certificate, indicating that it is

rejected.

b. Select the row containing the client certificate, and then select Trust Certificate.

A message appears, asking you to confirm that you want to trust the client certificate.

c. Select Yes.

A icon appears next to the certificate, indicating that it is trusted.

6. Access the OPC UA HDA client, and process the connection that you have created.

A message appears, asking you to accept the server certificate.

7. Accept the server certificate.

Connection between the OPC UA HDA server and the OPC UA HDA client is established.

Authenticate the user who will use the OPC UA HDA client (on page 2421).

Authenticate a User to Connect to the OPC UA HDA Server

Connect the OPC UA HDA server and the OPC UA HDA client (on page 2420).

You can authenticate a user based on one of the following methods:

Historian | 28 - OPC UA HDA Server | 2422

• User credentials: In this method, you will use the credentials of a Historian user. When you do so,

the OPC UA HDA server validates the credentials by connecting to the Historian server, and then

grants access.

Note:

The user is authenticated regardless of whether the Historian server is part of a stand-

alone or a distributed Historian system.

• Certificate: In this method, you will provide a trusted certificate and a private key of the OPC UA

HDA server. The server validates that the certificate is the same as the user certificate stored in the

server, and then grants access.

Tip:

You can generate a self-signed certificate and its keys using the Proficy Historian OPC UA

Server Configuration tool, which is provided with the OPC UA HDA server.

Anonymous authentication is not supported.

1. Access the OPC UA HDA client.

2. If you want to authenticate a user using the user credentials, select the appropriate option in the

user authentication window, and then enter the username and password of the Historian user.

3. If you want to authenticate a user using a certificate:

a. Select the appropriate option in the user authentication window.

b. Provide the certificate and the private key (which are stored in the .der and .pem formats

respectively). If needed, enter a password for the private key.

The user is authenticated. A list of Historian tags appears in the OPC UA HDA client. These tags are

represented as models in the client, categorized based on the data type. The OPC UA HDA server collects

tag data from Historian, and sends it to the client. You can now use the client to access a trend chart of

the tag data and analyze it.

Supported Attributes

The following table provides a list of the attributes supported by the OPC UA HDA server:

Historian | 28 - OPC UA HDA Server | 2423

Historian Property Type OPC UA HDA Attributes Data Type Description

Engineering Units OpcUa_Range String The units for the item

(for example, kg/sec).

Engineering Units Range OpcUa_EUInformation Int16 The upper and lower

range of the engineering

units.

Data Type OPCHDA_ DATA_TYPE Int16 The data type for the

item. For information,

refer to Supported Data

Types (on page 2400).

TagDescription OPCHDA_ DESCRIPTION String The description of the

item.

Supported Data Types

The following table provides a list of data types in Historian and the corresponding ones in the OPC

Classic HDA server and the OPC UA HDA server.

Data Type in

Proficy Historian
Data Type in the OPC Classic HDA server or the OPC UA HDA server.

Single Integer VT_I2&endash; 16 bit signed integer

Double Integer VT_I4- 32 bit signed integer

Quad Integer VT_I8- 64 bit quad integer

Unsigned Single Integer VT_UI2- 16 bit unsigned single integer

Unsigned Double Integer VT_UI4- 32 bit unsigned single integer

Unsigned Quad Integer VT_UI8- 62 bit quad integer

Byte VT_I1

Boolean VT_BOOL

SingleFloat VT_R4- 32 bit float

Double Float VT_R8- 64 bit double float

Variable String VT_BSTR

Historian | 28 - OPC UA HDA Server | 2424

Data Type in

Proficy Historian
Data Type in the OPC Classic HDA server or the OPC UA HDA server.

Fixed String VT_BSTR

Date VT_DATE

Blob VT_BSTR

Supported Quality Values

The following table provides a list of the quality values in Historian and the corresponding ones in the OPC

UA HDA server.

Proficy Historian Quality OPC Classic HDA Quality Description

ihOPCGood OPC_ QUALITY_ GOOD Indicates that there is no need for

inspection. This quality is returned

for the tags that have all the values

archived properly.

ihOPCBad OPC_ QUALITY_ BAD Indicates a need for attention. This

quality is returned for the tags that

had problems during the collec

tion.

Troubleshooting OPC UA HDA Server Issues
Unable to Connect to the Server

Issue: When you attempt to connect to the OPC UA HDA server from an OPC UA HDA client, a message

appears, stating that you cannot connect to the server.

Diagnostics:

• Ensure that user authentication for the OPC UA HDA server is based on either user credentials or

certificates. Anonymous authentication is not supported.

• If you have selected authentication based on user credentials, ensure that you have entered the

correct credentials of the Historian server.

Unable to See the Latest Historian Model Changes in the OPC UA HDA Client

Issue: Changes to the Historian model are not reflected in the OPC UA HDA client.

Historian | 28 - OPC UA HDA Server | 2425

Diagnostics:

• Ensure that you have selected the Yes, I want to use a model check box and tested that the OPC

UA HDA server machine is connected with the machines on which you have installed Web-based

Clients and Proficy Authentication. These settings are in the Model section in the Proficy Historian

OPC UA Server Configuration window. For instructions, refer to Configure the OPC UA HDA Server

Settings (on page 2416).

• Restart the OPC UA HDA Server service.

Chapter 29. The OPC UA DA Collector

Overview of the OPC UA DA Collector
The OPC UA Data Access (DA) collector gathers and collects data from a OPC UA 1.0-compliant OPC UA

DA server (such as CIMPLICITY). The collector automatically determines the capability of the OPC UA DA

server to which it is connected, and supports the appropriate features based on this information.

Features:

• You can browse the source for tags and their attributes on an OPC server that supports browsing.

• Both the polled and unsolicited data collection are supported; when changes to the OPC source

tags are detected, they are sent to the Historian server. Unsolicited data collection is supported for

OPC 2.0 only. The minimum poll interval is 100ms. The collector duplicates raw samples from the

OPC server into the Historian data archive.

For unsolicited data collection, if collector compression is disabled, all new values produce an

exception. And, the deadband percentage is determined by the collector deadband percent. You

can only configure the collector deadband percent by enabling compression.

• The supported timestamp resolution is 1ms.

• Floating point, integer, binary, and string data are supported.

• Python expression tags are supported.

• Device timestamps are accepted.

Supported data types:

OPC UA DA Collector Data Type Recommended Data Type in Historian

OpcUaType_Null ihTKVariableString

OpcUaType_Boolean ihTKBool

OpcUaType_SByte ihTKByte

OpcUaType_Byte ihTKByte

OpcUaType_Int16 ihTKInteger

OpcUaType_UInt16 ihTKUInt16

OpcUaType_Int32 ihTKDoubleInteger

OpcUaType_UInt32 ihTKUInt32

Historian | 29 - The OPC UA DA Collector | 2427

OPC UA DA Collector Data Type Recommended Data Type in Historian

OpcUaType_Int64 ihTKInt64

OpcUaType_UInt64 ihTKUInt64

OpcUaType_Float ihTKFloat

OpcUaType_Double ihTKDoubleFloat

OpcUaType_DateTime ihTKVariableString

OpcUaType_Guid ihTKDataTypeUndefined

OpcUaType_StatusCode ihTKDataTypeUndefined

OpcUaType_String ihTKVariableString

OpcUaType_ByteString ihTKDataTypeUndefined

OpcUaType_XmlElement ihTKDataTypeUndefined

OpcUaType_NodeId ihTKDataTypeUndefined

OpcUaType_ExpandedNodeID ihTKDataTypeUndefined

OpcUaType_DiagnosticInfo ihTKDataTypeUndefined

OpcUaType_QualifiedName ihTKDataTypeUndefined

OpcUaType_LocalizedText ihTKDataTypeUndefined

OpcUaType_ExtensionObject ihTKDataTypeUndefined

OpcUaType_DataValue ihTKDataTypeUndefined

Supported tag attributes:

• Tagname

• Source Address

• Engineering Unit Description

• Data Type

• Hi Engineering Units

• Lo Engineering Units

• Is Array Tag

The Engineering Unit Description, Hi Engineering Units and Lo Engineering Units vary based on the OPC

server vendor.

Historian | 29 - The OPC UA DA Collector | 2428

Note:

While some of these attributes are queried on a browse, they are not shown in the browse

interface. These attributes are used when adding a tag, but it is not visible to you if all attributes

come from the server or not.

Configuration

Add and Configure an OPC UA Data Access Collector

The OPC UA Data Access (DA) collector gathers and collects data from a OPC UA 1.0-compliant OPC UA

DA server. For more information, refer to Configure an OPC UA DA Collector Using Historian Administrator

(on page 2432).

This topic describes how to add a collector instance using Configuration Hub. You can also add a

collector instance using the RemoteCollectorConfigurator utility (on page 797), which does not require you

to install Web-based Clients.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors in the default system appears.

3. In the upper-right corner of the main section, select .

The Add Collector Instance: <system name> window appears, displaying the Collector Selection

section. The MACHINE NAME field contains a list of machines on which you have installed

collectors.

Historian | 29 - The OPC UA DA Collector | 2429

4. In the MACHINE NAME field, select the machine in which you want to add a collector instance.

5. In the COLLECTOR TYPE field, select OPC UA DA Collector, and then select Get Details.

The INSTALLATION DRIVE and DATA DIRECTORY fields are disabled and populated.

6. Select Next.

The Source Configuration section appears.

7. In the OPC UA SERVER URI field, enter the URI to connect to the OPC server in the following format:

opc.tcp://<host name or IP address of the OPC UA server>:<port number>

8. Select Next.

The Destination Configuration section appears. The collector machine name provided by you is

selected as the Source Configuration by default.

Under CHOOSE DESTINATION, the Historian Server option is selected by default. In addition, the

DESTINATION HISTORIAN SERVER field is disabled and populated with the collector machine

name.

9. Select the destination to which you want to send data, and then enter the values in the

corresponding fields. You can send data to an on-premises Historian server or to a cloud

destination.

a. If you need to send data to a cloud destination, select the cloud destinations as needed.

▪ Predix Timeseries- Select this if you need to send data to Predix cloud. For more

information, refer to Predix Cloud (on page 621).

▪ Azure IoT Hub- Select this if you need to send data to Azure Cloud in KairosDB

format. For more information, refer to Azure IoT Hub (KairosDB format) (on page

608).

▪ MQTT- Select this if you need to send data to any of the following cloud destination.

▪ Alibaba cloud. For more information, refer to Alibaba Cloud (on page 587).

▪ AWS cloud. For more information, refer to AWS Cloud (on page 594).

▪ Google cloud. For more information, refer to Google Cloud (on page 614).

b. If you need to send data to an on-premises Historian server, select Historian Server.

If you created security groups or enabled a strict client/collector authentication, enter the

USERNAME and PASSWORD of the on-premises Historian server that you created during the

installation of the collector.

If you entered the USERNAMEand PASSWORD, select Test Connection. This will help you to

test if the Historian server that you are trying to connect is valid or if the credentials that you

entered are valid.

If the entered credentials are valid, a successful connection message appears.

10. Select Next.

Historian | 29 - The OPC UA DA Collector | 2430

The Collector Initiation section appears. The COLLECTOR NAME field is populated with a value in

the following format: <Historian server name>_OPCUACollector_<number>

11. If needed, modify the value in the COLLECTOR NAME field.

The value that you enter:

◦ Must be unique.

◦ Must contain the string OPCUACollector.

◦ Must not exceed 15 characters.

◦ Must not contain a space.

◦ Must not contain special characters except a hyphen, period, and an underscore.

12. In the RUNNING MODE field, select one of the following options.

◦ Service - Local System Account: Select this option if you want to run the collector as a

Windows service using the credentials of the local user (that is, the currently logged-in user).

If you select this option, the USERNAME and PASSWORD fields are disabled.

◦ Service Under Specific User Account: Select this option if you want to run the collector as

a Windows service using a specific user account. If you select this option, you must enter

values in the USERNAME and PASSWORD fields.

If you have enabled the Enforce Strict Collector Authentication option in Historian

Administrator, you must provide the credentials of a user who is added to at least one of the

following security groups:

▪ iH Security Admins

▪ iH Collector Admins

▪ iH Tag Admins

You can also configure the collector to start automatically when you start the computer.

13. Select Add.

The collector instance is added. The fields specific to the collector section appear in the DETAILS

section.

14. In the COLLECTOR SPECIFIC CONFIGURATION section, configure values as described in the

following table.

Field Description

OPC UA Server URL The URI to connect to the OPC UA server. Enter a value

in the following format: opc.tcp://<host name or IP ad

dress of the OPC UA server>:<port number>

Historian | 29 - The OPC UA DA Collector | 2431

Field Description

Secured Connectivity Indicates whether you want a secured connection be

tween the OPC UA server and the collector. By default,

this field is set to false.

You can establish a secured connectivity in one of the fol

lowing ways:

◦ Using certificates: To use certificates, switch off

the User Security toggle.

◦ Using user authentication: To use user authentica

tion, switch on the User Security toggle.

User Security This field is enabled only if you have enabled secured

connectivity. Switch on this toggle if you want to use user

authentication to connect to the OPC server. When you

do so, the User Name and Password fields are enabled.

You can either enter the user credentials in these fields,

or you can use the values in the ClientConfig.ini

file. For instructions, refer to Connect with the OPC UA DA

Server Securely (on page 2434).

Username This field is enabled only if you have set the secured con

nectivity to true and switched on the User Security tog

gle. Enter the username that you want to use to connect

to the OPC server. If you do not provide a value, the user

name from the ClientConfig.ini file is considered.

Password This field id enabled only if you have set the secured con

nectivity to true and selected the Enable User Security

check box. Enter the password that you want to use to

connect to the OPC server. If you do not provide a value,

the password from the ClientConfig.ini file is con

sidered.

MTLS Security Indicates whether you want to use Mutual TLS (MTLS)

protocol to enforce a secure and strong authentication

mechanism.

MTLS Data Encryption Indicates whether you want to encrypt the data that the

collector shares to the data archiver (DA).

Historian | 29 - The OPC UA DA Collector | 2432

Field Description

For more information on how to enable MTLS Security, refer to Enable MTLS Security (on page

632).

15. As needed, enter values in the other sections common to all collectors (on page 579).

16. In the upper-left corner of the page, select Save.

The changes to the collector instance are saved.

17. If needed, restart the collector.

If you have enabled secured connection, establish a secured connection between the OPC server and the

collector (on page 2434).

Configure an OPC UA DA Collector Using Historian Administrator

1. Access Historian Administrator.

2. Select Collectors, and then select the OPC UA DA collector instance that you want to configure.

3. Select Configuration.

The Configuration section appears.

Historian | 29 - The OPC UA DA Collector | 2433

4. Enter values as specified in the following table.

Field Description

OPCUA

Serv

er URI

The Unified Resource Identifier (URI) of the OPC UA DA server from which you want to col

lect data. Enter a value in the following format: opc:tcp://<host name of the OPC serv

er>:<port number>. By default, the local host is considered.

Note:

The URI is a superset of the Uniform Resource Locator (URL).

Se

cured

Con

nec

tivity

Indicates whether you want a secured connection between the OPC server and the collec

tor. By default, this field is set to false.

You can establish a secured connectivity in one of the following ways:

◦ Using certificates: To use certificates, clear the Enable User Security check box.

◦ Using user authentication: To use user authentication, select the Enable User Se

curity check box.

En

able

User

This field is enabled only if you have enabled secured connectivity. Select this check box

if you want to use user authentication to connect to the OPC server. When you do so, the

User Name and Password fields are enabled. You can either enter the user credentials in

these fields, or you can use the values in the ClientConfig.ini file.

Historian | 29 - The OPC UA DA Collector | 2434

Field Description

Secu

rity

User

Name

This field appears only if you have enabled secured connectivity and selected the Enable

User Security check box. Enter the username that you want to use to connect to the OPC

server. If you do not provide a value, the username from the ClientConfig.ini file is

considered.

Pass

word

This field appears only if you have enabled secured connectivity and selected the Enable

User Security check box. Enter the password that you want to use to connect to the OPC

server. If you do not provide a value, the password from the ClientConfig.ini file is

considered.

5. Select Update.

6. Restart the collector.

The collector is configured.

If you have enabled secured connection, establish a secured connection between the OPC server and the

collector (on page 2434).

Add a Client Certificate to the Trusted List
If you have enabled secured connectivity between the OPC UA DA server and the collector, you must add a

client certificate to the OPC UA DA server's trusted certificates list.

While configuring the collector settings (on page 2432), ensure that the Secured Connectivity field is set

to true.

1. Start the OPC UA DA server in a secured mode.

2. Access the installation folder of the server. Normally, it is inside the ProgramFiles folder.

3. In the Rejected folder, copy the client certificate, and paste it into the trusted certificates folder.

To locate the trusted certificates folder, refer to your OPC UA DA server documentation.

4. Restart the collector.

Connect with the OPC UA DA Server Securely
This topic describes how to establish a secured connection between your OPC UA DA server and the

collector.

Historian | 29 - The OPC UA DA Collector | 2435

All the security related configuration for OPC UA collector to establish secured connectivity to OPC

UA server will be done by using ClientConfig.ini file. This file is located in C:\Program Files\GE Digital

\Historian. The OPC UA DA Collector\Server64 ClientConfig.ini file has options to select Trust Certificate

type, Security Policy, Security Mode, Username and Password. There are default values provided, however

these can be configured accordingly.

1. Access the ClientConfig.ini file. By default, it is located at <Installation Drive>:

\Program Files\GE Digital\Historian OPC UA DA Collector\Server64.

2. Enter values as specified in the following table.

Parameter Description

ApplicationName Enter OPCUACollector.

TrustCertificate Enter one of the following values:

◦ 0: Enter this value if want no trust.

◦ 1: Enter this value if you want to trust

temporarily.

◦ 2: Enter this value if you want to trust

permanently. If you enter this value, you

must copy the server certificate in the

trusted certificate list of the collector.

SecurityPolicy The security policy that you want to use. A val

ue is required only if the value for theTrustCer

tificate parameter is 2. Enter one of the follow

ing values:

◦ 0: Does not use a security policy.

◦ 1: Uses the Basic128Rsa15 policy. This

policy has theoretical problems and is

not recommended.

◦ 2: Uses the Basic 256 policy. This policy

has known vulnerabilities and must not

be used unless absolutely necessary.

◦ 3: Uses the Aes256Sha256RsaPss pol

icy. This policy is the more secure one.

However, older versions of the OPC UA

HDA clients do not support it.

◦ 4: Uses the Aes128Sha256RsaOaep pol

icy. This policy is secure and is faster

Historian | 29 - The OPC UA DA Collector | 2436

Parameter Description

than the most secure policies. Howev

er, older versions of the OPC UA HDA

clients do not support it.

◦ 5: Uses the Basic256Sha256 policy. This

policy is acceptable and more likely to be

supported by older versions of the OPC

UA HDA clients.

SecurityMode The security mode that you want to use. Enter

one of the following values:

◦ 0: Enter this value if you want to allow

communication without security. If you

select this option, a certificate is not

used for communication between the

server and the collector. This option is

not recommended; you can use it only in

a non-production environment.

◦ 1: Enter this value if you want to allow

secure communication without data pri

vacy. If you select this option, all com

munication is visible, but the collector is

authenticated.

◦ 2: Enter this value if you want to allow

secure communication with data priva

cy. If you select this option, all communi

cation is kept private, and the collector is

authenticated.

CertificateTrustListLocation Enter the path to the trusted certificates folder

in the OPC server.

CertificateRevocationListLocation Enter the path to the revoked certificates folder

in the OPC server.

IssuersCertificatesLocation Enter the path to the issuer certificates folder in

the OPC server.

IssuersRevocationListLocation Enter the path to the

Historian | 29 - The OPC UA DA Collector | 2437

Parameter Description

ClientCertificate

ClientPrivateKey

RetryInitialConnect Enter true or false to specify whether to recon

nect to the OPC server automatically if the col

lector fails to connect to the server initially.

AutomaticReconnect Enter true or false to specify whether to recon

nect to the OPC server automatically if the col

lector fails to connect to the server subsequent

ly (after the initial connection).

Username Enter the username that you want to use to

connect to the server.

Password Enter the password that you want to use to con

nect to the server.

Sample ClientConfig.ini File

ApplicationName = OPCUACollector

TrustCertificate = 2

SecurityPolicy = 4

SecurityMode = 1

CertificateTrustListLocation =/[ApplicationPath]/pkiclient/trusted/certs/

CertificateRevocationListLocation =/[ApplicationPath]/pkiclient/trusted/crl/

IssuersCertificatesLocation =/[ApplicationPath]/pkiclient/issuers/certs/

IssuersRevocationListLocation =/[ApplicationPath]/pkiclient/issuers/crl/

ClientCertificate =/[ApplicationPath]/pkiclient/own/certs/uaclientcpp.der

ClientPrivateKey =/[ApplicationPath]/pkiclient/own/private/uaclientcpp.pem

RetryInitialConnect =true

AutomaticReconnect =true

Username =admin

Password =admin

Historian | 29 - The OPC UA DA Collector | 2438

Working with the Collector

Add Tags for the Data Store Using Configuration Hub

• Add the collector instance (on page 357) using which you want to collect data. Ensure that the

collector is running.

• By default, the tag data is stored in the user data store, which is created automatically when you

set up Configuration Hub. If, however, you want to store the data in a different data store, create it

(on page 370).

This topic describes how to specify the tags for which you want to collect data by browsing through the

tags in the data source. For example, for an iFIX collector, if there are 1,00,000 tags in the iFIX server, you

must specify the ones for which you want to collect data. Only then data is collected for those tags.

In addition to adding tags from the data source, you can create tags manually (on page 473).

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

3. Select .

The Add Tag-<system name> page appears. The Add Tags from Collector option is selected by

default.

4. Enter values as described in the following table.

Field Description

COLLECTOR NAME Select the collector instance that you want to use to collect da

ta. A value is required.

COLLECTED TYPE Specify whether you want to browse through all the tags in the

data source or only from the tags that you have not added yet. A

value is required.

Historian | 29 - The OPC UA DA Collector | 2439

Field Description

SOURCE TAG NAME Enter the name of the tag (either completely or partially) to nar

row down the search results.

SOURCE TAG DESCRIPTION Enter the description of the tag (either completely or partially) to

narrow down the search results.

5. Select Search Tags.

A list of tags that match all the criteria that you have specified appears. If a tag is already added, it

is disabled.

6. Select the check box corresponding to each tag for which you want to collect data.

7. In the DATA STORE field, if you want to store the data in a different data store than the user data

store, select the same.

8. Select Add Tag.

Data collection begins for the selected tags.

As needed, configure each tag by providing values for the tag properties. For information on the delta

query modes, refer to Counter Delta Queries.

Historian | 29 - The OPC UA DA Collector | 2440

Specify the Tags for Data Collection

If your OPC server supports hierarchical organization of tags in a tree structure, you can use the hierarchy

to browse for tags and add them to the collector for data collection.

1. Access Historian Administrator.

2. Select Collectors, and then select the OPC UA DA collector instance to which you want to add tags.

A hierarchical view of tags appears in the Browse Results section.

3. If you want to view only the tags for which data is not collected, in the Show Only field, select

Source Tags Not Collected. You can search for a tag by entering search criteria in the Source Tag

Name or Description field.

4. If you want to search by a tag name or description, enter the value in the Source Tag Name or

Description field.

5. Navigate to the node in the tree you want to browse, and then select Browse.

Historian | 29 - The OPC UA DA Collector | 2441

Tip:

◦ To browse automatically, select the Auto Browse check box. The available tags

appear in the Browse Results window whenever a node is selected in the tree.

◦ To show all child elements within a hierarchy, select the Show All Children check

box. All tags at or below the hierarchical level of the selected node in the tree

appear in the Browse Results window.

The tags within the selected portion of the OPC server tag hierarchy appear.

◦ Some OPC servers do not support data blocks with a length greater than 1. These servers

display only the first item in an array instead of showing all of them. For example, an OPC

server may contain 3000 analog values from datablock:1 to datablock:3000, but only

datablock:1 is displayed.

◦ If you want to archive data from poll records of a length greater than 1, we recommend

that you use the Excel Add-In for Historian to configure a large block of tags (including the

missing items), and then add the tags.

◦ If you are unable to browse items containing a forward slash (/) in your OPC server, you

may have to change the default separator in the collector configuration. To do so, modify

the registry key HKEY_LOCAL_MACHINE\SOFTWARE\Intellution, Inc\iHistorian\Services

\OPCCollector\<collector interface name>\OPCBrowseTreeSep key, and change the string

value to a character not available in your OPC server item IDs. Typical values include |, !, or &.

Create this key if it does not exist.

◦ If you are cannot browse readable items in your OPC server, you may need to

change the browse access mask used by the collector. To do so, modify the

registry key [HKEY_LOCAL_MACHINE\SOFTWARE\Intellution, Inc.\iHistorian

\Services\OPCCollector\<collector interface name>, and add the DWORD key

"OPCBrowseAccessRightsMask"=dword:00000003. Valid values are 0, 1, 2, 3 with 1 being the

default. Use 0 or 3 if you are unable to browse readable items. Creating or changing the

value takes effect on the next browse attempt and does not require a collector restart.

◦ Some items such as unsupported data types and user-defined items in simulation servers

may not be returned when you browse for tags. However, sometimes, even the items that do

not appear in the search results can be added using the Add Tag Manually button.

6. Select the tags for which you want to collect data, and then select Add Selected Tags. Collected

tags will appear in black in the tag list.

The tags are added to the collector. They appear in black text in the list of tags.

Historian | 29 - The OPC UA DA Collector | 2442

About OPC UA DA Collector Groups
It is a best practice to limit the number of OPC UA DA collector groups created by the Historian system

to increase performance. To limit the number of OPC UA DA collector groups created on the OPC UA DA

server, group Historian tags collected by the OPC UA DA collector using the fewest number of collection

intervals possible.

Troubleshooting the Collector
The OPC UA DA collector generates log files during initialization, configuration, and general operation. By

default, you can find them at C:\Proficy Historian Data\LogFiles.

Troubleshooting Tips

If the collector does not connect to the OPC server, or if tags are not displayed:

• Ensure that the certificate is added to Trusted list (on page 2434).

• Ensure that you have provided a valid username and password (on page 2432).

• Restart the collector whenever there is any change made to the configuration using Historian

Administrator or in the ClientConfig.ini file.

• Check that secured Connectivity is true and Enable User security is checked to have connection

with User Authentication.

• Ensure that the OPC server supports the security policy and the security mode if you see the

following error message in the log file: Matching of secure endpoint not available between server

and collector.

• Ensure that the RetryInitialConnect and AutomaticReconnect parameters are set to true in the

ClientConfig.ini file.

Chapter 30. OSI PI Collector

Overview of the OSI PI Collector
The OSI PI collector collects data samples from an OSI PI data server and stores it in the Historian Server

or a cloud destination. You can collect data directly from the OSI PI Data Archive v3.2 or later via OSI PI

AOSI PI v1.3.4 or later.

Topology: This collector supports a distributed model, where the PI Data Server, the collector, and Proficy

Historian are installed on different machines. The OSI PI collector must be installed on the same machine

as the OSI PI Data Archive.

The OSI PI collector uses unsolicited collection, whereby changes to the OSI PI archives are detected,

and are forwarded to the Historian server. The collector is intended to duplicate raw samples from the

OSI PI Data Archive in an Historian data archive. You can specifically request the collector to transfer

values from the OSI PI snapshot cache (as seen in the previous version of OSI PI Collectors), however, it is

recommended to transfer the values directly from the PI archives to the Historian archives.

One OSI PI collector instance can collect data from a single OSI PI data archiver. To collect from multiple

OSI PI data archives to an Historian archive, you must configure multiple OSI PI collector instances.

Features

• You can browse the source for tags and their attributes. Tag browsing performance with OSI PI

has been confirmed as satisfactory up to 130,000 tags. Beyond that threshold, OSI PI may take a

long time to return the large number of tags. In such a case, it is recommended that the tags be

exported from PI to an Excel work sheet and then uploaded to Historian.

• Only the unsolicited data collection is supported; polled collection is not supported.

• The supported timestamp resolution is milliseconds or seconds.

• The collector accepts device timestamps.

• You can create Python Expression Tags for those collectors that support them.

• Floating point, integer, string, and enumerated data are supported; Binary and array data is not

supported. You can configure the OSI PI collector to automatically handle updates of digital states

in Historian as enumerated sets without restarting the OSI PI collector. For instructions, refer to

Configuring Auto-synchronization of Digital States (on page 2453).

If digital states are renamed or deleted in the OSI PI collector, the corresponding enumerated

sets in Historian are not automatically renamed or deleted without restarting the PI collector.

Unused enumerated sets cannot be automatically deleted, because the PI server does not notify

Historian | 30 - OSI PI Collector | 2444

the collector about the rename or delete activity. Therefore, you must manually rename (on page

2453)/delete (on page 2454) digital states.

Note:

In some instances, OSI PI digital tags, which are created as enumerated tags in Historian,

can contain values from the PI System digital set, rather than their assigned digital set.

In these instances, the System digital values will be reflected as 0 with BAD quality in

Historian.

Before You Begin
Software Requirements

If you are using Historian 7.0 SP4, the following configuration is required:

• OSI PI Data Archive (version 3.2\3.3\3.4)

• OSI PI v1.3.4 or greater

• OSI PI SDK (About PI-SDK) v1.4.2 or greater

Note:

The OSI PI SDK is required for running OSI PI Collector, however, the OSI PI SDK does not

ship with Historian. If the OSI PI SDK is not installed, the OSI PI Collector will not start. If

you install the OSI PI Collector on a machine that does not contain your PI Server, be sure

to install the OSI PI SDK on the machine with the OSI PI Collector.

• Historian 3.0 or greater

If you are using 7.0 SP5, the following configuration is required:

• OSI PI AF Server version 2015 R2 SP1 or greater

• OSI PI Data Archiver v 3.4.380 or greater

• OSI PI AF SDK 2.7.0 or greater

Note:

The OSI PI AF SDK is required for running OSI PI Collector or PI Distributor, however, the

OSI PI AF SDK does not ship with Historian. If the OSI PI AF SDK is not installed, the OSI PI

Collector or PI Distributor will not start. If you install the OSI PI Collector or PI Distributor

on a machine that does not contain your PI Server, be sure to install the OSI PI AF SDK on

Historian | 30 - OSI PI Collector | 2445

the machine with the OSI PI Collector and the PI Distributor. PI SDK is no longer supported

with the 7.0 SP5 version of the PI Collector. If you are using the OSI PI Collector or PI

Distributor from the 7.0 SP5 (or greater) installer, the PI AF SDK or greater is now required.

The PI AF Software Development Kit (PI AF SDK or AFSDK) is installed with the PI AF Client

and provides programmatic access to PI Server data (PI Data Archive and AF).

• About-PI SDK utility

Hardware Requirements

There are no additional hardware requirements for the OSI PI Collector or PI Distributor.

Configuring the OSI PI Data Archive

By default, no specific configuration is required for the OSI PI Data Archive to allow the OSI PI Collector to

collect data and archive it to the Historian Server or Predix Cloud. However, a user with read permissions

must be configured in the OSI PI data server for the OSI PI Collector.

Note:

The OSI PI Collector reads data directly from the OSI PI archives and attempts to maintain a near

real-time operation. It has been tested up to 25,000 events per second. However, performance

is dependent on hardware and network capabilities, so if the collector begins to fall significantly

behind real-time, it may be more suitable to partition the data retrieval into two or more collectors.

Upgrading and Using the PI Snapshot Collection

In some scenarios you may wish to run the collector in the same way as in the previous versions (Pre-6.0)

of PI Collector. For example, you may upgrade from an older version of the collector and still want to

retain the existing, original behavior.

If this is not the case then you do not need to configure anything and may skip this section.

Use the following steps where you want to retain the existing original behavior.

To configure the newly added OSI PI Collector to retrieve data from the OSI PI snapshot cache:

1. Run the Registry Editor (regedit.exe).

2. Navigate to HKEY_LOCAL_MACHINE\SOFTWARE\Intellution, Inc.\iHistorian\Services\PICollector.

3. In the case of a 64-bit system this may be found at HKEY_LOCAL_ MACHINE\SOFTWARE\Wow6432Node

\Intellution, Inc.\iHistorian\Services\PICollector

Historian | 30 - OSI PI Collector | 2446

4. If you have multiple collectors, each would have to be configured to allow for snapshot operation,

and the key would be the name of the other collector.

5. Locate the registry key name General5.

6. Change it from Archive to Snapshot.

7. Restart the Historian PI Collector service from the Windows services control panel.

The latest log file will indicate that the collector is using the snapshot database for collection.

Refer to OSI PI Collector Troubleshooting (on page 2455), for information about tracing operational

issues with the OSI PI Collector log files.

To configure existing OSI PI Collector to retrieve data from the OSI PI snapshot cache

1. Access Historian Administrator.

2. Select the Collectors page.

3. Select the OSI PI Collector.

4. Select Configuration.

5. In the Data Source field, enter the data source as snapshot.

OSI PI Collector Configuration
This section describes details about how to configure an OSI PI Collector.

Configuring the OSI PI Collector

1. Start Historian Administrator.

2. Select the Collectors page.

Historian | 30 - OSI PI Collector | 2447

3. Select the OSI PI Collector instance you wish to configure.

4. If the collector is not listed in the available collectors list, you must start the collectors manually

from the Windows Service Control Panel to register it.

a. Open the Windows services control panel on the machine that contains the OSI PI collector

b. Find the service name Historian OSI PI Collector.

c. Select it and select Start on the top of the Services panel.

As it is not configured it may start and then promptly stop- this is not an issue. The current

step is solely to register it in Historian.

d. Continue from Step 1 if is not listed in Historian Administrator once restarted, refer to OSI PI

Collector Troubleshooting (on page 2455).

5. Configure the OSI PI Collector's General options.

a. (Optional) Enter a description for your OSI PI Collector.

b. (Optional) In the Computer Name field, enter the host name of the computer your collector is

running on.

c. (Optional) If you want to change the default settings for memory usage and free disk space,

change the values in the Memory Buffer Size and Minimum Free Space fields.

6. Configure the OSI PI Collector-specific options.

a. Select Configuration.

b. In the PI Server field, enter the OSI PI server name. For example, localhost.

c. In the PI User name field, enter the OSI PI user name. For example, PiAdmin.

d. If required, enter the OSI PI password into the PI Password field.

This field can be left blank if no password is assigned for the OSI PI user.

Note:

If you change the PI Server name, user name or password fields, you must restart

the collector service before the new configuration will take effect.

Note:

If the username and password are provided with the PI Collector, it uses explicit

login to connect to the PI Server. If the username and password are not provided,

Historian | 30 - OSI PI Collector | 2448

then we use the implicit login functionality of PI SDK. In this scenario, either it would

look for PI Trust or PI Mapping to connect to the PI Server.

e. In the Max Recovery Time (hr) field, enter a new Maximum Recovery Time. By default, the

maximum recovery time is 4 hours.

7. Configure the default collection options.

a. Select Tags.

b. Enter a prefix to add to OSI PI Tags in Historian, for example: PI_.

c. Enter a value for the Collection Interval.

The default collection interval is 1 second. Note that polled collection is not supported.

8. Configure the collector's advanced settings.

a. To delay collection when the collector starts up, enter a value into the Delay Collection at

Startup (sec) field.

OSI PI Collector-specific Field Descriptions

The following figure shows the OSI PI Collector configured to collect data from an OSI PI archive on

localhost, logging in as the piadmin user. It is also configured for a maximum recovery time of 4 hours.

Historian | 30 - OSI PI Collector | 2449

The following table describes the OSI PI Collector-specific configuration fields.

This field... Indicates...

PI Server The name of the computer that OSI PI is running on. This should match the

server entry in the OSIsoft About PI-SDK utility.

PI Username The user name required to connect to the OSI PI Data Archive. PI trusts are

not supported and an explicit PI user must be set.

PI Password The password required to authenticate with the OSI PI Data Archive. If no

password is configured for the OSI PI user, this field can be left blank.

MaxRecovery Time (hr) The Maximum Recovery time in hours.

Historian | 30 - OSI PI Collector | 2450

Tag Attributes Available in Browse

You can specify tags for collection in Historian Administrator for the OSI PI Collector or OSI PI Distributor

by browsing or by adding tags manually. The following table outlines the tag attributes available when

browsing:

Historian Tag

Browse Attribute

OSI PI Tag

Attribute

Browse Source Address Tag

Description Property Descriptor

Engineering Unit Description Engunits

Hi Engineering Units Zero+span

Lo Engineering Units Zero

When entering tags manually, it is important to match the Historian tag data type with the data type of the

OSI PI tag. See OSI PI Collector and Distributor Supported Data Types (on page 2451).

Regardless of how you add tags to Historian, you should match the timestamp resolution. If your OSI PI

tag is using timestamps with milliseconds, then configure your Historian tag to store timestamps with

millisecond resolution as well.

The OSI PI distributor reads data from the Historian tag displayed in the Tag Source Address field, and

sends it to the OSI PI tag name displayed in the Spare 1 field. To control the source and destination tags,

change the Tag Source Address and Spare 1 fields.

Configuring Recovery Mode

Recovery logic is activated when the OSI PI Collector and OSI PI Data Archive reestablish a connection

after a connection loss, or when the OSI PI Collector is started. The OSI PI Collector will attempt to

recover all data samples between the current time and the last known write time, up to a maximum

number of hours configured for the collector. Continuous collection resumes only after the previous data

has been recovered.

The default recovery time available is 4 hours. You can disable recovery mode by setting the Maximum

Recovery Time to 0 hours.

To configure a maximum recovery time:

Historian | 30 - OSI PI Collector | 2451

1. Start Historian Administrator.

2. Access the Collectors page.

3. Select OSI PI Collector.

4. Select Configuration.

5. In the Maximum Recovery Time (hr) field, enter a Maximum Recovery Time, in hours. If this field is

left blank, the Maximum Recovery Time will be set to 4 hours.

OSI PI Collector and Distributor Supported Data Types

The following table maps OSI PI data types to their Historian data type equivalents:

OSI PI

Tag Types
Recommended Historian Data Type

INT32 Single Integer, Double Integer

FLOAT16,

FLOAT32

Float

FLOAT64 Double Float

PISTRING Variable String

DIGITAL Single Integer

The accompanying digital states are transferred from OSI PI into Historian upon initial

ization of the collector.

Data Quality Mapping

Data quality mapping from Historian to OSI PI Data Archive is restricted to good/bad. OSI PI's subtypes are

not currently mapped by Historian.

OSI PI Collector - Notes

Time Stamps Not Modified by Historian

The Historian OSI PI collector does not modify the time stamps placed on data samples by

the OSI PI Data Archive. As a result, if your system clocks are not synchronized on both your

OSI PI Data Archive server and Historian server, it is possible that Historian may receive data

samples in the future or in the past.

PITimestamp Data Type not Supported

Historian | 30 - OSI PI Collector | 2452

The PITimestamp data type is not supported by the OSI PI Collector. If you attempt to collect

a tag with the PITimestamp data type, an error will be logged and the value will not be

collected.

PI Digital States/Enumerations

Upon manual startup of the OSI PI collector (that is, a restart via the services control panel),

the PI Digital States are imported into Historian. When enumeration tags are subsequently

configured (digital tags in OSI PI), the matching enumeration is set as well and data will then

be matched against the enumeration.

For a PI digital tag, we create a Historian enumerated tag and for a PI digital set. If the PI tag

contains values from its enumerated set, then it values are written correctly in the Historian

tag. But, in some special cases, the PI tag may contain values from a special set (System

set). Historian does not support these values as we cannot assign two enumerated sets to

one tag. In these cases, the values are written as 0- Bad quality.

Note:

To update the enumerations, see Configuring Auto-synchronization of Digital States

(on page 2453).

Connecting to an OSI PI Collective

The Historian PI Collector has the ability to connect to an OSI PI Collective (PI redundancy).

This allows data to be moved to Historian to prevent data loss.

Starting and Stopping the OSI PI Collector

The OSI PI Collector runs as a Windows service and can be controlled through the Services control panel.

You must have Administrator rights to access the Services control panel.

To Modify the OSI PI Collector Service:

1. Select Start > Settings > Control Panel.

2. Double-click the Administrative Tools control panel to open it.

3. Double-click the Services control panel to open it.

4. Double-click the Historian PI Collector service.

5. To configure the Historian PI Collector service to start when Windows starts, set the Startup Type

to Automatic.

To configure the Historian PI Collector service to start manually, set the Startup Type to Manual.

Historian | 30 - OSI PI Collector | 2453

6. To start the service, select the Start button. To stop the service, select the Stop button.

Other options are available in the Services control panel. For more information, refer to Windows

documentation.

Configuring Auto-synchronization of Digital States

Auto-synchronization with the SynchInterval Registry Key

The Historian OSI PI Collector allows transferring digital sets from the PI Server to Historian as

enumerated sets. The digital sets from the PI Server are transferred to Historian not only during collector

startup but also with the frequency of the Synch Interval.

Auto-synchronization of digital states can be configured with the SynchInterval Registry Key. The

frequency at which the OSI PI Collector fetches the digital set from the PI server to Historian is

determined by the value configured for this key, which is specified in minutes.

Values for the SynchInterval Registry Key

The default value of this key is 0, which indicates there is no synchronization of the digital set.

Set this registry key to a value greater than 0 if you want the OSI PI Collector to automatically fetch the

digital set from the PI Server to Historian.

For example, the OSI PI Collector fetches the digital set from the PI server to Historian every 10 minutes if

the value configured in this key is 10.

Note:

• The collector must be restarted to apply the change in the value of this registry key.

• This key is available for all Historian Collectors, but it is functional only in the OSI PI

Collector.

• Digital sets from the PI Server are transferred to Historian only during collector startup.

Renaming Digital States

If digital states are renamed in the PI Collector, the corresponding enumerated sets in Historian are

not automatically renamed without a restart of the PI collector. Unused enumerated sets cannot be

automatically deleted, because the PI Server does not notify the PI collector about rename activity.

Historian | 30 - OSI PI Collector | 2454

When a digital state is renamed, a new enumerated set is created. There will therefore be two enumerated

sets for the same digital set, one of which has the old name and one of which has the new name. The old

enumerated set is redundant as it will not get any data if no tag is assigned to it. The tag association is

also lost.

To address this:

• Manually assign the new enumerated set to the applicable tag in Historian. It will then be

synchronized to represent the data for the renamed digital state.

• Go to the Historian VB admin and delete the unused enumerated set at the Historian side.

For example, consider the following situation, where PHsite1.PumpStatus in Historian is assigned to Tag1:

PI Server Historian

Site1.PumpStatus PHSite1.PumpStatus

ON= 0 OFF= 0

OFF= 1 ON= 1

If the digital state Site1.PumpStatus is renamed to SiteLodha.PumpStatus, a new enumerated set

PHSiteLodha.PumpStatus is created at the Historian side.

The old enumerated set on the Historian side PHSite1.PumpStatus will not show any data, but it will exist

redundantly inside Historian.

To address this:

• Manually assign Tag1 (applicable tag in Historian) to PHSiteLodha.PumpStatus.

• Go to the Historian VB admin and manually delete the old enumerated PHSite1.Pump Status.

Deleting Digital States

If digital states are deleted in the PI Collector, the corresponding enumerated sets in Historian are

not automatically deleted without a restart of the PI collector. Unused enumerated sets cannot be

automatically deleted, because the PI server does not notify the PI collector about delete activity.

To address this:

• Go to Historian Administrator and delete the unused enumerated set at the Historian side.

For example, consider the following situation, where PHsite1.PumpStatus in Historian is assigned to Tag1:

Historian | 30 - OSI PI Collector | 2455

PI Server Historian

Site1.PumpStatus PHSite1.PumpStatus

ON= 0 OFF= 0

OFF= 1 ON= 1

If the digital state Site1.PumpStatus is deleted, then the enumerated set PHSite1.PumpStatus remains at

the Historian side.

To address this:

• Go to Historian Administrator and delete the PHSite1.PumpStatus enumerated set, on the Historian

side.

OSI PI Collector Troubleshooting
Tracing Operational Issues with OSI PI Collector Log Files

The OSI PI Collector generates logs during initialization, configuration, and general operation. These can

be found in the general logging folder ([Historian Data folder]\LogFiles). Log files for the OSI PI Collector

begin with PICollector and have a sequence number for each collector restart.

The first response to an issue should be an examination of the latest log file, as it will contain details on:

1. Configuration of the collector.

2. Initialization and connection to the OSI PI server.

3. Addition and removal of tags.

4. Reconnection and recovery of data.

OSI PI tags cannot be browsed, collector logs indicate SDK connection issues

The OSI PI server used must be an entry in the About-PI SDK utility. If there is an issue with collecting

tag information and/or enumeration information, please confirm that the OSI PI server that is set in the

collector configuration has an entry in the About PI-SDK, and that it is accessible from the About PI-SDK

utility.

OSI PI Collector overrun problems - missing blocks of values, or is missing values

If the OSI PI Collector is unable to maintain updates from the OSI PI archiver and therefore is missing

values, you may experience overrun problems. An overrun occurs when the data source is changing

tag values faster than the collector collecting values, which causes it to consistently remain behind the

Historian | 30 - OSI PI Collector | 2456

archiver updates. If this is the case then the collector is running against the hardware and/or network

limits and you may consider partitioning the tags into two or more sets, each with independent collectors.

Startup issue when data source is Snapshot

Historian OSI PI Collector fails to start as a service when you enter Snapshot as the Data Source in the

Configuration section of the collector.

To start the collector:

1. Open command prompt as Administrator.

2. Navigate to the location where Historian installed.

3. Navigate to the path Program Files (x86)\GE Digital\Historian OSI Pi Collector\Server

4. Enter the following command:

ihPiCollector.exe noservice

The Collector starts from the CLI interface.

Chapter 31. OSI PI Distributor

OSI PI Distributor

Overview of the OSI PI Distributor

The Historian OSI PI Distributor gathers data from Historian, and writes it to an OSI PI data server. Data

can be written directly to the OSI PI Data Archive v3.2 or greater, via the OSI PI v 1.3.4 or greater. Typically,

the distributor is installed on the Historian server, distributing data to a remote OSI PI Data archive.

The OSI PI Distributor uses unsolicited distribution, whereby changes in Historian tags values are

detected, and are forwarded to a remote OSI PI data server. The distributor is intended to duplicate data

from an Historian archive to an OSI PI data archive.

One OSI PI Distributor can distribute data to a single OSI PI data archive. To distribute to multiple OSI

PI archives from an Historian archive, you need to configure multiple OSI PI distributors. You can also

configure multiple OSI PI distributors to a single OSI PI data archive.

Note:

The OSI PI Distributor can only write data to PI Archive. It cannot write data to PI Snapshot.

OSI PI Distributor Features

Feature Capability

Browse Source For Tags Yes

Browse Source For Tag Attribut

es

Yes

Polled Collection No

Minimum Poll Interval N/A

Unsolicited Collection Yes

Time stamp Resolution milliseconds or seconds

Accept Device Time stamps Yes

Floating Point Data Yes

Integer Data Yes

Historian | 31 - OSI PI Distributor | 2458

Feature Capability

String Data Yes

Binary Data No

Array Data No

Collector Status Outputs Yes

Getting Started

Before you begin using the OSI PI Distributor, you should read the System Requirements (on page 2458)

and About Configuring OSI PI Data Archiver for OSI PI Distributor (on page 2458) topics.

System Requirements

The following software is required to use the PI Distributor:

• OSI PI Data Archive v 3.2 or greater

• OSI PI v 1.3.4 or greater

• Historian 3.0 or greater

About Configuring OSI PI Data Archiver for OSI PI Distributor

In order for the OSI PI Distributor to write data to the OSI PI data archiver, make the following

configuration changes to the OSI PI data server:

• Before using the OSI PI Distributor, you must create writable tags in the OSI PI data archive.

• In order for the OSI PI Distributor to write data to a OSI PI data archive, the destination tags must

first be given write access in OSI PI. Consult your OSI PI documentation for more details.

• The OSI PI user must have write privileges.

In addition to making the destination OSI PI data tags writable, you must also ensure that the OSI

PI user the OSI PI Distributor is logging into the OSI PI data server has write access to the OSI

PI data archive. If PI Trust or PI Mapping security is used, the corresponding PI users/Identities/

Groups must also have write access to the OSI PI data archive. Consult your OSI PI documentation

for more details.

Historian | 31 - OSI PI Distributor | 2459

Configuring Multiple OSI PI Distributors to use Registry Keys

Note:

This procedure is for advanced Windows users only. If you are not familiar with Windows Registry

editing, contact your Network Administrator for assistance.

To configure Multiple OSI PI Distributors to use Registry Keys

1. From a command prompt, run the Registry Editor (regedit.exe).

2. Navigate to HKEY_LOCAL_MACHINE\SOFTWARE\Intellution, Inc.\iHistorian

\Services\PIDistributor 3.

3. Create a new key and give it a unique name. For example, AlbPI01.

4. Edit the new registry key and add a string value named InterfaceName.

5. In the InterfaceName value, enter a name for the OSI PI Server's interface.

The string “OSI PI” is reserved, and should not be used.

6. Add a second string value to the new key named Historian NodeName.

7. In the Historian NodeName value, enter the name of the Historian archive server to which the new

distributor will be sending data.

8. Close the Registry Editor.

9. Open a command window.

10. From the command prompt, run the OSI PI Distributor and command it to use the new registry key,

with the -multiple and REG= parameters.

For example, if you named the registry key AlbPI01, you would use the following command:

iHPIdistributor.exe -multiple REG=AlbPI01

Note:

On a 64-bit Windows Operating System, all 32-bit components (such as collectors, Client

Tools, and APIs) related registry keys will be located here:

 HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\\Intellution, Inc.\iHistorian\

OSI PI Distributor Configuration

Configuring an OSI PI Distributor

To configure an OSI PI Distributor:

Historian | 31 - OSI PI Distributor | 2460

1. Start Historian Administrator.

2. Select the Collectors page.

3. Select the OSI PI Distributor you want to configure.

4. Configure the OSI PI Distributor's General options.

a. Enter a description for your OSI PI Distributor.

b. In the Computer Name field, enter the hostname of the computer your distributor is running

on, for example, localhost.

c. If you wish to set limits on memory usage and free disk space, change the values in the

Memory Buffer Size and Minimum Free Space fields.

5. Configure the OSI PI Distributor-specific options:

a. Select Configuration.

b. In the PI Server field, enter the name of the machine where the OSI PI server is running. For

example, localhost.

c. In the PI Username field, enter the OSI PI user name. For example, PIAdmin.

d. Enter the OSI PI password into the OSI PI Password field. The password is required to

authenticate the OSI PI Data Archive.

If no password is configured for the OSI PI user, this field can be left blank. Passwords are

case-sensitive.

e. In the Max Recovery Time (hr) field, enter a new maximum recovery time, in hours.

Recovery logic is activated when the OSI PI Distributor and Historian re-establish a

connection after a connection loss, or when the distributor is restarted. The OSI PI

Distributor will attempt to recover all data samples between the current time and the last

known write time, up to a maximum number of hours configured for the distributor. New

distribution resumes only after the previous data has been recovered.

The default recovery time available is 4 hours. You can disable recovery mode by setting the

Maximum Recovery Time to 0 hours.

6. Configure the default distribution options.

a. Select Tags.

b. Enter a prefix to add to OSI PI tags in Historian. For example, PI_

c. Enter a value for the Collection Interval. The default collection interval is 1 second.

7. Configure the distributor's advanced settings.

To delay distribution when the distributor starts up, enter a value into the Delay Collection at

Startup (sec) field.

Historian | 31 - OSI PI Distributor | 2461

Tag Attributes Available in Browse

You can specify tags for collection in Historian Administrator for the OSI PI Collector or OSI PI Distributor

by browsing or by adding tags manually. The following table outlines the tag attributes available when

browsing:

Historian Tag

Browse Attribute

OSI PI Tag

Attribute

Browse Source Address Tag

Description Property Descriptor

Engineering Unit Description Engunits

Hi Engineering Units Zero+span

Lo Engineering Units Zero

When entering tags manually, it is important to match the Historian tag data type with the data type of the

OSI PI tag. See OSI PI Collector and Distributor Supported Data Types (on page 2451).

Regardless of how you add tags to Historian, you should match the timestamp resolution. If your OSI PI

tag is using timestamps with milliseconds, then configure your Historian tag to store timestamps with

millisecond resolution as well.

The OSI PI distributor reads data from the Historian tag displayed in the Tag Source Address field, and

sends it to the OSI PI tag name displayed in the Spare 1 field. To control the source and destination tags,

change the Tag Source Address and Spare 1 fields.

OSI PI Collector and Distributor Supported Data Types

The following table maps OSI PI data types to their Historian data type equivalents:

OSI PI

Tag Types
Recommended Historian Data Type

INT32 Single Integer, Double Integer

FLOAT16,

FLOAT32

Float

FLOAT64 Double Float

PISTRING Variable String

Historian | 31 - OSI PI Distributor | 2462

OSI PI

Tag Types
Recommended Historian Data Type

DIGITAL Single Integer

The accompanying digital states are transferred from OSI PI into Historian upon initial

ization of the collector.

Data Quality Mapping

Data quality mapping from Historian to OSI PI Data Archive is restricted to good/bad. OSI PI's subtypes are

not currently mapped by Historian.

Starting and Stopping the OSI PI Distributor Service

The OSI PI Distributor runs as a Windows service and can be controlled through the Services control

panel. You must have Administrator rights to access the Services control panel.

To start/stop the OSI PI Distributor service

1. Select Start > Settings > Control Panel.

2. Double-click the Administrative Tools control panel to open it.

3. Double-click the Services control panel to open it

4. Double-click the Historian PI Distributor service.

5. To configure the Historian PI Collector service to start when Windows starts, set the Startup Type

to Automatic.

To configure the Historian PI Distributor service to start manually, set the Startup Type to Manual.

6. To start the service, select the Start button. To stop the service, select the Stop button.

The other options are available in the Services control panel. For more information, refer to

Windows documentation.

Chapter 32. The Python Collector

Overview of the Python Collector
Using the Python collector, you can execute Python scripts and store the resulting values in Historian

tags. You can retrieve this data from the Historian archive, perform the calculations written in Python

script, and store the resulting values in new Historian tags. Also, you can run multiple Python scripts

simultaneously.

Note:

You can use the Python Collector either Configuration Hub or Historian Administrator. However,

for a seamless usage and experience, it is recommended to use the Python collector in

Configuration Hub.

Features:

• You can perform data calculations on values that are already in the archiver.

• You can run the Python-based scripts to compute values.

• You can retrieve the resulting values stored in Historian using any of the Historian clients.

• You can run multiple Python scripts at the same time.

• You can verify a Python script and check for errors before executing it.

• The supported timestamp resolution is 1ms.

• Each tag can have its own Python script stored under the tag source address. The computed value

for the Result variable within the Python script is stored in the associated Python tag.

• Both the polled and unsolicited data collection are supported.

• Integer, string and other data types are supported. For more information, refer to Supported Data

Types (on page 2464).

• The collector accepts device timestamps.

• The collector reads data and tags.

Limitations:

• Historian tags used in the CurrentValue function cannot contain % in the tag name. For example,

CurrentValue(‘Simulation.Sin_1%Noise’) will result in an error. Therefore, before using a tag in a

Python script, rename it so that it does not contain %.

Historian | 32 - The Python Collector | 2464

Supported Data Types
The Python collector supports integer, string, and other data types. This topic lists all the data types that

are supported by the Python collector.

Data Type Data Type in Python Collector

int, long Single Integer, Double Integer

float Single Float, Double Float

bool boolean

Byte Byte

str Variable String

Sequence types: list, tuple Array of numeric type or strings

Mapping data type: dictionary Multifield (user defined types)

Install the Python Collector

1. Install the Historian server (on page 104) and collectors (on page 142).

2. Install Python 3.8 on the same machine on which you have installed collectors.

1. Add the following entries to update the Python collector’s registry:

◦ In the following location, include the path to the Python install lib folder:

Computer\HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\GE Digital\iHistorian

\CollectorServiceExtensions\PythonExpressions\PythonPath

◦ In addition, add the path to the Python 3.8 lib folder or any custom modules to Python path.

This path can also include location of any custom modules or functions (global functions or

variables to be used from within the python tag calculation/script).

Examples:

C:\Program Files (x86)\GE Digital\Historian Python Expressions\Python38\lib

C:\Program Files (x86)\GE Digital\Historian Python Expressions\Python38\user

C:\Users\Administrator\AppData\Local\Programs\Python\Python38-32\Lib

Historian | 32 - The Python Collector | 2465

C:\Users\Administrator\AppData\Local\Programs\Python\Python38-32\Lib\site-packages

C:\Users\Administrator\AppData\Local\Programs\Python\Python38-32\DLLs

You can also configure Python library path using Configuration Hub. For more information, refer to

Configure Python Library path using Configuration Hub.

2. Update any default modules to be used for python tags to key:

DefaultModuleImports

Add a Python Collector Instance, either using Configuration Hub (on page 556) or

RemoteCollectorConfigurator (on page 2467).

Adding a Python Collector Instance

Add a Python Collector Instance using Configuration Hub

• Install Python Collector (on page 2464).

This topic describes how to add a Python collector instance using Configuration hub.

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Collectors.

A list of collectors in the default system appears.

3. In the upper-right corner of the main section, select .

The Add Collector Instance: <system name> window appears, displaying the Collector Selection

section. The MACHINE NAME field contains a list of machines on which you have installed

collectors.

4. In the MACHINE NAME field, select the machine in which you want to add a collector instance.

5. In the COLLECTOR TYPE field, select Python Collector, and then select Get Details.

Historian | 32 - The Python Collector | 2466

Note:

The INSTALLATION DRIVE and BASE DATA DIRECTORY fields cannot be changed. This

is the drive location and the data directory folder that you provided during Collectors

installation.

The INSTALLATION DRIVE and DATA DIRECTORY fields are populated with the drive location and

the data directory folder.

6. Select Next.

The Destination Configuration section appears. The collector machine name provided by you is

selected as the Source Configuration by default.

Under CHOOSE DESTINATION, the Historian Server option is selected by default. In addition, the

DESTINATION HISTORIAN SERVER field is disabled and populated with the collector machine

name.

7. Select the destination to which you want to send data, and then enter the values in the

corresponding fields. You can send data to an on-premises Historian server or to a cloud

destination.

a. If you need to send data to a cloud destination, select the cloud destinations as needed.

▪ Predix Timeseries- Select this if you need to send data to Predix cloud. For more

information, refer to Predix Cloud (on page 621).

▪ Azure IoT Hub- Select this if you need to send data to Azure Cloud in KairosDB

format. For more information, refer to Azure IoT Hub (KairosDB format) (on page

608).

▪ MQTT- Select this if you need to send data to any of the following cloud destination.

▪ Alibaba cloud. For more information, refer to Alibaba Cloud (on page 587).

▪ AWS cloud. For more information, refer to AWS Cloud (on page 594).

▪ Google cloud. For more information, refer to Google Cloud (on page 614).

b. If you need to send data to an on-premises Historian server, select Historian Server.

If you created security groups or enabled a strict client/collector authentication, enter the

USERNAME and PASSWORD of the on-premises Historian server that you created during the

installation of the collector.

If you entered the USERNAMEand PASSWORD, select Test Connection. This will help you to

test if the Historian server that you are trying to connect is valid or if the credentials that you

entered are valid.

If the entered credentials are valid, a successful connection message appears.

Historian | 32 - The Python Collector | 2467

8. After you selected the destination, select Next.

The Collector Initiation section appears.

9. If needed, modify the value in the COLLECTOR NAME field.

The value that you enter:

◦ Must be unique.

◦ Must not exceed 15 characters.

◦ Must not contain a space.

◦ Must not contain special characters except a hyphen, period, and an underscore.

10. In the RUNNING MODE field, select one of the following options.

◦ Service - Local System Account: Select this option if you want to run the collector as a

Windows service using the credentials of the local user (that is, the currently logged-in user).

If you select this option, the USERNAME and PASSWORD fields are disabled.

◦ Service Under Specific User Account: Select this option if you want to run the collector as

a Windows service using a specific user account. If you select this option, you must enter

values in the USERNAME and PASSWORD fields.

If you have enabled the Enforce Strict Collector Authentication option in Historian

Administrator, you must provide the credentials of a user who is added to at least one of the

following security groups:

▪ iH Security Admins

▪ iH Collector Admins

▪ iH Tag Admins

You can also configure the collector to start automatically when you start the computer.

11. Select Add.

The collector instance is added. The fields specific to the collector section appear in the DETAILS

section.

Specify the tags (on page 357) whose data you want to collect using the collector.

Add a Python Collector Instance using RemoteCollectorConfigurator

• Install Python Collector (on page 2464).

• If the destination of a collector is an Azure IoT Hub device, ensure that the device is running.

Before you begin using a collector, you must add an instance of the collector. You can add multiple

instances of the same collector or instances of multiple collectors where you have installed the

collectors.

Historian | 32 - The Python Collector | 2468

This topic describes how to add a collector instance using the RemoteCollectorConfigurator utility. If you

want to add an offline collector instance, refer to Add an Offline Collector Instance (on page 819).

1. If you want to use an interactive UI:

a. Run the RemoteCollectorConfigurator.exe file. By default, it is

located in the following folder: C:\Program Files\GE Digital

\NonWebCollectorInstantiationTool.

A list of options to manage collector instances appears.

b. Connect to the collector machine by entering 1 or 2, depending on whether collectors are

installed locally or on a remote machine.

c. Enter 4.

You are prompted to choose between entering the installation parameters manually and

providing a JSON file.

d. If you want to manually enter the parameters and values, enter 1, and then run the following

command:

{"<parameter>":"<value>","<parameter>":"<value>"}

If you want to use a JSON file containing the installation parameters and values, enter 2, and

then enter the path to the JSON file that you have created. Instead of manually creating the

JSON file, you can use the RemoteCollectorConfigurator utility to generate it automatically

(on page 796).

You can leave the Historian username and password blank if there are no Historian security

user groups.

2. If you want to use the Command Prompt window:

a. Access the installation folder of the RemoteCollectorConfigurator utility. By default, it is C:

\Program Files\GE Digital\NonWebCollectorInstantiationTool.

b. Run Command Prompt in this location.

c. If you want to manually enter the installation parameters and values, run the following

command:

RemoteCollectorConfigurator.exe "<Destination Historian>" "<Destination Historian username>"

"<Destination Historian password>" InterfaceCreateViaCmd "{\"<parameter>\":\"<value>\",

\"<parameter>\":\"<value>\"}"

Historian | 32 - The Python Collector | 2469

If you want to use a JSON file containing the installation parameters and values, run the

following command:

RemoteCollectorConfigurator.exe "<Destination Historian>" "<Destination Historian username>"

"<Destination Historian password>" InterfaceCreateViaFile "<path to the JSON file>"

Instead of manually creating the JSON file, you can use the RemoteCollectorConfigurator

utility to generate it automatically (on page 796).

If ih security groups are available, you must enter the Windows username and password of

the destination Historian. If you have enabled the Enforce Strict Collector Authentication

option, you must provide the credentials of a user who is added to at least one of the

following security groups:

▪ iH Security Admins

▪ iH Collector Admins

▪ iH Tag Admins

For information on the parameters, refer to Collector Instance Parameters (on page 801).

Sample JSON file

{

"CollectorSystemName":"TESTSYSTEM",

"DestinationHistorian":"TESTSYSTEM",

"General1":"10",

"General2":"4",

"General3":"",

"General4":"",

"General5":"",

"InterfaceDescription":"Sample Python Collector",

"InterfaceName":"SamplePythonCollector",

"InterfaceSubType":"Python",

"Type":"8",

"DataPathDirectory":"C:\\Proficy Historian Data",

"CollectorDestination":"Historian",

"DestinationHistorianUserName":"",

"DestinationHistorianPassword":"",

"Mode":"1",

"WinUserName":"",

"WinPassword":""

Historian | 32 - The Python Collector | 2470

}

The collector instance is added.

• Specify the tags (on page 357) whose data you want to collect using the collector.

• If you did not enter a value, modify the offline configuration file of the collector. By default, this file

is available in the following location: <installation folder of Historian>\GE Digital

\<collector name>. For information, refer to Creating Offline Configuration XML file (on page

2040).

Configuring the Python Collector

Configure the Python Collector using Configuration Hub
Before you begin, install the Python collector (on page 2464) and add an instance (on page 556) of the

collector.

1. Access Configuration Hub (on page 336).

2. Select Collectors, and then select the Python Collector instance that you want to configure.

The fields specific to the collector instance appear in the DETAILS section.

3. In the COLLECTOR SPECIFIC CONFIGURATION section, enter values as specified in the following

table.

Field Description

Calculation Timeout (sec) This is not supported for the Python collector.

Max Recovery Time (hr) The maximum time, in hours till now, that the

collector will attempt to restore data. This is ap

plicable only to event-based tags. The default

value is 4 hours.

If you want to disable automatic calculation of

the tag, set the value of this field to 0.

MTLS Security Indicates whether you want to use Mutual TLS

(MTLS) protocol to enforce a secure and strong

authentication mechanism.

MTLS Data Encryption Indicates whether you want to encrypt the da

ta that the collector shares to the data archiver

(DA).

Historian | 32 - The Python Collector | 2471

Field Description

For more information on how to enable MTLS Security, refer to Enable MTLS Security (on page

632).

4. As needed, enter values in the other sections common to all collectors (on page 579).

5. Restart the collector.

The collector instance is configured.

Configure the Python Collector using Historian Administrator

1. Access Historian Administrator (on page 823).

2. Select Collectors, and then select the Python Collector instance that you want to configure.

3. In right-side, below the Collector: <Name of the Collector Instance>, select Configuration.

The fields specific to the collector instance appear.

4. Enter values as specified in the following table.

Historian | 32 - The Python Collector | 2472

Field Description

Calculation Timeout (sec) This is not supported for the Python collector.

Max Recovery Time (hr) The maximum time, in hours till now, that the

collector will attempt to restore data. This is ap

plicable only to event-based tags. The default

value is 4 hours.

If you want to disable automatic calculation of

the tag, set the value of this field to 0.

5. Select Update.

Configure Python Library Path using Configuration Hub

If you want to configure additional paths for Python library or if you want to include paths that contain

additional, custom or third-party modules, you can add those path to the registry using Configuration Hub.

This topic describes how to configure additional Python Library path using Configuration Hub.

1. Access Configuration Hub (on page 336).

2. Select Collectors, and then select the Python Collector instance that you want to configure.

The fields specific to the collector instance appear in the DETAILS section.

3. In the INSTANCE CONFIGURATION section, select .

The Update Python Library Path window appears.

Historian | 32 - The Python Collector | 2473

4. In PYTHON LIBRARY PATH enter the library path(s) as needed.

Note:

While entering multiple paths, ensure to separate the library paths using semicolons.

For example,

C:\Program Files (x86)\GE Digital\Historian Python Expressions38\Python38\lib;

C:\Program Files (x86)\GE Digital\Historian Python Expressions38\Python38\user;

C:\Users\Administrator\AppData\Local\Programs\Python\Python38-32\Lib;

C:\Users\Administrator\AppData\Local\Programs\Python\Python38-32\Lib\site-packages;

C:\Users\Administrator\AppData\Local\Programs\Python\Python38-32\DLLs;

5. Select Apply

The library paths are added to the registry.

6. For the changes to take effect, restart the collector instance.

Using the Python Collector

Write Data to an Arbitrary Tag

Historian | 32 - The Python Collector | 2474

You can write data to an arbitrary tag in the Historian archive through the Historian.AddData function. This

function is used in a python script to write values, time stamps and qualities of one or more tags to the

Historian archive.

Use the following syntax ri write data to an arbitrary tag:

Historian.AddData(TagNames, Values, Timestamps, Qualities)

The following table provides information on the parameters.

Parameter Description

TagNames Identifies the names of the tags. A value is re

quired, and must exist in the archive to which you

want to send the tag data. You can provide a sin

gle tag name or an array of tag names, enclosed in

double quotation marks.

Values Identifies the values of the tags. A value is re

quired, and must be a single value or an array of

values, depending on whether the tag name is a

single name or an array. Values must be enclosed

in double quotation marks. You can enter only a

single value for each tag name.

TimeStamps Identifies the timestamp of the tag data. Enter an

absolute time value, enclosed in double quotation

marks. All times are provided as string in standard

ISO 8601 format.

Qualities Identifies the quality of the tag data. Enter an inte

ger from 0 to 100, with 0 indicating bad quality and

100 indicating good quality.

Example of using AddData Function

from datetime import datetime

tags = ["TestTag1", "TestTag2", "TestTag3"]

values = ["111", "222", "333"]

datetime_str = Historian.CurrentTime()

datetime_object = datetime.strptime(datetime_str, '%m/%d/%y %H:%M:%S.%f')

Historian | 32 - The Python Collector | 2475

times = [datetime_object.isoformat(),datetime_object.isoformat(), datetime_object.isoformat()]

Historian.AddData(tags, values,times, "")

Result=1

Create Triggers

About Calculation Triggers

You can create the following types of triggers for a calculation:

• Polled or scheduled: Used to trigger a calculation based on a scheduled time interval. For example,

you can calculate the average value of tag data collected every hour.

The polled type trigger functions the same as the other collectors. Although Historian internally

optimizes calculation execution times, the data for polled tags is timestamped on the data

collection interval. For example, if the calculation engine is unable to process the polled triggers as

scheduled, the calculations will be executed later, but with data interpolated back to the scheduled

time. If there are too many triggers to be processed, some triggers will be dropped and no samples

are logged for that calculation time.

For information on creating a polled trigger, refer to create a polled trigger (on page 2476).

• Unsolicited or event-based: Used to trigger a calculation based on an event. For example, you can

calculate the average value of tag data when the data exceeds a certain value.

When you set an event-based trigger, you must also set up a dependency list of one or more tags.

Event-based triggers will keep calculations as up to date as possible. They are also useful when

you want to do on-demand calculations. You can use a trigger tag that is written to by an external

program or operation.

If you want to perform raw sample replication you would use an event-based trigger. To retrieve

data from a tag, use the formula:

Result=Historian.CurrentValue('Tag1')+Historian.CurrentValue('Tag2')

If you are using recovery mode, all referenced tags in an unsolicited calculation must be listed as

trigger tags because recovery will be performed only for the configured trigger tags.

Event-based triggers have a dependency list of trigger tags. The trigger fires whenever there is a

data change for the trigger tag (for example, changes in the quality and value of a trigger tag). The

Historian | 32 - The Python Collector | 2476

value of a trigger tag can change when the tag exceeds the collector compression (if you enabled

collector compression).

The calculation is processed each time any tag in the dependency list changes. If you have multiple

tags in the list and they change even one millisecond apart, then you will have multiple events, and

the calculation formula will be processed for each.

However, the following actions do not trigger a calculation:

◦ Deletion of a tag that is in the dependency list.

◦ Re-addition of a tag in the dependency list.

The calculation is triggered at the same time as the timestamp of the sample in the trigger tag. The

values of all other tags in the formula are interpolated forward to this time so that the timestamps

of all input tags are the same. Even if these are sequential events, they have the same timestamp.

The calculation time becomes the timestamp for the sample stored in the destination tag.

Event-based triggers have a collection interval. The Python Collector notifies the archiver not to

send notification of changes to trigger tags any faster than the collection interval setting.

For information on creating an unsolicited trigger, refer to create an unsolicited trigger (on page

2477).

Create a Polled Trigger

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

A list of tags appears.

3. From the list of tags, select the Python collector tag (say, SamplePythonCollector).

4. In DETAILS, in the Collection Options section, select Polled from Collection Type.

Historian | 32 - The Python Collector | 2477

5. Set the Collection Interval Value and Collection Offset values. For example, if you want to set a

trigger every day, set these values to 24 hours and 8 hours, respectively.

6. In the upper left corner of the page select Save.

The triggers are created.

Create an Unsolicited Trigger

1. Access Configuration Hub (on page 336).

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

A list of tags appears.

3. From the list of tags, select the Python collector tag (say, SamplePythonCollector).

4. In DETAILS, in the Collection Options section, select Unsolicited from Collection Type.

Historian | 32 - The Python Collector | 2478

5. Select Calculation Triggers and select .

The Calculation Triggers window appears.

6. Search for tags or select tags from the list as trigger tags.

7. You can remove the selected tags by selecting X from the Selected Tags list.

8. Select Insert Trigger.

The trigger tag count will be displayed.

9. In the upper left corner of the page select Save.

The triggers are created.

About Calculations

About Calculations using Python Collector

Historian | 32 - The Python Collector | 2479

To perform a calculation using the Python Collector, you must define the Python script. You can define the

Python script in one of the following ways:

Note:

To seamlessly create Python script, it is recommended to use Configuration Hub instead of

Historian Administrator.

• Using pre-built functions (on page 2478).

• Using third-party or custom Python modules (on page 2481).

Create Python Script using Built-in Functions

This topic describes how to create a Python script using the pre-built functions. For more information on

the built-in functions, refer to available functions (on page 2483).

1. Access Configuration Hub (on page 336)

2. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

A list of tags appears.

3. Select a Python collector tag, right-click or select more options, and then select Calculation.

The PYTHON SCRIPT editor appears.

Historian | 32 - The Python Collector | 2480

4. In the scripting section, remove Null (and retain the Result =).

5. In the DETAILS section, under Pre-Built Functions, in the Function Type field, select a function

type.

Depending on the function type you have selected, a list of functions appears in the Function field.

6. In the Function field, select a function.

Based on the selected function, the related fields will be displayed.

7. Enter values in the other fields that appear after selecting a function.

8. In the Input Tag field, select , and then select the tag where applicable.

The Tag Browser Criteria window appears.

9. Select Apply.

The selected tag is added as the input tag.

Historian | 32 - The Python Collector | 2481

10. Select Insert Function.

The function is inserted at the cursor position and the function preview appears below the

calculation editor.

11. To test the function, select .

A message appears, stating whether the syntax is correct.

12. In the upper-left corner of the page, select Save.

The Python script is created.

Create Python Script by Importing Third-party or Custom Python Modules
or Functions

This topic describes how to create a Python script by importing custom or third-party Python modules or

functions.

1. In the same machine where you installed Python 3.8, install the needed modules or create your

own functions.

2. After you install the modules, for the collector to recognize the modules, update the following path

to include the location where you installed the modules or created your own functions:

Historian | 32 - The Python Collector | 2482

Computer\HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\GE

 Digital\iHistorian\CollectorServiceExtensions\PythonExpressions\PythonPath

After you update the path, the changes are reflected as follows:

C:\Program Files (x86)\GE Digital\Historian Python Expressions\Python38\lib

C:\Program Files (x86)\GE Digital\Historian Python Expressions\Python38\user

C:\Users\Administrator\AppData\Local\Programs\Python\Python38-32\Lib

C:\Users\Administrator\AppData\Local\Programs\Python\Python38-32\Lib\site-packages

You can also configure Python library path using Configuration Hub. For more information, refer to

Configure Python Library path using Configuration Hub.

3. Access Configuration Hub (on page 336)

4. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

A list of tags appears.

5. Select a Python collector tag, right-click or select more options, and then select Calculation.

The PYTHON SCRIPT editor appears.

6. In the scripting section, remove Null (and retain the Result =).

Historian | 32 - The Python Collector | 2483

7. In the scripting section, to import the custom or third-party functions/modules, enter the script in

the following format:

import mymodule

Result=mymodule.myfunction()

#Example

import SimulationCalculation

Result=SimulationCalculation.GetInteger()

8. To test the function, select .

A message appears, stating whether the syntax is correct.

9. In the upper-left corner of the page, select Save.

The Python script is created.

After few seconds, the added script takes effect.

Available Functions

This topic describes the built-in functions that you can use to create a calculation formula. You can also

use third-party or custom Python modules in the script (on page 2481).

Function Type Function Description Example

Add Data Historian.AddDa

ta(tags, values,times)

Write data to a tag in the

Historian archive.

Result=Historian.Ad

dData ('Python_

Sample_Calcula

tion',0,'2023-12-13T15:13:44.536Z',100)

Check Data Quality Historian.CurrentQual

ity('tag name')

The current quality of

the tag (0 for bad quality

and 100 for good quali

ty).

Result=Historian.Cur

rentQuality('Tag')

Check Data Quality Historian.Interpo

latedQuality('tag

name','time')

The current quality of

the interpolated tag.

Result=Historian.In

terpolatedQuali

ty('Tag1','2023-12-13T16:32:03

.626Z')

Check Data Quality Historian.NextGood

Quality('tag name',

'time')

The good quality of the

raw sample after the

time. Time is provided

Result=Histori

an.NextGoodQuali

ty('Tag1','2023-12-13T16:34:19

.154Z')

Historian | 32 - The Python Collector | 2484

Function Type Function Description Example

as string in standard ISO

8601 format.

Check Data Quality Historian.NextQuali

ty('tag name','time')

The quality of the tag (0

for bad quality and 100

for good quality) after

the time. Time is provid

ed as string in standard

ISO 8601 format.

Result=Histo

rian.NextQuali

ty('Tag2','2023-12-13T16:35:41

.709Z')

Check Data Quality Historian.Previous

GoodQuality('tag

name','time')

The good quality of the

raw sample prior to the

time. Time is provided

as string in standard ISO

8601 format.

Result=Historian.Pre

viousGoodQuali

ty('Tag3','2023-12-13T16:36:47

.736Z')

Check Data Quality Historian.Previ

ousQuality('tag

name','time')

The quality of the tag (0

for bad quality and 100

for good quality) prior to

the time specified. Time

is provided as string in

standard ISO 8601 for

mat.

datetime_str =

 Historian.CurrentTime()

datetime_object =

 datetime.strptime(datetim

e_str, '%m/%d/%y

 %H:%M:%S.%f')

Result=Historian.PreviousQ

uality('Test_Sim.Simulatio

n00001',datetime_object.is

oformat())

Insert A Calculation-

Non-filtered Calculation

Historian.Calcula

tion('tag name', 'Cal

culationMode', 'Start

Time', 'EndTime')

Unfiltered calculated da

ta query that returns a

single value, similar to

the Excel Add-In feature.

For a list of the calcula

tion mode, refer to cal

culation modes (on page

1073). All times are pro

vided as string in stan

dard ISO 8601 format.

from datetime import

 datetime, timedelta

datetime_str =

 Historian.CurrentTime()

endTime =

 datetime.strptime(datetim

e_str, '%m/%d/%y

 %H:%M:%S.%f')

startTime = endTime -

 timedelta(hours=0,minutes

=0,seconds=10)

Historian | 32 - The Python Collector | 2485

Function Type Function Description Example

Result=Historian.Calculati

on('Test_Sim.Simulation000

02','Average',

 startTime.isoformat(),

 endTime.isoformat())

Insert A Calculation- Fil

tered

Historian. Calcula

tionFilter('tag name',

'CalculationMode',

'StartTime', 'End

Time', 'FilterTag

name', 'FilterMode',

'FilterComparison',

'FilterValue')

Filtered calculated da

ta query that returns a

single value, similar to

the Excel Add-In feature.

All times are provided

as string in standard ISO

8601 format.

from datetime import

 datetime, timedelta

datetime_str =

 Historian.CurrentTime()

endTime =

 datetime.strptime(datetim

e_str, '%m/%d/%y

 %H:%M:%S.%f')

startTime = endTime

 - timedelta(hours=0,

 minutes=0,seconds=1)

Result=Historian.Calculati

onFilter('Test_Sim.Simulat

ion00004','Average',

 startTime.isoformat(),

 endTime.isoformat(),'Test

_Sim.Simulation00006','Aft

erTime','GreaterThan','10

0')

Insert A Calculation

Quality- Non-filtered Cal

culation

Historian.Calculation

Quality('tag name',

'CalculationMode',

'StartTime', 'End

Time')

Unfiltered calculated da

ta query that returns the

quality of resulting val

ue. For a list of the cal

culation mode, refer to

calculation modes (on

page 1073). All times

are provided as string in

standard ISO 8601 for

mat.

Result=Histori

an.CalculationQuali

ty('Python_2','Aver

age','2023-12-13T16:54:27

.296Z','2023-12-13T16:54:28

.296Z')

Historian | 32 - The Python Collector | 2486

Function Type Function Description Example

Insert A Calculation

Quality- Filtered Calcula

tion

Historian.Calculation

FilterQuality('tag

name', 'Calculation

Mode', 'StartTime',

'EndTime', 'FilterTag

name', 'FilterMode',

'FilterComparison',

'FilterValue')

Filtered calculated da

ta query that returns

the quality of value. All

times are provided as

string in standard ISO

8601 format.

Result=Historian.Cal

culationFilterQual

ity('Tag','Aver

age','2023-12-13T16:56:08

.123Z','2023-12-13T16:56:09

.123Z','Tag','After

Time','Equal','')

Insert A Tagname 'Tag' The selected tag name. Result='Python_3_tag'

Insert A Timestamp Historian.Current

Time()

The calculation exe

cution time, which be

comes the timestamp

of the stored value. The

result is returned as a

string.

For real-time processing

of polled tags, the calcu

lation execution time is

the time when the calcu

lation is triggered. For

unsolicited tags, the cal

culation execution time

is the timestamp deliv

ered with the subscrip

tion.

Note:

When a calcu

lation is per

formed, the

timestamp of

the result is the

time that the

calculation has

The result is returned as

 a string.

Format of timestamp is:

 "%m/%d/%y %H:%M:%S.%f"

Example: “04/11/23

 22:09:40.000”

#Example to convert string

 timestamp to Python

 datetime object:

from datetime import

 datetime

datetime_str =

 Historian.CurrentTime()

datetime_object =

 datetime.strptime(datetim

e_str, '%m/%d/%y

 %H:%M:%S.%f')

Historian | 32 - The Python Collector | 2487

Function Type Function Description Example

begun, not the

time that it com

pleted.

For recovery of polled

or unsolicited tags, the

calculation execution

time is the time when

the calculation would

have been performed if

the collector were run

ning.

Insert A Timestamp Historian.NextGoodTime(‘tag

name’, ‘time’)

The timestamp of the

good raw sample after

the time. Time is provid

ed as string in standard

ISO 8601 format.

Result=Histo

rian.NextGood

Time('Tag',2023-12-13T17:54:44

.223Z)

Insert A Timestamp Historian.Next

Time(‘tag name’,

‘time’)

The timestamp of the

raw sample after the

timestamp. Time is pro

vided as string in stan

dard ISO 8601 format.

Result=Historian.Next

Time('Tag','2023-12-13T17:56:21

.726Z')

Insert A Timestamp Historian.Previous

GoodTime(‘tag name’,

‘time’)

The timestamp of the

latest good quality of

the raw sample prior to

the time. Time is provid

ed as string in standard

ISO 8601 format.

Result=Histori

an.PreviousGood

Time('Tag','2023-12-13T17:57:45

.308Z')

Insert A Timestamp Historian.Previous

Time(‘tag name’,

‘time’)

The timestamp of the

raw sample prior to the

time. Time is provided

as string in standard ISO

8601 format.

Result=Histo

rian.Previous

Time('Test_Sim.Simula

tion00001','2023-03-27T16:02:08

.070557')

Historian | 32 - The Python Collector | 2488

Function Type Function Description Example

Insert A Timestamp 'time shortcut' The timestamp.value as

a string format, in ISO

8601 format.

Re

sult='2023-12-13T18:00:38.186Z'

Insert A Value Historian.CurrentVal

ue(‘tag name’)

The value of the tag, in

terpolated to the calcu

lation execution time.

The CurrentValue func

tion returns 0 if the qual

ity is 0 (bad quality).

This occurs if you initial

ized it to 0, or if a previ

ous call failed.

Result=Historian.Cur

rentValue('Test_Sim

.Simulation00001')

Insert A Value Historian.Interpolat

edValue(‘tag name’,

‘time’)

The tag value, interpolat

ed to the time that you

enter. Time is provided

as string in standard ISO

8601 format.

Result=Historian.In

terpolatedValue('Tag',

'2023-12-13T18:05:29.367Z')'

Insert A Value Historian.NextGoodVal

ue(‘tag name’, ‘time’)

The value of the good

raw sample after the

time. Time is provided

as string in standard ISO

8601 format.

Result=Historian.Next

GoodValue('Tag',

'2023-12-13T18:06:41.622Z')

Insert A Value Historian.NextVal

ue(‘tag name’, ‘time’)

The value of the raw

sample after the time

stamp. Time is provided

as string in standard ISO

8601 format.

Result=Histori

an.NextValue('Tag',

'2023-12-13T18:07:44.369Z')

Insert A Value Historian.Previous

GoodValue(‘tag name’,

‘time’)

The latest good value of

the raw sample prior to

the time. Time is provid

ed as string in standard

ISO 8601 format.

from datetime import

 datetime, timedelta

from time import time

 # Getting today's date

 and time

Historian | 32 - The Python Collector | 2489

Function Type Function Description Example

todays_Date =

 datetime.now()

subtract 1 minute from

 current time

timeToQuery =

 todays_Date -

 timedelta(hours=0,minutes

=1,seconds=0)

 Result=Historian.Previous

GoodValue('Test_Sim.Simula

tion00001',timeToQuery.iso

format())

Insert A Value Historian.PreviousVal

ue(‘tag name’, ‘time’)

The tag value of the raw

sample prior to the time

specified.

Time is provided as

string in standard ISO

8601 format.

datetime_str =

 Historian.CurrentTime()

datetime_object =

 datetime.strptime(datetim

e_str, '%m/%d/%y

 %H:%M:%S.%f')

Result=Historian.PreviousV

alue('Test_Sim.Simulation0

0001',datetime_object.isof

ormat())

Insert An Advanced Cal

culation- Non-filtered

Calculation

Historian.Advanced

Calculation('Tag

name', 'Calculation

Mode', ‘Criteria

String’ 'StartTime',

'EndTime')

Unfiltered calculated

data query with crite

ria string that returns a

single value. All times

are provided as string in

standard ISO 8601 for

mat.

Result=Histori

an.AdvancedCalcula

tion('Tag','Aver

age','','2023-12-13T18:15:22

.189Z','2023-12-13T17:15:23

.189Z')

Insert An Advanced Cal

culation- Filtered Calcu

lation

Historian.AdvancedCal

culationFilter ('Tag

name', 'Calculation

Mode', ‘Criteria

Filtered calculated data

query with criteria string

that returns a single val

ue. All times are provid

Result=Historian.Ad

vancedCalculation

Filter('Tag','Aver

age','','2023-12-13T18:16:29

Historian | 32 - The Python Collector | 2490

Function Type Function Description Example

String’, 'StartTime',

'EndTime', 'FilterTag

name', 'FilterMode',

'FilterComparison',

'FilterValue')

ed as string in standard

ISO 8601 format.

.333Z','2023-12-13T18:16:30

.333Z','Tag','After

Time','Equal','')

Insert An Advanced Cal

culation Quality- Non-fil

tered Calculation

Historian.AdvancedCal

culationQuality('Tag

name', 'Calculation

Mode', ‘Criteria

String’ 'StartTime',

'EndTime')

Unfiltered calculated

data query with crite

ria string that returns

the quality of value. All

times are provided as

string in standard ISO

8601 format.

Result=Historian.Ad

vancedCalculation

Quality('Tag','Aver

age','','2023-12-13T18:18:32

.238Z','2023-12-13T18:18:33

.238Z')

Insert An Advanced Cal

culation Quality- Filtered

Calculation

Historian.AdvancedCal

culationFilterQuality

('Tagname', 'Calcula

tionMode', ‘Criteria

String’, 'StartTime',

'EndTime', 'FilterTag

name', 'FilterMode',

'FilterComparison',

'FilterValue')

Filtered calculated data

query with criteria string

that returns the qual

ity of value. All times

are provided as string in

standard ISO 8601 for

mat.

Result=Histori

an.AdvancedCalcu

lationFilterQual

ity('Tag','Aver

age','','2023-12-13T18:20:19

.954Z','2023-12-13T18:20:20

.954Z','Tag','After

Time','Equal','')

NA Historian.LogMes

sage(string_message)

Allows you to write mes

sages to the collector

log file for debugging

purposes. The collector

log files are located in

the

Proficy Historian

 Data\LogFiles\LogFiles

folder.

Result=Historian.Log

Message(test_message)

Historian | 32 - The Python Collector | 2491

Examples of using Calculation Functions

Examples: Using the Built-in Functions

Retrieving the Current value

You can use the current value function to retrieve the current value of an existing Historian tag.

Result=Historian.CurrentValue('Tag1’)

Get the current value of two tags and return the greater value of the two value:

Return the Greater Value of Two Tags

x=Historian.CurrentValue('Tag1')

y=Historian.CurrentValue('Tag2')

if x > y:

 Result= x

else:

 Result= y

Add the Values of Two Tags

Result=Historian.CurrentValue(‘Tag1')+Historian.CurrentValue('Tag2')

Examples: Custom or Third-party Python Modules

To use additional Python modules, install them over Python 3.8.

For example, to install NumPy:

1. Run the following command:

Pip install numpy

2. Add the site packages to the Python path as follows:

Computer\HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\GE

 Digital\iHistorian\CollectorServiceExtensions\PythonExpressions\PythonPath

After you do so, the changes are reflected as follows:

C:\Program Files (x86)\GE Digital\Historian Python Expressions\Python38\lib

C:\Program Files (x86)\GE Digital\Historian Python Expressions\Python38\user

Historian | 32 - The Python Collector | 2492

C:\Users\Administrator\AppData\Local\Programs\Python\Python38-32\Lib

C:\Users\Administrator\AppData\Local\Programs\Python\Python38-32\Lib\site-packages

Retrieve the Age of the First Person from a List Using a REST API

import requests

import json

api_url = https://myRestAPIURL/

response = requests.get(api_url)

json_data = json.loads(response.text)

Results=json_data["results"][0]

dateOfBirth =Results["dateofbirth"]

age = dateOfBirth["age"]

Result=age

Returns the following result:

{

 "results": [

 {

 "gender": "female",

 "name": {

 "title": "Mrs",

 "first": "Lumi",

 "last": "Tikkanen"

 },

 "dateofbirth": {

 "date": "1982-01-08T21:23:26.095Z",

 "age": 39

 },

 "phone": "08-609-184",

 "cell": "049-127-63-22"

 }

]

}

Historian | 32 - The Python Collector | 2493

Calculate the Sum of all Values in a Column in an SQL Database

import pyodbc

conn = pyodbc.connect('Driver={ODBC Driver 17 for SQL Server};'

 'Server=MySQLServer;'

 'Database=MyDB;'

 'Trusted_Connection=yes;')

cursor = conn.cursor()

cursor.execute('SELECT column1 FROM Table_1')

sum = 0;

for i in cursor:

 sum = sum + i.column1

Result = sum

conn.close()

Calculate a Score Using Linear Regression in NumPy

import numpy as np

from sklearn.linear_model import LinearRegression

X = np.array([[2, 7], [10, 4], [5, 7], [2, 3]])

y = np.dot(X, np.array([1, 2])) + 3

reg = LinearRegression().fit(X, y)

Result = reg.score(X, y)

Reading Data from a File Using Pandas

To read the data using Pandas, you must create:

• Training dataset using 80% of the data

• Linear regression model using the training data

• Return the coefficient of the model

import pandas as pd

import numpy as np

from sklearn import linear_model

Historian | 32 - The Python Collector | 2494

data = pd.read_csv("C:\\myFile.csv")

data = data[["Column1","Column2"]]

train = data[:(int((len(data)*0.8)))]

regressionLine = linear_model.LinearRegression()

train_x = np.array(train[["Column1"]])

train_y = np.array(train[["Column2"]])

regressionLine.fit(train_x,train_y)

Result=regressionLine.coef_[0][0]

Mathematical Optimization
The Rosenbrock function to perform mathematical optimization is defined in SciPy as follows:

sum(100.0*(x[1:] - x[:-1]**2.0)**2.0 + (1 - x[:-1])**2.0)

import numpy as np

from scipy.optimize import rosen

a = 0.2 * np.arange(9)

Result=rosen(a)

Calculating the Determinant of a Matrix using SciPy

#calculate the determinant of a square matrix

import numpy as np

from scipy import linalg

A = np.array([[1,2,4], [4,3,7], [2,7,3]])

Result=linalg.det(A)

Creating a Data Frame from an Array and Calculating the Sum of all Elements

import numpy as np

import pandas as pd

df = pd.DataFrame(np.array([[1, 2, 3], [4, 5, 6]]))

Result=float(df.sum().sum())

Historian | 32 - The Python Collector | 2495

Generating a Random Value

from random import seed

from random import random

seed(10)

Result=random()*random()

Example: Storing Current Values of Arrays

You can store the current value of array of strings into another array tag. You can use the below

calculation/script, in this example, the CurrentValue function returns the result as a python list that will be

stored into the appropriate historian array type:

Result = Historian.CurrentValue('Test_Sim.SimulationArrayString')

Note:

When you convert a value to boolean type, you must store the results as Result =

bool(Historian.CurrentValue('TP.Simulation00001'))

You can take an array value collected from a field device and adjust the values before storing it in another

array tag Array2 using the below calculation/script:

x= Historian.CurrentValue("Array1")

x(1) = x(1)+10

Result = x

You can use Calculation() function to read the array tag as shown below:

from datetime import datetime, timedelta

datetime_str = Historian.CurrentTime()

endTime = datetime.strptime(datetime_str, '%m/%d/%y %H:%M:%S.%f')

startTime = endTime - timedelta(hours=0,minutes=0,seconds=1)

Result=Historian.Calculation('Test_Sim.SimulationArray00001','Average', startTime.isoformat(), endTime.isoformat())

Note:

When you import numpy values, it is recommended to include the string data type, failing to

include will cause the code to incorrectly read the numpy values. The below code will fail with

Historian | 32 - The Python Collector | 2496

error: Msg="Unable to set result for Result" if the tag using this script is set as an array of

integers. Testing the function will pass but running the calculation will fail.

import numpy as np

randnums= np.random.randint(1,101,5)

Result=randnums

Example: Storing Dictionary Data as Multifield Data

Dictionary data type in Python (key/value pairs) can be stored in Historian as a Multifield (User Defined

Type).

Note:

If you want to store the data quality of multifield elements, store the result into a Historian tag

that matches the data type of the field. Copying a multifield into a dictionary type only stores the

field name and data.

Maximum array elements that can be copied to python tuple are 10. If more elements are available in the

source in Historian, read each element in your python calculation.

For example, create a Multifield called “MySample” in Historian with three fields named: Field1, Field2,

Field3. Once it is created, add a Python tag with the same multifield data type, and use below script to

update its values:

thisdict = {

 "Field1": 11.55,

 "Field2": 22.8,

 "Field3": 33.55,

}

Result = thisdict

OR

thisdict = {

 "Field1": "1",

 "Field2": "2",

 "Field3": "3",

}

Result = thisdict

Historian | 32 - The Python Collector | 2497

Using the value of a field within the python script, if you have a user-defined type MySample with fields

Field1 and Field2, you can create Tag1 and use the value of one field in the Python Tag. The destination

tag is not a multifield tag.

sampleDict = Historian.CurrentValue('TestMF')

Result = sampleDict['Field3']

OR

Result = Historian.CurrentValue('TestMF.Field1')+5

OR

thisdict = {

 "brand": "BrandNew",

 "model": "BrandModel",

 "year": 1964

}

Result = thisdict["year"]

Storing the current value of a multifield tag into another tag whose data type is the same user defined

multifield type

Below example stores the current value of a multifield tag into another tag whose data type is same as

the user defined multifield type. CurrentValue function returns the result as a python dictionary (key value

pairs of string data type).

Result = Historian.CurrentValue('TestMFString')

Example: Storing Python Integer List in Historian

Python lists and tuples can be stored in Historian as arrays of either numeric or string data types.

Historian creates the arrays as python lists

Maximum array elements copies to python list is 10. If more elements are in the source in historian, read

each element in your python calculation.

To store python integer list in historian, create a Single Integer array type and use the below calculation/

script:

import array as arr

a = arr.array('i', [2, 4, 6, 8])

Result = a

Historian | 32 - The Python Collector | 2498

OR

tuple = (11,22,33)

Result = tuple

Example: Storing Python String List in Historian

Python lists and tuples can be stored in Historian as arrays of either numeric or string data types.

Historian creates the arrays as python lists

Maximum array elements copies to python list is 10. If more elements are in the source in historian, read

each element in your python calculation.

to store python string list in historian, create a variable string tag of array type and use the below

calculation/script:

mylist = ["gauge", "valve", "rotor"]

Result = mylist

OR

thistuple = ('Motor', 'Shaft', 'Rotor', 'Stator')

Result = thistuple

Example: Use Historian Data as Input to a Python Script

You can use the Historian Array data as input to a python script, to use the Historian Array data as input,

you can use the name of the array tag like "Array1" or the individual element of the array like "Array1[4]".

For example, if you have an array tag "Array1" of floating point values and a calculation tag "FloatCalc1" of

float data type, then you can use the array as input to calculate a float value.

Result=Historian.CurrentValue("Array1[4]")+5

Chapter 33. Server-to-Server Collector

Overview

Overview of the Server-to-Server Collector

The Historian Server-to-Server collector allows you to collect data and messages from a source Historian

server to a destination Historian server, a Predix Time Series instance, an Azure IoT HUb instance, or an

MQTT endpoint such as AWS IoT Core. The Server-to-Server collector includes many of the features of

the Calculation collector. The primary difference is that the Server-to-Server collector stores the result in a

destination tag on the destination server, whereas the Calculation collector reads and writes to the same

server.

The Server-to-Server collector can also run as a stand-alone component where both the source and

destination Historian databases are on remote machines.

When a time-based or an event-based trigger of a destination tag occurs:

1. The calculation formula for the destination tag is executed.

This typically involves fetching data from one or more tags on the source server.

2. A raw sample or calculation error is determined.

You can use conditional logic in your calculation formula to determine if a sample should be sent

to the destination.

3. The raw sample is delivered to the destination server, utilizing store and forward when necessary.

Message replication, if enabled, is event-based. Messages and alerts are sent to the destination server as

they happen.

The destination tag is fundamentally a different tag than the source tag. Therefore:

• When a tag is added by browsing, only certain tag properties are copied from the source tag to the

destination tag. Consider what properties are necessary for your application and configure them

manually. For information on which properties are copied, refer to Tag Properties that are Copied

(on page 2508).

• If you change a tag property on the source tag (EGU Limits, descriptions, and so on), the property

does not automatically change on the destination tag. You can manually change the properties of a

destination tag.

Historian | 33 - Server-to-Server Collector | 2500

Data Flow in Multiple Server-to-Server Collectors

The following image shows that you can use multiple Server-to-Server collectors in an application to pass

data from multiple nodes to one node and that a server can be a source and a destination at the same

time. Each Historian server is forwarding a different set of tags.

Data Flow in Bi-directional Server-to-Server Collectors

You can configure bi-directional data collection, where each collector collects a different set of tags. The

following figure shows bi-directional server-to-server data collection.

Historian | 33 - Server-to-Server Collector | 2501

Note:

You cannot collect the same tag in both directions. This is not a way to perform bi-directional

synchronization of a tag.

Features

Feature Capability

Browse Source for Tags Yes

Browse Source for Tag Attributes Yes

Polled Collection No

Minimum Poll Interval No

Unsolicited Collection Yes

Timestamp Resolution Yes - 100 milliseconds

Data Compression Yes

Accept Device Timestamps Yes

Floating Data Point Yes

Integer Data Yes

String Data Yes

Binary Data No

Allows VB scripting No

Historian | 33 - Server-to-Server Collector | 2502

Feature Capability

Python Expression Tags No

Licensing

When the destination server is Proficy Historian, the Server-to-Server collector requires licensing on the

destination machine. This means that the destination Historian server must be licensed for the Historian

Enterprise edition, have the Enterprise Collectors option licensed, or be a Historian Edge server. It is

similar to any other collector. The destination machine will have the Server-to-Server listed in its collector

list.

Interface Name

Historian uses the following naming convention for the Server-to-Server collector interface name:

<source Historian server>_To_<destination Historian server>

Best Practices

• We recommend that you install the Server-to-Server collector on the source Historian machine.

When you do so, the collector can preserve the collected data (store and forward) even if the

collector and the destination server become disconnected.

• Collection on a tag-by-tag basis is preferred, according to scheduled poll times or upon data

changes. One sample is collected for each trigger.

• The Server-to-Server collector can perform calculations on multiple input tags as long as the input

tags are on the same source Historian.

• Use polled triggers to perform scheduled data transformations like daily or hourly averages. Use

unsolicited triggers to replicate data in real time, as it changes.

• Use event-based triggers to replicate data throughout the day. The samples can be held ingoing

an outgoing store and forward buffer when necessary. You cannot schedule batch replication of

raw samples. For example, you cannot, at the end of the day, send all raw samples for tags to the

destination.

• All input source tags for the calculations must originate from the source archiver. For instance, you

cannot directly add a tag from server1 plus a tag from server2 and place the result on server2. You

could, however, collect tags from server1 to server2, and then use the Calculation collector or the

Server-to-Server collector to accomplish this. This requires two Server-to-Server collectors, one

running on each machine. You could also use the Historian OLE DB provider.

Limitations

Historian | 33 - Server-to-Server Collector | 2503

• If you enable alarm replication, the alarm data is sent to the destination server. However, alarm

filtering is not available in the Server-to-Server collector.

• You cannot configure bi-directional message replication.

About Recovery Mode

Normally, the Server-to-Server collector operates in a real-time mode. A real-time mode is when the

collector is polling data or has subscribed to events and triggers calculations based on these events

occurring in real-time. Messages are also sent as they occur. Recovery mode allows you to recover tag

and alarm data when the connection between the collector and the source server is re-established. After

a connection loss, the configuration settings (on page 2506) for the Server-to-Server collector determine

how much tag and alarm data is recovered and if messages are included in the recovery.

When Does Recovery Occur?

Recovery mode executes:

• When the collector is started.

• When the collector is resumed after a pause.

• When there is an on-the-fly change (similar to a pause and resume). Only tags in the new tag

configuration are recovered.

• When there has not been a collector stop and start, but the connection to the source Historian is

restored.

What Happens When Recovery Occurs?

In recovery mode, after connecting to the source Historian, the collector will:

• Set up subscriptions for all alarms and trigger tags.

• Perform recovery in chronological order (oldest to newest).

• Perform message recovery, if enabled.

• Begin polling and processing subscriptions in real-time mode.

The following items are recovered:

• Event-based tags: This includes the data from the last write time until now. The system retrieves

all tags.

• Messages: The system checks for new messages and verifies errors. Once the system verifies a

connection to the destination, it sends the messages one at a time.

• Alarm data: This includes all alarm data from the last write time until now.

Historian | 33 - Server-to-Server Collector | 2504

Note:

Alarm recovery uses a different write time than tag recovery. Alarm recovery starts from the time

of the last alarm is replicated to the destination.

If your formula contains tags not in the trigger list or dependencies exist among tags (for

example, if a calculation tag is a trigger for another calculation tag), you might not recover all

data.

About Collection of Raw Samples

To minimize the effect of missing samples, we recommend that you view collected data on the

destination with interpolated queries rather than raw data queries.

Here are some suggestions about how best to configure your system when you want raw samples of

collected tags to match on the source and the destination. This is often not achievable, but here are some

tips:

• Use the formula Result=CurrentValue("TriggerTag").

• Do not use collector compression on the destination tag.

• Use archive compression on the destination if it is set on the source.

The reason for this is that unsolicited triggers occur based on value changes, not based on what is

stored in the archive. A value change may not be stored on the destination if archive compression

is being used. It is up to the destination tag to apply the archive compression before the value is

stored.

• Use event-based triggers with 0 ms collection intervals.

• In the Server-to-Server collector, disable the Synchronize Timestamps to Server option in the

Advanced section in the collector configuration in Historian Administrator.

Using the Collector

Workflow for Using the Server-to-Server Collector

To use the Server-to-Server collector, you must perform the following tasks:

Historian | 33 - Server-to-Server Collector | 2505

Number Task Notes

1 Install the collectors (on page

142) on the machine on which

you want to run the collector.

This step is required. This will

place the collector binaries on

the machine.

2 Install Remote Management

Agents (on page 187).

This step is required to manage

collectors installed on a remote

machine.

3 Add an instance (on page 357) of

the Server-to-Server collector us

ing Configuration Hub.

This step is required.

4 Configure the Server-to-Server

collector (on page 2506) using

Historian Administrator.

This step is required only if you

want to change the default val

ues.

5 Create a destination tag. You can

do so by browsing for the tag (on

page 2064), adding it manually

(on page 2056), or copying a tag

(on page 2060).

This step is required. If config

ured, the tag will contain a prefix.

6 Assign a trigger to the tag that

you have created, similar to as

signing a trigger for the Calcula

tion collector.

This step is optional. The trigger

can be scheduled (polled) or un

solicited (event-based). When

you use an event-based trigger,

you must also set up a depen

dency list of one or more tags.

For more information, refer to

Create a Polled Trigger (on page

2112) and Create an Unsolicited

Trigger (on page 2114).

7 Create a formula similar to creat

ing a formula for the Calculation

collector. For instructions, refer

to About Calculation Formulas

(on page 2118).

This step is optional.

You can expect thousands of

tags per second to be processed,

depending on your calculation

formula. However, the destina

tion server has a limited number

Historian | 33 - Server-to-Server Collector | 2506

Number Task Notes

of incoming events per second,

which is shared by all the collec

tors.

For instance, for a polled collec

tion, you can expect to perform

hundreds of calculations per sec

ond. Polled calculations, using

calculated data functions, are

slower than unsolicited calcula

tions using the CurrentValue()

function.

Configure the Server-to-Server Collector Instance

1. Access Historian Administrator.

2. Select the Server-to-Server collector from the list of collectors, and then select Configuration.

The Collector Specific Configuration (ServerToServer) section appears.

Historian | 33 - Server-to-Server Collector | 2507

3. Provide values as specified in the following table, and then select Update.

Field Description

Alarm Replication Indicates whether you want to enable or disable alarm replication. If you

enable alarm replication, all collected alarm data will be transferred from

the source server to the destination server. If you enable alarm replica

tion, you also enable alarm recovery. However, if you set the Max Recov

ery Time value to zero, alarm recovery does not happen.

Message Replication Indicates whether you to want to enable or disable message replication.

If you enable message replication, messages will be transferred from

the source server to the destination server. You can use this data for au

dits. If you enable message replication, you also enable message recov

Historian | 33 - Server-to-Server Collector | 2508

Field Description

ery. However, if you set the Max Recovery Time value to zero, message

recovery does not happen.

Calculation Timeout

(sec)

The maximum time allowed for a tag's calculation formula to execute

before being terminated. The default value is 10 seconds.

Max Recovery Time

(hr)

The maximum duration, in hours, for which the collector will attempt to

restore data during recovery logic. The default value is 4 hours.

Add Prefix to Mes

sages

The prefix to identify replicated messages on the destination.

Alarms and events data will automatically have a prefix added to it with

the following syntax:

MachineName_Datasource

For example, if your alarm is forwarded from the server Almserver12 with

a data source named OPCAE, the prefix will be Almserver12_OPCAE.

The Server-to-Server collector is configured.

Tag Properties that are Copied

Tag Properties that are Copied

When you add a tag by choosing from the S2S Collector browse list, only certain tag properties are

copied from the source tag to the destination tag. If you intend to copy raw samples from the source

to the destination, after you add the tag, be sure to set these properties to their desired values. See Tag

Properties Copied to the Destination Tag described below.

Important tag properties that do not automatically copy over when you add the tag include:

• Input scaling settings

Since the output of the source tag is the input to the destination tag, you actually want to match the

EGU limits on the source to input limits on the destination, if you are using Input Scaling.

• Timestamp resolution

Historian | 33 - Server-to-Server Collector | 2509

Make sure that the timestamp resolution properties match. For example, do not use the second

timestamp resolution on the destination tag, if your source tag uses millisecond timestamp

resolution. If your source tag uses millisecond timestamp resolution, then you also want to set your

destination tag to also use millisecond timestamp resolution.

The following table describes the tag properties in Historian Administrator Tags page that are copied

when the destination tag is created via select from the browse. If a property is not listed in this table, it is

not copied.

Tab Name Properties Copied

General Description

EGUDescription

Collection Data Type

DataLength

Scaling0 HiEGU

LoEGU

InputScaling

HiScale

LoScale

Compres

sion

ArchiveCompres

sion

ArchiveDead

band(%)

Examples of Data Collection

Raw Samples Collection Example

This topic describes how to collect raw samples using the Server-to-Server collector. The tagnames are

the same on the source and destination. In this example, you add a tag manually, and give it a tagname on

the destination server (representing the meaning of the calculated value).

Historian | 33 - Server-to-Server Collector | 2510

1. Using Historian Administrator, browse the Server-to-Server collector for tags (on page 2064) on the

remote server.

2. Select a tag.

The collector creates a tag on the destination with the tagname to hold the collected data. The

formula of the created tag is Result=CurrentValue and the source is the trigger.

Advanced Collection Example

In this example, you calculate a value (such as an hourly average of a source tag) or add two source tags

together.

1. Using Historian Administrator, add a tag manually to the destination, as shown in the following

image:

2. In the Tags section, select Collection.

3. In the Collection Type box, select Polled.

4. Set the Collection Interval to 1 hour.

5. Select Calculation.

6. In the Calculation section, enter the name of the tag, or use the Insert Function Wizard to browse

and select the tagname. Then, build your calculation formula.

The following figure shows an example of inserting a calculated value for a tag with the Insert

Function Wizard.

Historian | 33 - Server-to-Server Collector | 2511

7. Select Insert.

The Tag Maintenance page appears, showing the formula in the Calculation section.

Historian | 33 - Server-to-Server Collector | 2512

8. Select Update to save your changes.

A message appears, asking you if you want to test the formula.

9. Select Yes.

The Server-to-Server collector will begin processing the created tag upon the next collector reload.

Creating Calculation Formulas

About Calculation Formulas

To perform a calculation using the Calculation collector, you must define the calculation formula. You can

do so in one of the following ways:

• Using the Insert Function wizard (on page 2123), which helps you use any of the built-in functions

(on page 2127) orcreate your own function (on page 2125).

• Entering the syntax of the formula directly in the form of a VBScript code (on page 2121).

Before you create calculation formulas, refer to the general guidelines (on page 2119).

Historian | 33 - Server-to-Server Collector | 2513

There are two predefined global values called Result and Quality. These global values control the value

and quality of the output sample. If the Result is not set in the formula, then no sample is stored.

General Guidelines for Defining a Calculation Formula

This section provides guidelines that you must follow when defining a calculation formula.

Identify Time Intensive Calculations

Use the Calculation Execution Time property of each tag to identify time-intensive queries. In Historian

Administrator, look for the Execution Time on the Calculation section for an estimate of how long, on

average, it takes for the calculation per tag (starting from the time the collector was started).

You can also include that column when you export tags to Excel using the Excel Add-In feature. For

information, refer to Exporting Tags (on page 2746).

You can also include that column (AverageCollectionTime) when you query the ihTags table using the

Historian OLE DB Provider. Sorting by this column will let you find them fast.

Troubleshoot Issues with Large Configurations

If the timestamps of your raw samples appear slightly old, do not assume that the collector has stopped

working. It is possible that the collector is just running behind.

For instance, if you have a report rate of 15,000, but the newest raw sample that you see is 20-30 minutes

old, wait for 1-2 minutes, and review the newest raw sample again. If the collector stopped, the newest

raw sample will be unchanged. If it did change, then the engine is still running, but is lagging behind. If

that happens, check if the collector overrun count is increasing. If yes, the collector is dropping samples,

and you must decrease the load.

Error Handling in VBScript

Start each script with the On Error Resume Next statement so that errors are trapped. If you use this

statement, the script runs even if a run-time error occurs. You can then implement error handling in your

VBScript.

It is a good practice to include statements in your VBScript that catch errors when you run the script. If

there is an unhandled error, a value of 0 with a bad data quality is stored. When you catch an error in the

VBScript, consider including a statement in your calculation that sets the Quality=0 when the error occurs.

(The 0 value means that the quality is bad.) If you do not specifically include this setting in your script,

Historian stores a good data quality point (Quality=100), even if an error has occurred in your formula. If

Quality=100 is not appropriate for your application, consider setting the quality to 0.

Historian | 33 - Server-to-Server Collector | 2514

You cannot use the On Error GoTo Label statement for error handling, as it is not supported in VBScript. As

a workaround, you can write code in the full Visual Basic language and then place it in a .DLL so that you

can call it from within your VBScript using the CreateObject function. For examples of calculations that

use the CreateObject function, refer to Examples of Calculation Formulas (on page 2138).

Unsupported VBScript Functions

You can use any VBScript syntax to build statements in a calculation formula with the exception of the

following functions:

• MsgBox

• InputBox

Milliseconds not Supported in VBScript

The CDate() function does not support the conversion of a time string with milliseconds in it. Whenever

you use the CDate() function, a literal time string, or a time string with a shortcut, do not specify

milliseconds in the time criteria. Milliseconds are not supported in VBScript.

You cannot use milliseconds in times passed into built-in functions such as the PreviousTime and

NextValue functions. For example, you cannot loop through raw samples with millisecond precision.

Notes on VBScript Time Functions

Using the VBScript time functions such as Now, Date, or Time can lead to unexpected results, especially

in recalculation or recovery scenarios. To avoid these issues, use the CurrentTime built-in function

provided by Historian, instead of Now, Date, or Time. For example, the VBScript Now is always the clock

time of the computer and is likely not useful when recalculating or recovering data for times in the past.

However, the "Now" time shortcut is equivalent to CurrentTime and can be used as input to the other built

in functions.

Using Quotation Marks in VBScript

If you want to use quotation marks in a tag name, you must insert a double quotes for each quotation

mark that you want to use, as required for proper VBScript syntax. For example, if you want to get the

current value of a tag named TagCost"s, you must enter:

Result = CurrentValue("TagCost""s")

In this example, note the double quotation marks that appear before the letter s in the TagCost"s name in

the formula.

Historian | 33 - Server-to-Server Collector | 2515

Avoiding Circular References in VBScript

Do not use circular references in calculation formulas. For instance, if the tag name is Calc1, a formula

with a circular reference would be Result=CurrentValue("Calc1"). Whether the tag is polled or unsolicited,

you get a bad value back using the circular reference.

Uninterrupted Object Method Calls

Object method calls are not interrupted. It is possible to exceed the Calculation Timeout setting if you

have a method call that takes a long time to execute. The Calculation Timeout error still occurs, but only

after the method completes.

Help for VBScript

You can get detailed Help for VBScript by referencing the Microsoft documentation on the MSDN web

site. A VBScript User's Guide and Language Reference is available here: http://msdn.microsoft.com/en-

us/library/t0aew7h6.aspx

Avoiding Deleted Tags

You can reference a deleted tag in a calculation formula, without an error appearing. For instance, you

could enter a formula such as Result=CurrentValue("DeletedTag"), where DeletedTag is the name of the

deleted tag. You can do this because when you delete a tag, Historian removes deleted tags from the Tag

Database (so you cannot browse for it), but it retains the data for that tag in the archive.

However, it is recommended that you do not reference deleted tag names in your calculation formulas,

because if the archive files are removed with the data for the deleted tag, the calculation will not work

properly.

Create a Calculation Formula Using a VBScript Code

This topic describes how to create a calculation formula by entering a VBScript code. You can also create

a calculation formula using the Insert Function wizard (on page 2123).

Important:

If a tag contains bad data quality, you cannot store its value through a calculation formula. For

example, if your VBScript includes: Result = 7 Quality = 0, Historian does not store the 7, it

stores 0.

http://msdn.microsoft.com/en-us/library/t0aew7h6.aspx
http://msdn.microsoft.com/en-us/library/t0aew7h6.aspx

Historian | 33 - Server-to-Server Collector | 2516

Tip:

For examples, refer to Examples of Scheduling Polled Triggers (on page 2113) and Examples of

Scheduling Unsolicited Triggers (on page 2117).

Create the tag that you want to use to store the calculation results. You can create the tag manually using

Configuration Hub (on page 473), Historian Administrator (on page 2057) or the Web Admin console (on

page 2059). Or, you can copy a tag (on page 2060).

1. To create a calculation formula using Configuration Hub:

a. Access Configuration Hub (on page 336).

b. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

A list of tags appears.

c. Select a Calculation tag, right-click or select more options, and then select Calculation.

The calculation editor appears.

d. Enter the VB script in the editor.

e. To test the function, select .

A message appears, stating whether the syntax is correct.

f. In the upper-left corner of the page, select Save.

The calculation formula is created.

2. To create a calculation formula using Historian Administrator:

a. Access Historian Administrator (on page 823).

b. Select Tags, select the tag for which you want to create a calculation formula, and then

select Calculation.

c. In the Calculation Triggers section, select Add.

The Insert Function Wizard window appears.

d. Under Select Function, in the Type field, select Add A Calculation Trigger.

e. Under Tag Browse Criteria, enter the search criteria to find the tag.

The search results appear in the Browse Results section.

f. Select the tag that you want to add, and then select Insert.

Historian | 33 - Server-to-Server Collector | 2517

g. In the Calculation field, enter the calculation formula using the VBScript syntax.

h. To verify that the syntax is correct, select Test.

A message appears, stating whether the syntax is correct.

Built-in Functions

This topic describes the built-in functions that you can use to create a calculation formula. You can also

create your own calculation function (on page 2136).

Note:

• In this table, Time refers to the actual time; this time can include absolute and relative time

shortcuts. Refer to the Date/Time Shortcuts (on page 2138) section for more information.

• You cannot control the timestamp of the stored sample. It is determined by the triggering

tag or polling schedule.

• You cannot use microseconds for any of the built-in calculation functions.

For all the functions that retrieve previous values, it is similar to performing a RawByNumber

query with a count of 1 and direction of backward. A less-than operation (not less-than-or-

equal-to) is used on the timestamp to get the sample. Similarly, for all the functions that

retrieve next values, it is similar to performing a RawByNumber query with a count of 1 and

direction of forward. A greater-than operation (not greater-than-or-equal-to) is used on the

timestamp to get the sample.

Function

Name
Description

Current

Value(<tag

name>)

The value of the tag, interpolated to the calculation execution time. The CurrentValue

function returns 0 if the quality is 0 (bad quality). This occurs if you initialized it to 0, or if

a previous call failed.

CurrentQual

ity(<tag

name>)

The current quality of the tag (0 for bad quality and 100 for good quality).

CurrentTime The calculation execution time, which becomes the timestamp of the stored value.

Historian | 33 - Server-to-Server Collector | 2518

Function

Name
Description

For real time processing of polled tags, the calculation execution time is the time when

the calculation is triggered. For unsolicited tags, the calculation execution time is the

timestamp delivered with the subscription.

Note:

When a calculation is performed, the timestamp of the result is the time that the

calculation has begun, not the time that it completed.

For recovery of polled or unsolicited tags, the calculation execution time is the time when

the calculation would have been performed if the collector were running.

Previous

Value(<tag

name>, Time)

The tag value of the raw sample prior to the current time.

Previous

Quality(<tag

name>, Time)

The quality of the tag (0 for bad quality and 100 for good quality) prior to the current time.

Previous

GoodVal

ue(<tag

name>, Time)

The latest good value of the raw sample prior to the current time.

Previous

GoodQual

ity(<tag

name>, Time)

The good quality of the raw sample prior to the current time.

Previous

Time(<tag

name>, Time)

The timestamp of the raw sample prior to the current time.

Previ

ousGood

Time(<tag

name>, Time)

The timestamp of the latest good quality of the raw sample prior to the current time.

Historian | 33 - Server-to-Server Collector | 2519

Function

Name
Description

NextVal

ue(<tag

name>, Time)

The value of the raw sample after the current timestamp.

NextQual

ity(<tag

name>, Time)

The quality of the tag (0 for bad quality and 100 for good quality) after the current time.

Next

Time(<tag

name>, Time)

The timestamp of the raw sample after the current timestamp.

NextGood

Value(<tag

name>, Time)

The value of the good raw sample after the current time.

NextGood

Quality(<tag

name>, Time)

The good quality of the raw sample after the current time.

NextGood

Time(<tag

name>, Time)

The timestamp of the good raw sample after the current time.

Interpolat

edValue(<tag

name>, Time)

The tag value, interpolated to the time that you enter.

Calculation Unfiltered calculated data query that returns a single value, similar to the Excel Add-In

feature. For a list of the calculation mode, refer to Calculation Modes (on page 1073).

AdvancedCal

culation

Unfiltered calculated data query that returns a single value, similar to the Excel Add-In

feature. For a list of the calculation mode, refer to Calculation Modes (on page 1073).

AdvancedFil

teredCalcu

lation

Advanced Filtered calculated data query that returns a single value, similar to the Excel

Add-In feature.

FilteredCal

culation

Filtered calculated data query that returns a single value, similar to the Excel Add-In fea

ture.

Historian | 33 - Server-to-Server Collector | 2520

Function

Name
Description

LogMes

sage(string_

message)

Allows you to write messages to the Calculation collector or the Server-to-Server collec

tor log file for debugging purposes. The collector log files are located in the Histori

an\LogFiles folder.

Note:

The LogMessage function is the only function that does not appear in the wizard.

GetMulti

FieldVal

ue(Vari

able, <field

name>)

Returns the value of the field that you have specified. The variable contains the current

value of all the fields of a multi-field tag. Before using this function, you must read the tag

into a variable, using the CurrentValue() function. You can then use the GetMultiField

Value function to access the value of the field.

The value of the field that you enter must be the same as the name of the field in the user

defined type. If the field name is not found, a null value is returned.

GetMulti

FieldQual

ity(Vari

able, <field

name>)

Returns the quality (0 for bad quality and 100 for good quality) of the field that you have

specified. The variable contains the current value of all the fields of a multi-field tag. Be

fore using this function, you must read the tag into a variable, using the CurrentValue()

function. You can then use the GetMultiFieldValue function to access the value of the

field.

The value of the field that you enter must be the same as the name of the field in the

user-defined type. If the field name is not found, a null value is returned.

If the user-defined type can store individual quality, you get the field quality. Otherwise,

you get the sample quality.

SetMulti

FieldVal

ue(Vari

able, <field

name>, Val

ue, Quality)

Sets the value and the quality for the field that you have specified.

You can use this function to construct a multifield value containing values for each field,

and then use the result= syntax to store the value in Historian.

Counting the Number of Bad Quality Samples

The following example shows how to loop through samples of a tag named C2 to count the number of

bad quality samples.

Historian | 33 - Server-to-Server Collector | 2521

Dim count, starttime, endtime, tagquality count=0

StartTime=CurrentTime EndTime=DateAdd("n",-1,StartTime) Do while StartTime>EndTime

TagQuality=PreviousQuality("C2",StartTime)

startTime=PreviousTime("C2",StartTime) IF TagQuality=0 THEN

count=count + 1

END IF loop Result=count

Counting the Number of Collected Digital 1s For a Tag

The following example counts the number of collected digital 1s for a tag so that, for instance, you can

determine how many times a pump is turned ON and OFF.

Dim count, starttime, endtime,tagquality,TagValue

count=0

StartTime=CurrentTime

EndTime=DateAdd("h",-1,StartTime)

On error resume next

Do while StartTime>=EndTime

TagValue=PreviousValue("FIX.DI.F_CV",StartTime)

TagQuality=PreviousQuality("FIX.DI.F_CV",StartTime)

startTime=PreviousTime("FIX.DI.F_CV",StartTime)

IF TagQuality=100 AND TagValue=1 then

count=count + 1

END IF

loop

Result=count

Determining the Trigger When Using Multiple Trigger Tags

The following example shows how to determine which tag triggered the calculation, from a list of two

possible trigger tags. The example compares the two trigger tags and determines which one has the

newest raw sample. This method of getting the newest raw sample can also be used to determine if a

remote collector is sending data or is disconnected from the server.

In this example, archive compression is disabled for both of these tags.

dim timetag1

dim timetag2

dim tag1

dim tag2

Historian | 33 - Server-to-Server Collector | 2522

tag1 = "BRAHMS.AI1.F_CV"

tag2 = "BRAHMS.AI2.F_CV"

' Get the timestamp of the newest raw sample for tag1:

timetag1 = previousTime(tag1, CurrentTime)

' Get the timestamp of the newest raw sample for tag2:

timetag2 = previousTime(tag2, CurrentTime)

if timetag1 > timetag2 then

' If tag1 triggered me, then:

result = 1 else

' If tag2 triggered me, then:

result = 2

end if

Using Array or Multifield Data in Calculation

You can create tags of arrays and multifield types and use the Calculation collector, Server-to-Server

collector, Server-to-Server distributor with these tags.

Arrays

To use the Array data as input to a calculation formula you can use the name of the array

tag like "Array1" or the individual element of the array like "Array1[4]". For example, if you

have an array tag "Array1" of floating point values and a calculation tag "FloatCalc1" of float

data type, then you can use the array as input to calculate a float value.

result = currentvalue("Array1[4]")+5

You can use Calculation() function to read the array tag as shown in the following code.

Result = Calculation("Array1","Average","Now 1Minute","Now",Quality)

In this example, the calculation tag should be an array tag because the average of an array is

an array, not a single value. Each element is averaged over the time range. Since an average

of an integer or float array is a floating point value, the calculation tag must be a single or

double float array.

If you want to find the minimum of array elements in a given time, then use vbscript code to

compute and store the result in a Float tag as shown.

Historian | 33 - Server-to-Server Collector | 2523

if CurrentValue("Array1[0]") < CurrentValue("Array1[1]") then

 Result = CurrentValue("Array1[0]")

else

 Result = CurrentValue("Array1[1]")

end if

Multifield

If you have a user-defined type "MySample" with fields "r;FloatVal" and "r;IntVal" you can

create Tag1 and use the value of one field in an Integer Calc Tag. The destination tag is not a

multifield tag.

result = currentvalue("Tag1.IntVal")+5

Storing Array or Multifield data in Calculation tags

Array

If your calculation tag is an array tag, then you can copy the entire array values into it. For

example, you can copy the entire values from Array1 into Array2 using the given code.

result = CurrentValue("Array1")

You can take an array value collected from a field device and adjust the values before

storing it in another array tag Array2 using this code:

dim x

x=CurrentValue("Array1")

x(1) = x(1)+10

result = x

You can simply construct an array value inside your formula and store it in Array2, for

example:

dim MyArray(2)' The 2 is the max index not the size

MyArray(0)=1

MyArray(1)=2

MyArray(2)=3 result = MyArray

Multifield

You can have the collector combine collected data into a multifield tag. Create a calculation

Tag1 using the user-defined Type "MySample," then use this formula to fill in the fields:

Dim InputValue, myval,x,y

Historian | 33 - Server-to-Server Collector | 2524

' get the current value of another multifield tag

InputValue = CurrentValue("tag1")

' get the values of each of the fields

x = GetMultiFieldValue(InputValue, "IntVal")

y = GetMultiFieldValue(InputValue, "floatval")

' store the field values in this tag

SetMultiFieldValue myval,"IntVal",x,100

SetMultiFieldValue myval,"floatval",y,100

Result = myval

Using Array or Multifield data to trigger calculation

Array

You can use the array tag as a trigger tag for your float or array calculation tags. For

example, you can use Array1 as a trigger so that when it changes, the "CalcArray1" tag will

be updated. You cannot use an individual array element such as "Array1[3]" as a trigger,

you must use the entire array tag as the trigger tag.

Multifield

You can use a multifield tag as a trigger tag by either using the tagname "Tag1" or tagname

with the field name "Tag1.FloatVal".

Sending Array or Multifield data to a Remote Historian

Array

You can use the Server to Server Collector or Server to Server Distributor to send array data

to a destination Historian. If the destination Historian is version 6.0 or later, you can simply

browse the tags and add them.

You cannot send an array to the older versions of archiver (Pre 6.0 versions) as these

archivers will store the array tags as a blob data type in the destination and you will not be

able to read them. However, you can send individual elements of an array to these archivers,

for example, result = currentvalue("Array1 [4]").

Multifield

The destination needs to be Historian 6.0 or above to store a multifield tag but you can send

individual fields to a pre Historian 6.0 archiver.

Historian | 33 - Server-to-Server Collector | 2525

For multifield tags, you must create the User Defined Type manually at the destination

You can write an entire multified tag data sample in one write or you can create multiple

tags in the destination, one for each field you want to copy. For example, if you have one tag

"Tag1" with two fields "FloatVal" and "IntVal" on a source archiver, then you can create two

tags ("Tag1.FloatVal" and "Tag1.IntVal") on the destination.

Note:

If you change a field name or add or remove fields you must update your collection

and your destination tags.

Reading and writing a Multifield tag using MultiField functions

The following example shows how to read an entire multifield tag, using the GetMultiFieldValue function

and to write the value to a field in another tag using the SetMultiFieldValue function.

Dim CurrMultifieldValue

' Read the value of a multi field tag into a variable

CurrMultifieldValue = CurrentValue("MyMultifieldTag")

' Read the field value of multifield tag into the temporary variable

F1 = GetMultiFieldValue(CurrMultifieldValue, "Temperature Field")

' Perform a calculation on the value

Celcius = (F1 32)/ 9* 5

' Set the calculated value to another field of the multifield tag

SetMultiFieldValue(CurrMultifieldValue, "Temperature Field Celcius", Celcius, 100)

result = CurrMultifieldValue

User-defined Functions

In addition to the built-in functions (on page 2127), you can create custom calculation functions. After you

create a custom calculation function, it is available for use with other calculations as well.

Functions are useful as shortcuts for large blocks of source code. By creating a function out of commonly

used calculation formulas, you can save time and effort instead of typing a few lines of calculation

formula every time you want to perform the same operation, it is compressed to a single line.

Historian | 33 - Server-to-Server Collector | 2526

The syntax of a function is simple:

Function functionname (variable list)

 [calculation formulas]

End Function

The operations a function performs are contained within the Function / End Function statements. If you

need to send data to the function a tag name, for example you simply create a variable in the function's

parameters to receive the data. Multiple variables must be separated by commas. These variables exist

only within the function.

The following is an example of a function. This function, named checkValue(), looks at a tag and assigns

it an alarm if it is over a specified value.

A Function to Assign an Alarm to a Tag Based on a Condition
The following function, named checkValue, assigns an alarm to a tag if the tag value reaches a specified

value.

Function checkValue (tagname,sourcename,value)

 If CurrentValue(tagname) > value Then

 Set AlarmObj = new Alarm

 AlarmObj.SubConditionName = "HI"

 AlarmObj.Severity = 750

 AlarmObj.NewAlarm

 "alarmname", "Simulated", "tagname", "Now"

 checkValue = true

Else

 checkValue = false

 End If

End Function

If you want to use this function, enter the values for tag name, source name, and value, as shown in the

following example:

alm_set = checkValue("DD098.FluidBalance","FluidBalance_ALM",5000)

In this example, if the value of the DD098.FluidBalance tag exceeds 5000, the function returns a true

value, indicating that the alarm was set; the alm_set variable will be set to true. Otherwise, the alm_set

variable will be set to false.

Historian | 33 - Server-to-Server Collector | 2527

Create a User-Defined Function

This topic describes how to create your own function to use in a calculation formula. For more

information, refer to User-defined Functions (on page 2136). You can also use any of the built-in functions

(on page 2127).

Create the tag that you want to use to store the calculation results. You can create the tag manually using

Configuration Hub (on page 473), Historian Administrator (on page 2057) or the Web Admin console (on

page 2059). Or, you can copy a tag (on page 2060).

1. To create a user-defined function using Configuration Hub:

a. Access Configuration Hub (on page 336).

b. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

A list of tags appears.

c. Select a calculation tag, right-click or select more options, and then select Calculation.

The calculation editor appears.

d. In the CALCULATION section, remove Null (retain Result =).

e. In the calculation editor, place the cursor in the location where you want to insert the user-

defined function.

f. In the DETAILS section, under User Defined Functions, select .

The Add/Edit User Defined Functions (UDF) window appears.

g. Select Add New.

A function is created with the following naming convention: UserFunction<number>. The

same function is used in the function editor. You can change the function name by entering

the new name in the function editor and selecting Update UDF.

h. Enter the VB script for the function. Or, if you want to use a pre-built function, select the

function type and function in the respective fields under Pre-Built Functions. And, enter

values in the other fields that appear after selecting a function.

The function appears in the function preview below the function editor.

i. Select Insert Preview.

The function is included in the function editor at the cursor position.

j. To test the function syntax, select .

Historian | 33 - Server-to-Server Collector | 2528

A message appears, stating whether the function syntax is correct.

k. Select Update UDF.

The user-defined function is created.

l. To use the function in the calculation formula, select Insert UDF.

The function is inserted in the calculation formula at the cursor position.

m. To test the calculation formula, select .

A message appears, stating whether the syntax is correct.

n. In the upper-left corner of the page, select Save.

The calculation formula is created.

2. To create a user-defined function using Historian Administrator:

a. In Historian Administrator, select Tags, select the tag for which you want to create a

calculation formula, and then select Calculation.

b. In the Calculation section, remove Null (retain Result =).

Tip:

Avoid selecting other tags until you save your changes or you will lose your code

changes.

c. Select Functions.

The User Defined Functions window appears.

d. Select New.

The Edit Function window appears.

e. Define the function.

You can build formulas using the wizard, or create it manually by entering functions in the

Edit Function box. For information, refer to User-defined Functions (on page 2136).

f. Select Syntax to check for errors.

g. Select Update.

Your function appears in the list, and is available for use in other calculations as well.

h. To use the function, select Insert Function.

The function is inserted in your calculation formula.

Historian | 33 - Server-to-Server Collector | 2529

Date/Time Shortcuts

The following table outlines the date/time shortcuts that you can use in calculation formulas.

Table 383. Date/Time Shortcuts

Shortcut Description

Now Now (the time and date that you execute the query)

Today Today at midnight

Yesterday Yesterday at midnight

BOY First day of year at midnight

EOY Last day of year at midnight

BOM First day of month at midnight

EOM Last day of month at midnight

Relative Date/Time Shortcuts

Optionally, you can add or subtract relative times to the following absolute times. You must use them

in conjunction with the date/time shortcuts listed in the preceding table (for example, Today+5h+3min

instead of 5h3min).

• Second

• Minute

• Hour

• Day

• Week

Create a Calculation Formula Using the Pre-built Functions

This topic describes how to create a calculation formula using the pre-built functions. You can also create

a calculation formula using a VBScript code (on page 2121).

For information on a list of the available types and associated functions, refer to Types of Functions

Supported (on page 2135). For information on each pre-defined function, refer to Built-In Functions (on

page 2127). In addition to the built-in functions, you can create your own customized functions (on page

2136).

Historian | 33 - Server-to-Server Collector | 2530

1. Create the tag that you want to use to store the calculation results. You can create the tag manually

using Configuration Hub (on page 473), Historian Administrator (on page 2057) or the Web Admin

console (on page 2059). Or, you can copy a tag (on page 2060).

2. Access the advanced options of the collector, and then disable the On-line Tag Configuration

Changes option using Historian Administrator (on page 2057). In Configuration Hub (on page

473) this property is available in Collector Options section. If you do so, each time you update a

calculation formula, the collector does not reload tags.

1. To create a calculation formula using Configuration Hub:

a. Access Configuration Hub (on page 336).

b. In the NAVIGATION section, under the Configuration Hub plugin for Historian, select Tags.

A list of tags appears.

c. Select a calculation tag, right-click or select more options, and then select Calculation.

The calculation editor appears.

d. In the CALCULATION section, remove Null (and retain the Result =).

e. In the Calculation editor, place the cursor in the location where you want to insert the pre-

built function.

f. In the DETAILS section, under Pre-Built Functions, in the Function Type field, select a

function type.

Depending on the function type you have selected, a list of functions appears in the

Function field.

g. In the Function field, select a function.

Based on the selected function, the related fields will be displayed.

h. Enter values in the other fields that appear after selecting a function.

i. In the Input Tag field, select , and then select the tag where applicable.

The function preview appears below the calculation editor.

j. Select Insert Function.

The function is inserted at the cursor position.

k. To test the function, select .

A message appears, stating whether the syntax is correct.

Historian | 33 - Server-to-Server Collector | 2531

l. In the upper-left corner of the page, select Save.

The calculation formula is created.

2. If you want to create a calculation formula using Historian Administrator:

a. Access Historian Administrator (on page 823).

b. Select Tags, select the tag for which you want to create a calculation formula, and then

select Calculation.

c. In the Calculation section, remove Null (retain Result =).

Tip:

Avoid selecting other tags until you save your changes or you will lose your code

changes.

d. Select Wizard.

The Insert Function Wizard window appears.

e. Under Select Function, select values in the available fields, and then select Insert.

f. If you want to perform an unsolicited (also called event-based) calculation, in the Type field,

select Add A Calculation Trigger. Search and select the tag that you want to add, and then

select Insert.

The calculation formula is created.

g. To verify that the syntax is correct, select Test.

A message appears, stating whether the syntax is correct.

Types of Functions Supported

The following table describes the types of actions supported. All the value functions return a single value.

Type of Action Available Functions for the Action

Insert a value • Current value

• Previous value

• Next value

• Interpolated value

Historian | 33 - Server-to-Server Collector | 2532

Type of Action Available Functions for the Action

Insert a calculation • Unfiltered calculation

• Filtered calculation

Insert a timestamp • Time shortcut

• Previous value timestamp

• Next value timestamp

• Current time

Check data quality • Current value quality

• Previous value quality

• Next value quality

Set data quality • Set Quality Good

• Set Quality Bad

Add data value Value

Insert a tag name Tagname

Insert an alarm calculation • Previous Alarm

• Next Alarm

• Get Alarm Property

• Set Alarm Property

• Add Event

• New Alarm

• Update Alarm

• Return to Normal

Insert a multifield operation • GetMultiFieldValue

• GetMultiFieldQuality

• SetMultiFIeldValue

Data Input

Calculation and Server-to-Server Collectors

The Calculation and Server-to-Server collectors have some unique behavior not found in other standard

collectors. This section provides details about Recovery (on page 2152) and Manual Recalculation (on

page 2153).

Historian | 33 - Server-to-Server Collector | 2533

Recovery

This feature is unique to Calculation and Server-to-Server collectors. If the calculation engine is not

running for a period of time, recovery makes it look like it was running. Recovery can also be used to fill in

a hole of time where the collector was not able to communicate with the source archiver.

Recovery is applicable to both unsolicited and polled tags. Messages are also recovered. Comments are

not recovered.

Normally, it is impossible to go back to the past and collect data. However, since these collectors are

'deriving' data instead of 'collecting' data, it is possible to recover past data, especially since the source of

the derived data is archived in the Historian. It is important to understand that while recovery is possible

in the calculation and Server-to-Server collectors, it only makes sense for certain types of calculation

formulas.

Intended candidates for data recovery are formulas whose only inputs are Historian tags, since past

data for these tags can be interpolated. Formulas that use data from external text files or from ADO via

CreateObject will most likely not recover correct data because the inputs are not historized. If you are

using these types of formulas, you should turn off recovery for the whole collector or insert VBScript

code in the formula of individual tags to detect recovery. An example of this is given in the Historian

documentation. A similar approach can be used to set a Max Recovery Time on a tag basis, overriding the

collector wide setting.

Even calculation tags using only Historian tags as inputs have some caveats for recovery. If you are

deriving calculated data from other calculated data, be sure to set up a trigger tag for each of the tags

used in your formula. This way the tags will be processed in chain order. All tags are processed in time

order.

The recovery logic is not intended to overcome polled collection overruns. If you configure too much

collection, then you will get overruns.

You can control the amount of recovered data using Max Recovery Time configuration setting. You can

turn off the recovery by setting it to zero.

Manual Recalculation

The Manual re-calc/re-replicate option is often the best choice for generating past derived data.

Note:

If you perform a server-to-server recalculation on source and destination servers whose

clocks are not synchronized, extra data points may appear and original data points may not be

Historian | 33 - Server-to-Server Collector | 2534

recalculated. To ensure this does not occur, ensure the time is synchronized on both source and

destination servers.

S2S/S2C collector Backfill procedure

With the Recalculate feature you can recalculate all tags for the time period during and after the

connection loss. The recalculated tags will use the most accurate values in calculations.

During the period of connection loss, the collector buffers the data. When the connection is restored, the

buffered data is forwarded to the Historian Server. When the buffered data arrives, the timestamps show

earlier time than the most recent calculation timestamp.

Since the timestamp is earlier, the polled calculations will not execute again with the new data but the

unsolicited calculations will re-trigger. Therefore, it is possible that calculations performed for tags during

and after the connection loss might be not be entirely accurate.

Run S2C Backfill via Command line

ihServerToServerCollector.exe RELOADFILENAME=[file location]

RELOADUSERNAME=[Username] <start time> <end time>

Example: C:\Program Files\Proficy\Proficy Historian\x86\Server>ihServerToServerCollector.exe

RELOADFILENAME=c:\taglist.txt RELOADUSERNAME=\Administrator 1516875659 1516875785

For multi-instance support, the command requires the interface name as shown in the following example:

Example for Multi-instance Support: C:\Program Files (x86)\GE Digital\Historian Server to Server

Collector\Server>ihServerToServerCollector.exe RELOADFILENAME=c:\taglist.txt RELOADUSERNAME=

\Administrator 1669462600 1669463200 REG=sekhartest05_To_PredixOFFSS

See the following information about the parameters:

• RELOADFILENAME: This is an optional parameter. File name should be absolute path, this file

consists of the tag names, for which Backfill should be performed, each tag should be separated

by new line. Any discrepancies in the file/no file exists/parameter not provided leads to Backfill all

the tags related to the collector at the current time. After the Backfill, file gets deleted.

• RELOADUSERNAME: This is an optional parameter. This username is used only when destination

server is Historian for auditing purpose, and gets ignored when the destination is cloud.

Historian | 33 - Server-to-Server Collector | 2535

• TIMESTAMP: This parameter accepts Start and end time in seconds in epoch format for which

Backfill should happen. https://www.epochconverter.com/

How Data Recovery works:

• When the recovery logic is executed, the collector will setup subscriptions for all the trigger tags.

• Next, it will recover data. The collector first determines how long it has been since the last write.

It compares the current time to data in the registry key LastCalcRepWriteTime, which stores the

last time data was written to the archive. The collector compares this to the Max Recovery Time

that is specified in the user settings and performs a raw data query on the shorter of these two

periods. Then it will take the shorter of these two and do a raw data query for all trigger tags. It will

then process the returned samples in sequential order based on time. For example, if the collector

was shut down for 8 hours, but Max Recovery Time was 4 hours, only 4 hours of data would be

recovered.

• Recovery is performed before real time processing. Once recovery is complete, it will start polling

and processing subscriptions in real time. The subscriptions in real time are queued up till the

recovery is done.

• Recovery logic will place an end-of-collection marker at the point in time where the collector was

shut down. This end-of-collection marker may or may not be there once the recovery is complete.

As part of recovery logic, if it calculates a data point exactly at that timestamp where the end-of-

collection marker is there, then it will be overwritten with the calculated good data.

• The recovery logic does not write samples to trigger tags or tags that are just in the formula. It is

intended to write samples to the calculation tags.

• Messages are added to the log file that indicate when entering and exiting recovery mode.

Examples

https://www.epochconverter.com/

Historian | 33 - Server-to-Server Collector | 2536

The examples below assume the following tag configuration.

• Machine 1:

Runs Data Archiver, iFIX collector (Collector 1), and Calculation collectors.

• Machine 2:

Runs iFIX collector (Collector 2), which collects and sends data to the archiver in Machine 1 (as a

Remote Collector).

TagA and TagB are the iFix tags coming from Collector1 and Collector2, respectively. Both of these

tags are scanned at a 1-minute poll rate.

The following example demonstrates the recovery function for an unsolicited 1-minute interval calculation

tag that has a simple current value function.

Create an event based 1-minute interval Calculation Tag (CalcTag1) in Machine 1 consisting of the

following calculation: Result=CurrentValue (TagA)

Stop the Calculation collector for 5 minutes and then restart it to trigger data recovery for the 5-minute

shutdown period. For the following example, the Calculation collector was stopped at 2002-12-27

17:05:36 and started at 2002-12-27 17:10:48.

Since there is no interruption for the iFIX collector, the raw data query for TagA results the following

output:

Raw Data Query for TagA during shutdown period

114) 81 [2002-12-27 17:02:00:00000] Good NonSpecific

115) 72 [2002-12-27 17:03:00:00000] Good NonSpecific

116) 64 [2002-12-27 17:04:00:00000] Good NonSpecific

117) 56 [2002-12-27 17:05:00:00000] Good NonSpecific

118) 39 [2002-12-27 17:06:00:00000] Good NonSpecific

119) 31 [2002-12-27 17:07:00:00000] Good NonSpecific

120) 22 [2002-12-27 17:08:00:00000] Good NonSpecific

121) 14 [2002-12-27 17:09:00:00000] Good NonSpecific

Historian | 33 - Server-to-Server Collector | 2537

122) 6 [2002-12-27 17:10:00:00000] Good NonSpecific

A raw data query for CalcTag1 during the shutdown period generates the following:

Raw Data Query for CalcTag1 (before recovery)

96) 81 [2002-12-27 17:02:00:00000] Good NonSpecific

97) 72 [2002-12-27 17:03:00:00000] Good NonSpecific

98) 64 [2002-12-27 17:04:00:00000] Good NonSpecific

99) 56 [2002-12-27 17:05:00:00000] Good NonSpecific

100) 0 [2002-12-27 17:05:36:00000] Bad OffLine

Note that an end-of-collection marker is placed at the shutdown point (that is, at 17:05:36) with a bad data

quality.

Once the recovery is complete, this is what we see for the recovered CalcTag1. Note that data during the

shutdown period is recovered completely. Compare this result set with the one for TagA. Both are the

same.

Raw Data Query for CalcTag1 (after recovery)

96) 81 [2002-12-27 17:02:00:00000] Good NonSpecific

97) 72 [2002-12-27 17:03:00:00000] Good NonSpecific

98) 64 [2002-12-27 17:04:00:00000] Good NonSpecific

99) 56 [2002-12-27 17:05:00:00000] Good NonSpecific

100) 0 [2002-12-27 17:05:36:00000] Bad OffLine

101) 39 [2002-12-27 17:06:00:00000] Good NonSpecific

102) 31 [2002-12-27 17:07:00:00000] Good NonSpecific

103) 22 [2002-12-27 17:08:00:00000] Good NonSpecific

104) 14 [2002-12-27 17:09:00:00000] Good NonSpecific

105) 6 [2002-12-27 17:10:00:00000] Good NonSpecific

Historian | 33 - Server-to-Server Collector | 2538

Also note that the end-of-collection marker is not overwritten by the recovery logic here. If it calculated a

data point exactly at the end-of-collection marker, then it would have been overwritten by the calculated

good value.

The following example demonstrates the recovery function for an unsolicited calculation tag that has

multiple triggers.

Create an event based Calculation Tag (CalcTag2) in Machine 1 consisting of the following calculation:

Result=CurrentValue (TagA) + CurrentValue (TagB)

where TagA and TagB are both trigger tags, coming from Collector1 and Collector2 respectively. Set the

collection offset of 5 seconds for TagA and 10 seconds for TagB, forcing the calculation to be performed

twice per minute.

Stop the Calculation collector for 5 minutes, and then restart it to trigger data recovery for this 5-minutes

shutdown period. For the following example, the Calculation collector was stopped at 02/18/2003

12:15:33 and started at 02/18/2003 12:21:53.

Since the iFIX collector was not interrupted, a raw data query for TagA and TagB values generates the

following output:

Raw Data Query for TagA during the shutdown period

10) 13 [2003-02-18 12:10:05:00000] Good NonSpecific

11) 12 [2003-02-18 12:11:05:00000] Good NonSpecific

12) 11 [2003-02-18 12:12:05:00000] Good NonSpecific

13) 11 [2003-02-18 12:13:05:00000] Good NonSpecific

14) 10 [2003-02-18 12:14:05:00000] Good NonSpecific

15) 18 [2003-02-18 12:15:05:00000] Good NonSpecific

16) 17 [2003-02-18 12:16:05:00000] Good NonSpecific

17) 16 [2003-02-18 12:17:05:00000] Good NonSpecific

18) 16 [2003-02-18 12:18:05:00000] Good NonSpecific

19) 15 [2003-02-18 12:19:05:00000] Good NonSpecific

20) 14 [2003-02-18 12:20:05:00000] Good NonSpecific

Historian | 33 - Server-to-Server Collector | 2539

21) 13 [2003-02-18 12:21:05:00000] Good NonSpecific

Raw Data Query for TagB during the shutdown period

10) 35 [2003-02-18 12:10:10:00000] Good NonSpecific

11) 34 [2003-02-18 12:11:10:00000] Good NonSpecific

12) 33 [2003-02-18 12:12:10:00000] Good NonSpecific

13) 32 [2003-02-18 12:13:10:00000] Good NonSpecific

14) 31 [2003-02-18 12:14:10:00000] Good NonSpecific

15) 31 [2003-02-18 12:15:10:00000] Good NonSpecific

16) 39 [2003-02-18 12:16:10:00000] Good NonSpecific

17) 38 [2003-02-18 12:17:10:00000] Good NonSpecific

18) 37 [2003-02-18 12:18:10:00000] Good NonSpecific

19) 36 [2003-02-18 12:19:10:00000] Good NonSpecific

20) 36 [2003-02-18 12:20:10:00000] Good NonSpecific

21) 35 [2003-02-18 12:21:10:00000] Good NonSpecific

A raw data query for CalcTag2 during the shutdown period generates the following:

Raw Data Query for CalcTag2 (before recovery)

12) 50 [2003-02-18 12:09:05:00000] Good NonSpecific

13) 50 [2003-02-18 12:09:10:00000] Good NonSpecific

14) 49 [2003-02-18 12:10:05:00000] Good NonSpecific

15) 48 [2003-02-18 12:10:10:00000] Good NonSpecific

16) 47 [2003-02-18 12:11:05:00000] Good NonSpecific

17) 46 [2003-02-18 12:11:10:00000] Good NonSpecific

18) 45 [2003-02-18 12:12:05:00000] Good NonSpecific

19) 44 [2003-02-18 12:12:10:00000] Good NonSpecific

Historian | 33 - Server-to-Server Collector | 2540

20) 44 [2003-02-18 12:13:05:00000] Good NonSpecific

21) 43 [2003-02-18 12:13:10:00000] Good NonSpecific

22) 42 [2003-02-18 12:14:05:00000] Good NonSpecific

23) 41 [2003-02-18 12:14:10:00000] Good NonSpecific

24) 49 [2003-02-18 12:15:05:00000] Good NonSpecific

25) 49 [2003-02-18 12:15:10:00000] Good NonSpecific

26) 0 [2003-02-18 12:15:11:00000] Bad OffLine

Once data recovery is complete, this is what we see for the recovered data for CalcTag2. Note that data

during the shutdown period is completely recovered:

Raw Data Query for CalcTag2 (after recovery)

12) 50 [2003-02-18 12:09:05:00000] Good NonSpecific

13) 50 [2003-02-18 12:09:10:00000] Good NonSpecific

14) 49 [2003-02-18 12:10:05:00000] Good NonSpecific

15) 48 [2003-02-18 12:10:10:00000] Good NonSpecific

16) 47 [2003-02-18 12:11:05:00000] Good NonSpecific

17) 46 [2003-02-18 12:11:10:00000] Good NonSpecific

18) 45 [2003-02-18 12:12:05:00000] Good NonSpecific

19) 44 [2003-02-18 12:12:10:00000] Good NonSpecific

20) 44 [2003-02-18 12:13:05:00000] Good NonSpecific

21) 43 [2003-02-18 12:13:10:00000] Good NonSpecific

22) 42 [2003-02-18 12:14:05:00000] Good NonSpecific

23) 41 [2003-02-18 12:14:10:00000] Good NonSpecific

24) 49 [2003-02-18 12:15:05:00000] Good NonSpecific

25) 49 [2003-02-18 12:15:10:00000] Good NonSpecific

Historian | 33 - Server-to-Server Collector | 2541

26) 0 [2003-02-18 12:15:11:00000] Bad OffLine

27) 48 [2003-02-18 12:16:05:00000] Good NonSpecific

28) 56 [2003-02-18 12:16:10:00000] Good NonSpecific

29) 55 [2003-02-18 12:17:05:00000] Good NonSpecific

30) 54 [2003-02-18 12:17:10:00000] Good NonSpecific

31) 54 [2003-02-18 12:18:05:00000] Good NonSpecific

32) 53 [2003-02-18 12:18:10:00000] Good NonSpecific

33) 52 [2003-02-18 12:19:05:00000] Good NonSpecific

34) 51 [2003-02-18 12:19:10:00000] Good NonSpecific

35) 50 [2003-02-18 12:20:05:00000] Good NonSpecific

36) 50 [2003-02-18 12:20:10:00000] Good NonSpecific

37) 49 [2003-02-18 12:21:05:00000] Good NonSpecific

38) 48 [2003-02-18 12:21:10:00000] Good NonSpecific

39) 47 [2003-02-18 12:22:05:00000] Good NonSpecific

40) 46 [2003-02-18 12:22:10:00000] Good NonSpecific

The following example demonstrates the recovery function for an unsolicited calculation tag that has

multiple triggers, but for which none of the triggers is in the formula.

TagA and TagB are the iFix tags coming from Collector1 and Collector2, respectively. Both tags are

scanned at a 1-minute poll rate. This example uses two more iFix tags, TagC and TagD, coming from

Collector1.

Create an event-based Calculation Tag (CalcTag3) in Machine 1 consisting of the following calculation:

Result=CurrentValue (TagA) + CurrentValue (TagB)

Make sure that the trigger tags for this calculation tag are TagC and TagD, which are not in the formula.

Set the collection offset of 5 seconds for TagC and 10 seconds for TagD, forcing the calculation to be

performed twice per minute.

Historian | 33 - Server-to-Server Collector | 2542

Stop the Calculation collector for 5 minutes, and then restart it to trigger data recovery for this 5-minutes

shutdown period. For the following example, the Calculation collector was stopped at 02/18/2003

02:24:37 and started at 02/18/2003 02:31:44.

Since the iFIX collector was not interrupted, a raw data query for TagA and TagB values generates the

following output:

Raw Data Query for TagA during shutdown period

56) 13 [2003-02-18 14:21:05:00000] Good NonSpecific

57) 12 [2003-02-18 14:22:05:00000] Good NonSpecific

58) 11 [2003-02-18 14:23:05:00000] Good NonSpecific

59) 11 [2003-02-18 14:24:05:00000] Good NonSpecific

60) 10 [2003-02-18 14:25:05:00000] Good NonSpecific

61) 19 [2003-02-18 14:26:05:00000] Good NonSpecific

62) 18 [2003-02-18 14:27:05:00000] Good NonSpecific

63) 17 [2003-02-18 14:28:05:00000] Good NonSpecific

64) 16 [2003-02-18 14:29:05:00000] Good NonSpecific

65) 16 [2003-02-18 14:30:05:00000] Good NonSpecific

66) 15 [2003-02-18 14:31:05:00000] Good NonSpecific

Raw Data Query for TagB during shutdown period

141) 36 [2003-02-18 14:20:10:00000] Good NonSpecific

142) 36 [2003-02-18 14:21:10:00000] Good NonSpecific

143) 35 [2003-02-18 14:22:10:00000] Good NonSpecific

144) 34 [2003-02-18 14:23:10:00000] Good NonSpecific

145) 33 [2003-02-18 14:24:10:00000] Good NonSpecific

146) 32 [2003-02-18 14:25:10:00000] Good NonSpecific

147) 31 [2003-02-18 14:26:10:00000] Good NonSpecific

Historian | 33 - Server-to-Server Collector | 2543

148) 31 [2003-02-18 14:27:10:00000] Good NonSpecific

149) 39 [2003-02-18 14:28:10:00000] Good NonSpecific

150) 38 [2003-02-18 14:29:10:00000] Good NonSpecific

151) 37 [2003-02-18 14:30:10:00000] Good NonSpecific

152) 36 [2003-02-18 14:31:10:00000] Good NonSpecific

A raw data query for CalcTag3 during the shutdown period generates the following:

Raw Data Query for CalcTag3 (before recovery)

6) 49 [2003-02-18 14:21:05:00000] Good NonSpecific

7) 49 [2003-02-18 14:21:10:00000] Good NonSpecific

8) 48 [2003-02-18 14:22:05:00000] Good NonSpecific

9) 47 [2003-02-18 14:22:10:00000] Good NonSpecific

10) 46 [2003-02-18 14:23:05:00000] Good NonSpecific

11) 45 [2003-02-18 14:23:10:00000] Good NonSpecific

12) 45 [2003-02-18 14:24:05:00000] Good NonSpecific

13) 44 [2003-02-18 14:24:10:00000] Good NonSpecific

14) 0 [2003-02-18 14:24:11:00000] Bad OffLine

A data query for the recovered CalcTag3 values once data recovery is complete generates the following.

Note that data during the shutdown period is completely recovered:

Raw Data Query for CalcTag3 (after recovery)

6) 49 [2003-02-18 14:21:05:00000] Good NonSpecific

7) 49 [2003-02-18 14:21:10:00000] Good NonSpecific

8) 48 [2003-02-18 14:22:05:00000] Good NonSpecific

9) 47 [2003-02-18 14:22:10:00000] Good NonSpecific

10) 46 [2003-02-18 14:23:05:00000] Good NonSpecific

Historian | 33 - Server-to-Server Collector | 2544

11) 45 [2003-02-18 14:23:10:00000] Good NonSpecific

12) 45 [2003-02-18 14:24:05:00000] Good NonSpecific

13) 44 [2003-02-18 14:24:10:00000] Good NonSpecific

14) 0 [2003-02-18 14:24:11:00000] Bad OffLine

15) 43 [2003-02-18 14:25:05:00000] Good NonSpecific

16) 42 [2003-02-18 14:25:10:00000] Good NonSpecific

17) 51 [2003-02-18 14:26:05:00000] Good NonSpecific

18) 50 [2003-02-18 14:26:10:00000] Good NonSpecific

19) 49 [2003-02-18 14:27:05:00000] Good NonSpecific

20) 49 [2003-02-18 14:27:10:00000] Good NonSpecific

21) 48 [2003-02-18 14:28:05:00000] Good NonSpecific

22) 56 [2003-02-18 14:28:10:00000] Good NonSpecific

23) 55 [2003-02-18 14:29:05:00000] Good NonSpecific

24) 54 [2003-02-18 14:29:10:00000] Good NonSpecific

25) 54 [2003-02-18 14:30:05:00000] Good NonSpecific

26) 53 [2003-02-18 14:30:10:00000] Good NonSpecific

27) 52 [2003-02-18 14:31:05:00000] Good NonSpecific

28) 51 [2003-02-18 14:31:10:00000] Good NonSpecific

29) 49 [2003-02-18 14:32:05:00000] Good NonSpecific

30) 49 [2003-02-18 14:32:10:00000] Good NonSpecific

31) 48 [2003-02-18 14:33:05:00000] Good NonSpecific

32) 47 [2003-02-18 14:33:10:00000] Good NonSpecific

Historian | 33 - Server-to-Server Collector | 2545

Examples of Calculation Formulas

Converting a Collected Value

The following code sample converts a temperature value from degrees Celsius to degrees Fahrenheit.

Result=CurrentValue("Temp F")*(9/5)+32

Calculations Inside Formulas

The following code sample contains a calculation within a formula. In this case, we are taking the average

of values of the tag Simulation00001 over the previous hour. Typically, use a polled trigger to schedule the

execution of the formula.

Result=Calculation("Simulation00001","Average","Now-1hour","Now",Quality)

Conditional Calculation

The following code sample stores the value of a tag only if it is 100.

IF CurrentQuality("Simulation00001")=100 THEN

Result=CurrentValue("Simulation00001")

END IF

Combining Tag Values and Assigning a Trigger

The following code sample adds current values of multiple tags using two calculation triggers.

Result=CurrentValue("SERVER1.Simulation00003")+CurrentValue("SERVER1.Simulation00006")

The calculation triggers used in the sample are SERVER1.Simulation0003 and SERVER1.Simulation0006.

The calculation is triggered if the value of either Server1.Simulation0003 or Server1.Simulation0006

changes.

Using CreateObject in a Formula

The following code sample reads data from another Historian Server using the Historian OLE DB provider,

and stores it in a destination tag. When using this example, specify the username and password.

'connection and recordset variables

Dim Cnxn

Dim rsCurrentValueFromOtherServer

'open connection

Set Cnxn = CreateObject("ADODB.Connection")

Historian | 33 - Server-to-Server Collector | 2546

'connect to default server using current username and password

'establish connection

Cnxn.Open "Provider=ihOLEDB.iHistorian.1;User Id=;Password="

'Create and open first Recordset using Connection execute

Set rsCurrentValueFromOtherServer = CreateObject("ADODB.Recordset")

'Get the value from the other server

Set rsCurrentValueFromOtherServer = Cnxn.Execute("select value from ihRawData

where SamplingMode=CurrentValue and tagname = Simulation00001")

'Set the result to the current value of other tag

Result=rsCurrentValueFromOtherServer("Value")

'Clean up

IF rsCurrentValueFromOtherServer.State = adStateOpen THEN

rsCurrentValueFromOtherServer.Close

END IF

IF Cnxn.State = adStateOpen THEN Cnxn.Close

END IF

Set rsCurrentValueFromOtherServer = Nothing

Set Cnxn = Nothing

Using a File

The following code sample shows how to read and write text files during a calculation. You may have

data in a file to use as input to a calculation, or you may want to write debug values to a text file instead of

using the LogMessage function.

Dim filesys, writefile, count,readfile

'need to create a file system object since there is no

'file I/O built into VBScript

Set filesys = CreateObject("Scripting.FileSystemObject")

'open the text file, or create it if it does not exist

set readfile = filesys.OpenTextFile("C:\somefile.txt", 1, true)

'try to read from the file

IF readfile.AtEndOfLine <> true THEN

count= readfile.ReadAll

END IF

'add one to the number stored in the count count = count+1

'close the file for reading

readfile.Close

'open the same file but for writing

Historian | 33 - Server-to-Server Collector | 2547

Set writefile= filesys.OpenTextFile("C:\somefile.txt", 2, true)

'write the updated count writefile.Write count

'close file for writing

writefile.Close

Result = count

Converting a Number to a String

If your device and collector expose data as numeric codes, you can change to a string description. This

examples also demonstrates that a calculation can output a string.

DIM X

x=CurrentValue ("tag1")

select case x

case 1

Result="one"

case 2

Result="two"

case else

Result="other"

End select

Detecting Recovery Mode Inside a Formula

The following code sample detects the recovery mode or recalculation inside a formula. If there are

individual tags, you do not want to perform a recovery.

Dim MAXDIFF, TimeDiff

'Maximum difference in timestamps allowed (Must be > 2,

'units = seconds) MAXDIFF = 10

'Calculate time difference

TimeDiff = DateDiff("s", CurrentTime(), Now)

'Compare times, if difference is < MAXDIFF seconds perform calc

If TimeDiff < MAXDIFF Then

'Place calculation to be performed here:

Result = CurrentValue("DENALI.Simulation00001") Else

'Place what is to be done when no calc is performed here

Result = Null

End If

Historian | 33 - Server-to-Server Collector | 2548

Looping Through Data Using the SDK

The following code sample uses the SDK to perform a query on a data set. It determines the minimum

raw value over a one-hour time period.

on error resume next

Dim MyServer 'As Historian_SDK.Server

Dim I

Dim J

Dim K

Dim strComment

Dim lngInterval

Dim TagCount

Dim strDataQuality

Dim iDataRecordset

Dim iDataValue

Dim lEndTime, lStartTime, lNumSamples

Dim lNumSeconds, lNumSamplesPerSecond

Dim RawMin

'Instantiate The SDK

Set MyServer = CreateObject("iHistorian_SDK.Server")

'Attempt Connection

If Not MyServer.Connect("DENALI", "administrator","") Then

result = err.description

else

Set iDataRecordset = MyServer.Data.NewRecordset

'Find the number of samples.

'build query

With iDataRecordset

.Criteria.Tagmask = "EIGER.Simulation00001"

.Criteria.StartTime = DateAdd("h",-1,Now)

.Criteria.EndTime = Now

.Criteria.SamplingMode = 4 'RawByTime

.Criteria.Direction = 1 'forward

.Fields.AllFields

'do query

If Not .QueryRecordset Then

result = err.description

Historian | 33 - Server-to-Server Collector | 2549

End If

'Some Large number so that real samples are less

RawMin = 1000000

For I = 1 To iDataRecordset.Tags.Count

For J = 1 To iDataRecordset.Item(I).Count

Set iDataValue = iDataRecordset.Item(I).Item(J)

' if the value is good data quality

if iDataValue.DataQuality = 1 then

if iDataValue.Value < RawMin then

rawMin = iDataValue.Value

end if

end if

lNumSamples = lNumSamples + 1

Next

Next

End With

End If

Result = RawMin

'Disconnect from server

MyServer.Disconnect

Using an ADO Query

The following code sample uses a query combining Historian data with ADO data. In the example, you

convert a collected value, number of barrels per day (BarrelsUsedToday), to a dollar amount. The code then

obtains the price per barrel (CostOfBarrel) from the SQL server, and finally stores the total dollars in an

integer tag (TotalCostToday).

You can also do this with a linked server and the Historian OLE DB provider, but this example maintains a

history of the results.

Dim CostOfBarrel, BarrelsUsedToday, TotalCostToday

'Calculate the total number of barrels used over

'the previous 24hours.

BarrelsUsedToday = Calculation("BarrelsUsedTag","Total","Now 1Day","Now",Quality)

'Retrieve cost per barrel used

Dim SQLExpression

Dim Cnxn

Dim rsCurrentValue

Historian | 33 - Server-to-Server Collector | 2550

SQLExpression = "SELECT Barrel_Cost AS Value1 FROM RawMaterial_Costs WHERE Barrel_Type = CrudeOil and

samplingmode = CurrentValue"

'open connection

Set Cnxn = CreateObject("ADODB.Connection")

'connect to default server using current username and password

'establish connection

Cnxn.Open "Provider=SQLOLEDB.1;User ID=sa; Password=;Initial Catalog=Northwind"

'Create and open first Recordset using Connection execute

Set rsCurrentValue = CreateObject("ADODB.Recordset")

'Get the value from the other server

Set rsCurrentValue= Cnxn.Execute(SQLExpression)

'Set the result to the current value of other tag

CostOfBarrel = rsCurrentValue("Value1")

'Clean up

If rsCurrentValue.State = adStateOpen then

rsCurrentValue.Close

End If

If Cnxn.State = adStateOpen then

Cnxn.Close

End If

Set rsCurrentValue = Nothing

Set Cnxn = Nothing

'Retrieve number of barrels used

BarrelsUsedToday = Calculation("BarrelsUsed","Count","Now 1Day","Now",Quality)

'Calculate total cost of barrels today

TotalCostToday = CostOfBarrel * BarrelsUsedToday

Windows Performance Statistics Physical Memory Usage

The following code sample creates a formula that collects data reflecting private byte usage.

`Get a reference to the local data archiver process object

Set RawProc = GetObject("winmgmts:Win32_PerfRawdata_Perfproc_process.name='ihDataArchiver.'")

`Scale the virtual bytes number to a value within

`the tag's EGU range

result =RawProc.PrivateBytes *.001

Historian | 33 - Server-to-Server Collector | 2551

Windows Performance Statistics Virtual Memory Usage

The following code sample creates a formula that collects data reflecting virtual byte usage.

`Get a reference to the local data archiver process object

 Set RawProc = GetObject("winmgmts:Win32_PerfRawdata_Perfproc_process.name='ihDataArchiver.'")

`Scale the virtual bytes number to a value within the

`tag's EGU range

result =RawProc.VirtualBytes *.0001

Determining Collector Downtime

The following code sample determines the amount of downtime, in seconds, that the Calculation collector

has experienced over the last day. Downtime occurs when there are two consecutive bad quality data

points for the pulse tag. If the last known data point for the pulse tag is bad quality, all the time between

its timestamp and the current time is regarded as downtime. In the following sample, the pulse tag is

configured to be polled, with a collection interval of one day.

Dim pulseTag, totalDownTime, startTime, endTime

Dim prevTime, prevQuality, lastPrevTime, lastPrevQuality

pulseTag = "calcPulseTag"

totalDownTime = 0

endTime = CurrentTime()

startTime = DateAdd("d", -1, endTime)

lastPrevTime = curTime lastPrevQuality = 0

Do

 'get the timestamp and quality of the tag value previous to the last one we checked

 On Error Resume Next

 prevTime = PreviousTime(pulseTag, lastPrevTime)

 If Err.Number <> 0 Then

 'no more values for this tag exit gracefully

 Exit Do

End If

prevQuality = PreviousQuality(pulseTag, lastPrevTime)

'if we have two consecutive bad data points, add to the downtime

If prevQuality = 0 And lastPrevQuality = 0 Then

 If prevTime > startTime Then

 totalDownTime = totalDownTime + DateDiff("s", prevTime, lastPrevTime)

Else

 totalDownTime = totalDownTime + DateDiff("s", startTime, lastPrevTime)

Historian | 33 - Server-to-Server Collector | 2552

End If

End If

 'store the timestamp and quality for comparison with the next values

lastPrevQuality = prevQuality

 lastPrevTime = prevTime

Loop While lastPrevTime > startTime

Result = totalDownTime

Analyzing the Collected Data

The following code sample analyzes the collected data to determine the amount of time that a condition

was true and had good quality in the last day.

Dim tagName, startTime, endTime

tagName = "testTag"

startTime = "Now 1Day"

endTime = "Now"

Result = CalculationFilter(tagName, "TotalTimeGood", startTime, endTime, 100, tagName, "AfterTime", "Equal", 1)

Simulating Demand Polling

To simulate demand polling, create the following tags.

Tag Description

Polled Tag A polled tag with a collection interval of the longest period you want be

tween raw samples. Do not enable collector or archive compression. This

tag should point to the same source address as the unsolicited tag.

Unsolicited Tag An unsolicited tag with a 0 or 1 second collection interval. This tag ensures

you will be notified whenever changes occur. This tag should point to the

same source address as the polled tag.

Combined Tag An unsolicited calculation tag that is triggered by either the polled tag or the

unsolicited tag, and combines the raw samples of both into a single tag. Use

a 0 or 1 second collection interval and use the following formula:

dim timetag1

dim timetag2

dim tag1

dim tag2

Dim x

Historian | 33 - Server-to-Server Collector | 2553

Tag Description

tag1 = "T20.di-1.F_CV"

tag2 = "t20.T20.DI-1.F_CV"

x = DateAdd("s", 1,CurrentTime) ' add 1 second to calc time

' Get the timestamp of the newest raw sample for tag1:

timetag1 = previousTime(tag1, x)

' Get the timestamp of the newest raw sample for tag2:

timetag2 = previousTime(tag2, x)

if timetag1 > timetag2 then

' If tag1 triggered me, then:

result = PreviousValue(tag1,CurrentTime)

else

' If tag2 triggered me, then:

result = PreviousValue(Tag1, CurrentTime)

end if

Chapter 34. The Server-to-Server Distributor

Overview of the Server-to-Server Distributor
The Historian Server-to-Server distributor is used to send data from a smaller Historian server to a larger,

centralized Historian server. You can then use this data for reporting and analytics.

You can use either the Server-to-Server collector or the Server-to-Server distributor to send data to a

central Historian. However, using the Server-to-Server distributor has the following advantages:

• It simplifies the process of configuring tags at the destination Historian.

• It provides more flexibility at the SCADA level for tag configuration compared to the Server-to-

Server collector.

• It allows you to manage tags both from the source and destination Historian servers, whereas the

Server-to-Server collector allows you to manage tags only from the destination Historian server.

You cannot, however, use the Server-to-Server distributor to send data to a cloud destination. Use the

Server-to-Server collector for this purpose.

Features

• You can browse the source for tags and their attributes.

• Only the unsolicited data collection is supported; polled collection is not supported.

• The supported timestamp resolution is 100 milliseconds.

• The collector accepts device timestamps.

• The collector supports data compression.

• Floating point, integer, and string data are supported.

Historian | 34 - The Server-to-Server Distributor | 2555

Limitations

• The Server-to-Server distributor forwards only raw data samples, messages, and alarms. It does

not perform any calculations on the data.

Workflow for Using the Server-to-Server Distributor
To use the Server-to-Server distributor, you must perform the following tasks:

Number Task Notes

1 Install the collectors (on page 142) on the

source Historian server.

This step is required. This will place the col

lector binaries on the machines.

2 Add an instance of the Server-to-Server dis

tributor (on page 563) on the source Histori

an server.

This step is required.

3 Start the Server-to-Server distributor (on page

637).

This step is required.

4 Configure the Server-to-Server distributor (on

page 563).

This step is required only if you want to

change the default values.

5 Create a destination tag. You can do so by

browsing for the tag (on page 672), adding it

manually (on page 473), or copying a tag (on

page 700).

This step is required. The naming convention

of the tag is nodename.<name of the tag>. If

configured, the tag will contain a prefix.

Configure the Server-to-Server Distributor

1. Access Historian Administrator (on page 822) on the source Historian server.

2. Select the Server-to-Server distributor from the list of collectors, and then select Configuration.

The Collector Specific Configuration (ServerToServerDistributor) section appears.

Historian | 34 - The Server-to-Server Distributor | 2556

3. Provide values as specified in the following table, and then select Update.

Field Description

Source Server The source Historian server that you want to use.

Alarm Replication Indicates whether you want all the alarm data to be transferred from the

source server to the destination server. If you enable alarm replication,

you must also enable alarm recovery. However, if you set the Max Re

covery Time value to zero, alarm recovery does not happen.

Message Replication Indicates whether you want message data to be transferred from the

source server to the destination server. If you enable message replica

tion, you must also enable message recovery. However, if you set the

Max Recovery Time value to zero, message recovery does not happen.

Calculation Timeout

(sec)

The maximum time allowed for a tag's calculation formula to execute

before being terminated. The default value is 10 seconds.

Max Recovery Time

(hr)

The maximum duration, in hours, for which the collector will attempt to

restore data during recovery logic. The default value is 4 hours.

Add Prefix to Mes

sages

The prefix to identify replicated messages on the destination.

Alarms and events data will automatically have a prefix added to it with

the following syntax: MachineName_Datasource

Historian | 34 - The Server-to-Server Distributor | 2557

Field Description

For example, if your alarm is forwarded from the server Almserver12 with

a data source named OPCAE, the prefix will be Almserver12_OPCAE.

The Server-to-Server distributor is configured.

Chapter 35. The Simulation Collector

Overview of the Simulation Collector
The Simulation collector generates random numbers and string patterns for demonstration purposes. You

can configure the number of tags that you want to generate.

Features:

• The collector generates random scaled values between 0 and 32,767. It uses the high and low

engineering units fields of each tag to scale the 0 to 32,767 pre-set values into appropriate

engineering units.

• The collector also provides five-string simulation tags that generate random alphanumeric data.

• In addition to generating random values, the collector can generate sequential values for some

tags. For a list of such tags, refer to Tags with Sequential Values (on page 2560).

• You can import browse for tags and their attributes.

• The supported timestamp resolution is 1ms.

• Floating point, integer, and string data are supported. Binary data is not supported.

• You can create Python Expression tags.

• Only polled data collection is supported with a minimum poll interval of 100ms.

Note:

You can create more simulation string tags by manually adding string tags with the following

naming convention to the collector: CollectorName.Simulation.StringXXXX

Supported Tag Attributes:

• Tagname

• Data Type

• Hi Engineering Units

• Lo Engineering Units

• Hi Scale

• Lo Scale

Configuration

Configure the Simulation Collector Using Configuration Hub

Install collectors (on page 143), and create an instance of the collector (on page 567).

Historian | 35 - The Simulation Collector | 2559

1. Access Configuration Hub (on page 336).

2. Select Collectors, and then select the File collector instance that you want to configure.

The fields specific to the collector instance appear in the DETAILS section.

3. Enter values as specified in the following table.

Field Description

Number of Tags The number of Historian tags that you want the create

for the collector.

Function Period (seconds) The period, in seconds, of the SIN,STEP, and RAMP func

tions implemented in the collector.

MTLS Security Indicates whether you want to use Mutual TLS (MTLS)

protocol to enforce a secure and strong authentication

mechanism.

MTLS Data Encryption Indicates whether you want to encrypt the data that the

collector shares to the data archiver (DA).

For more information on how to enable

MTLS Security, refer to Enable MTLS

Security (on page 632).

4. As needed, enter values in the other sections common to all collectors (on page 579).

5. Restart the collector.

The collector instance is configured.

Configure the Simulation Collector Using Historian Administrator

Install collectors (on page 143), and create an instance of the collector (on page 567).

1. Access Historian Administrator (on page 823).

2. Select Collectors, and then select the Simulation collector instance that you want to configure.

The fields specific to the collector instance appear.

Historian | 35 - The Simulation Collector | 2560

3. Enter values as specified in the following table.

Field Description

Number of Tags The number of Historian tags that you want the create for the collector.

Function Period (sec

onds)

The period, in seconds, of the SIN,STEP, and RAMP functions implemented

in the collector.

4. As needed, enter values in the other sections (on page 579).

5. Restart the collector.

The collector instance is configured.

Tags with Sequential Values
In addition to generating random values, the Simulation collector generates sequential values. The

following table provides a list of tags for which the collector generates sequential values. All the tags

have a range of 0 to 1000.

Tags Description

Constant Maintains a constant value.

Historian | 35 - The Simulation Collector | 2561

Tags Description

Constant_1%Noise Same as Constant, but produces 1% random noise.

Constant_5%Noise Same as Constant, but produces 5% random noise.

Constant_20%Noise Same as Constant, but produces 20% random noise.

Ramp Steadily increases value every polling period to create a smooth up

ward trend.

Ramp_1%Noise Same as the Ramp tag, but produces 1% random noise.

Ramp_5%Noise Same as Ramp tag, but produces 5% random noise.

Ramp_20%Noise Same as Ramp tag, but produces 20% random noise.

Sin Produces a Sine wave centered on a value of 500.

Sin_1%Noise Same as Sine tag, but produces 1% random noise.

Sin_5%Noise Same as Sine tag but produces 5% random noise.

Sin_20%Noise Same as Sine tag but produces 20% random noise.

Step Produces a step trend centered on a value of 500.

Step_1%Noise Same as Step tag, but produces 1% noise.

Step_5%Noise Same as Step tag, but produces 5% noise.

Step_20%Noise Same as Step tag, but produces 20% noise.

Chapter 36. Windows Performance Collector

Windows Performance Collector

Overview of the Windows Performance Collector

The Windows Performance Collector collects Windows performance counter data and sends it to the

Historian server for archival. The data collected can be used to monitor and assess the performance and

efficiency of the computer running the Historian software and also assess the status of the Historian

Archiver and other system statistics derived by the Historian counters. You can collect almost any

Windows performance counter that is visible in Windows Performance Monitor and thereby determine if

there are any issues with the operating system or the computer that affects the performance.

While both the Windows Performance Monitor and Windows Performance Collector can collect the

performance counters data, the collector provides the advantage of storing it in Historian archives,

making it easy to view in Historian clients and compare to other data stored in Historian. The archived

values can be viewed as the Last 10 Values in Historian Administrator or included in an Excel report

together with other Historian data.

You can also use this collector to collect performance data from other GE Intelligent Platforms products

such as CIMPLICITY, iFIX, and also Historian’s own performance counters.

The Windows Performance Collector collects polled data only and creates Historian tags with the data

type that best matches the data type of the performance counter being collected.

Windows Performance Collector - Requirements

To use a Windows Performance Collector, you require Historian 6.0 or higher installed on the following

machines:

• The computer running the collector.

• The computer running Data Archiver.

• The computer running the Administrator.

The Windows Performance Collector can only collect performance counters from the local computer it is

running on. You can run only one Windows Performance collector on a computer.

Windows Performance Collector Feature Summary

The following table outlines the features of the Windows Performance Collector.

Historian | 36 - Windows Performance Collector | 2563

Feature Capability

Minimum Poll Interval Yes- 1 second

Unsolicited Collection No

Timestamp Resolution Yes- 1 millisecond

Accept Device Timestamps No

Floating Point Data Yes

Integer Data Yes

String Data Yes

Binary Data No

Collector Compression Yes

Reads data, tags Yes

Start/stop collection from the system Yes

Condition based Collection Support No

Python Expression Tags Yes

Note:

Though the Minimum Poll Interval supported by the Windows Performance Collector is 1 second,

it is recommended to set the interval to 5 seconds when adding large number of tags for proper

collection of data.

Windows Performance Collector Configuration

Understanding Windows Performance Collector Tag Hierarchy

The Windows Performance Collector provides the ability to browse performance tags hierarchically. This

hierarchy is different from the hierarchy of the Windows Performance Monitor.

The Windows Performance Collector displays Objects, Instances, and Counters. When you select an

Object, its Instances appear in a folder structure under the specific Object. The Objects are displayed

as they are added. They are not displayed in an alphabetical order as they are created dynamically. The

Counters are displayed on the right. If no counters exist for a particular Instance, they are not displayed.

The following figure provides an example of the hierarchy:

Historian | 36 - Windows Performance Collector | 2564

Figure 10. Windows Performance Collector Browse Criteria Screen

In the Windows Performance Collector, while you are collecting data, if any of the counters of any

application or process stops running, the collector does not stop showing that particular instance but

will continue running it with zero values for that particular Counter. It does not update these counters

dynamically.

The Configuration Section for Windows Performance Collector

To access the Configuration section for a Windows Performance collector, select the Windows

Performance Collector from the list of collectors and select Configuration. The following figure appears.

Historian | 36 - Windows Performance Collector | 2565

Note:

The fields, General 1 through General 5 are reserved for future use.

Chapter 37. The Wonderware Collector

Overview of the Wonderware Collector
The Wonderware Collector gathers data samples from a Wonderware Historian 2014 R2 Server

application and stores the corresponding data entries in the Historian Server.

Note:

Wonderware is a registered trademark of Schneider Electric Software.

This collector supports collecting of analog, digital and string types of data from the Wonderware

Historian Server. This collector supports a distributed model, where the Wonderware Historian Server, the

Historian Data Collector, and GE Historian software are installed on different machines. Typically, however,

the collector is installed on the same computer as the Wonderware Data Archiver and sends data to a

remote GE Historian server.

The Wonderware Collector uses unsolicited collection, whereby changes to the Wonderware tags are

detected, and are forwarded to the Historian server. Raw samples from the Wonderware Collector are

duplicated into the GE Historian data archive.

One Wonderware Collector can collect data from a single Wonderware Historian server. To collect from

multiple Wonderware Historian servers to an Historian archiver, you must install multiple collectors.

Note:

The ODBC Driver for the SQL Server is required for the Historian Data Collector for Wonderware

installation; however, the ODBC Driver for SQL does not ship with Historian. If the ODBC Driver

for SQL is not installed, the Historian Data Collector for Wonderware will not connect to the

Wonderware server. If you install the Historian Data Collector for Wonderware on a machine

that does not contain the Wonderware server, be sure to install the ODBC Driver for SQL on the

machine with the Historian Data Collector for Wonderware.

Limitations: If you want a domain user to use the Wonderware Collector, after you add an instance of a

collector, when you later configure it, do not provide values in the User Name and Password fields. This is

because ODBC Driver uses Windows authentication.

Historian | 37 - The Wonderware Collector | 2567

Installation Prerequisites
The Historian Data Collector for Wonderware requires the installation of the SQL server native client

(sqlncli.msi), which can be downloaded from the following link:

https://support.microsoft.com/en-us/kb/2726013

Wonderware Collector Features
The following table outlines the features of the Wonderware Collector.

Feature Capability

Browse Source for Tags Yes*(on a Wonderware server that supports browsing)

Browse Source for Tag Attributes Yes

Polled Collection No

https://support.microsoft.com/en-us/kb/2726013

Historian | 37 - The Wonderware Collector | 2568

Feature Capability

Minimum Poll Interval 100 ms (milliseconds)

Unsolicited Collection Yes

Time stamp Resolution 1 ms

Floating Point Data Yes

Integer Data Yes

String Data Yes

Python Expression Tags No

Time Assigned
Note:

You must set this field to Source as the Wonderware Collector

only supports unsolicited tags.

Hierarchical Tags Available in Browse
The Schneider Electric Wonderware server supports the hierarchical organization of your tags in a tree

structure. Historian uses the server's hierarchy allowing you to browse the Wonderware Collector in the

Non-Web Administrator mode.

To browse for data collector tags in a hierarchy:

1. Browse your Wonderware data source for new Wonderware data tags.

2. From the Collector list, select the Wonderware Collector you wish to browse. A hierarchical tree

appears in the Browse Results window.

Historian | 37 - The Wonderware Collector | 2569

3. To limit the displayed tags to only those that are not collected, from the Show Only list select

Source Tags Not Collected from the drop-down menu.

4. To limit the displayed tags to match a tag name or tag description, enter the value to match in the

Source Tag Name or Description text boxes.

5. Navigate to the node in the tree you want to browse, and then select Browse. The tags within the

selected portion of the Wonderware tag hierarchy will be displayed

6. Select the tag(s) you want to add to Historian, and select Add Selected Tags. Collected tags

appear in black text in the tag list.

Note:

If Wonderware Collector encounters null value at the time of collecting data, it will be

ignored and that specific sample will not be sent to the Historian server.

Supported Data Types for Wonderware Collector
The following table lists the data types recommended for use with Historian.

Historian | 37 - The Wonderware Collector | 2570

Data Types
Recommended His

torian Data Types

Analog- EuroFloat Double Float

Analog- MSFloat Double Float

Analog- MSDouble Double Float

Analog- Integer Double Integer

Discrete Single Integer

String Variable String

Configuring Wonderware Collector
To access the Configuration section for the Wonderware Collector, select the Wonderware Collector from

the list on the left of the Administrator Tool Collectors section and then select Configuration. A page

similar to the following appears:

Collector-Specific Configuration for the Wonderware Collector

Historian | 37 - The Wonderware Collector | 2571

Enter the value for the Wonderware Collector-specific field parameters:

Field Description

Serv

er

Name

Wonderware Server InSQL Database Server name.

User

Name

Wonderware Server InSQL Database User name, for example, wwUser.

Pass

word

Wonderware Server InSQL Database password, for example, XXXXXX.

Re

cov

ery

Time

(hours)

Recovery logic is activated when the Wonderware Collector and Wonderware Historian re-estab

lish a connection after a connection loss, or when the Wonderware Collector is started.

The Wonderware Collector attempts to recover all data samples between the current time and

the last known write time, up to a maximum number of hours configured for the collector. Con

tinuous collection resumes only after the previous data has been recovered.

Note:

The default recovery time is 0 hours.

Throt

tle

(Mil

lisec

onds)

Frequency of Wonderware data polling.

To minimize the load on the Wonderware Server, the configurable throttling option is provided by

the Wonderware Collector. By default, the Wonderware Collector tries to query the tag data every

100 milliseconds based on the collection interval time. You can change this value to any time be

tween 100 milliseconds to 16 hours.

Note:

If Throttle field is blank, enter the required minimum value of 100 milliseconds.

Data Recovery

Note:

We recommend that the collector for which the data recovery is intended is in the same time zone

as the server. If there is a mismatch, there is a possibility that data recovery will be incomplete.

Historian | 37 - The Wonderware Collector | 2572

Automatic Data Recovery

In this mode, data is automatically recovered since the last time data has been collected.

How it works:

1. The collector determines the duration between the current time and the last time data has been

written to the Historian data archive, which is stored in the LastSampleWriteTime registry key.

2. It compares this duration with the value in the Recovery Time field specified in the collector

settings (on page 2347).

3. It uses the shorter duration to perform a raw data query on all the tags.

4. It then processes the returned samples in chronological order.

For example, if the collector was stopped for 8 hours, but Max Recovery Time was 4 hours, only 4 hours of

data would be recovered.

As per the recovery logic, an end-of-collection marker is placed at the point in time where the collector

was stopped. This end-of-collection marker may or may not be there after the recovery is complete. As

part of the recovery logic, if recovery data point time matches the timestamp of the end-of-collection

marker, it is overwritten with the recovered good data.

Manual Data Recovery

In this mode, you can fill gaps in the data, but you cannot fill old data.

To perform a manual recovery:

1. Access Historian Administrator.

2. Select Collectors, and then select the OPC Classic HDA collector instance for which you want to

manually recover data.

3. Select Recalculate.

The Recalculate window appears.

4. Enter start time, end time, and other required information. We recommend that you choose small

time intervals to reduce the load on the server and the collector.

5. Select Recalculate.

The tag data is recalculated. After the manual recalculation begins, the collector recovers data of the

selected tags data from the collector, and sends it to Historian between the start time and end time.

Historian | 37 - The Wonderware Collector | 2573

At the time of recovery, if the connection to server is lost, and if the reconnect mechanism is enabled, the

collector will try to connect to the server and fetch the data once connection re-establishes.

Manual Data Recovery
Assume that the collector is connected to Historian for the first time today and the archive was created

at 10 am. The user initiates manual recalculation from 1am to 2 am. For that time interval, the archives

were not even created. With respect to Historian, it is old unknown data and the data write fails. If there is

a data gap between 1am and 2 am, manual recalculation successfully fills the data gap.

Initiating Manual Recovery

Manual recovery can be performed from Historian Administrator. Manual recalculate is done for filling the

data gaps but not for filling old data.

It is advised to keep the Wonderware Collector in the same time zone as the Wonderware server. If there

is a mismatch, there is a possibility that auto recovery of data will be incomplete.

To initiate manual recovery:

1. In Historian Administrator, select the Wonderware Collector.

2. Select Recalculate. The Recalculate window appears.

3. Enter the start and end time and choose all or selected tags based on the criteria from Recalculate

window.

4. Select Recalculate.

Once manual recalculate starts, the collector recovers selected tags data from Wonderware server

to GE Historian between start time and end time.

It is advised to choose small time intervals, so that the load on Wonderware server/collector will be

reduced.

Note:

At the time of recovery, if the connection to Wonderware Server is lost, and if the reconnect

mechanism is enabled, the collector will try to connect to the server and pull the data once

connection reestablishes.

Example:

Assume that the Collector connected to GE historian for the first time today and the archive was

created at 10 am. The user initiates manual recalculation from 1am to 2am.

Historian | 37 - The Wonderware Collector | 2574

For that time interval, the archives were not even created. With respect to Historian it is old

unknown data and the data write fails.

If there is a data gap between 1pm to 2 pm, manual recalculation successfully fills the data gap.

Reconnecting to the Wonderware Server
The Wonderware Collector supports auto-reconnect to the Wonderware Server. If the connectivity

between the Wonderware server and the collector is down due to network connectivity issues, the

collector will auto-reconnect to the server when the server is back and running. The collector polls for

the server connection for a set time of every 5 seconds. The collector shuts down when the reconnect

functionality is disabled.

To enable Auto-Reconnect to the Wonderware Server:

1. From the Start menu, select Run and type Regedit, then, select OK.

The Registry Editor appears.

2. Open the key folder: HKEY_LOCAL_MACHINE\SOFTWARE\GE Digital\iHistorian

\Services\ WonderwareCollector.

3. Create a new DWORD labelled, EnableReconnect.

4. Enter the decimal value 1.

5. Select OK, then close the Registry Editor.

6. Restart the Historian Data Collector for Wonderware for the change to take effect.

Important:

If this registry is not created and set to a value of 1, then the auto-reconnect functionality

will not be enabled.

To configure the timer:

a. From the Start menu, select Run and type Regedit. Then, select OK. The Registry Editor

appears.

b. Open the key folder: HKEY_LOCAL_MACHINE\SOFTWARE\GE Digital\iHistorian\Services\

WonderwareCollector.

c. Create a new DWORD labelled, ReconnectInterval.

d. Enter a decimal value greater than 5. This value represents the number of seconds for the

collector to wait before trying to re-connect to the Wonderware Server.

e. Select OK, and then edit the Registry Editor. Min Value = 5 seconds (default) Max Value = 60

seconds

Historian | 37 - The Wonderware Collector | 2575

f. Select OK, and then edit the Registry Editor.

g. Restart the Wonderware Collector for the change to take effect.

Troubleshooting the Wonderware Collector
The Wonderware Collector generates logs during initialization, configuration, and general operation. These

can be found in the general logging folder C:\Proficy Historian Data\LogFiles.

Troubleshooting Tips

• Be sure to run the Wonderware server before the Historian Data Collector starts up.

• If the Wonderware Collector does not start automatically, refer to the Historian log file to view log

entries to determine the problem.

Chapter 38. OLE DB Provider

Overview of the OLE DB Provider
OLE DB is a collection of standard COM-based interfaces defined by Microsoft that abstract standard SQL

commands into native API access for any data source. OLE DB adds tremendous value to Historian by

providing simple access to data from within the SQL environment, without the need for complex scripting.

The Historian OLE DB provider is a data access mechanism that allows you to query Historian data using

SQL statements or other client reporting tools.

Supported Applications: Using the OLE DB provider, you can create reports and integrate Historian with

the following applications:

• Microsoft Power BI

• Seagate Crystal Reports v8.0, and above (v11.0 or above required for use with Historian Alarms

and Events)

• VisiconX with iFIX v4.0 and later

• Microsoft Excel 2003 and later

• Visual Basic v6.0, Service Pack 5

• Visual Basic for Applications (VBA) v6.0

• Microsoft SQL Server v7, Service Pack 3

• Microsoft SQL Server 2008, or SQL Server Express 2008

• Oracle 8.x and above

Note:

Other OLE DB clients are likely to work with the OLE DB provider, but have not been tested.

Components: When you install the OLE DB provider on the Historian server machine, the following items

are available:

• The ihSQL.exe file: The Historian Interactive SQL tool.

• The Samples folder: Contains sample reports for Crystal Reports, Microsoft Excel, Microsoft

Visual Basic, iFIX, and Oracle.

• The ihOLEDB.dll file: A dynamic-link library file to support the OLE DB provider on 32-bit and 64-

bit operating systems. This file is located in the WINDOWS\SysWOW64 and WINDOWS\System32

folders.

Historian | 38 - OLE DB Provider | 2577

If you install the OLE DB provider on a client computer, some of these items may not be available. These

items may also appear differently, depending upon the number of archivers you installed.

Limitations: The OLE DB provider has read-only access. You cannot insert, update, or delete data in

archives using the OLE DB provider.

Setting Up

Install Client Tools

When you install Client Tools, the following components are installed by default:

• Client Tools

• Historian Administrator

• OLE DB provider (driver and samples)

• The OPC Classic HDA server

• User API and SDK

• Historian Client Access API

• Collector Toolkit

This topic describes how to install Client Tools using the installer. You can also install it at a command

prompt (on page 153).

1. Run the InstallLauncher.exe file.

2. Select Install Client Tools.

The Select Features page appears, displaying a list of components that you can install with Client

Tools.

Historian | 38 - OLE DB Provider | 2578

By default, the check boxes for components such as Historian Administrator, HDA Server, OLE DB,

and User API and SDK are selected. If you do not want to install them at this time, clear the check

boxes. You cannot, however, clear the Proficy Historian Client Tools check box.

Important:

If you are reinstalling, you must select all of the previously installed components. If you do

not do so, the component will be uninstalled.

By default, the Historian Excel Add-in 64-bit check box is cleared. If you want to install Excel Add-

In along with Client Tools installation, select the check box.

Note:

If using certain versions of Windows (like Windows 10 or Windows 2019), you may receive

an error message while installing Excel Add-In, stating that some of the DLL files are not

registered. You can ignore these messages.

The Historian Server Security page appears.

Historian | 38 - OLE DB Provider | 2579

3. Select the user account that should be granted the access to administer Historian.

You are provided with the following options:

Option Description

All Users If you select this option, all local, including do

main user accounts will have the administra

tor access of the Historian server. If needed,

to control access, you can configure security

groups after installation.

Specific User If you select this option, the user that you select

will have the administrator access of the Histo

rian server. If needed, you can grant a restricted

or administrator access to other users after in

stallation.

Historian | 38 - OLE DB Provider | 2580

4. Select Next.

5. When you are asked to reboot your system, select Yes.

Client Tools, along with the selected components, are installed in the following folder: <installation

drive>:\Program Files\Proficy\Proficy Historian\x86\<tool name>. If you have

selected HDA Server, Microsoft .NET Framework 4.5 and the OPC Core Components 3.00 redistributable

are installed as well.

Connect to a Historian Server

1. Install Client Tools (on page 150), which will automatically install the OLE DB provider.

2. Initialize the COM library on the machine on which you have installed the OLE DB provider.

This topic provides basic steps to connect the OLE DB provider to a Historian server so that you can

import the data. For instructions specific to a client, refer to:

• Import Historian Data into Power BI Desktop (on page 2580)

• Import Historian Data into Crystal Reports (on page 2588)

• Import Historian data into Microsoft Excel (on page 2592)

1. To connect an OLE DB client to a local Historian server, run the following command:

Provider=iHOLEDB.iHistorian.1

2. To connect an OLE DB client to a remote Historian server, run the following command:

Provider=iHOLEDB.iHistorian.1;PersistSecurity Info=False;

USER ID=[<Historian server username>];

Password=[<Historian server password>];

Data Source=[<network name of your Historian server>]

Working with Clients

Power BI Desktop

Import Historian Data into Power BI Desktop

Microsoft Power BI Desktop is an application that transforms and visualizes data. Using this application,

you can connect to multiple data sources and combine the data into a data model.

This topic describes how to import Historian data into Power BI Desktop.

https://docs.microsoft.com/en-us/windows/win32/learnwin32/initializing-the-com-library

Historian | 38 - OLE DB Provider | 2581

1. Access Power BI Desktop.

2. Select Get Data > Other > OLE DB, and then select Connect.

The From OLE DB window appears.

3. Select Build.

The Data Link Properties window appears, displaying a list of the Historian OLE DB providers in the

Provider section.

Historian | 38 - OLE DB Provider | 2582

4. Select Next.

The Connection section appears.

5. Leave the default values as is, and select Test Connection.

After the connection succeeds, the connection string is populated in the From OLE DB window.

Historian | 38 - OLE DB Provider | 2583

Important:

Do not use the connection string that is populated. If you do so, an error occurs.

6. Change the connection string to provider="ihOLEDB.iHistorian.1";mode=Read

7. Select OK.

The OLE DB Provider window appears.

8. In the Database section, enter the credentials to connect to the Historian server, and then select

Connect.

A list of Historian table appears in the Navigator section.

Historian | 38 - OLE DB Provider | 2584

If an error message appears after entering the credentials, restart your machine.

9. Select the table whose data you want to import, and then select Load.

10. Select .

Data from the selected Historian table appears.

Historian | 38 - OLE DB Provider | 2585

You can now create a Power BI report and then publish it.

Working with VisiconX

Using the OLE DB provider with VisiconX, you can:

• Use tables or SQL queries.

• Insert multiple controls into a picture to the same or different servers.

• Provide a username and password or be prompted when opening a picture.

1. Access the Historian OLE DB provider from VisiconX. For instructions, refer to Using VisiconX.

2. To make all the VisiconX controls use synchronous (SYNC) executes:

a. Access the FixUserPreferences.ini file in the Dynamics/Local folder.

b. Add the following lines to the end of the file:

[VisiconX]

RUNASYNC=FALSE

c. Save the file, and restart the collector.

Access the iFIX Sample Picture

To use iFIX with VisiconX, edit the FixUserPreferences.ini configuration file.

The HistoricalAnimation.grf file contains an iFIX sample picture with the VisiconX controls. It is

located in the Historian\Samples\iFIX folder.

1. Copy the HistoricalAnimation.grf file to your Dynamics/Pic folder.

2. Start iFIX.

3. Open iFIX WorkSpace.

4. Double-click the Pictures folder.

5. Double-click the HistoricalAnimation picture.

The picture appears in the workspace.

https://docs.microsoft.com/en-us/power-bi/report-server/quickstart-create-powerbi-report#step-3-design-your-report
https://docs.microsoft.com/en-us/power-bi/create-reports/desktop-upload-desktop-files
https://www.ge.com/digital/documentation/ifix/version65/index.html#visiconx/vxcover.htm?TocPath=Using%2520VisiconX%257C_____0

Historian | 38 - OLE DB Provider | 2586

You can now perform the following tasks:

◦ Modify the picture.

◦ Switch between the configure and run modes.

◦ Follow the steps on the picture.

◦ View the properties of the VisiconX controls.

◦ Change the properties.

Note:

You can have multiple VisiconX controls that each link to different Historian servers.

Create a Background Schedule to Run Crystal Reports

In iFIX, you can create a background schedule that runs Crystal reports. This topic contains a sample

Visual Basic code to create a background schedule:

Private ReportFileName

Private CrystalReport

Private Sub KKTimer_OnTimeOut(ByVal lTimerId As Long)

Set CrystalApplication = CreateObject("Crystal.CRPE.Application")

Set CrystalReport = CrystalApplication.OpenReport("C:\Program Files (x86)\GE\iFIX\APP\RTtemplate.rpt")

 CrystalReport.Printout False

Historian | 38 - OLE DB Provider | 2587

Set CrystalReport = Nothing

Set CrystalApplication = Nothing

End Sub

Working with Oracle

You can import Historian data into Oracle by using an ADO program. A sample program is provided in the

Historian/Samples/Oracle folder.

Use SQL WorkSheet to test that Oracle imported the data and created the tables properly.

Crystal Reports

Crystal Reports allows you to create reports easily through its experts and wizards. When working with

Crystal Reports,remember that:

• Crystal does not support the SET command. You must use a WHERE clause in a SELECT statement to

specify query parameters.

• A single report can only retrieve data from one server, but you can create subreports from different

servers within a report.

• The Crystal Reports application does not display milliseconds in timestamps.

• IIf you want to create a report on numeric data in the Value or Quality column in the ihRawData

table, you may want to convert all Variant data types to Float data types so that Crystal displays

them correctly in the report. Refer to Format Decimal Point Precision (on page 2590) for

instructions.

• Analysis of the ihTrend and ihAlarm tables in Crystal Reports is not supported.

Table 384. Crystal Reports Samples

File Name Description

SimpleCrystal80Re

port.rpt

Contains values cast from Variant to Float.

MultipleServers

Subreport.rpt

Contains data from two servers by using a subreport.

iFIX1_CHART_OLED

B.rpt

Contains data from iFIX Sample System converted from the iFIX Histori

cal ODBC driver to OLE DB.

Historian | 38 - OLE DB Provider | 2588

Table 384. Crystal Reports Samples (continued)

File Name Description

iFIX1_CROSSTAB_OLED

B.rpt

Contains data from iFIX Sample System converted from the iFIX Histori

cal ODBC driver to OLE DB.

iFIX1_DAILY_OLED

B.rpt

Contains data from iFIX Sample System converted from the iFIX Histori

cal ODBC driver to OLE DB.

Connect to the Historian Server

To generate reports in Crystal Reports, you must ensure that the Historian Server name is correct. By

default, this server name is T20.

1. Open the report file in Crystal Reports.

2. Select the Database menu.

3. If the Database menu does not appear automatically:

a. Wait for approximately 90 seconds for the connection timeout to occur.

After the 90-second timeout, the Data Link Properties window appears. Although it may

appear as if Crystal Reports has stopped working or is frozen before the timeout occurs, this

functionality is as expected.

b. Change the Data Source field.

You can leave this field empty to use the default Historian server or enter a specific

Historian server name.

c. Select OK.

d. Skip the next step.

4. If the Database menu appears automatically:

a. Select Database > Set Location.

The Set Location window appears.

b. Select Set Location.

The Data Explorer window appears.

c. Select a source, and then select Set.

d. Select Done.

Historian | 38 - OLE DB Provider | 2589

The Historian server is connected with Crystal Reports.

Create a Crystal Report

Ensure that Crystal Reports is integrated with the Historian server whose data you want to analyze. For

instructions, refer to Connect to the Historian Server (on page 2588).

This topic describes how to import Historian table data into Crystal Reports and create a report.

1. In Crystal Reports, select File > New.

The Crystal Reports Gallery window appears.

2. Select Using the Report Expert > Standard Report Expert, and then select OK.

The Standard Report Expert appears.

3. Select Database.

The Data Explorer appears.

4. Open the More Data Sources folder, and then open the OLE DB folder.

5. Select Make New Connection > Add.

The Data Link Properties window appears.

6. Select Historian OLE DB Provider > Next.

The Connection section appears.

7. Leave these fields empty to use the default server and currently logged-in user. Otherwise, do the

following:

a. Enter the name of the Historian server in the Data Source field.

b. Clear the Blank Password check box.

c. Enter a Windows username and password.

8. Select OK.

The Historian OLE DB provider tables appear in the Data Explorer.

9. Select the table that you want to query, select Add, and then select Close to exit the Data Explorer

window.

10. In the Fields section of the Standard Report Explorer window, select a field that you want to report

on, and then select Add to move the field into the Fields to display list.

Note:

If you want to create a report on numeric data in the Value or Quality column in the

ihRawData table, you may want to convert all Variant data types to Float data types so

that Crystal displays them correctly in the report. Refer to Format Decimal Point Precision

(on page 2590) for instructions.

Historian | 38 - OLE DB Provider | 2590

11. Repeat the previous step for each field that you want to add, and then select Finish.

The Crystal Report is generated.

Format Decimal Point Precision

Connect to the OLE DB provider, and add the Historian database tables.

To format decimal point precision in your reports, you must convert Variant data types to Float data

types in Crystal Reports. For instance, if retrieving the Value column from the ihRawData table, you must

convert the values to Float. You need not perform these steps if you are working with strings.

1. Access Standard Report Expert, and then select Fields.

The Fields section appears.

2. Select Formula.

The Formula Name window appears.

3. Enter a name for the formula.

The Formula Editor section appears.

Historian | 38 - OLE DB Provider | 2591

Tip:

You can also access the Formula Editor section by selecting Insert > Field Object. Right-

click the formula fields, and then select New.

4. In the Formula field, enter the following text :

if numerictext({ihRawData.Value}) then cdbl({ihRawData.Value}) else

 0

5. Select Save.

You can now use the formula as a normal numeric column instead of the Value column in the

report.

Change the Date and Time Format

This topic describes how to format the date/time column of Historian tables in Crystal Reports. When

formatting timestamps, note that milliseconds do not appear in Crystal Reports.

1. Select a field in a column that contains timestamps.

2. Right-click the field, and then select Format Field.

The Format Editor window appears.

3. Select Date/Time, and specify the date format that you want to use.

Historian | 38 - OLE DB Provider | 2592

4. Select OK.

The timestamps are updated to display the new format.

Microsoft Excel

With Excel, you can import a snapshot of Historian data at a single point in time. You can choose

Historian as a data source in Excel. You can specify the connection settings manually (on page 2592) or

using a UDL file (on page 2593).

After you import the data, you can create and edit SQL queries in Excel.

When to Use Excel Instead of the Historian Excel Add-In

Use the Excel Add-In when you want to get data into Microsoft Office 2003, 2007 or 2010 (32-bit/64-bit).

Use the Historian OLE DB provider with Excel, instead of the Excel Add-In, when you want to do any of the

following:

• Perform advanced filtering, sorting, and joining of data.

• Obtain detailed information from the ihTrend table.

• Run calculations using the SQL aggregate functions.

• Perform advanced summaries.

Table 385. Microsoft Excel Samples

File Name Description

ihOLEDB_

LASTHOUR.XLS

One-sheet report that uses auto-refresh to display the last hour of data using rela

tive shortcuts.

ihTags.odc Data source file that retrieves the ihTags table from the default server.

iHistorian.udl Sample universal data link (.UDL) file that connects to the default Historian server

with the currently logged-in user.

These sample are found in the following folder: Historian\Samples\Excel

Import Historian Data Into Excel Manually

This topic describes how to import Historian data into Excel by providing the connection details manually.

You can also import the data by creating a UDL file (on page 2593) or by using the sample UDL file (on

page 2595).

Historian | 38 - OLE DB Provider | 2593

1. Open an Excel worksheet.

2. Select Data > Import External Data > Import Data.

The Select Data Source window appears.

3. Select My DataSources > +Connect to New Data Source.odc > Open.

The Data Connection Wizard appears.

4. Select Other/Advanced from the list of data sources to which you can connect, and then select

Next.

The Data Link Properties window appears.

5. Select Historian OLE DB Provider from the OLE DB Provider list, and then select Next.

The Connection section appears in the Data Link Properties window.

6. Leave these fields empty to use the default server and the currently logged-in user. Otherwise, do

the following:

a. Enter the name of the Historian server in the Data Source field.

b. Clear the Blank Password check box.

c. Enter a Windows username and password.

d. Select the Allow Saving Password check box if applicable.

7. Select Test Connection to confirm that the data source, username, and password provide a

successful connection, and then select OK.

The Select Database and Table page appears in the wizard.

8. Select the table that you want to query, and then select Next.

The Save Data Connection File and Finish page appears in the wizard.

9. Accept the default settings, and select Finish.

The Import Data window appears.

Note:

If you want to run a specific SQL command instead of the default table command setting,

refer to Edit SQL Queries in Excel (on page 2595).

10. Select OK to import the column data from the selected table.

Historian data populates the current spreadsheet.

Import Historian Data Into Excel by Creating a UDL File

This topic describes how to create a UDL file with connection information and then import Historian data

into Excel using the UDL file. You can also provide the connection details manually (on page 2592) or

using the sample UDL file (on page 2595).

Historian | 38 - OLE DB Provider | 2594

1. Create a UDL file with connection details:

a. Create a text document.

We recommend that you use the My Data Sources folder in the My Documents folder.

b. Rename the file extension .UDL.

c. Double-click the .UDL file.

The Data Link Properties window appears.

d. Select Provider > Historian OLE DB Provider > Next.

The Connection section appears in the Data Link Properties window.

2. Leave these fields empty to use the default server and the currently logged-in user. Otherwise, do

the following:

a. Enter the name of the Historian server in the Data Source field.

b. Clear the Blank Password check box.

c. Enter a Windows username and password.

d. Select the Allow Saving Password check box if applicable.

3. Select Test Connection to confirm that the data source, username, and password provide a

successful connection, and then select OK.

The Select Database and Table page appears in the wizard.

4. Select Data > Import External Data > Import Data.

The Select Data Source window appears.

5. Select the .UDL file that you have created, and then select Open.

The Select Table window appears.

6. Select the table that you want to query, and then select OK.

The Import Data window appears.

Note:

If you want to run a SQL command instead of the default table command setting, refer to

Edit SQL Queries in Excel (on page 2595).

7. Select OK to import the column data from the selected table.

Historian data is imported into the spreadsheet.

Historian | 38 - OLE DB Provider | 2595

Import Historian Data into Excel Using the Sample UDL File

With the sample universal data link (.UDL) file, you can specify the connection information so that

Excel can connect to the tables in the OLE DB provider and import data using the default server and the

currently logged-in user.

This topic describes how to import Historian data into an Excel spreadsheet using the sample .UDL file.

You can also import Historian data by providing the connection details manually (on page 2592) or by

creating a .UDL file (on page 2593).

1. Open an Excel spreadsheet.

2. Select Data > Import External Data > Import Data.

The Select Data Source window appears.

3. Select the Historian.udl file in the Historian\Samples\Excel folder, and then select Open.

The Select Table window appears.

4. Select the table that you want to query, and then select OK.

The Import Data window appears.

Note:

If you want to run a SQL command instead of the default table command setting, refer to

Edit SQL Queries in Excel (on page 2595).

5. Select OK.

Historian data appears in the spreadsheet.

Edit SQL Queries in Excel

By default, data import functionality in Excel selects all columns from the specified Historian table using

the default query parameters. This command is the equivalent of running the SQL command SELECT *

FROM TABLE_NAME, where TABLE_NAME is the name of the table that you want to query.

You can change the query by issuing a different SQL query if you are familiar with SQL syntax. Refer to the

Microsoft Excel documentation for more information.

If you are unsure if the SQL syntax is correct, you can test your SQL query outside of Excel using the

Historian Interactive SQL application. See Historian Interactive SQL Application (on page 2606) for more

details.

Historian | 38 - OLE DB Provider | 2596

Format Date and Time

This topic describes how to format the date/time column for Historian tables in Excel if you need to

display a specific date format. For more specific information on formatting spreadsheets, refer to the

Microsoft Excel online Help.

1. Right-click the heading of the column that you want to format.

2. Select Format Cells > Number.

3. Select Date.

4. In the Type field, select the date format that you want to use.

To display milliseconds, instead of selecting the Date category, select Custom, and then enter dd-

mmm-yyyy hh:mm:ss.000 in the Type field.

5. Select OK.

The date and time format is set.

Refresh Data

After you import Historian data into an Excel worksheet, you can refresh it to get the most updated data.

This feature is most useful when using relative start times, such as Now - 2h. You can also set a refresh

interval to refresh data automatically.

1. Open the Excel worksheet into which you have imported the Historian data.

2. Select External Data > Refresh Data

Tip:

If the External Data toolbar is not available, select View > Toolbars.

The data is refreshed.

3. To automatically set refresh intervals, select Data Range Properties, and provide the interval at

which you want to refresh data automatically.

Data is refreshed automatically at the interval that you have specified.

Visual Basic and ADO

You can access the OLE DB provider using Microsoft ActiveX Data Objects (ADO). This approach is more

generic than using the Historian SDK.

Visual Basic supports asynchronous (ASYNC) connections. You can open multiple ADO connections to

the same data source from within a Visual Basic program. You are limited to one server per connection,

Historian | 38 - OLE DB Provider | 2597

and one username and password. A different user can make another connection to the same server,

however, by using a different username and password.

We recommend that you use client-side cursors instead of server-side cursors in Visual Basic. If you use

a server-side cursor, the RowCount property on the recordset object will always be -1 instead of the actual

row count.

Table 386. Visual Basic and ADO Samples

File Name Description

SimpleADOExam

ple.vbp

Visual Basic project file that uses a simple ADO example with a connect

string.

modSimpleADOExam

ple.bas

File that is part of the SimpleADOExample.vbp project file.

iholedb_data

boundgrid.vbp

Visual Basic project file that displays a data-bound grid example that fetches

data from the ihRawData table.

frmMain.frm File that is part of the iholedb_databoundgrid.vbp project file.

frmMain.frx File that is part of the iholedb_databoundgrid.vbp project file.

These samples are available in the following folder: Historian\Samples\VB

Retrieve Milliseconds

Use the following code to retrieve timestamps to a resolution of milliseconds.

Public Function Time_To_String_With_Milliseconds(TheTime As Double) As String

Dim Temp As String

Dim TimeFraction As Double

Dim Msc As Long

Dim TempTime As Date

On Error GoTo errc

If TheTime = 0 Then

Time_To_String_With_Milliseconds = ""

Exit Function

End If

Historian | 38 - OLE DB Provider | 2598

TimeFraction = TheTime * 86400#

TimeFraction = TimeFraction - Fix(TimeFraction)

Msc = CLng(TimeFraction * 1000)

TempTime = TheTime - (TimeFraction / 86400#)

If Msc = 1000 Then

Msc = 0

TempTime = DateAdd("s", 1, TempTime)

End If

Time_To_String_With_Milliseconds = LCase(Format$(TempTime, "dd-mmm-yyyy hh:nn:ss") + "." + Format$(Msc, "000"))

errc:

End Function

Set a Maximum Limit to Records

Use the following example code to set a maximum limit to the number of rows returned in your query:

SET rstTitles = New ADODB.Recordset

rstTitles.MaxRecords = 10

strSQLTitles = "SELECT Tagname FROM ihTags"

rstTitles.Open strSQLTitles, strCnxn, adOpenStatic, adLockReadOnly, adCmdText

Use Parameterized Queries

Use the following example code to use parameterized queries:

Private Sub SampleParameterizedQuery()

 Dim ihConnectString As String

 Dim ihRecordSet As ADODB.Recordset

 Dim ihConnection As ADODB.Connection

 Dim ihParameter As ADODB.Parameter

 Dim ihCommand As ADODB.Command

 'Set Up the Historian Connect String...

 Set ihConnectString = "Provider=ihOLEDB.iHistorian.1;User Id=;Password="

 'Create Our Other Objects...

Historian | 38 - OLE DB Provider | 2599

 Set ihConnection = CreateObject("ADODB.Connection")

 Set ihRecordSet = CreateObject("ADODB.Recordset")

 Set ihCommand = CreateObject("ADODB.Command")

 'Open the Connection to the Historian Archiver...

 ihConnection.ConnectionString = ihConnectString

 ihConnection.Open

 'Set up the Command Object

 With ihCommand

 'Set the Active Connection to the Historian Connection Opened Above..

 .ActiveConnection = ihConnection

 'Set the Command Text to a Parameterized Sql Statement....

 .CommandText = "select * from ihTags where datatype = ?"

 'Set the Type of the Command...

 .CommandType = adCmdText

 'Refresh Our Parameter List...

 .Parameters.Refresh

 End With

 'Create a Single Parameter Object...

 Set ihParameter = ihCommand.CreateParameter("Temp", adChar, adParamInput, 100)

 'Set the Parameters Value...

 ihParameter.Value = "SingleFloat"

 'Add the Parameter to the Command Object...

 ihCommand.Parameters.Append ihParameter

 'Run the Command!

 Set ihRecordSet = ihCommand.Execute

End Sub

For more information, refer to Parameterized SQL Queries (on page 2636).

Historian | 38 - OLE DB Provider | 2600

Proficy Real-Time Information Portal

Proficy Real-Time Information Portal is a web-based tool for accessing, analyzing, and visualizing

production information. It has sophisticated trending and reporting capabilities that take advantage of the

vast archival and retrieval capabilities of Historian.

In Proficy Real Time Information Portal, parameters are used to build SQL queries that you can reuse with

different values. In the place of a constant value in a SQL query, you can use a parameter, which takes a

dynamic value at execution time. Parameterized SQL queries are driven by Proficy Real Time Information

Portal components such as list boxes, combo boxes, or grids.

The SQL Query Builder application in Proficy Real Time Information Portal is used to define a

parameterized query.

To define a parameterized query: In the Specify Selected Item Wizard or Specify Criterion Wizard, in the

Parameter field, enter the name of the parameter.

The following conditions apply when you define a parameterized query:

• Parameter names must be unique.

• A question mark (?) is appended to the parameter name, and the parameter is enclosed in

parentheses. For example, the parameter temperature becomes {temperature?}.

• You can specify a default value for the parameter.

• You can also select a data type for the parameter. By default, the data type is set to char. However,

you can select int, date, num, or char as the type of database column.

Linked Servers in Microsoft SQL Server

If you want to relate Historian data with other data in SQL Server tables such as batch events, iFIX Alarms

and Events collector, iDownTime data, and any other information that is available in a relational database,

you can use the OLE DB provider as a linked server in Microsoft SQL Server. You can also use the OLE DB

provider as a linked server if you do not want to duplicate data with an import.

With linked servers, when you query data from Historian, the SQL server fetches the requested data from

Historian at the time the query is executed. Data is not duplicated because nothing is imported or stored

in the SQL server. The data is simply returned as part of a query, just as any other query on a SQL Server

database would return data.

Another advantage of using the OLE DB provider as a linked server is that you do not need to install

Historian in the client machines. For example, a client tool such as Microsoft Query Analyzer can be used

to retrieve Historian product data over the network on a computer with no Historian software installed.

Historian | 38 - OLE DB Provider | 2601

Configure the OLE DB Provider as a Linked Server Manually

The following steps are necessary in order to access a linked server via the OPENQUERY statement.

This topic describes how to configure the OLE DB provider as a linked server manually. You can also

configure it automatically (on page 2601).

1. From the Start menu, open the SQL Server Enterprise Manager.

2. Select an SQL server, and open the Security folder.

3. Right-click the Linked Servers folder, and select New Linked Server.

The Linked Server Properties window appears.

4. Enter a name for the linked server, such as iHist.

5. In the Provider Name field, select Historian OLE DB Provider.

6. In the Data Source field, enter the name of the Historian server, and then select Provider Options.

The Provider Options window appears.

Note:

◦ Select the Level Zero Only option only if using older versions of SQL server. For

better performance while executing small queries, select the Allow in Process

option. Clear the option if larger queries are to be executed.

◦ For configuring the Historian 64-bit OLE DB provider as a linked server, the Allow in

Process option is mandatory.

7. Select OK.

8. If Historian security is enabled, enter a Historian username and password.

9. For SQL Server 2008 (32-bit/64-bit), follow these steps:

a. Select Security.

b. Select the Be made using this security context option.

c. Enter a Historian username and password in the Remote Login and With Password fields.

10. Select OK.

The linked server is created.

Configure the OLE DB Provider as a Linked Server Automatically

Configure a linked server and options using Enterprise Manager, as described in Configuring the Historian

OLE DB provider as a Linked Server (on page 2601). Then, since the options Allow In Process and

Level Zero Only apply to all linked servers that use the provider, you can create additional linked server

definitions to other Historian servers using the sp_addlinkedserver stored procedure.

Historian | 38 - OLE DB Provider | 2602

This topic describes how to configure the OLE DB provider as a linked server automatically using the

sp_addlinkedserver system stored procedure from Microsoft SQL Server. You can also configure it

manually (on page 2601).

1. To configure a linked server definition, use the following example code:

EXEC sp_addlinkedserver @server='MYSERVER_LS', @srvproduct='',

@provider='iHOLEDB.iHistorian.1', @datasrc='MY_SERVER'

2. To search for linked server definitions, use the following example code:

EXEC sp_linkedservers

3. To delete linked server definitions, use the following example code:

EXEC sp_dropserver 'MYSERVER_LS', 'droplogins'

Access a Linked Server

Configure a linked server and options using Enterprise Manager, as described in Configuring the Historian

OLE DB provider as a Linked Server (on page 2601).

This topic describes how to access the OLE DB provider as a linked server in an SQL server using the

following methods:

• OPENQUERY: This is the recommended method of accessing data by means of a linked server. To use

this method, you must first configure a linked server definition. You can then use that linked server

name in the OPENQUERY command.

• Four-Part Name Syntax: To use this method, you must first configure a linked server definition. You

can then use that linked server name in the four-part name syntax.

• OPENROWSET and OPENDATASOURCE: These methods are considered adhoc methods of accessing data.

They are recommended only for infrequently accessed data. When using either method, you must

specify the data source, username, and password in each query instead of configuring it once

in a linked server definition. If you want to limit the number of users to a defined set of servers

and usernames, you can disable all methods of adhoc access by selecting the Disallow Adhoc

Accesses option in the Provider Options window.

Note:

You cannot use OPENQUERY to access the ihTrend table. Use four-part name syntax to

access the ihTrend table.

Historian | 38 - OLE DB Provider | 2603

1. To fetch a list of Historian tags, run the following query:

SELECT * FROM OPENQUERY(iHist,'SELECT * FROM ihTags')

2. To fetch tag values from Historian, use the following example code:

SELECT TagName, TimeStamp, Value, Quality FROM OPENQUERY (iHist,'

SET

StartTime=yesterday-12Day, EndTime=Today, IntervalMilliseconds=1Hour, SamplingMode=Calculated,

 CalculationMode=Maximum

SELECT * FROM ihRawData WHERE TagName LIKE *simulation00001')

3. To access the ihTrend table from a linked server, run the following query:

SELECT * FROM iHist...[SELECT timestamp, *.value FROM ihTrend]

Although the four-part name syntax works with all tables, it is only necessary to use it with the

ihTrend table, because the ihTrend table does not work with OPENQUERY.

4. To use OPENROWSET with an SQL query, use the following example code:

SELECT * FROM OPENROWSET('ihOLEDB.iHistorian.1',

'MY_SERVER';'';'','SET starttime="2002-01-30 10:00:00", endtime="2002

Note:

This example uses double quotes around date and time because single quotes do not

work inside the overall single-quoted query. It is important for you to use double quotes in

this scenario.

5. To access a table, use the following example code:

SELECT * FROM OPENDATASOURCE('iHOLEDB.iHistorian.1', 'Data Source=MY_SERVER')...ihTags

6. To use OPENDATASOURCE with an SQL query and security, use the following example code:

SELECT * FROM OPENDATASOURCE('iHOLEDB.iHistorian.1',

'Data Source=MY_SERVER;User ID=user1;Password=thepassword')...[SE

7. To join Historian data with iFIX data logged with AlarmODBC, use the following example code,

which determines the last date and time a specific analog tag was raised as an alarm. The date

and time are then used to collect the data from the previous hour leading up to the alarm. You can

use this example to determin if the value spiked into the alarm or slowly approached the alarm

limit.

declare @var1 as varchar(300)

declare @iHistServer as varchar(10)

Historian | 38 - OLE DB Provider | 2604

declare @Tagname as varchar(40)

declare @HistTagname as varchar(50)

declare @AlarmStatus as varchar(10)

declare @Node as varchar(8)

declare @StartDt as varchar(30)

declare @EndDt as varchar(30)

declare @queryDt as varchar(30)

SET @iHistServer = 'iHistMY_SERVER'

SET @Node = 'MY_SCADA'

SET @Tagname = 'Simulation00001'

SET @HistTagname = 'MY_SERVER.' + @Tagname

SET @AlarmStatus = 'HIHI'

SET @queryDt= DATEADD(day, -1, CURRENT_TIMESTAMP)

SET @EndDt = (SELECT TOP 1 DateTimeLast FROM AlarmODBC WHERE AlarmStatus = @AlarmStatus AND Node = @Node and

 Tagname =

SET @StartDt = DATEADD(hour, -1, @EndDt)

set @var1 = 'SELECT * FROM OPENQUERY

('+ @iHistServer +',''SET StartTime="'+ @StartDt +'", EndTime="'+ @Enddt +'"

SELECT Tagname, TimeStamp, Value, Quality FROM ihRawData WHERE TagName = '+ @HistTagname +''')' exec (@var1)

8. To access linked server data using a stored procedure, use the following example code, which

interfaces with the alarm's ODBC table to get the last alarm time for a specified tag in the past 24

hours. It then uses this time to retrieve data for the tag from one hour leading up to the time the

alarm occurred.

The input parameters are the linked Historian server name, tag name, alarm status, and SCADA

node name on which the alarm was created. This example uses a sim tag in the Historian database

rather than setting up a collector to an iFIX SCADA node. Preferably, an iFIX tag name must be

concatenated with the node and field (node.tagname.fieldname).

a. To execute a stored procedure, use the following example code:

EXEC alarmhist 'iHistMY_SERVER', 'simulation00001', 'HIHI', 'MY_SCADA'

b. When you create the stored procedure in Enterprise Manager, include the following lines

before the create procedure command to avoid an error:

SET ANSI_NULLS ON

GO

(@iHistServer varchar(10),

@Tagname varchar(40),

Historian | 38 - OLE DB Provider | 2605

@AlarmStatus varchar(10),

@Node varchar(8))

AS

declare @var1 as varchar(400)

declare @HistTagname as varchar(50)

declare @StartDt as varchar(30)

declare @EndDt as varchar(30)

declare @queryDt as varchar(30)

declare @count as int

declare @CalculationMode as varchar(20)

SET @HistTagname = 'MY_SERVER.' + @Tagname

SET @queryDt= DATEADD(day, -1, CURRENT_TIMESTAMP)

SET @count = (SELECT COUNT(*) FROM AlarmODBC WHERE AlarmStatus = @AlarmStatus AND Node = @Node AND

 Tagname = @Tagname

If @count > 0

BEGIN

If @AlarmStatus = 'HIHI' or @AlarmStatus = 'HI'

BEGIN

SET @CalculationMode = 'Maximum'

END

ELSE

BEGIN

SET @CalculationMode = 'Minimum'

END

SET @EndDt = (SELECT TOP 1 DateTimeLast FROM AlarmODBC WHERE AlarmStatus = @AlarmStatus AND Node =

 @Node AND Tagname =

SET @StartDt = DATEADD(hour, -1, @EndDt)

SET @var1 = 'SELECT * FROM OPENQUERY

('+ @iHistServer +',''SET StartTime="'+ @StartDt +'",

EndTime="'+ @EndDt +'", IntervalMilliseconds=60000,

SamplingMode=Calculated,CalculationMode='+ @CalculationMode +'

SELECT Tagname, TimeStamp, Value, Quality FROM ihRawData WHERE TagName = '+ @HistTagname +''')'

print (@var1)

exec (@var1)

END

GO

Historian | 38 - OLE DB Provider | 2606

About Working with Queries
Using the Historian Interactive SQL application (ihSQL.exe), you can run an SQL query and display the

results of the query in the same window. It is useful if you want to test a query using the OLE DB provider.

It can open and save SQL queries and can show multiple windows, each containing a query request to the

same server or different servers. For instance, you might want to open more than one window to compare

two different time periods on the same server, or the same time period on different servers.

The Historian Interactive SQL application allows you to access data quickly and efficiently. Using this

application, you can:

• Test SQL syntax before using it in an application.

• Troubleshoot OLE DB connections or Historian errors.

• Perform more complex searching or filtering of data than you can in the Historian SDK and

administration applications.

• Retrieve data from any available Historian server.

• Save and access queries.

• Export query results to Microsoft Excel.

The Historian Interactive SQL application toolbar provides quick access to common functions such as:

Historian | 38 - OLE DB Provider | 2607

• Executing queries

• Switching to a new Historian server

• Exporting query results to Microsoft Excel

• Saving a query

• Printing query results

The following figure shows the toolbar for the Historian Interactive SQL application, outlining what each

button does.

Access the Historian Interactive SQL Application

When you start the application, you can log in to the default server or another Historian server.

1. From the Start menu, select Programs > Historian > Historian Interactive SQL.

Important:

The first time you use ihSQL.exe, you may need to select Run As Administrator.

Otherwise, you may not be able to log in.

The Historian Interactive SQL Login window appears.

Historian | 38 - OLE DB Provider | 2608

2. Select a Historian server, and then enter the username, password, and domain to connect to the

server. If you do not enter user credentials, the currently logged-in user is considered.

3. Select OK.

A new session of the Historian Interactive SQL application appears, and it is connected to the

server that you have specified. The session begins with the default values for SET variables (on

page 2630).

Note:

If modifications or additions are made to the list of available Historian servers using any of

the Historian clients (Excel, non-web Administrator, or iFIX WorkSpace: Expression Builder

and iFIX Migration Tools), those settings are global for any Historian clients running on

that computer.

Run a Query

You can run a query against the data that is contained in the Historian database tables. A query is a SET

or SELECT statement, or a combination of both of these SQL statements. When you execute a SELECT or

SET statement in the Historian Interactive SQL application, you can execute only one SET and one SELECT

statement per query.

1. Access the Historian Interactive SQL application (on page 2607).

2. If you want to run a saved query, select File > Open, and then select the query that you want to run.

3. If you want to run a new query, enter your query in the Query Entry field.

Historian | 38 - OLE DB Provider | 2609

4. Select or press Ctrl+E.

The query results appear.

Connect to a Server

The Historian Interactive SQL application allows you to make multiple connections to the same server or

different servers. This allows you to look at data from different servers.

1. Access the Historian Interactive SQL application (on page 2607).

2. Select File > New.

The Historian Interactive SQL Login window appears.

Historian | 38 - OLE DB Provider | 2610

3. Select a Historian server, and then enter the username, password, and domain to connect to the

server. If you do not enter user credentials, the currently logged-in user is considered.

4. Select OK.

A new session of the Historian Interactive SQL application appears, and it is connected to the

server that you have specified. The session begins with the default values for SET variables (on

page 2630).

Note:

If modifications or additions are made to the list of available Historian servers using any of

the Historian clients (Excel, non-web Administrator, or iFIX WorkSpace: Expression Builder

and iFIX Migration Tools), those settings are global for any Historian clients running on

that computer.

Save a Query

When you save a query, it is saved as an .SQL file in the current working directory. You can later open the

query in the Historian Interactive SQL application or in other client applications.

1. Access the Historian Interactive SQL application (on page 2607).

2. Enter your query into the Query Entry field.

3. Select File > Save.

The Save Query to File window appears.

4. Enter a name for the query.

Historian | 38 - OLE DB Provider | 2611

Important:

Use the .SQL file extension.

5. Select .

The query is saved in the working directory.

Export Query Results to Excel

1. Run the query that you want to export (on page 2608).

2. Select .

The query results are exported to an Excel spreadsheet.

Format the date and time (on page 2596) so that they appear correctly.

Optimize the Query Performance

To optimize query performance, follow these guidelines:

Historian | 38 - OLE DB Provider | 2612

• Perform GROUP BY on the server whenever available. For instance, Crystal Reports gives you the

option to group on the server as opposed to the client.

• Use DISTINCT to eliminate duplicate rows.

• Be specific when specifying tag names. For instance, when using wildcards, be as specific as

possible.

• Limit the duration between start and end times.

• Get as precise a data type as possible to improve storage efficiency and allow reporting tools such

as Power BI or Crystal Reports to properly format the data in reports.

• Do not rely on TOP or ROWCOUNT to optimize performance because they do not change the load on the

archive or network but instead they just limit what is returned to the caller.

Supported SQL Syntax
The OLE DB provider supports the SET and SELECT statements in SQL queries. The following conditions

apply for the supported SQL syntax:

• The supported statements follow the standard SQL-92 conventions.

• Adhering to SQL standards, these statements are not case-sensitive.

• The OLE DB provider does not allow SQL inserts, updates, deletes, or commits; therefore, there is

no event notification. You can only retrieve and analyze data.

• String data types are not supported.

Some reporting packages, such as Crystal Reports, hide the SQL syntax by allowing you to use experts

and wizards. However, familiarity with SQL syntax may help you in troubleshooting and tuning your SQL

commands.

The following figure shows a SELECT statement.

With a SELECT statement, you can specify the Historian table and columns from which you want to

retrieve data. The OLE DB provider establishes the server name at connection time. You can filter the data

returned from SELECT by specifying a filter option in the WHERE clause.

Historian | 38 - OLE DB Provider | 2613

Supported SELECT Statements Syntax

SELECT statements allow you to retrieve data from the Historian database for reporting and analysis. The

SELECT statements that the OLE DB provider supports follow standard SQL-92 conventions. You can use

SELECT statements to retrieve information from any of the columns in any of the Historian tables. The

SELECT statement returns a snapshot of data at the given time of the query.

The order that you specify the columns in the SELECT statement controls how the data is returned. For

more information on the tables and each of the columns in each table, refer to Historian Database Tables

(on page 2647) .

Note:

To query tag names with spaces in them, you must enclose the full tag name in double quotes.

For example, to query the Copy of 5vkn391s.Simulation00001 tag from the ihTrend table, use the

following query: SELECT "Copy of 5vkn391s.Simulation00001" from ihTrend.

WHERE Clauses

You can use a WHERE clause to specify search conditions in a SELECT statement. You can

specify a condition for any column in the table using the WHERE clause.

For example, you can search all rows of data in the ihTags table, where the DataType

column equals SingleFloat. In another instance, you can find all tags that belong to a

particular collector. Or, you can search for all tags with a certain poll rate, or range of poll

rates, or ones with polling disabled.

You can provide maximum 200 conditions in a SELECT statement.

For more information on the columns for each individual Historian table, refer to Historian

Database Tables (on page 2647).

Example 1: Search for All Single Float Tags

SELECT* FROM ihtags WHERE datatype=singlefloat

Example 2: Specify Query Parameters to Obtain String Data

SELECT* FROM ihrawdata WHERE tagname=SimulationString00001

AND samplingmode=interpolated

AND IntervalMilliseconds=1H

Historian | 38 - OLE DB Provider | 2614

In this example, you change the SamplingMode column from the default value of Calculated to

Interpolated in order to retrieve string data.

Example 3: Use a WHERE Clause to Specify a Time Range

SELECT* FROM ihmessages WHERE timestamp>bom

Example 4: Use a Complex WHERE Clause to Find All Tags With a Specific Name and

Description Pattern

SELECT* FROM ihtags

WHERE(tagname LIKE '*001*' AND description LIKE '*sim*')

OR (tagname LIKE '*02*'

AND (description LIKE '*sec*' OR description LIKE '*sim*'))

AND (timestamptype=source OR timestamptype=collector)

For more information on building complex WHERE clauses, see Logical Operators and

Parenthetical Expressions.

ORDER BY

If you do not specify ORDER BY, the output of the row order cannot be assumed. For example,

if you want to order the rows returned from the ihCollectors table by the CollectorName

column, you must include that column name in ORDER BY.

As a more common example, when requesting timestamps with data, use the Timestamp

column with ORDER BY to ensure that the samples are sorted in order by time.

ORDER BY sorts the returned records by one or more specified columns in either ascending

or descending order. By default, the ascending order is considered. You can order results by

one or more columns. If you sort by multiple columns, the sorting priority begins with the

first column listed in the query, and then the next column, and so on.

Abbre

viation
Description

ASC Specifies that the values must be sorted in ascending order, from lowest value

to highest value.

DESC Specifies that the values must be sorted in descending order, from highest val

ue to lowest value.

Historian | 38 - OLE DB Provider | 2615

The OLE DB provider treats Null values as the lowest possible values. It processes ORDER BY

before it performs any RowCount truncation.

Example 1: Retrieve Collectors in Descending Order Sorted by the Collectorname Column

SELECT * FROM ihcollectors ORDER BY collectorname DESC

Example 2: Retrieve Messages in Ascending Order Sorted by Timestamp and Other

Columns

SELECT * FROM ihmessages

WHERE timestamp>='5-oct-2001 00:00:00'

AND timestamp<='18-jan-2002 00:00:00'

ORDER BY timestamp, topic, username, messagenumber, messagestring

TOP

With the TOP predicate, you can limit the number of rows returned to a specified number or

percentage of rows. And then, enter the rest of the query. Typically, you include ORDER BY in

the query to sort the rows in a specified order.

When you select the top number or top percentage of rows, the returned value is limited by

the RowCount. For instance, suppose you want the top 30 percent of rows from a query that

can return a possible 10,000 rows, but the RowCount is set to 1000. The percentage logic

processes the 3000 rows first, then it reduces the number to 1000 rows, as specified by

RowCount. The final result returns 1000 rows, even though the top 30 percent is processed

first. Use a SET statement or WHERE clause to change or disable the RowCount behavior.

Example 1: Return the Top 40 Tags in Alphabetical Order

SELECT TOP 40 * FROM ihtags ORDER BY Tagname

Example 2: Return the Top 10 Most Recent Messages

SELECT TOP 10 timestamp, topic, username, messagestring FROM

ihmessages WHERE timestamp<Now ORDER BY timestamp DESC

Example 3: Return the Top 10 Percent, RowCount Disabled

SET rowcount=0

SELECT TOP 10 PERCENT timestamp, topic, username, messagestring

FROM ihmessages WHERE timestamp<Now

ORDER BY timestamp DESC

LIKE

Historian | 38 - OLE DB Provider | 2616

Use the LIKE expression when searching for column data similar to a specified text string.

By using wildcards, you can specify the text strings that you want to search. You can use

the wildcard before and/or after the text that you want to search for. Use an asterisk (*)

for multiple unknown characters in a search string. Use a question mark (?) for a single

unknown character.

Note:

You can also use a percentage (%) to select all tags that contain a specific string

in the tag name and an underscore (_) to select all tags when you are unsure of

only one character in the tag name. You must enclose these wildcard characters in

single quotes (for example, '%' or '_') when you use them in Historian tag names,

but do not use single quotes if you want them to be treated as wildcards in SQL.

Example 1: Use LIKE With Multiple Character Replacement

SELECT * FROM ihtags WHERE tagname LIKE *.Simulation*

ORDER BY tagname

SELECT * FROM ihtags WHERE tagname LIKE %.Simulation%

Example 2: Use LIKE With Single Character Replacement

SELECT * FROM ihtags WHERE tagname LIKE MYSERVER.Simulation0000?

ORDER BY tagname

SELECT * FROM ihtags WHERE tagname LIKE MYSERVER.Simulation0000'_'

ORDER BY tagname

AS

Use AS when you want to control the name of an output column. You can use AS in all

columns and tables except the ihTrend table. In the ihTrend table, you can only use AS

with the TimeStamp column.

Example: Set the Output Column Name

SELECT status, collectorname AS Name, collectortype,

status AS 'The Status', collectordescription FROM ihcollectors

DISTINCT

DISTINCT eliminates duplicate rows when all columns are equal. Floating-point values,

however, may not compare as expected, depending on the precision. For example, if the

Historian | 38 - OLE DB Provider | 2617

numbers to the right of the decimal point are not equal for all values, similar columns are

not eliminated. The columns must be exactly equal to be eliminated.

Example 1: Retrieve the Set of Unique Data Types Used in an Archive

SELECT DISTINCT datatype FROM ihtags

Example 2: Retrieve the Set of Tags With Raw Data Samples on a Specific Date

SELECT DISTINCT tagname FROM ihRawData WHERE samplingmode=rawbytime

AND timestamp>='11/28/2001' AND timestamp<='11/29/2001'

GROUP BY

GROUP BY combines records with identical values in the specified field list into a single

record. Then, you can compute an aggregate value for the grouped records. The aggregate

column does not exist in the actual table. Another calculated column is created with the

results.

Example: Group Messages by User Name and Topic

SELECT username, topic, COUNT(*) FROM ihmessages

WHERE timestamp >= '1-dec-2001 00:00:00'

AND timestamp <= '7-dec-2001 00:00:00'

GROUP BY username, topic ORDER BY username, topic

SQL Aggregate Functions

SQL aggregate functions perform a calculation on a set of values in a column and return

a single value. For instance, when comparing multiple tags, you can retrieve the minimum

(MIN) of the returned minimum values. You usually use aggregate functions with the GROUP

BY clause, but it is not required. For more information, see Group By.

Table 387. Supported Aggregate Functions

Func

tion
Description

AVG Returns the average of the values in a group. Null values are ignored.

COUNT Returns the number of items in a group. Null values are not ignored.

MAX Returns the maximum value in a group. Null values are ignored.

MIN Returns the minimum value in a group. Null values are ignored.

Historian | 38 - OLE DB Provider | 2618

Table 387. Supported Aggregate Functions (continued)

Func

tion
Description

SUM Returns the sum of all the values in a group. SUM can be used with numeric

columns only. Null values are ignored.

STDEV Returns the statistical standard deviation of all values in a group. Null values are

ignored.

STDE

VP

Returns the statistical standard deviation for the population for all values in a

group. Null values are ignored.

VAR Returns the statistical variance of all values in a group. Null values are ignored.

VARP Returns the statistical variance for the population for all values in a group. Null val

ues are ignored.

STDEV, STDEVP, VAR, and VARP

If a variance is defined as the deviation from an average data set value, and N is the number

of values in the data set, then the following equations apply:

VAR = (Sum of Variances)^2 / (N - 1)

VARP = (Sum of Variances)^2 / (N)

STDEV = SquareRoot (VAR)

STDEVP = SquareRoot (VARP)

Example 1: Retrieve the Total Number of Tags

SELECT COUNT(*) FROM ihTags

Example 2: Calculate Values for Multiple Tags

FROM ihrawdata WHERE tagname LIKE '*0001*'

AND timestamp>='28-dec-2001 00:00'

AND timestamp<='29-dec-2001 00:00'

AND samplingmode=interpolated

AND intervalmilliseconds=1h GROUP BY tagname ORDER BY tagname

The following figure displays the results of this query. Note the column names (Sum of

value, Avg of value, Min of value, and Max of value) returned for the calculated columns.

Historian | 38 - OLE DB Provider | 2619

Conversion Functions

The Historian OLE DB provider generally returns data with the VARIANT data type. Some

OLE DB clients may not understand VARIANT data, however, and will require the data to be

returned as an integer, float, or string data type. To accommodate this, the OLE DB provider

includes the functions described in the following table.

Table 388. Conversion Functions

Function Description

to_double

(column)

Converts the specified column to a double float data type.

to_integer

(column)

Converts the specified column to a single integer data

type.

to_string

(column)

Converts the specified column to a string data type.

Note:

• You must edit the SQL statement manually to add conversion functions.

• You can also use the fully qualified column name (for example,

ihRawData.value).

• Conversion functions are not available in WHERE or JOIN (ON) clauses.

• Conversion functions cannot be used within aggregate functions.

Historian | 38 - OLE DB Provider | 2620

Example: Convert Values to Double Float

select timestamp, to_double(value), quality from ihRawData

JOIN

A table join is an operation that combines rows from two or more tables. You can join as

many tables as you want within one JOIN statement. When you use a table JOIN in a SELECT

statement, you must specify the column name and table when selecting the columns that

you want to compare. The syntax for table joins follows standard SQL language format.

Table 389. Supported Join Operations

Sup

ported

Join

Feature

Description

Inner

Join

Combines records from two tables whenever there are matching values.

Left

Join

or Left

Outer

Join

Returns all of the rows from the left (first) of two tables, even if there are no

matching values for records in the right (second) table.

Right

Join or

Right

Outer

Join

Returns all of the rows from the right (second) of two tables even if there are no

matching values for records in the left (first) table.

Full

Join or

Outer

Join

Returns all rows in both the left and right tables. Any time a row has no match

in the other table, SELECT list columns from the other table contain null values.

When there is a match between the tables, the entire result set row contains data

values from the base tables.

Cross

Join

Returns all rows from the left table. Each row from the left table is combined

with all rows from the right table.

Historian | 38 - OLE DB Provider | 2621

Table 389. Supported Join Operations (continued)

Sup

ported

Join

Feature

Description

Old

Join

syntax

Simply selects columns from multiple tables using the WHERE clause without us

ing the JOIN keyword.

Table joins are a powerful tool when organizing and analyzing data. A few examples are

included in this section. However, refer to the documentation for your third-party reporting

software for more complete information on building more complex queries.

JOIN Operations Rules

The following rules apply when working with JOIN operations for the Historian OLE DB

provider:

• You cannot join a table with itself.

• You cannot join any table with the ihTrend or ihQuerySettings tables.

The following examples display different types of joins with the ihComments table.

Comments themselves are not usually that useful unless they are combined with data, as

you do with the JOIN statements in the following examples.

Example 1: Perform an Inner Join to Retrieve Only Data With Associated Comments

SELECT d.timestamp, d.tagname, d.value, c.username, c.comment

FROM ihrawdata d INNER JOIN ihcomments c

ON c.tagname=d.tagname AND c.timestamp=d.timestamp

WHERE d.tagname LIKE '*0001*'

ORDER BY d.timestamp, d.tagname, c.username, c.comment

Example 2: Perform a Left Outer Join to Retrieve All Data With and Without Comments

SELECT d.timestamp, d.tagname, d.value, c.comment FROM ihrawdata d

LEFT OUTER JOIN ihcomments c

ON c.tagname=d.tagname AND c.timestamp=d.timestamp

WHERE d.tagname LIKE '*0001*' ORDER BY d.timestamp, d.tagname

Historian | 38 - OLE DB Provider | 2622

Example 3: Perform a Right Outer Join to Retrieve All Comments and Their Accompanying

Data

SELECT d.tagname, d.timestamp, d.value, c.comment FROM ihrawdata d

RIGHT OUTER JOIN ihcomments c

ON c.tagname=d.tagname AND c.timestamp=d.timestamp

WHERE d.tagname LIKE '*0001*' ORDER BY d.tagname, d.timestamp

Example 4: Perform a Cross Join

SELECT * FROM ihCollectors CROSS JOIN ihArchives

Example 5: Perform a Cross Join (Older Syntax)

SELECT ihTags.Tagname, iharchives.Filename FROM ihTags, ihArchives

Example 6: Join the ihMessages and ihArchives Tables

This example uses SET StartTime before the SELECT statement. The SET statement is

necessary because the timestamp criteria in SELECT do not narrow down the time range for

the ihMessages table until after the results have been collected and the join takes place.

SET starttime='1-jan-2000'

SELECT a.starttime, a.endtime, m.*

FROM ihmessages m JOIN iharchives a

ON m.timestamp>=a.starttime

AND m.timestamp<=a.endtime WHERE a.iscurrent=true

Example 7: Interleave Data and Messages by Timestamp

SELECT d.timestamp, m.timestamp, d.tagname, m.messagestring,

d.value FROM ihRawData d FULL OUTER JOIN ihMessages m

ON d.timestamp=m.timestamp WHERE d.tagname=simulation00001

AND d.timestamp>='30-nov-2001 00:00:00'

AND d.timestamp<='06-dec-2001 00:00:00'

Example 8: Retrieve the Greatest Values Across All Simulation Tags

In the following example, we join the ihRawData and ihTags tables, because the ihRawData

table does not contain the CollectorType column.

SELECT TOP 300 ihRawData.tagname, ihRawData.timestamp,

ihRawData.value, ihRawData.Quality FROM ihRawData

INNER JOIN ihTags ON ihRawdata.Tagname = ihTags.Tagname

Historian | 38 - OLE DB Provider | 2623

WHERE ihRawData.tagname LIKE simulation*

AND ihRawData.timestamp>=11/28/2001

AND ihRawData.timestamp<=11/29/2001

AND ihRawData.samplingmode=interpolated AND ihRawData.intervalmilliseconds=1H

AND ihTags.datatype!=FixedString

AND ihTags.datatype!=variablestring

AND ihRawData.quality>0

ORDER BY value DESC, timestamp DESC

Example 9: Join the ihComments and ihRawData Tables

SET starttime='28-nov-2001 08:00', endtime='29-nov-2001 09:00',

samplingmode=interpolated, intervalmilliseconds=6m

SELECT d.tagname, d.timestamp, d.value, c.storedontimestamp, c.username,

c.datatypehint, c.comment FROM ihcomments c

FULL OUTER JOIN ihrawdata d ON c.tagname=d.tagname

AND c.timestamp=d.timestamp

WHERE d.tagname LIKE '*0001*'

ORDER BY d.tagname, d.timestamp,c.storedontimestamp, c.datatypehint,

c.username, c.comment

Example 10: Report by Tag Description

In the following example, we join the ihRawData and ihTags tables to get the Description

column from the ihTags table.

SELECT d.timestamp, t.description, d.value, d.quality

FROM ihrawdata d INNER JOIN ihtags t ON d.tagname=t.tagname

WHERE d.tagname LIKE '*0001' ORDER BY d.timestamp, t.description

Example 11: Join Three Tables

SELECT ihTags.Tagname, ihTags.Description, ihRawData.TimeStamp,

ihRawData.Value, ihRawData.SamplingMode, ihComments.Comment

FROM ihTags ihTags, ihRawData ihRawData, ihComments ihComments

WHERE ihTags.Tagname = ihRawData.Tagname

AND ihRawData.Tagname = ihComments.Tagname

AND ihRawData.Timestamp = ihComments.Timestamp

AND ihRawData.TimeStamp >= {ts '2002-03-01 09:39:00.000'}

AND ihRawData.TimeStamp <= {ts '2002-03-01 09:41:00.000'}

AND ihRawData.SamplingMode = 'RawByTime'

Historian | 38 - OLE DB Provider | 2624

AND ihTags.Tagname LIKE '%TestTag1%'

Example 12: Perform a Right Join (Older Syntax)

SELECT ihTags.Tagname, ihTags.CollectionInterval, ihCollectors.CollectorName,

ihCollectors.DefaultCollectionInterval

FROM ihTzzz|

Example 13: Perform a Left Join (Older Syntax)

SELECT ihTags.Tagname, ihTags.CollectionInterval, ihCollectors.CollectorName,

ihCollectors.DefaultCollectionInterval

FROM ihTags ihTags, ihCollectors ihCollectors

WHERE

ihTags.CollectionInterval *=ihCollectors.DefaultCollectionInterval

AND ihTags.Tagname LIKE '%TestTag%'

Quotation Marks

You must use quotation marks when you specify a string that contains a space, a comma, or

a reserved word. Reserved words are defined by the SQL-92 conventions. Single and double

quotes are equivalent in queries.

Example: Use Quotes When a Text String Contains a Space

SELECT * FROM ihtags WHERE comment LIKE 'alert message'

Timestamp Formats

Timestamps appear not just in the TimeStamp columns, but also in columns such as the

StartTime, EndTime, and LastModified columns. You can use the date and/or time in a SQL

statement that contains a timestamp. Valid date and time formats are as follows:

• System short date and time.

• SQL date and time.

• ODBC date and time.

The time format for system short timestamps is the same as the time format defined in the

Windows Control Panel.

When entering a query you should use a period as the decimal separator to separate

seconds from milliseconds or microseconds.

Historian | 38 - OLE DB Provider | 2625

When using the SQL date and time, you should always use the English abbreviations for the

desired month.

If you enter only a start time, the end time is assumed to be now. For example, if you enter

starttime > yesterday in a WHERE clause, the end time for the query is now, even if you

previously set an end time.

If you enter only an end time, the start time is December 31, 1969, 19:00:00.001. If you use

this as the start time, you can overload the Historian server and the provider. For example, if

you use timestamp < now, you might cause an overload.

Example 1: Use the System Short Date and Time

SET starttime='02/01/2002 11:00:00'

Example 2: Use the SQL Date and Time

SET starttime='14-sep-2001 11:00:00'

Example 3: Use the ODBC Date and Time

SET starttime={ts '2002-06-20 15:34:08'}

Example 4: Set the Start Time to 4 AM Today

SET starttime='04:00:00'

Example 5: Set the Start Time in Milliseconds

SET starttime='7/12/2011 12:03:16.183'

Example 6: Set the Start Time in Microseconds

SET starttime='7/12/2011 12:03:16.178439'

Date and Time Shortcuts

Time Segment Meaning

now Now (the time and date that you execute the

query)

today Today at midnight

yesterday Yesterday at midnight

mon The previous Monday at midnight

tues The previous Tuesday at midnight

wed The previous Wednesday at midnight

Historian | 38 - OLE DB Provider | 2626

Time Segment Meaning

thurs The previous Thursday at midnight

fri The previous Friday at midnight

sat The previous Saturday at midnight

sun The previous Sunday at midnight

boy First day of year at midnight

eoy Last day of year at midnight

bom First day of month at midnight

eom Last day of month at midnight

Example 1: Set the Start Time to the First Day of the Month

SET starttime=bom

Example 2: Retrieve Messages Dated Today

SELECT * FROM ihmessages WHERE timestamp>=today

Relative Date and Time Shortcuts

Optionally, you can add or subtract relative time shortcuts to the absolute times.

Table 390. Relative Date and

Time Shortcuts

Time Segment Meaning

s Second

m Minute

h Hour

d Day

w Week

micro Microsec

ond

You can use relative time shortcuts when defining time intervals. For instance, use these

shortcuts when you specify a value for the IntervalMilliseconds column.

Historian | 38 - OLE DB Provider | 2627

Note:

You cannot use relative time shortcuts to add or subtract microseconds to or from

absolute times.

Example 1: Set the Start Time to 10 Days Before Yesterday and End Time to Today

SET starttime=yesterday-10d, endtime=today

SELECT * FROM ihQuerySettings

Example 2: Retrieve the Previous 24 Hours of Messages

SELECT * FROM ihMessages WHERE timestamp>=Now-24h

Example 3: Select Data Starting at 1AM Yesterday and Ending Now

SELECT * FROM ihrawdata WHERE timestamp>=yesterday+1h AND timestamp<=now

Example 4: Retrieve Raw Data With a 1 Hour (3600000 Milliseconds) Interval Between

Returned Samples

SELECT * FROM ihrawdata WHERE intervalmilliseconds=1h

Example 5: Retrieve Raw Data With a 100 Microseconds Interval Between Returned

Samples

SELECT * FROM ihrawdata WHERE intervalmilliseconds=100micro

and starttime>= '7/12/2011 12:03:16.100000' and endtime<='

Example 6: Retrieve This Week's Output to Date

SET starttime=Sun, endtime=Now, intervalmilliseconds=1d, samplingmode=rawbytime

SELECT tagname, SUM(value) FROM ihRawData WHERE tagname LIKE *00* GROUP BY tagname

Comparison Operators

Table 391. Expression Comparisons

Compari

son Symbol
Meaning

< Less Than

> Greater Than

<= Less Than or Equal

>= Greater Than or Equal

= Equal

Historian | 38 - OLE DB Provider | 2628

Table 391. Expression Comparisons (continued)

Compari

son Symbol
Meaning

!= Not Equal

!> Not Greater Than

!< Not Less Than

BETWEEN x AND y Between the values x and y inclusive, where x and y are numeric val

ues

A literal on the left side of the comparison operator is not supported. For example, this

statement would fail:

SELECT DISTINCT tagname FROM ihRawData WHERE 50>Value

But the following statement succeeds since the Value column is to the left of the > operator:

SELECT DISTINCT tagname FROM ihRawData WHERE Value>50

Example 1: Retrieve Tags with a High EGU Greater Than 300

SELECT DISTINCT tagname, loengineeringunits, hiengineeringunits

FROM ihTags WHERE hiengineeringunits > 300

Example 2: Retrieve Tags with a Specific Description

SELECT tagname, description FROM ihTags WHERE description = "aa"

Example 3: Retrieve All Samples Where the Value Exceeds Query Supplied Values

SELECT timestamp, tagname, value FROM ihRawData

WHERE samplingmode=rawbytime AND value>75

Example 4: Retrieve All Samples Where the Value is Between Query Supplied Values

SELECT timestamp, tagname, value FROM ihRawData

WHERE samplingmode=lab AND value BETWEEN 25 AND 75

Example 5: Retrieve All Tag Names Starting with an A or B

SELECT * FROM ihtags WHERE tagname < 'C'

Logical Operators

The following logic operators are supported:

Historian | 38 - OLE DB Provider | 2629

• AND

• OR

• NOT

Example 1: Use the AND Logical Operator

SELECT * FROM ihTags WHERE Tagname LIKE 'Simulation*'

AND CollectionInterval<3000

Example 2: Use the OR Logical Operator

SELECT * FROM ihTags WHERE Tagname LIKE 'ComputerName.Simulation*'

OR tagname LIKE '*String*'

Example 3: Use the NOT Logical Operator

SELECT * FROM ihTags WHERE NOT Datatype=SingleFloat

Example 4: Use the NOT Logical Operator With a LIKE Expression

SELECT * FROM ihTags WHERE Tagname NOT LIKE '*String*'

Parenthetical Expressions

Parentheses control the order of evaluation of the logical operators in an expression. The

OLE DB provider supports parentheses in a WHERE clause. You can use multiple sets of

parentheses, and nest parenthetical expressions.

Example 1: Use Parentheses

SELECT * FROM ihTags

WHERE (tagname LIKE *001 AND description="aa") OR tagname LIKE *002

Example 2: Use Parentheses with Logical Operators and Timestamps

SELECT * FROM ihRawData WHERE tagname=Simulation00001 AND

(Timestamp=>Tu AND Timestamp<=Wed OR Timestamp>=Fri AND time

Example 3: Use Multiple Sets of Parentheses

SELECT * FROM ihtags

WHERE (tagname LIKE '*001*' AND description LIKE '*sim*') OR

(tagname LIKE '*02*' AND (description LIKE '*sec*' OR description LIKE '*sim*'))

Supported SET Statement Syntax

The use of SET statements is not mandatory because you can also specify query parameters in a WHERE

clause. However, SET statements can make your queries more readable. By using SET statements, you can

Historian | 38 - OLE DB Provider | 2630

save time by simplifying SELECT queries, because you do not have to retype query parameters each time

you issue a new SELECT statement. The SET parameters persist for the entire session.

With a SET statement, you can define various defaults for your queries to use, such as:

• The start date and time of the selected data

• The end date and time

• The calculation mode

• The number of rows returned

• The data sampling mode

For more information, refer to ihQuerySettings Table (on page 2709).

When entering numbers, do not use a thousands separator. For example, if you want to set a collection

interval to 7,000 milliseconds, use the following code:

SET IntervalMilliseconds = 7000

Correct SET Without Comma to Separate Thousands Place

Multiple SET statements in the same command are not supported. Combine multiple variables in the same

SET statement.

Correct:

SET starttime=yesterday-10d, endtime=today, samplingmode=interpolated

Incorrect:

SET starttime=yesterday-10d

SET endtime=today

SET samplingmode=interpolated

SET Variables

The following table outlines the supported SQL variables and settings that you can use in a SET statement.

If you do not change any variables using the SET statement or a WHERE clause in your SELECT statement, the

default session variables are considered. You can apply any of the variables described in the following

table to the current session. In turn, these settings are used when retrieving information from the

Historian database tables. SET variables persist from statement to statement.

Some session variables that you define with the SET statement accept abbreviations. You must type at

least the abbreviation for the statement to work. For instance, for the CalculationMode setting, you can

Historian | 38 - OLE DB Provider | 2631

enter the abbreviation Interp for the Interpolated setting. The accepted abbreviations are highlighted in

bold in the following table.

Table 392. SET Statement Variables

Vari

able
Description

Default

Setting

Start

Time

A valid date and time string, such as:

• StartTime = '14-sep-200111:00:00'

• StartTime = Now -1h

• StartTime = '02/01/199811:00:00'

• StartTime = {ts '2002-06-20 15:34:08'}

• StartTime = '7/12/201112:03:16.100000'

Two hours

prior to exe

cution of the

query.

End

Time

A valid date and time string, such as:

EndTime = '14-sep-200112:00:00'

The current

time that

you execute

the query.

Sam

pling

Mode

String that represents the mode of sampling data from the archive:

• CurrentValue

• Interpolated

• InterpolatedtoRaw

• RawByTime

• RawByNumber

• Calculated

• Lab

• LabtoRaw

• Trend

• TrendtoRaw

• Trend2

• TrendtoRaw2

• RawByFilterToggle

Calculated

Di

rec

tion

String that represents the direction of data sampling from the archive, beginning

at the start time. Direction applies to the RawByTime and RawByNumber sampling

modes:

Forward

Historian | 38 - OLE DB Provider | 2632

Table 392. SET Statement Variables (continued)

Vari

able
Description

Default

Setting

• Forward

• Backward

Num

ber

Of

Sam

ples

Any positive integer that represents the number of samples from the archive to re

trieve. Do not enter a thousands separator. For example, enter 1000 and not 1,000.

Samples are evenly spaced within the time range defined by start and end times

for most sampling modes. For the RawByNumber sampling mode, the NumberOfSam

ples attribute determines the maximum number of values to retrieve. For the Raw

ByTime sampling mode, the NumberOfSamples is ignored.

0 (use In

tervalMil

liseconds)

In

ter

val

Mil

lisec

onds

Any positive integer that represents the interval (in milliseconds) between returned

samples.

For example:

• If you run a query with 'IntervalMilliseconds = 100', it returns samples in

100-millisecond intervals.

• If you run a query with 'IntervalMilliseconds = 100micro', it returns sam

ples in 100-microsecond intervals.

60000 (one

minute)

Cal

cula

tion

Mode

The CalculationMode column applies only if the SamplingMode is set to Calculated. It

represents the type of calculation to perform on archive data:

• Average

• StandardDeviation

• Total

• Minimum

• MaximumCount

• RawAverage

• RawStandardDeviation

• RawTotal

• MinimumTime

• MaximumTime

• Count

• TimeGood

• FirstRawValue

Average

Historian | 38 - OLE DB Provider | 2633

Table 392. SET Statement Variables (continued)

Vari

able
Description

Default

Setting

• FirstRawTime

• LastRawValue

• LastRawTime

• TagStats

Fil

ter

Tag

A valid tagname used to define the filter. For example:

FilterTag = 'SimulationString00001'

You can specify only a single tag ID can be specified in the FilterTag. Wildcards

are not supported. FilterTag is used in conjunction with FilterValue, FilterCom

parisonMode, and FilterMode.

An emp

ty space

(meaning

FilterTag is

not used)

Fil

ter

Mode

String that represents the type of time filter:

• ExactTime

• BeforeTime

• AfterTime

• BeforeAndAfterTime

For example, AfterTime indicates that the filter condition should be True starting

at the timestamp of the archive value that triggered the True condition and leading

up to the timestamp of the archive value that triggered the False condition. Filter

Mode is used in conjunction with FilterValue, FilterComparisonMode, and FilterTag.

BeforeTime

Fil

ter

Com

par

ison

Mode

String that represents the type of comparison to be made on the filter comparison

value:

• Equal

• EqualFirst

• EqualLast

• NotEqual

• LessThan

• GreaterThan

• LessThanEqual

• GreaterThanEqual

• AllBitsSet

Equal

Historian | 38 - OLE DB Provider | 2634

Table 392. SET Statement Variables (continued)

Vari

able
Description

Default

Setting

• AnyBitSet

• AnyBitNotSet

• AllBitsNotSet

If you enter FilterTag and FilterComparisonValue in the SET statement, time peri

ods are filtered from the results where the filter condition is False. FilterCompar

isonMode is used in conjunction with FilterValue, FilterMode, and FilterTag.

Fil

ter

Ex

pres

sion

An expression that includes multiple filter conditions. You can use FilterExpres

sion instead of FilterTag, FilterComparisonMode, and FilterValue.

FilterExpression = 'BatchID=B1'

While using FilterExpression, the expression is passed within single quotes, and

for complex expressions we write the conditions within parentheses. There is no

maximum length for FilterExpression.

Fil

ter

Value

String that represents the value with which to compare the filter tag to determine

the appropriate filter times. Wildcards are not supported. Do not use a comma for

the thousands separator.

For example:

FilterValue = 'ABCD-1086031382099'

The FilterValue is used in conjunction with FilterComparisonMode, FilterMode, and

FilterTag.

An emp

ty space

(meaning fil

tering is not

used)

Time

Zone

String that represents the type of time zone that should be applied to timestamps:

• Client

• Server

• Explicit bias number (number of minutes from GMT)

For example, an explicit bias number of 300 represents 300 minutes from GMT.

Note:

Time zones are not supported on Windows 9x computers.

Client

Historian | 38 - OLE DB Provider | 2635

Table 392. SET Statement Variables (continued)

Vari

able
Description

Default

Setting

Day

light

Sav

ing

Time

Indicates whether Daylight Saving Time logic should be applied to timestamps.

Valid values:

• True

• False

Date and

time set

tings in your

Windows

Control Pan

el

Row

Count

A number that indicates the maximum number of rows that can be returned. 0 indi

cates there is no limit to the number of rows returned.

5000

SET Statements and Variables Examples

If you do not change any variables using the SET statement or a WHERE clause in your SELECT statement, the

default session variables are considered. For instance, if you do not specify a start and end time for your

collected data, the data output from a SELECT statement will be the last two hours prior to execution of the

query.

For example, if you want to SELECT all of the messages from the ihMessages table for the last day,

you must explicitly state that you want the messages from the last day in the query. Otherwise, only the

messages from the last two hours are displayed when you run the query, since that is the default setting.

SET statement variables persist during a session until changed. You can combine the SET statement on the

same line as the SELECT statement.

Perform a Simple SET

SET samplingmode=currentvalue

Perform Multiple SETs

SET starttime='14-sep-2001 11:00:00', endtime='14-sep-2001 12:00:00',

samplingmode=interpolated, intervalmilliseconds=

Prepare for a RawByTime Query

SET starttime='14-sep-2001 11:00:00', endtime='14-sep-2001 12:00:00',

samplingmode=rawbytime

Historian | 38 - OLE DB Provider | 2636

Prepare for a RawByNumber Query

SET starttime='14-sep-2001 11:00:00', samplingmode=rawbynumber,

numberofsamples=10, direction=backward

Prepare for One Hour Minimums

SET starttime='15-sep-2001 00:00:00', endtime='16-sep-2001 00:00:00',

samplingmode=calculated, intervalmilliseconds=36

Prepare for a Filtered Data Query

SET starttime='14-sep-2001 11:00:00', endtime='14-sep-2001 12:00:00',

samplingmode=current, filtertag='MY_SERVER.simul

Throttle Results with a SET Statement

SET ROWCOUNT = 4

SELECT Tagname FROM ihTags

Combined SET and SELECT Statements

The OLE DB provider allows you to execute one SELECT statement and one SET statement per query. Enter

a space or a line break to indicate the end of a statement in a query. You do not need to use a semicolon

(;) at the end of the line or statement.

Use SET and SELECT Statements on the Same Line

SET samplingmode=interpolated SELECT * FROM ihquerysettings

Use SET and SELECT Statements on Different Lines

SET samplingmode=calculated, starttime=yesterday, endtime=today

SELECT * FROM ihquerysettings

Parameterized SQL Queries

Parameterized SQL queries allow you to place parameters in an SQL query instead of a constant value.

A parameter takes a value only when the query is executed, which allows the query to be reused with

different values and for different purposes. Parameterized SQL statements are available in some analysis

clients and Historian SDK.

For example, the following query contains a parameter for the collector name:

SELECT* FROM ihtags WHERE collectorname=? ORDER BY tagname

Historian | 38 - OLE DB Provider | 2637

If your analysis client passes the parameter iFIX_Albany along with the query, it looks like follows when

executed in Historian:

SELECT* FROM ihtags WHERE collectorname='iFIX_Albany' ORDER BY tagname

The advantage of using parameterized SQL queries is that you can prepare them ahead of time and reuse

them for similar applications without having to create distinct SQL queries for each case. For instance,

you can use the previous example in any context where you want to get tags from a collector. You can

also use parameterized queries with dynamic data, where you do not know what the values will be until

the statement is executed.

If your analysis client supports parameterized queries, it will automatically pass the parameter data along

with a named query for Historian to process. In the case of multiple parameters, the analysis client will

read the named query, and order the parameters to match.

Note:

You cannot use parameters to substitute table names or columns in a query.

Multiple Parameters

To create a query with multiple parameters, place a question mark (?) for every parameter whose value

you want to substitute in the query. For example, if you want an SQL query to match two WHERE conditions,

collectorname and tagname, use the following parameterized query:

SELECT* FROM ihtags WHERE collectorname=? AND tagname like ? ORDER BY tagname

When executed, the parameterized SQL query will add the parameters as they are received from the

analysis application. In the previous example, the collectorname parameter would be received first,

followed by the tagname parameter. Your analysis client will order the parameters based on the query it is

running.

Note:

If you want to enter wildcard data in your parameterized queries, include the wildcard characters

as part of the parameter. For instance, in the previous example, if you want to find any tagnames

with the string iFIX in them, pass it the *iFIX* parameter.

Optimize the Query Performance

To optimize query performance, follow these guidelines:

Historian | 38 - OLE DB Provider | 2638

• Perform GROUP BY on the server whenever available. For instance, Crystal Reports gives you the

option to group on the server as opposed to the client.

• Use DISTINCT to eliminate duplicate rows.

• Be specific when specifying tag names. For instance, when using wildcards, be as specific as

possible.

• Limit the duration between start and end times.

• Get as precise a data type as possible to improve storage efficiency and allow reporting tools such

as Power BI or Crystal Reports to properly format the data in reports.

• Do not rely on TOP or ROWCOUNT to optimize performance because they do not change the load on the

archive or network but instead they just limit what is returned to the caller.

Troubleshooting and Frequently Asked Questions

Troubleshooting

The following sections outline what to do if the following problems occur:

• Cannot Connect With the Historian Interactive SQL Application (on page 2638)

• Cannot Log Into the Historian Interactive SQL Application (on page 2639)

• Cannot Get Historian OLE DB provider Data (on page 2639)

• Samples Do Not Run (on page 2640)

• Time Zones Do Not Work (on page 2640)

• Cannot Get String Data From the ihRawData Table (on page 2640)

• Timestamps Include Only the Previous Two Hours (on page 2641)

• Row Count Less Than Expected (on page 2641)

• Linked Server Not Working (on page 2641)

• SET Not Applied to SELECT When Using a Linked Server (on page 2641)

• Client Crashes When Using Historian OLE DB provider (on page 2641)

The sections that follow the answers to this list describe frequently asked questions. These answers may

help you when you are first configuring and using the Historian OLE DB provider.

Cannot Connect With the Historian Interactive SQL Application

When the OLE DB provider connects to the archiver, a connection message is generated and logged to

the archiver messages list. If you are having problems connecting with the Historian Interactive SQL

application (ihSQL.exe), you will either not see a connection message or see a connection error instead.

If you suspect that you are having problems connecting to the archiver, follow these steps:

Historian | 38 - OLE DB Provider | 2639

1. Open Historian Administrator.

2. Select Messages.

The message fields appear in the main window.

3. In the Priority group box, select the All option.

4. In the Topic drop-down list, select All Topics.

5. Select Search.

A list of messages appears on the right side of the window.

6. Scroll through the list of connection messages and look for any missing connections or connection

errors.

Connections denied due to security display the user name passed to the archiver. For example, the

message would be similar to this:

Unknown(\kmckenna) failed login at 03/01/2002 04:30:58.415 PM.

Cannot Log Into the Historian Interactive SQL Application

When you use ihSQL.exe for the first time, you may need to select Run As Administrator. If you do not

do this the first time you use ihSQL.exe, you may not be able to log in. After this, you do not need to

select Run as Administrator.

Cannot Get Historian OLE DB provider Data

If you cannot get data and you suspect there is a security problem with Historian, follow these steps to

confirm that the Historian OLE DB provider is working:

1. Open the Historian Interactive SQL application and connect to the OLE DB provider.

2. Enter the following command:

SELECT * FROM ihQuerySettings

3. Select the Execute Query button.

4. Confirm that data appears in the bottom half of the window:

◦ If one row of data returns, then the provider is installed and working correctly, but you may

have security problems between the provider and the server. You must use a valid Historian

username and password.

◦ If no rows return, then there is a connection problem between the client and the OLE DB

provider.

The ihQuerySettings data is internal to the OLE DB provider and does not use any Historian security.

Browsing the tables and columns also is unaffected by Historian security and is another way to confirm

the connection between the client and provider.

Historian | 38 - OLE DB Provider | 2640

Samples Do Not Run

If you follow the recommended installation procedures, you should not have any difficulty in running the

sample reports. If you do encounter any problems, they are likely to relate to the locations of files.

For example, if you are using Crystal Reports, check that you changed the server name. If the server name

is incorrect, the data links will not update correctly. See Changing the Server Name (on page 2588) for

directions on how to change it.

Time Zones Do Not Work

If you are using Windows 9x, times zones are not supported on this operating system. Returned data

displays the client time zone.

If you are expecting a server or explicit bias time zone and a client time zone displays, check the defaults

in the ihQuerySettings table. By default, the TimeZone column is set to Client. See Supported SET

Statement Syntax (on page 2629) for more information on setting defaults using a SET statement, or see

WHERE Clauses for information on specifying a time zone in the SELECT statement.

Cannot Get String Data From the ihRawData Table

The Historian OLE DB provider, by default, does not return string data types in the ihRawData table. This

is because the default SamplingMode value is Calculated. You have to change the SamplingMode value to

Interpolated using the SET statement or a WHERE clause.

For example, this query does not return interpolated data:

SELECT * FROM ihRawData

WHERE tagname = simulationstring00001

However, this query does:

SELECT * FROM ihRawData

WHERE tagname = simulationstring00001 AND

samplingmode = interpolated

And so does this query:

SET samplingmode=interpolated

SELECT * FROM ihRawData

WHERE tagname = simulationstring00001

Historian | 38 - OLE DB Provider | 2641

Timestamps Include Only the Previous Two Hours

By default, the data returned only includes data from two hours prior to the execution of the query. If

you want to change the time frame of the data query, you need to specify a start and end time in a SET

statement, or use a WHERE clause to specify a date and time period.

Row Count Less Than Expected

By default, all queries return up to a maximum of 5,000 rows. If you want to change the maximum number

of rows returned, you can specify another RowCount value in a SET statement, or use the TOP predicate in

your SELECT statement.

If you specify RowCount=0 in the SET statement, the RowCount limit is disabled. However, the RowCount is not

actually unlimited. It can be constrained by other factors such as the time interval, or by using the TOP

predicate in your SELECT statement.

Linked Server Not Working

Check that you selected the Select the Level Zero Only and Allow in Process options in the Provider

Options window. You may have forgotten to set them when you were creating your linked server. These

are the only two options that should be selected.

SET Not Applied to SELECT When Using a Linked Server

Make sure that the SET and SELECT statements are combined in the same query. If you open the

connection and only perform the SET, as shown below, the SET parameters only get applied for the duration

of the connection.

SELECT * FROM OPENQUERY(linkedserver, 'SET SamplingMode=interpolated')

The SamplingMode option in the previous example does not get applied to the next OPENQUERY that you

perform with a SELECT statement. The SET statement only gets applied to the query if it is included with the

SELECT statement. See Use OPENQUERY to Access a Linked Server for examples of how to include the SET

statement with a SELECT statement.

Client Crashes When Using Historian OLE DB provider

Ensure that your client is initializing COM in Apartment threaded mode.

Historian | 38 - OLE DB Provider | 2642

Frequently Asked Questions

The following sections outline some of the most frequently asked questions when using the Historian

OLE DB provider. These questions include:

How Are Historian Calculation Modes and SQL Aggregate Functions Different?

You can extract calculated data from Historian by setting the SamplingMode column to

Calculated and the CalculationMode column to the desired calculation mode type. You can

use SQL aggregate functions to perform a calculation on a set of values, possibly calculated

data, for the same tag or different tags and return a single value.

For instance, when comparing multiple tags you could retrieve the minimum (MIN) value

of each tag. By setting calculation modes, Historian Administrator only calculates the

minimum for each tag over a given time period. By using aggregate functions, the Historian

OLE DB provider calculates the minimum value across all tags (all rows in a table), in other

words, the minimum of all minimum tag values.

How Are the ihTrend and ihRawData Tables Different?

Typically, you use the ihTrend table when you want to compare multiple tags at the same

time. The OLE DB provider needs to synchronize all the returned data by time, so it takes

more time to query the ihTrend table than to query the ihRawData table. You can retrieve

multiple tags from the ihRawData table, but the tags are not synchronized.

Can I Run Multiple Applications Using the OLE DB provider?

Yes. For instance, you can use the OLE DB provider to access data using Crystal Reports and

VisiconX at the same time.

Can I Retrieve Data From Multiple Servers?

Yes. The OLE DB provider can have connections to multiple servers at the same time. Each

is regarded as a separate session.

You cannot mix multiple servers in the same SELECT statement, except indirectly in a linked

server in Microsoft SQL Server. Crystal Reports allows you to create subreports inside of a

report. Each report gets its own data source (which would be a Historian server) and its own

SELECT query. However, the reports cannot share data. You can have multiple VisiconX data

controls in one picture, each going to a different server.

For instance, say you run iFIX and Crystal Reports at the same time. From the VisiconX

page, establish a connection to the Historian OLE DB provider and perform a query on

Server1. Next, run a report from Crystal Reports connecting to the same provider, but with

Historian | 38 - OLE DB Provider | 2643

a connection to a different server, Server2. After you run the report and go back to the

VisiconX page, you will notice that VisiconX is still connected to Server1. If you refresh the

control, it uses the same settings and server as it did before. The provider maintains these

two sessions separately, each with its own SET parameters.

So, in general, you can access multiple servers, but the data from each server remains

independent. You must work with linked servers in Microsoft SQL Server to combine data

from multiple servers.

What is a Session?

A session is defined as an OLE DB connection. You can run multiple server connections to

the OLE DB provider. Each is regarded as a separate session.

You can have multiple sessions with multiple clients, such as Crystal Reports and iFIX.

Multiple sessions between a client computer and a server computer count as one licensed

session.

How Do the > and >= Operators Work With Timestamps?

The > and >= comparison operators, when used with timestamp, return the same values. For

example, this SQL statement...

SELECT * FROM ihRawData WHERE tagname=simulation00001 AND

timestamp>='4/1/2001 01:50:00' AND

timestamp<='4/1/2001 04:00:00' AND

samplingmode=lab

...returns exactly the same first result as this statement:

SELECT * FROM ihRawData WHERE tagname=simulation00001 AND

timestamp > '4/1/2001 01:50:00' AND

timestamp <= '4/1/2001 04:00:00' AND samplingmode=lab

The first result is timestamped at 1:51:00.

How Do I Throttle Query Results?

The default maximum row count is 5,000. If you want to throttle the number of rows that you

return in a single query, you can do one of the following:

Historian | 38 - OLE DB Provider | 2644

• Use the SET statement to specify the RowCount to a specific number of rows.

• Use the TOP predicate to specify the top number or top percentage of rows that you

want to return.

• Use the MaxRecords property on the recordset object in ADO.

When Should I Use Excel Instead of the Historian Excel Add-In?

Use the Excel Add-In when you want to get data into Microsoft Office 2003, 2007 or 2010

(32-bit or 64-bit). Use Excel with the Historian OLE DB provider when you want to perform

advanced filtering, sorting, and joining of data. For other features that you might to perform

with Excel and the Historian OLE DB provider, see Microsoft Excel (on page 2592).

Why Is the Raw Sample at the Start Time Not Returned?

Historian OLE DB provider does not return raw samples with timestamps that match the

start time. If you want to include the start time, you need to set the start time to a time

earlier than the first raw sample desired.

Note:

This only applies to RawByTime sampling mode and not RawByNumber.

For example, if you want to return raw samples starting at 11/28/2001 18:25:00 you can

use 1/28/2001 18:24:59 as the start time. For example, you would enter the following SQL

command:

SELECT TimeStamp, Tagname, Value FROM ihRawData

WHERE (SamplingMode = 'RawByTime') AND

(TimeStamp >= {ts '11/28/2001 18:24:59'})

ORDER BY TimeStamp ASC

If your timestamps are using millisecond resolution, you can retrieve timestamps starting at

11/28/2001 18:24:59.999 to prevent any sample prior to 18:50:00 from being returned.

What Username and Password Is Used if Not Specified in the Connect String?

If you leave a username and password empty in the connect string, then the user that owns

the process, usually the currently logged-in user, is passed to the archiver for validation. For

example, this statement leaves the username and password empty:

ConnectionString="Provider=ihOLEDB.iHistorian.1;User Id=;Password="

This statement also leaves the username and password empty:

Historian | 38 - OLE DB Provider | 2645

ConnectionString="Provider=ihOLEDB.iHistorian.1"

If you saved username and password information in Historian Administrator or the iFIX

WorkSpace for connecting to that server, that information is not used by the OLE DB

provider.

What Is an Array Tag?

Historian allows you to store a set of values with a single timestamp and single quality and

then read the elements back individually or as an array.

On retrieval, if you specify only the tag name, then all elements are returned. If you want to

retrieve only an element, you can specify <TagName>[n] where n is the element number you

want to retrieve.

In an array tag:

• The size of the array tag does not need to be configured. The Data Archiver will store

the number of elements that were written.

• The maximum number of elements that an array tag can store is 10000. If this limit is

exceeded, Historian does not accept any further elements.

• All calculation modes except TagStats are supported by array tags. The calculation

mode is applied on array elements and not on the array. For example, if you do a

minimum on a three-element array, this works like three individual tags. The minimum

of element [0] over time is computed and returned as the minimum of element [0].

The Data Archiver does not compute the minimum of element [0], [1], [2] at a single

point in time and return that as the minimum of the array.

• When a normal tag is converted to an array tag, on data retrieval, the data of the

normal tag cannot be retrieved.

You can query both an array tag and an element of the tag. Each element of the array tag will

be displayed in a separate row and they all will have the same timestamp.

What Is a User-Defined Type?

Historian gives you the ability to create a new user-defined data type which includes multiple

fields of any data type and then create Historian tags of that type. All the regular tag

operations can be performed on this tag. You can perform raw and calculated queries on the

collected data.

What Is Not Supported?

Historian | 38 - OLE DB Provider | 2646

A frequently asked question that may also relate to troubleshooting is what functions are

not supported by Historian OLE DB provider. Some of these unsupported items include:

• Concatenation in SQL statements. For example, this syntax does not work:

SELECT * FROM ihtags WHERE tagname= "MY_SERVER." + ihtags.Tagname

• Calculation in SQL statements. For example, this syntax does not work:

SELECT * FROM ihtags WHERE ihrawdata.value * 2 > ihtags.LoEngineeringUnits

• SQL inserts, updates, deletes, or commits.

• Ordering by columns not specified in the SELECT statement.

• The semicolon (;) as a separator between SET and SELECT statements (which is

commonly used in DTS and Oracle). Only a space or line break is necessary.

• Nested SELECT statements.

• The UCASE macro or other similar SQL syntax.

• ASYNC executes in ADO and Visual Basic.

• Bookmarks in ADO and Visual Basic.

• Table creation in SQL.

• The UNION statement in SQL.

• The HAVING clause in a SELECT statement.

• Using comments in a query.

• The DISTINCT clause in aggregate functions. For example, this syntax does not work:

SELECT Topic, count(DISTINCT *), sum(DISTINCT messagenumber), avg(DISTINCT messagenumber) FROM

 ihmessages GROUP BY topic ORDER BY Topic

• A literal on the left side of a comparison operator. SQL-92 standards support this

feature, but GE Intelligent Platforms does not currently support it. For example, this

syntax does not work:

SELECT DISTINCT tagname FROM ihRawData WHERE 50>Value

• Analysis of the ihTrend table in Crystal Reports or the Microsoft SQL Server DTS

application.

• Command or connect timeouts (Connection.ConnectTimeout,

Connection.CommandTimeout, or Command.CommandTimeout) in Visual Basic. For example,

this syntax does not work:

SET adoConn = New ADODB.Connection

adoConn.ConnectionString = "Provider=ihOLEDB.iHistorian.1;User Id=;Password="

adoConn.ConnectionTimeout = 5 ' does nothing

adoConn.CommandTimeout = 5 ' does nothing

Historian | 38 - OLE DB Provider | 2647

SET cmdTestTimer = New ADODB.Command

SET cmdTestTimer.ActiveConnection = adoConn

cmdTestTimer.CommandText = "SELECT * FROM ihtags"

cmdTestTimer.CommandType = adCmdText

cmdTestTimer.CommandTimeout = 15 ' does nothing

Historian Database Tables

The Historian Database Tables

The Historian database tables contain read-only data from the Historian archive.

Table

Name
Description

ihTags

Table

(on page

2651)

Contains Historian tag configuration information.

ihArchives

Table

(on page

2659)

Contains Historian archive configuration information, plus performance statistics for each

archive.

ihCol

lectors

Table

(on page

2661)

Contains configuration and status information for each collector connected to the Historian

server.

ihMes

sages

Table

(on page

2667)

Contains Historian messages such as alerts, informational topics, and connection informa

tion contained in the audit log.

ihRawDa

ta Table

(on page

2670)

Contains collected data for each tag in the Historian server. It contains not just raw data, but

also calculated and interpolated data.

Historian | 38 - OLE DB Provider | 2648

Table

Name
Description

ihCom

ments

Table

(on page

2682)

Contains the comments associated with the Historian data.

ihTrend

Table

(on page

2693)

Another way to look at collected data. Contains a row of data for each unique timestamp.

You can use this table to look at your data at a summarized level. You would typically use

this table to compare multiple tags with the same timestamp.

ihQuery

Settings

Table

(on page

2709)

Contains a set of parameters that apply to all queries you make in that session, unless over

ridden by a WHERE clause.

ihCalcu

lation

Depen

dencies

(on page

2715)

Contains the calculation dependencies for tags.

ihAlarms

Table

(on page

2716)

Contains collected alarms and events data.

ihEnu

merat

edSets

Table

(on page

2720)

Contains information about enumerated sets.

ihEnu

merated

Contains information about enumerated states.

Historian | 38 - OLE DB Provider | 2649

Table

Name
Description

States

Table

(on page

2721)

ihUser

Defined

Types

Table

(on page

2722)

Contains information about user-defined data types.

ihFields

Table

(on page

2723)

Contains information about fields used in user-defined types.

The following conditions apply when using these tables:

• You cannot write/update data in these tables.

• Null values are not supported in any column. A blank space is returned when there is no value

provided by the Historian server (instead of a Null field).

• Almost all columns in these tables support comparison operators except for the following:

◦ SamplingMode

◦ Direction

◦ NumberOfSamples

◦ IntervalMilliseconds

◦ CalculationMode

◦ FilterTag

◦ FilterMode

◦ FilterComparisonMode

◦ FilterValue

◦ FilterExpression

◦ TimeZone

◦ DaylightSavingTime

◦ RowCount

These columns only support the = comparison operator.

Historian | 38 - OLE DB Provider | 2650

Historian Security Groups and the Database Tables

A user with membership in the iH Readers security group can access any table in the Historian OLE DB

provider, even the ihArchives and ihCollectors tables. Members of the iH Readers group have read-

only access to these tables.

Since the Historian OLE DB provider only supports read-only access to data and does not allow INSERT or

UPDATE operations, no users can make changes to the data in these tables. This includes members of the

iH Readers security group and even security administrators in the iH Security Admins security group.

For more information on Historian group rights, refer to Chapter 5 in the Getting Started with Historian

manual.

Input Data and Historian Archive Data in Table Columns

There are two types of column data in the Historian OLE DB provider tables: input data and Historian

archive data. Input data contains settings stored in the Historian OLE DB provider and has nothing to

do with the data stored in the Historian archives. Historian archive data is the data retrieved from the

Historian server.

While most columns contain Historian archive data, there are a few columns that contain input data. The

following columns, no matter what table they appear in, contain input data and do not originate from the

Historian archives:

• SamplingMode

• Direction

• NumberOfSamples

• IntervalMilliseconds

• CalculationMode

• FilterTag

• FilterMode

• FilterComparisonMode

• FilterValue

• FilterExpression

• TimeZone

• DaylightSavingsTime

• RowCount

The columns in the previous list are used in a WHERE clause to specify query parameters for retrieved data.

Historian | 38 - OLE DB Provider | 2651

About the Table Descriptions

The following sections describe each table, list each column in the table, and list the data type and

description for each column. The following table outlines the data types that are used throughout this

chapter.

Table 393. Column Data Types

Data Type Format of Data

VT_BOOL Boolean

VT_BSTR String

VT_DBTimeStamp Date and Time

VT_I4 Integer

VT_R4 Float

VT_R8 Double Float

VT_UI1 Short Integer

VT_VARIANT Numeric or String

Also included after each table description are examples of SQL statements used with the specified

database table. These examples are only provided to get you started with creating SQL statements

with the Historian OLE DB provider. For more detailed information on creating SQL queries, refer to your

reporting software documentation.

ihTags Table

The ihTags table contains the set of tag names and the properties of each tag. Each row in the table

represents one tag.

Column Name
Data

Type
Description

Tagname VT_

BSTR

Tagname property of the tag.

Historian | 38 - OLE DB Provider | 2652

Column Name
Data

Type
Description

Note:

There is no length limit for Historian tag names in the Data Archiv

er. However, different client applications may have their own limits.

Description VT_

BSTR

User description of the tag.

EngUnits VT_

BSTR

Engineering units description of the tag.

Comment VT_

BSTR

User comment associated with the selected tag.

DataType VT_

BSTR

The data type of the tag:

• Scaled

• SingleFloat

• DoubleFloat

• SingleInteger

• DoubleInteger

• Quad Integer

• Unsigned Single Integer

• Unsigned Double Integer

• Unsigned Quad Integer

• Byte

• Boolean

• FixedString

• VariableString

• BLOB

The data type returned in this column is the data type that you defined in

Historian Administrator application.

FixedStringLength VT_UI1 Zero unless the data type is FixedString. If the data type is FixedString, this

number represents the maximum length of the string value.

CollectorName VT_

BSTR

Name of the collector responsible for collecting data for the specified tag.

Historian | 38 - OLE DB Provider | 2653

Column Name
Data

Type
Description

SourceAddress VT_

BSTR

Address used to identify the tag at the data source. For iFIX systems, this is

the NTF (Node.Tag.Field).

CollectionType VT_

BSTR

Type of collection used to acquire data for the tag:

• Unsolicited: The collector accepts data from the source whenever

the source presents the data.

• Polled: The collector acquires data from a source on a periodic

schedule determined by the collector.

Note:

Not all collectors support unsolicited collection.

CollectionInter

val

VT_I4 The time interval, in milliseconds, between readings of data from this tag.

For polled collection, this field represents the time between samples. For

unsolicited collection, this field represents the minimum time allowed be

tween samples.

CollectionOffset VT_I4 The time shift from midnight, in milliseconds, for collection of data from

this tag.

LoadBalancing VT_

BOOL

Indicates whether the data collector should automatically shift the phase of

sampling to distribute the activity of the processor evenly over the polling

cycle. This is sometimes called phase shifting.

TimeStampType VT_

BSTR

The timestamp type applied to data samples at collection time:

• Source: The source delivers the timestamp along with the data sam

ple.

• Collector: The collector delivers the timestamp along with the col

lected data.

HiEngineeringU

nits

VT_R8 The high end of the engineering units range. Used only for scaled data types

and input scaled tags.

LoEngineeringU

nits

VT_R8 The low end of the engineering units range. Used only for scaled data types

and input scaled tags.

Historian | 38 - OLE DB Provider | 2654

Column Name
Data

Type
Description

InputScaling VT_

BOOL

Indicates whether the measurement should be converted to an engineer

ing units value. When set to False, the measurement is interpreted as a raw

measurement.

When set to True, the system converts the value to engineering units by

scaling the value between the HiScale and LoScale columns. If not enabled,

the system assumes the measurement is already converted into engineer

ing units.

HiScale VT_R8 The high-end value of the input scaling range used for the tag.

LoScale VT_R8 The low-end value of the input scaling range used for the tag.

CollectorCompres

sion

VT_

BOOL

Indicates whether collector compression is enabled for the tag.

Collector compression applies a smoothing filter to incoming data by ig

noring incremental changes in values that fall within a deadband centered

around the last collected value. The collector passes (to the archiver) any

new value that falls outside the deadband and then centers the deadband

around the new value.

CollectorDead

bandPercentRange

VT_R4 The current value of the compression deadband.

ArchiveCompres

sion

VT_

BOOL

Indicates whether archive collector compression is enabled for the tag.

ArchiveDeadband

PercentRange

VT_R4 The current value of the archive compression deadband.

CollectorGeneral1 VT_

BSTR

The general (or spare) configuration fields for the tag.

CollectorGeneral2 VT_

BSTR

The general (or spare) configuration fields for the tag.

CollectorGeneral3 VT_

BSTR

The general (or spare) configuration fields for the tag.

CollectorGeneral4 VT_

BSTR

The general (or spare) configuration fields for the tag.

Historian | 38 - OLE DB Provider | 2655

Column Name
Data

Type
Description

CollectorGeneral5 VT_

BSTR

The general (or spare) configuration fields for the tag.

ReadSecurityGroup VT_

BSTR

The name of the Windows security group that controls the reading of data

for the tag.

Refer to "Implementing Historian Security" in the Getting Started with Histori

an manual for definitions of the various security levels and groups.

WriteSecurity

Group

VT_

BSTR

The name of the Windows security group that controls the writing of data

for the tag.

Refer to "Implementing Historian Security" in the Getting Started with Histori

an manual for definitions of the various security levels and groups.

AdministratorSe

curityGroup

VT_

BSTR

The name of the Windows security group responsible for controlling config

uration changes for the tag.

Calculation VT_

BSTR

The equation for the calculation performed for the tag.

LastModified VT_DB

TimeS

tamp

The date and time that the tag configuration was last modified. The time

structure includes milliseconds.

LastModifiedUser VT_

BSTR

The username of the Windows user who last modified the tag configura

tion.

CollectorType VT_

BSTR

The type of collector responsible for collecting data for the tag:

• Undefined

• iFIX

• Simulation

• OPC

• File

• iFIXLabData

• ManualEntry

• Simulation

• Other

Historian | 38 - OLE DB Provider | 2656

Column Name
Data

Type
Description

StoreMilliseconds VT_

BOOL

Indicates whether milliseconds are recorded in timestamps.

If not enabled, the time resolution is in seconds instead of milliseconds.

Maximum data compression is achieved when this option is set to False.

This is the optimum setting for most applications.

Note:

StoreMilliseconds returns False in Historian v4.5 and later.

TimeResolution String Indicates the timestamp resolution in seconds, milliseconds, or microsec

onds.

UTCBias VT_I4 The time zone bias for the tag. Time zone bias is used to indicate the nat

ural time zone of the tag expressed as an offset from UTC (Universal Time

Coordinated) in minutes.

UTC is the international time standard, the current term for what was com

monly referred to as Greenwich Mean Time (GMT).

AverageCollec

tionTime

VT_I4 The average time it takes to execute the calculation tag since you started

the Calculation collector.

CollectionDis

abled

VT_I4 Indicates whether collection is enabled (0) or disabled (1) for the tag. The

default setting is enabled (0).

CollectorCompres

sionTimeout

VT_I4 Indicates the maximum amount of time the collector will wait between

sending samples to the archiver. This time is kept per tag, as different tags

report to the archiver at different times.

This value should be in increments of your collection interval, and not less.

Ideally, this field is used for polled data values. It can be used with unsolicit

ed data, but when you do so, you are dependent on the data source for the

value to change. With unsolicited data, since Historian only records the val

ue when it changes, the actual time before the timeout might exceed the

compression timeout.

Historian | 38 - OLE DB Provider | 2657

Column Name
Data

Type
Description

ArchiveCompres

sionTimeout

VT_I4 Indicates the maximum amount of time from the last stored point before

another point is stored, if the value does not exceed the archive compres

sion deadband.

The data archiver treats the incoming sample after the timeout occurs as if

it exceeded compression. It then stores the pending sample.

TimeZone VT_

BSTR

The type of time zone used:

• Client

• Server

• Explicit bias number (number of minutes from GMT)

DaylightSaving

Time

VT_

BOOL

Indicates whether Daylight Saving Time logic should be applied to time

stamps.

RowCount VT_I4 Indicates the maximum number of rows that can be returned. A value of 0

indicates there is no limit to the number of rows returned.

InterfaceAbsolut

eDeadbanding

VT_

BOOL

Indicates whether absolute collector deadband is enabled for this tag.

InterfaceAbsolut

eDeadband

VT_R8 Indicates the value for absolute collector deadband.

ArchiveAbsolute

Deadbanding

VT_

BOOL

Indicates whether absolute archive deadband is enabled for this tag.

ArchiveAbsolute

Deadband

VT_R8 Indicates the value for absolute archive deadband.

SpikeLogic VT_

BOOL

Indicates whether Spike Logic is enabled for the tag.

SpikeLogicOver

ride

VT_

BOOL

Indicates whether the Spike Logic setting for this tag overrides the collec

tor.

StepValue VT_

BOOL

Indicates whether the StepValue property is enabled for the tag.

EnumeratedSetName VT_

BSTR

Indicates the enumerated set name associated with a tag. You can get

more information about the set via the ihEnumeratedSet table.

Historian | 38 - OLE DB Provider | 2658

Column Name
Data

Type
Description

DataStoreName VT_

BSTR

Indicates the name of the data store the tag belongs to.

NumberOfElements VT_I4 Indicates whether the tag is an array tag.

If set to -1, the tag is an array tag. If set to 0, the tag is not an array tag.

Since the size of the array is dynamic, there is no single number of elements

that can be returned.

CalcType Enum Indicates whether the tag is an analytical tag or a normal tag.

IsAlias VT_

BOOL

Indicates whether the tag has an alias or not.

ihTags Examples

Tasks that you might want to perform on the ihTags table are outlined in the following examples.

Example 1: Find All Tags That Belong to a Specific Collector

SELECT * FROM ihtags WHERE collectorname=MYCOMPUTER_Simulation ORDER BY tagname

Example 2: Find All Tags With a Specific Poll Rate, a Range of Poll Rates, or Polling
Disabled

SELECT * FROM ihtags WHERE CollectionInterval=500

OR (CollectionInterval>=1000 AND CollectionInterval<=1200)

OR CollectionInterval=0

Example 3: Retrieve All Tags Collected by Each Collector

SELECT collectorname, tagname FROM ihTags ORDER BY collectorname

Example 4: Retrieve All Tags With a Specific Poll Rate

SELECT tagname FROM ihtags WHERE collectioninterval=1000

Example 5: Retrieve All Tags With Subsecond Collection

SELECT tagname FROM ihtags

WHERE collectioninterval BETWEEN 1 AND 999

Historian | 38 - OLE DB Provider | 2659

Example 6: Retrieve All Tags with Polling Disabled

SELECT tagname, collectioninterval FROM ihtags

WHERE collectioninterval=0

Example 7: Count the Number of Tags and Group by Collector Name

SELECT collectorname, COUNT(*) FROM ihTags GROUP BY collectorname

Example 8: Count the Number of Tags and Group by Collector Type

SELECT ihCollectors.collectortype, COUNT(*)

FROM ihTags INNER JOIN ihCollectors

WHERE ihTags.collectorname=ihCollectors.collectorname

GROUP BY ihcollectors.collectortype

Example 9: Retrieve Tags Associated With a Specific Enumerated Set

SELECT * FROM ihtags

WHERE EnumeratedSetName='ExampleSet’

ihArchives Table

Historian archives are stored as data files, each of which contains data gathered during a specific period

of time.

The ihArchives table contains Historian archive configuration information and performance statistics

for each archive. Each row in this table represents one archive. The following table describes the columns

of the ihArchives table.

Table 394. ihArchives Table

Column

Name

Data

Type
Description

Archive

Name

VT_BSTR Name of the archive for the current server if the authenticated user is a member

of Historian Administrators group.

ArchiveS

tatus

VT_BSTR The status of the specified archive:

• Undefined

• Empty

• NotEmpty

Historian | 38 - OLE DB Provider | 2660

Table 394. ihArchives Table (continued)

Column

Name

Data

Type
Description

FileName VT_BSTR The file name for the specified archive. The file name must be specified in the

context of the Historian server drives and directories.

IsCurrent VT_BOOL Indicates whether the specified archive is the newest archive that new data cur

rently flows into.

IsReadOnly VT_BOOL Indicates whether the read-only status is set for the specified archive.

FileSize

Current

Disk

VT_I4 The actual space on the hard disk (in MB) for the specified archive.

FileSize

Current

VT_I4 The size of the archive file that is currently being used (in MB) for the specified

archive.

FileSize

Target

VT_I4 The target size of the specified archive file (in MB).

StartTime VT_DB

TimeS

tamp

The start time of the specified archive. This represents the earliest timestamp

(including date and time) for any tag contained in the archive.

EndTime VT_DB

TimeS

tamp

The end time of the specified archive. This represents the latest timestamp (in

cluding date and time) for any tag contained in the archive.

LastBackup VT_DB

TimeS

tamp

The date and time the most recent online backup was performed on this archive.

LastBacku

pUser

VT_BSTR The name of the user who performed the most recent online backup.

LastModi

fied

VT_DB

TimeS

tamp

The date and time that the archive was last modified. The time structure includes

milliseconds.

LastModi

fiedUser

VT_BSTR The username of the Windows user who last modified the archive.

TimeZone VT_BSTR The type of time zone used:

Historian | 38 - OLE DB Provider | 2661

Table 394. ihArchives Table (continued)

Column

Name

Data

Type
Description

• Client

• Server

• Explicit bias number (number of minutes from GMT).

Daylight

SavingTime

VT_BOOL Indicates whether Daylight Saving Time logic should be applied to timestamps.

RowCount VT_I4 Indicates the maximum number of rows that can be returned. A value of 0 indi

cates there is no limit to the number of rows returned.

DataStore

Name

VT_BSTR Indicates the name of the data store the tag belongs to.

ihArchives Examples

A task that you might want to perform on the ihArchives table is retrieving and recording the state of

the archives and archive sizes when an event happens. Recording conditions when an event happens is

useful in troubleshooting.

Sample SQL statements for the ihArchives table are outlined in the following examples.

Example 1: Retrieve the Archive List Sorted by StartTime

SELECT archivename, starttime, endtime

FROM iharchives ORDER BY starttime

Example 2: Retrieve All Properties of the Current Archive

SELECT * FROM iharchives WHERE iscurrent=true

ihCollectors Table

The ihCollectors table contains the configuration and status information for each collector connected

to the Historian server. Each row in this table represents a collector that is connected to the archiver. The

following table describes the columns of the ihCollectors table.

Historian | 38 - OLE DB Provider | 2662

Table 395. ihCollectors Table

Column Name

Da

ta

Type

Description

CollectorName VT_

BSTR

The name of the collector. The collector name is unique in a specific Historian

server.

CollectorDescrip

tion

VT_

BSTR

The user description for the collector.

Comment VT_

BSTR

The user comment associated with the collector.

ComputerName VT_

BSTR

The name of the Windows computer on which the collector is running.

Status VT_

BSTR

The status of the specified collector:

• Unknown

• Starting

• Running

• Stopping

• Stopped

CollectorType VT_

BSTR

The type of collector responsible for collecting data for the tag:

• Undefined

• iFIX

• Simulation

• OPC

• OPC AE

• File

• iFIXLabData

• ManualEntry

• Simulation

• Calculation

• ServerToServer

• Other

Historian | 38 - OLE DB Provider | 2663

Table 395. ihCollectors Table (continued)

Column Name

Da

ta

Type

Description

MaximumDiskFree

BufferSize

VT_

I4

The maximum size (in MB) of the disk buffer for outgoing data.

MaximumMemory

BufferSize

VT_

I4

The maximum size of the memory buffer (in MB) for outgoing data.

The memory buffer stores data during short-term or momentary interruptions

of the server connection. The disk buffer handles long-duration outages.

ShouldAdjustTime VT_

BOOL

If the data source supplies the timestamps, this value is False. If the collector

supplies the timestamps, this value is True.

Note:

This column does not change collector times to match the server

time. It indicates whether an increment of time is added or subtracted

to compensate for the relative difference between the server and col

lector clocks, independent of time zone differences.

ShouldQueueWrites VT_

BOOL

Indicates whether queue writes are allowed.

CanBrowseSource VT_

BOOL

If True, this column indicates that the collector can browse its source for tags.

CanSourceTime

stamp

VT_

BOOL

Indicates whether the data source can provide timestamps along with the da

ta.

StatusOutputAd

dress

VT_

BSTR

An address or tagname in the data source to output current collector status.

RateOutputAddress VT_

BSTR

An address or tagname in the data source into which the collector writes the

current value of the events per minute output.

HeartbeatOutput

Address

VT_

BSTR

The address in the source database into which the collector writes the heart

beat signal output.

CollectorGeneral1 VT_

BSTR

The general (or spare) configuration fields for the collector. The CollectorGen

eral1 column is not user-defined, and is different for each collector.

Historian | 38 - OLE DB Provider | 2664

Table 395. ihCollectors Table (continued)

Column Name

Da

ta

Type

Description

CollectorGeneral2 VT_

BSTR

The general (or spare) configuration fields for the collector. The CollectorGen

eral2 column is not user-defined, and is different for each collector.

CollectorGeneral3 VT_

BSTR

The general (or spare) configuration fields for the collector. The CollectorGen

eral3 column is not user-defined, and is different for each collector.

CollectorGeneral4 VT_

BSTR

The general (or spare) configuration fields for the collector. The CollectorGen

eral4 column is not user-defined, and is different for each collector.

CollectorGeneral5 VT_

BSTR

The general (or spare) configuration fields for the collector. The CollectorGen

eral5 column is not user-defined, and is different for each collector.

LastModified VT_

DB

Time

S

tamp

The date and time that the collector configuration was last modified. The time

structure includes milliseconds.

LastModifiedUser VT_

BSTR

The username of the Windows user who last modified the collector configura

tion.

SourceTimeInLo

calTime

VT_

BOOL

For data source timestamps only. Indicates whether the timestamps use local

time. If the value is False, UTC time is used.

CollectionDelay VT_

I4

The length of time, in seconds, that the collector should delay collection at

startup (to allow the data source time to initialize).

DefaultTagPrefix VT_

BSTR

The prefix that is automatically applied to all tagnames added by the specified

collector.

DefaultCollec

tionInterval

VT_

I4

The collection interval, in milliseconds, for tags added by the collector.

DefaultCollec

tionType

VT_

BSTR

Type of collection used to acquire data for tags added by the collector:

• Unsolicited: The collector accepts data from the source whenever the

source presents the data.

• Polled: The collector acquires data from a source on a periodic sched

ule determined by the collector.

Historian | 38 - OLE DB Provider | 2665

Table 395. ihCollectors Table (continued)

Column Name

Da

ta

Type

Description

Note:

Not all collectors support unsolicited type collection.

DefaultTimeStamp

Type

VT_

BSTR

Type of timestamp applied to data samples at collection time for tags added

by the collector:

• Source: The source delivers the timestamp along with the data sample.

• Collector: The collector delivers the timestamp along with the collect

ed data.

DefaultCollector

Compression

VT_

BOOL

Indicates whether default collector compression is enabled for tags added by

the collector.

DefaultCollector

CompressionDead

band

VT_

R4

The default collector compression deadband for tags added by the collector.

DefaultCollector

CompressionTime

out

VT_

I4

The default collector compression timeout value.

DisableOnTheFly

Changes

VT_

BOOL

Indicates whether a user can make on-the-fly changes to this tag. When en

abled (True) you can make changes to this tag without having to restart the

collector.

When disabled (False), any changes you make to this tag do not affect collec

tion until you restart the collector.

DefaultSpikeLogic VT_

BOOL

Indicates whether Spike Logic is enabled.

DefaultSpikeMul

tiplier

VT_

R4

The default Spike Logic multiplier.

DefaultSpikeIn

terval

VT_

I4

The default Spike Logic interval.

Historian | 38 - OLE DB Provider | 2666

Table 395. ihCollectors Table (continued)

Column Name

Da

ta

Type

Description

RedundancyEnabled VT_

BOOL

Indicates whether collector redundancy is enabled.

PrincipalCollec

tor

VT_

BSTR

Indicates the primary collector.

IsActiveRedun

dantCollector

VT_

BOOL

Indicates whether the current collector is active.

FailoverOnCollec

torStatus

VT_

BOOL

Indicates whether the collector is set to fail over on an unknown collector sta

tus.

FailoverOnBad

Quality

VT_

BOOL

Indicates whether the collector is set to fail over on bad data quality received

from the watchdog tag.

FailoverOnValue VT_

BOOL

Indicates whether the collector is set to fail over on a change in value.

FailoverValue

ChangeType

VT_

I4

The value for the FailoverOnValue option.

WatchdogValueMax

UnchangedPeriod

VT_

I4

The maximum period for an unchanged value.

WatchdogTagName VT_

BSTR

The watchdog tag name.

TimeZone VT_

BSTR

The type of time zone used:

• Client

• Server

• Explicit bias number (number of minutes from GMT)

DaylightSaving

Time

VT_

BOOL

Indicates whether Daylight Saving Time logic should be applied to time

stamps.

RowCount VT_

I4

The maximum number of rows that can be returned. A value of 0 indicates

there is no limit to the number of rows returned.

Historian | 38 - OLE DB Provider | 2667

ihCollectors Examples

One task that you might want to perform on the ihCollectors table could be retrieving and recording

the state of the collectors when an event happens. Recording conditions when an event happens is useful

in troubleshooting.

Sample SQL statements for the ihCollectors table are outlined in the following examples.

Example 1: Retrieve All Collectors With Status Information

SELECT collectorname, collectordescription AS desc, status

FROM ihcollectors

Example 2: Retrieve All Collectors Not Running

SELECT collectorname, collectordescription AS desc, status

FROM ihcollectors WHERE status!=running

ihMessages Table

The ihMessages table contains Historian messages such as alerts, informational topics, and connection

information contained in the audit log. Each row in this table represents a message. The following table

describes the columns of the ihMessages table.

Table 396. ihMessages Table

Column

Name

Data

Type
Description

TimeS

tamp

VT_

DB

Time

Stamp

The date and time that the message was created.

TimeS

tampSe

conds

VT_

DB

Time

Stamp

The date and time that the message was created.

Mi

crosec

onds

VT_I4 The microsecond portion of the date and time for the message.

Historian | 38 - OLE DB Provider | 2668

Table 396. ihMessages Table (continued)

Column

Name

Data

Type
Description

Topic VT_

BSTR

The topic name of the message:

• AlertTopics

• AllTopics

• ConfigurationAudit

• Connections

• General

• MessageTopicMax

• MessageTopics

• Performance

• ServiceControl

• Security

• Undefined

User

name

VT_

BSTR

Name of the Windows user who generated the message, or who the message is asso

ciated with.

Mes

sage

Number

VT_I4 Message number for the message. A message number is a unique identifier associat

ed with the message template.

Mes

sage

String

VT_

BSTR

Translated text of the message, including any substitutions. Messages generally in

clude translated fixed text and variable substitutions such as timestamps, usernames,

and tagnames.

Time

Zone

VT_

BSTR

The type of time zone used:

• Client

• Server

• Explicit bias number (number of minutes from GMT)

Day

light

Saving

Time

VT_

BOOL

Indicates whether Daylight Saving Time logic should be applied to timestamps.

Historian | 38 - OLE DB Provider | 2669

Table 396. ihMessages Table (continued)

Column

Name

Data

Type
Description

Row

Count

VT_I4 Indicates the maximum number of rows that can be returned. A value of 0 indicates

there is no limit to the number of rows returned.

ihMessages Examples

One task that you might want to perform on the ihMessages table is retrieving a history of alerts and

messages, with timestamps and user information. For instance, you might want to query the alerts for a

day, or all messages associated with a particular username.

Sample SQL statements for the ihMessages table are outlined in the following examples.

Example 1: Retrieve All Messages and Alerts for Today

SELECT * FROM ihmessages WHERE timestamp>=today

Example 2: Retrieve All Alert Messages for a Specific User and Time

SELECT * FROM ihmessages

WHERE timestamp>'12-sep-2001 02:00:00'

AND topic=AlertTopics

AND username='DataArchiver' ORDER BY timestamp

Example 3: Retrieve All Messages in Your Archive

SELECT * FROM ihMessages WHERE timestamp <= Now

Example 4: Retrieve All Messages for a Specific User

SELECT * FROM ihMessages WHERE username=operator1

AND timestamp<=Now

Example 5: Count All Messages by a Specific User

SELECT username, COUNT(*) FROM ihMessages

WHERE timestamp <=Now GROUP BY username

Historian | 38 - OLE DB Provider | 2670

ihRawData Table

The ihRawData table contains any collected data for each tag contained in the Historian server. It

contains not just raw data, but also calculated data and interpolated data. This table is the one typically

used for reporting.

There is one row in the ihRawData table for each combination of tagname and timestamp. For instance,

you can have two rows for the same tag, each with different timestamps. You can retrieve data for more

than one tag name in a simple query.

The following table describes the columns of the ihRawData table.

Table 397. ihRawData Table

Col

umn

Name

Data

Type
Description

Tag

name

VT_BSTR Tagname property of the tag.

Note:

There is no length limit for Historian tag names in the Data Archiver. However,

different client applications may have their own limits.

TimeS

tamp

VT_DB

TimeS

tamp

The date and time for the data sample.

Time

Stam

pSe

conds

VT_DB

TimeS

tamp

The date and time for the data sample.

Mi

crosec

onds

VT_DB

TimeS

tamp

The microsecond interval for the data sample.

Value VT_

VARIANT

The value of the data.

Quali

ty

VT_

VARIANT

For non-raw sampled data, this column displays the percentage of good quality sam

ples in the interval. For instance, a value of 100 means all samples in the interval are

good.

Historian | 38 - OLE DB Provider | 2671

Table 397. ihRawData Table (continued)

Col

umn

Name

Data

Type
Description

For raw sampled data, data values are:

• Good

• Bad

• Uncertain

• Not Available

• Really Unknown

This column also includes the subquality of the data value, if it exists:

• NonSpecific

• ConfigError

• NotConnected

• DeviceFail

• SensorFail

• LastKnownValue

• CommFailure

• OutOfService

• ScaledOutOfRange

• OffLine

• NoValue

• Really Unknown

OPC

Qual

ity

Valid

VT_BSTR Indicates whether the OPCQuality column contains valid real OPC quality. A value of 0

indicates that you should ignore the OPCQuality field, and a value of 1 indicates that the

OPCQuality column contains valid real OPC quality.

OPC

Quali

ty

VT_I4 Indicates the OPC quality as delivered by the OPC server to the Historian OPC collec

tor. The exact meaning of the bits depends on the OPC specification and the OPC serv

er documentation. Typically, a value of 0 represents bad quality, and a value of 192 rep

resents good quality.

Historian | 38 - OLE DB Provider | 2672

Table 397. ihRawData Table (continued)

Col

umn

Name

Data

Type
Description

Sam

pling

Mode

VT_BSTR The mode used to sample data from the archive:

• CurrentValue: Retrieves the current value. Time frame criteria are ignored.

• Interpolated: Retrieves evenly spaced interpolated values based on interval or

NumberOfSamples and the time frame criteria.

• RawByTime: Retrieves raw archive values based on time frame criteria.

• RawByNumber: Retrieves raw archive values based on the StartTime, NumberOfSam

ples, and Direction criteria.

Note:

EndTime criteria are ignored for this sampling mode.

• RawByFilterToggle: Returns filtered time ranges. The values returned are 0 and

1. If the value is 1, then the condition is true and 0 means false. This sampling

mode is used with the time range and filter tag conditions. The result starts with

a starting timestamp and ends with an ending timestamp.

• Calculated: Retrieves evenly spaced calculated values based on NumberOfSam

ples, interval, the time frame criteria, and the CalculationMode criteria.

• Lab: Returns actual collected values without interpolation.

• Trend: Returns raw minimum and raw maximum values for each specified in

terval. Use this sampling mode to maximize performance when retrieving data

points for plotting. If the sampling period does not evenly divide by the interval

length, Historian ignores any leftover values at the end, rather than putting them

into a smaller interval.

• Trend2: Returns raw minimum and raw maximum values for each specified in

terval. Use this sampling mode to maximize performance when retrieving data

points for plotting. Also, if the sampling period does not evenly divide by the in

terval length, Historian creates as many intervals of the interval length as will fit

into the sampling period, and then creates a remainder interval from whatever

time is left. This sampling mode is more suitable than the Trend mode for analy

sis of minimums and maximums and for plotting programs that can handle un

evenly spaced data.

Historian | 38 - OLE DB Provider | 2673

Table 397. ihRawData Table (continued)

Col

umn

Name

Data

Type
Description

• InterpolatedtoRaw: Provides raw data in place of interpolated data when the

number of samples is less than the available samples.

• TrendtoRaw: This sampling mode almost always produces the same results as

the Trend mode. The exception is that when the number of samples requested

is greater than the number of raw data points, this mode returns all available

raw data points with no further processing. TrendtoRaw is therefore used instead

of Trend when the number of actual data samples is less than the requested

number of samples.

• TrendtoRaw2: This sampling mode almost always produces the same results as

the Trend2 mode. The exception is that when the number of samples request

ed is greater than the number of raw data points, this mode returns all avail

able raw data points with no further processing. TrendtoRaw2 is therefore used

instead of Trend2 when the number of actual data samples is less than the re

quested number of samples.

• LabtoRaw: Provides raw data for the selected calculated data when the number

of samples is less than the available samples.

Direc

tion

VT_BSTR The direction (forward or backward from the start time) of data sampling from the

archive.

Num

ber

OfSam

ples

VT_I4 Number of samples from the archive to retrieve.

Samples will be evenly spaced within the time range defined by the start and end times

for most sampling modes. For the RawByNumber mode, this column determines the max

imum number of values to retrieve. For the RawByTime mode, this value is ignored.

Note:

The NumberofSamples and IntervalMilliseconds columns are mutually exclu

sive. If NumberofSamples is used, IntervalMilliseconds is not used.

Inter

val

Mil

VT_I4 For non-raw sampled data, this column represents a positive integer for the time inter

val (in milliseconds) between returned samples.

Historian | 38 - OLE DB Provider | 2674

Table 397. ihRawData Table (continued)

Col

umn

Name

Data

Type
Description

lisec

onds
Note:

The NumberofSamples and IntervalMilliseconds columns are mutually exclu

sive. If NumberofSamples is used, IntervalMilliseconds is not used.

Cal

cula

tion

Mode

VT_BSTR This column applies only if the SamplingMode is set to Calculated. It represents the type

of calculation to perform on archive data:

• Average

• Count

• Maximum

• MaximumTime

• Minimum

• MinimumTime

• StandardDeviation

• Total

• RawAverage

• RawStandardDeviation

• RawTotal

• TimeGood

• FirstRawValue

• FirstRawTime

• LastRawValue

• LastRawTime

• TagStats

Fil

terTag

VT_BSTR Tagname used to define the filter, if specified. Only a single tag can be specified, and

wildcards are not supported.

Fil

ter

Mode

VT_BSTR The type of time filter:

• ExactTime: Retrieves data for the exact times that the filter condition is True.

• BeforeTime: Retrieves data from the time of the last False filter condition to the

time of the next True condition.

Historian | 38 - OLE DB Provider | 2675

Table 397. ihRawData Table (continued)

Col

umn

Name

Data

Type
Description

• AfterTime: Retrieves data from the time of the last True filter condition to the

next False condition.

• BeforeAndAfterTime: Retrieves data from the time of the last False filter condi

tion to the next False condition.

This mode defines how time periods before and after transitions in the filter condition

should be handled.

For example, AfterTime indicates that the filter condition should be True starting at the

timestamp of the archive value that triggered the True condition and leading up to the

timestamp of the archive value that triggered the False condition.

Fil

ter

Com

par

ison

Mode

VT_BSTR The type of comparison to be made on the filter comparison value:

• Equal: Filter condition is True when the FilterTag value is equal to the compari

son value.

• EqualFirst: Filter condition is True when the FilterTag value is equal to the first

comparison value.

• EqualLast: Filter condition is True when the FilterTag value is equal to the last

comparison value.

• NotEqual: Filter condition is True when the FilterTag value is not equal to the

comparison value.

• LessThan: Filter condition is True when the FilterTag value is less than the com

parison value.

• GreaterThan: Filter condition is True when the FilterTag value is greater than the

comparison value.

• LessThanEqual: Filter condition is True when the FilterTag value is less than or

equal to the comparison value.

• GreaterThanEqual: Filter condition is True when the FilterTag value is greater

than or equal to the comparison value.

• AllBitsSet: Filter condition is True when the binary FilterTag value is equal to

all the bits in the condition. It is represented as ^ to be used in FilterExpres

sion.

Historian | 38 - OLE DB Provider | 2676

Table 397. ihRawData Table (continued)

Col

umn

Name

Data

Type
Description

• AnyBitSet: Filter condition is True when the binary FilterTag value is equal to

any of the bits in the condition. It is represented as ~ to be used in FilterEx

pression.

• AnyBitNotSet: Filter condition is True when the binary FilterTag value is not

equal to any one of the bits in the condition. It is represented as !~ to be used in

FilterExpression.

• AllBitsNotSet: Filter condition is True when the binary FilterTag value is not

equal to all the bits in the condition. It is represented as !^ to be used in Filter

Expression.

This column defines how archive values for the FilterTag value should be compared

to the FilterValue value to establish the state of the filter condition. If FilterTag and

FilterComparisonValue values are specified, time periods are filtered from the results

where the filter condition is False.

Fil

ter

Value

VT_BSTR The value with which to compare the FilterTag value to determine appropriate filter

times.

Fil

terEx

pres

sion

VT_BSTR An expression which includes one or more filter conditions. The type of conditions

used are:

• AND

• OR

• Combination of AND and OR

FilterExpression can be used instead of the FilterTag, FilterComparisonMode and Fil

terValue parameters. While using FilterExpression, the expression is passed with

in single quotes. For complex expressions, write the conditions within parentheses.

There is no maximum length for the FilterExpression value, but if called using OLE DB

or Excel, those tools may have their own limitations.

Time

Zone

VT_BSTR The type of time zone used:

Historian | 38 - OLE DB Provider | 2677

Table 397. ihRawData Table (continued)

Col

umn

Name

Data

Type
Description

• Client

• Server

• Explicit bias number (number of minutes from GMT)

Day

light

Sav

ing

Time

VT_BOOL Indicates whether Daylight Saving Time logic should be applied to timestamps.

Row

Count

VT_I4 Indicates the maximum number of rows that can be returned. A value of 0 indicates

that there is no limit to the number of rows returned.

The ihRawData table can generate a large number of rows if not used with caution. You can easily generate

queries which take a very long time to complete and put stress on the archiver and generate network

traffic.

ihRawData Examples

Tasks that you might want to perform on the ihRawData table are outlined in the following examples.

Example 1: Retrieve All Samples With a Value Outside the Query Supplied Values

SELECT * FROM ihRawData WHERE value<140000 OR value>150000

Example 2: Retrieve All Bad Samples (Raw Data)

SELECT * FROM ihRawData WHERE quality NOT LIKE good*

AND samplingmode=RawbyTime

Example 3: Count Bad Samples (Raw Data)

SELECT COUNT(*) FROM ihRawData WHERE quality NOT LIKE good*

AND samplingmode=RawbyTime

Historian | 38 - OLE DB Provider | 2678

Example 4: Retrieve All Bad Samples Over the Last Day (Interpolated Data)

SELECT timestamp, tagname, value, quality FROM ihRawData

WHERE samplingmode=rawbytime

AND Quality NOT LIKE good*

AND timestamp>=Now-24H

Example 5: Use an Explicit Time Zone

SELECT * FROM ihRawData WHERE timezone=300

Example 6: Perform a Simple Sequence of Events

SELECT timestamp, tagname, value, quality FROM ihrawdata

WHERE samplingmode=rawbytime ORDER BY timestamp

Example 7: Report the Busiest Tags

SELECT tagname, value FROM ihRawData

WHERE samplingmode=calculated

AND calculationmode=count

AND numberofsamples=1

AND timestamp>='07/30/2002 10:00:00'

AND timestamp<='07/30/2002 11:00:00' order by value descending

Example 8: Retrieve All Bad Samples Over the Last Day

SELECT timestamp, tagname, value, quality FROM ihRawData

WHERE samplingmode=rawbytime

AND Quality NOT LIKE good*

AND timestamp>=Now-24H

Example 9: Retrieve All Bad Samples, Ignore End of Collection Markers

SELECT timestamp, tagname, value, quality FROM ihRawData

WHERE samplingmode=rawbytime

AND Quality NOT LIKE good*

AND quality NOT LIKE 'bad offline' AND timestamp>=Now-24H

Historian | 38 - OLE DB Provider | 2679

Example 10: Count Bad Samples, Ignore End of Collection Markers

SELECT COUNT(*) FROM ihRawData WHERE samplingmode=rawbytime

AND Quality NOT LIKE good* and Quality NOT LIKE 'bad offline'

AND timestamp>=Now-24H

Example 11: Obtain All Raw Samples With Comments From Yesterday

SELECT ihRawData.Tagname, ihRawData.TimeStamp, ihRawData.Value

FROM ihRawData

INNER JOIN ihComments ON ihComments.Tagname = ihRawData.Tagname

AND ihComments.Timestamp = ihRawData.Timestamp

AND ihComments.Comment = "The comment" WHERE samplingmode=rawbytime

AND ihComments.Timestamp > Yesterday

AND ihComments.Timestamp < Today

Example 12: Determine the Number of Milliseconds Per Interval With Good Data

SELECT timestamp, tagname, value as TimeGood, quality, intervalmilliseconds FROM ihRawData

WHERE tagname=Denali.Simulation00001

AND samplingmode=calculated

AND calculationmode=timegood

AND intervalmilliseconds=10s

AND timestamp>='1/20/2003 13:18:00'

AND timestamp<='1/20/2003 13:20:00'

Example 13: Retrieve Raw Minimum and Maximum Values Per Interval

In this example, you use the data retrieved from the query (with the Trend sampling mode) to plot points.

SELECT timestamp, tagname, value, quality

FROM ihRawData

WHERE tagname=dFloatTag5

AND samplingmode=trend

AND intervalmilliseconds=24h

AND timestamp>='1/01/2003 07:00:00'

AND timestamp<='1/10/2003 12:00:00'

Historian | 38 - OLE DB Provider | 2680

Example 14: Retrieve Data with Native Values and Tags Associated With Enumerated
Sets

If the enumnativevalue query modifier is not set, the data is retrieved with string values by default. If it is

set, the raw values are retrieved. These values are then retrieved by default for the current session and will

only change when you open a new session.

SELECT * from ihrawdata

WHERE samplingmode='rawbytime' and tagname=mytag AND criteriastring='#enumnativevalue'

SELECT timestamp,value,quality from ihrawdata WHERE tagname = MyTag AND samplingmode=Interpolated and numberofsamples=6

 and criteriastring='#enumnativevalue'

SET criteriastring='#enumnativevalue'

SELECT * from ihrawdata

WHERE samplingmode='rawbytime' and tagname=mytag

Example 15: Retrieve Average Values for Enumerated Sets

SET criteriastring='#enumnativevalue'

SELECT * from ihrawdata

WHERE tagname LIKE Call AND samplingmode=calculated AND calculationmode=average

ihHabAlarms Table

The ihHabAlarms table contains alarm data collected from Habitat by the HAB collector. This data is

stored in the Historian archive files.

Column

Name

Data

Type
Description

tagname VT_BSTR The tagname property of the tag.

time

stamp

VT_DB

TimeS

tamp

The date and time for the data sample (based on the timestamp of collector)

time

stampsec

onds

VT_I4 The date and time for the data sample.

Historian | 38 - OLE DB Provider | 2681

Column

Name

Data

Type
Description

mi

crosec

onds

VT_I4 The microsecond interval for the data sample.

sam

pling

mode

VT_BSTR The mode used to retrieve data from the archive. Only the RawByTime sampling

mode is used for alarms. It retrieves raw archive values for a time period.

quality VT_BSTR The quality of the tag data. For raw sampled data, the valid data values is Good.

text VT_BSTR The alarms message

location VT_BSTR The substation or location as defined in the Habitat database

priority VT_BSTR The alarm priority as defined in the Habitat database

category VT_BSTR The alarm category as defined in the Habitat database

excep

tion

VT_BSTR The alarm exception as defined in the Habitat database

area VT_BSTR The alarm area as defined in the Habitat database

field

time

VT_DB

TimeS

tamp

The field time of the alarm message (if available)

fmil

lisec

VT_I4 The milliseconds part of the field time

fnanosec VT_I4 The nanoseconds part of the field time

time VT_DB

TimeS

tamp

The time of the alarm generated in Habitat (mapped to TIME_CIRCLG)

timefmt VT_I4

tnanosec VT_I4 The nanoseconds part of the alarms time

rowcount VT_I4 The maximum number of rows that can be returned. A value of 0 indicates that

there is no limit to the number of rows returned.

Historian | 38 - OLE DB Provider | 2682

ihComments Table

The ihComments table contains the annotations associated with the collected data. There is a separate

row of data in the ihComments table for each comment associated with a tag. For instance, you can have

five rows that contain the same tag and timestamp, but each contain a different comment value.

It is possible to have different data types of annotations. Comments are most often strings, but can be

binary numbers or BLOBs. Only string comments are returned in the ihComments table.

The following table describes the columns of the ihComments table.

Table 398. ihComments Table

Column Name Data Type Description

Tagname VT_BSTR Tagname property of the tag.

Note:

There is no length limit

for Historian tag names

in the Data Archiver.

However, different client

applications may have

their own limits.

TimeStamp VT_DBTimeStamp The date and time that the data

was generated.

TimeStampSeconds VT_DBTimeStamp The date and time that the data

was generated.

Microseconds VT_I4 The microsecond portion of the

date and time.

StoredOnTimeStamp VT_DBTimeStamp The date and time that the com

ment was generated.

StoredOnTimeStamp VT_DBTimeStamp The time that the comment was

added to the archive.

SuppliedUsername VT_BSTR The username of the currently

logged-in Windows user at the

Historian | 38 - OLE DB Provider | 2683

Table 398. ihComments Table (continued)

Column Name Data Type Description

time that the comment was en

tered.

Username VT_BSTR Username provided along with

the comment.

Comment VT_BSTR The actual comment.

DataTypeHint VT_BSTR Name of the data type for the

comment:

• String

• Read-only

• Optional

SamplingMode VT_BSTR The mode used to sample data

from the archive:

• CurrentValue: Retrieves

the current value. Time

frame criteria are ignored.

• Interpolated: Retrieves

evenly spaced interpolated

values based on interval or

NumberOfSamples and time

frame criteria.

• RawByTime: Retrieves raw

archive values based on

time frame criteria.

• RawByNumber: Retrieves raw

archive values based on

the StartTime, NumberOf

Samples, and Direction cri

teria.

Historian | 38 - OLE DB Provider | 2684

Table 398. ihComments Table (continued)

Column Name Data Type Description

Note:

EndTime criteria

are ignored for

this sampling

mode.

• RawByFilterToggle: Re

turns filtered time ranges.

The values returned are

0 and 1. If the value is 1,

then the condition is true

and 0 means false. This

sampling mode is used

with the time range and

FilterTag conditions. Re

sults have starting and

ending timestamps.

• Calculated: Retrieves

evenly spaced calculated

values based on Number

OfSamples, interval, time

frame, and Calculation

Mode criteria.

• Lab: Returns actual collect

ed values without interpo

lation.

• Trend: Returns raw min

imums and maximums

for each specified inter

val. Use this mode to max

imize performance when

retrieving data points for

plotting. If the sampling

Historian | 38 - OLE DB Provider | 2685

Table 398. ihComments Table (continued)

Column Name Data Type Description

period does not evenly di

vide by the interval length,

Historian ignores any left

over values at the end in

stead of putting them into

a smaller interval.

• Trend2: Returns raw min

imum and maximum val

ues for each specified in

terval. Use this mode to

maximize performance

when retrieving data

points for plotting. If the

sampling period does not

evenly divide by the inter

val length, Historian cre

ates as many intervals of

the interval length as will

fit into the sampling pe

riod, and then creates a

remainder interval from

whatever time is left. This

sampling mode is more

suitable than the Trend

mode for analysis of min

imums and maximums

and for plotting programs

that can handle unevenly

spaced data.

• InterpolatedtoRaw: Pro

vides raw data in place of

interpolated data when

the number of samples re

quested is less than the

Historian | 38 - OLE DB Provider | 2686

Table 398. ihComments Table (continued)

Column Name Data Type Description

number of available sam

ples.

• TrendtoRaw: This mode al

most always produces

the same results as the

Trend mode. The excep

tion is that when a greater

number of samples are

requested than the num

ber of raw data points, this

mode returns all available

raw data points with no

further processing. This

mode is therefore used in

stead of Trend when the

number of actual data

samples is less than the

requested number of sam

ples.

• TrendtoRaw2: This sam

pling mode almost always

produces the same results

as the Trend2 mode. The

exception is that when a

greater number of sam

ples are requested than

the number of raw da

ta points, this mode re

turns all available raw da

ta points with no further

processing. This mode is

therefore used instead of

Trend2 when the number

of actual data samples is

Historian | 38 - OLE DB Provider | 2687

Table 398. ihComments Table (continued)

Column Name Data Type Description

less than the requested

number of samples.

• LabtoRaw: Provides raw da

ta for the selected calcu

lated data when the num

ber of samples is less

than the number of avail

able samples.

Direction VT_BSTR The direction (forward or back

ward from the start time) of data

sampling from the archive.

NumberOfSamples VT_I4 Number of samples from the

archive to retrieve.

Samples will be evenly spaced

within the time range defined

by start and end times for most

sampling modes. For the RawBy

Number mode, this column deter

mines the maximum number of

values to retrieve. For the RawBy

Time mode, this value is ignored.

Note:

The NumberofSamples and

IntervalMilliseconds

columns are mutually ex

clusive. If NumberofSam

ples is used, Interval

Milliseconds is not used.

IntervalMilliseconds VT_I4 For non-raw sampled data, this

column represents a positive

integer for the time interval (in

Historian | 38 - OLE DB Provider | 2688

Table 398. ihComments Table (continued)

Column Name Data Type Description

milliseconds) between returned

samples.

Note:

The NumberofSamples and

IntervalMilliseconds

columns are mutually ex

clusive. If NumberofSam

ples is used, Interval

Milliseconds is not used.

CalculationMode VT_BSTR The calculation mode, if used.

FilterTag VT_BSTR Tagname used to define the filter,

if specified. Only a single tag can

be specified, and wildcards are

not supported.

FilterMode VT_BSTR The type of time filter:

• ExactTime: Retrieves da

ta for the exact times that

the filter condition is True.

• BeforeTime: Retrieves da

ta from the time of the last

False filter condition to the

time of the next True con

dition.

• AfterTime: Retrieves data

from the time of the last

True filter condition to the

time of the next False con

dition.

• BeforeAndAfterTime: Re

trieves data from the time

Historian | 38 - OLE DB Provider | 2689

Table 398. ihComments Table (continued)

Column Name Data Type Description

of the last False filter con

dition to the time of the

next False condition.

The FilterMode defines how time

periods before and after transi

tions in the filter condition should

be handled.

For example, AfterTime indicates

that the filter condition should be

True starting at the timestamp of

the archive value that triggered

the True condition and ending at

the timestamp of the archive val

ue that triggered the False condi

tion.

FilterComparisonMode VT_BSTR The type of comparison to be

made on the filter comparison

value:

• Equal: Filter condition is

True when the FilterTag

value is equal to the com

parison value.

• EqualFirst: Filter condi

tion is True when the Fil

terTag value is equal to

the first comparison value.

• EqualLast: Filter condition

is True when the FilterTag

value is equal to the last

comparison value.

• NotEqual: Filter condition

is True when the FilterTag

Historian | 38 - OLE DB Provider | 2690

Table 398. ihComments Table (continued)

Column Name Data Type Description

value is not equal to the

comparison value.

• LessThan: Filter condition

is True when the FilterTag

value is less than the com

parison value.

• GreaterThan: Filter condi

tion is True when the Fil

terTag value is greater

than the comparison val

ue.

• LessThanEqual: Filter con

dition is True when the

FilterTag value is less

than or equal to the com

parison value.

• GreaterThanEqual: Filter

condition is True when the

FilterTag value is greater

than or equal to the com

parison value.

• AllBitsSet: Filter condi

tion is True when the bina

ry FilterTag value is equal

to all the bits in the condi

tion. It is represented as

^ to be used in FilterEx

pression.

• AnyBitSet: Filter condition

is True when the binary

FilterTag value is equal to

any of the bits in the con

dition. It is represented as

~ to be used in FilterEx

pression.

Historian | 38 - OLE DB Provider | 2691

Table 398. ihComments Table (continued)

Column Name Data Type Description

• AnyBitNotSet: Filter condi

tion is True when the bina

ry FilterTag value is not

equal to any one of the

bits in the condition. It is

represented as !~ to be

used in FilterExpression.

• AllBitsNotSet: Filter con

dition is True when the bi

nary FilterTag value is not

equal to all the bits in the

condition. It is represented

as !^ to be used in Filter

Expression.

This column defines how archive

FilterTag values should be com

pared to FilterValue values to

establish the state of the filter

condition. If FilterTag and Fil

terComparisonValue values are

specified, time periods are fil

tered from the results where the

filter condition is False.

FilterValue VT_BSTR The value with which to compare

the FilterTag value to determine

appropriate filter times.

FilterExpression VT_BSTR An expression which includes

one or more filter conditions. The

type of conditions used are:

• AND

• OR

• Combination of AND and OR

Historian | 38 - OLE DB Provider | 2692

Table 398. ihComments Table (continued)

Column Name Data Type Description

This column can be used in

stead of the FilterTag, Filter

ComparisonMode, and FilterVal

ue columns. While using Fil

terExpression, the expression

is passed within single quotes,

and for complex expressions you

write the conditions within paren

theses. There is no maximum

length for FilterExpression, but

if called using OLE DB or Excel,

these tools may have their own

limitations.

TimeZone VT_BSTR The type of time zone used:

• Client

• Server

• Explicit bias number (num

ber of minutes from GMT)

DaylightSavingTime VT_BOOL Indicates whether Daylight Sav

ing Time logic should be applied

to timestamps.

RowCount VT_I4 Indicates the maximum number

of rows that can be returned. A

value of 0 indicates that there is

no limit to the number of rows re

turned.

ihComments Examples

Example SQL statements for the ihComments table are outlined in the following examples.

Historian | 38 - OLE DB Provider | 2693

Example 1: Retrieve All Comments for a Specific Tag for This Month

SELECT * FROM ihcomments WHERE tagname LIKE '*001'

AND timestamp>bom

Example 2: Retrieve Comments That Contain a Substring

SELECT * FROM ihcomments WHERE comment LIKE '*abc*'

Example 3: Retrieve All Comments in an Archive

SELECT * FROM ihComments WHERE timestamp<=Now

AND samplingmode=rawbytime

ihTrend Table

The ihTrend table allows you to compare multiple tags for the same timestamp. It contains a row

of data for each unique timestamp, but with columns from one or more tags. The column names are

dynamic and determined by the returned tag names. The ihTrend table is similar to a pivot table or, for

instance, a cross-tab report that you can create in Crystal Reports.

The ihTrend table can store up to 100 columns in a returned set. This allows you to compare Value

columns with up to 99 tags for a single timestamp, or Value and Quality columns with up to 49 tags.

Note:

Currently, you cannot analyze the ihTrend table in Crystal Reports or the Microsoft SQL Server

DTS application.

The following table describes the columns of the ihTrend table, including all possible tag columns.

Different queries on this table can produce different column results.

Note:

In all column names in the following table, TagID is used as a placeholder for the actual tag name.

Historian | 38 - OLE DB Provider | 2694

Table 399. IhTrend Table

Column

Name

Data

Type
Description

TimeS

tamp

VT_DB

TimeS

tamp

The date and time that the trend was generated.

TimeS

tampSe

conds

VT_DB

TimeS

tamp

The date and time for the data sample.

Mi

crosec

onds

VT_I4 The microsecond interval for the data sample.

Sam

pling

Mode

VT_BSTR The mode of sampling data from the archive:

• CurrentValue: Retrieves the current value. Time frame criteria are ignored.

• Interpolated: Retrieves evenly spaced interpolated values based on interval

or NumberOfSamples and time frame criteria.

• RawByTime: Retrieves raw archive values based on time frame criteria.

• RawByNumber: Retrieves raw archive values based on the StartTime, NumberOf

Samples, and Direction criteria.

Note:

EndTime criteria are ignored for this mode.

• RawByFilterToggle: Returns filtered time ranges. The values returned are

0 and 1. If the value is 1, then the condition is true and 0 means false. This

mode is used with the time range and FilterTag conditions. Results start and

end with timestamps.

• Calculated: Retrieves evenly spaced calculated values based on NumberOfSam

ples, interval, time frame, and CalculationMode criteria.

• Lab: Returns actual collected values without interpolation.

• Trend: Returns the raw minimums and maximums for each specified interval.

Use this mode to maximize performance when retrieving data points for plot

ting. If the sampling period does not evenly divide by the interval length, His

Historian | 38 - OLE DB Provider | 2695

Table 399. IhTrend Table (continued)

Column

Name

Data

Type
Description

torian ignores any leftover values at the end instead of putting them into a

smaller interval.

• Trend2: Returns the raw minimums and maximums for each specified interval.

Use this mode to maximize performance when retrieving data points for plot

ting. If the sampling period does not evenly divide by the interval length, Histo

rian puts leftover values into a remainder interval. This mode is more suitable

than the Trend mode for analysis of minimums and maximums and for plot

ting programs that can handle unevenly spaced data.

• InterpolatedtoRaw: Provides raw data in place of interpolated data when the

number of samples is less than the number of available samples.

• TrendtoRaw: This mode almost always produces the same results as the

Trend mode. The exception is that when the number of samples requested

is greater than the number of raw data points, this mode returns all available

raw data points with no further processing. This mode is therefore used in

stead of Trend when the number of actual data samples is less than the re

quested number of samples.

• TrendtoRaw2: This mode almost always produces the same results as the

Trend2 mode. The exception is that when the number of samples requested

is greater than the number of raw data points, this mode returns all available

raw data points with no further processing. This mode is therefore used in

stead of Trend2 when the number of actual data samples is less than the re

quested number of samples.

• LabtoRaw: Provides raw data for the selected calculated data when the num

ber of requested samples is less than the number of available samples.

Direc

tion

VT_BSTR The direction (forward or backward from the start time) of data sampling from the

archive.

Number

OfSam

ples

VT_I4 Number of samples to retrieve from the archive.

Samples will be evenly spaced within the start and end times defined for most sam

pling modes. For the RawByNumber mode, this column determines the maximum num

ber of values to retrieve. For the RawByTime mode, this column is ignored.

Historian | 38 - OLE DB Provider | 2696

Table 399. IhTrend Table (continued)

Column

Name

Data

Type
Description

Note:

The NumberofSamples and IntervalMilliseconds columns are mutually exclu

sive. If NumberofSamples is used, IntervalMilliseconds is not used.

Inter

valMil

lisec

onds

VT_I4 For non-raw sampled data, this column represents a positive integer for the time in

terval (in milliseconds) between returned samples.

Note:

The NumberofSamples and IntervalMilliseconds columns are mutually exclu

sive. If NumberofSamples is used, IntervalMilliseconds is not used.

Calcula

tionMode

VT_BSTR This column applies only if the SamplingMode is set to Calculated. It represents the

type of calculation to perform on archive data:

• Average

• Count

• Maximum

• MaximumTime

• Minimum

• MinimumTime

• StandardDeviation

• Total

• RawAverage

• RawStandardDeviation

• RawTotal

• TimeGood

• FirstRawValue

• FirstRawTime

• LastRawValue

• LastRawTime

• TagStats

Filter

Tag

VT_BSTR Tagname used to define the filter, if specified. Only a single tag can be specified.

Wildcards are not supported.

Historian | 38 - OLE DB Provider | 2697

Table 399. IhTrend Table (continued)

Column

Name

Data

Type
Description

Filter

Mode

VT_BSTR The type of time filter:

• ExactTime: Retrieves data for the exact times that the filter condition is True.

• BeforeTime: Retrieves data from the time of the last False filter condition to

the time of the next True condition.

• AfterTime: Retrieves data from the time of the last True filter condition to the

time of the next False condition.

• BeforeAndAfterTime: Retrieves data from the time of the last False filter condi

tion to the time of the next False condition.

This value defines how time periods before and after transitions in the filter condi

tion should be handled.

For example, AfterTime indicates that the filter condition should be True starting at

the timestamp of the archive value that triggered the True condition and ending at

the timestamp of the archive value that triggered the False condition.

Filter

Compar

isonMode

VT_BSTR The type of comparison to be made on the filter comparison value:

• Equal: Filter condition is True when the FilterTag value is equal to the com

parison value.

• EqualFirst: Filter condition is True when the FilterTag value is equal to the

first comparison value.

• EqualLast: Filter condition is True when the FilterTag value is equal to the last

comparison value.

• NotEqual: Filter condition is True when the FilterTag value is not equal to the

comparison value.

• LessThan: Filter condition is True when the FilterTag value is less than the

comparison value.

• GreaterThan: Filter condition is True when the FilterTag value is greater than

the comparison value.

• LessThanEqual: Filter condition is True when the FilterTag value is less than or

equal to the comparison value.

• GreaterThanEqual: Filter condition is True when the FilterTag value is greater

than or equal to the comparison value.

Historian | 38 - OLE DB Provider | 2698

Table 399. IhTrend Table (continued)

Column

Name

Data

Type
Description

• AllBitsSet: Filter condition is True when the binary FilterTag value is equal to

all the bits in the condition. It is represented as ^ to be used in FilterExpres

sion.

• AnyBitSet: Filter condition is True when the binary FilterTag value is equal to

any of the bits in the condition. It is represented as ~ to be used in FilterEx

pression.

• AnyBitNotSet: Filter condition is True when the binary FilterTag value is not

equal to any one of the bits in the condition. It is represented as !~ to be used

in FilterExpression.

• AllBitsNotSet: Filter condition is True when the binary FilterTag value is not

equal to all the bits in the condition. It is represented as !^ to be used in Fil

terExpression.

This column defines how archive values for the FilterTag value should be compared

to the FilterValue value to establish the state of the filter condition. If FilterTag and

FilterComparisonValue values are specified, time periods are filtered from the results

where the filter condition is False.

Filter

Value

VT_BSTR The value with which to compare the FilterTag value to determine appropriate filter

times.

Filter

Expres

sion

VT_BSTR An expression which includes one or more filter conditions. The type of conditions

used are:

• AND

• OR

• Combination of AND and OR

This column can be used instead of the FilterTag, FilterComparisonMode, and Fil

terValue columns. While using FilterExpression, the expression is passed within

single quotes. For complex expressions, you write the conditions within parenthe

ses. There is no maximum length for FilterExpression, but if called using OLE DB or

Excel, these tools may have their own limitations.

TimeZone VT_BSTR The type of time zone used:

Historian | 38 - OLE DB Provider | 2699

Table 399. IhTrend Table (continued)

Column

Name

Data

Type
Description

• Client

• Server

• Explicit bias number (number of minutes from GMT)

Day

light

Saving

Time

VT_BOOL Indicates whether Daylight Saving Time logic should be applied to timestamps.

RowCount VT_I4 Indicates the maximum number of rows that can be returned. A value of 0 indicates

that there is no limit to the number of rows returned.

Tag

ID.Value

VT_

VARIANT

The value of the data for the specified tag ID.

Tag

ID.Qual

ity

VT_

VARIANT

For non-raw sampled data, this column displays the percentage of good quality sam

ples in the interval. For instance, a value of 100 means all samples in the interval are

good.

For raw sampled data, data values are:

• Good

• Bad

• Uncertain

• Not Available

• Really Unknown

This column also includes the subquality of the data value, if it exists:

• NonSpecific

• ConfigError

• NotConnected

• DeviceFail

• SensorFail

• LastKnownValue

• CommFailure

• OutOfService

Historian | 38 - OLE DB Provider | 2700

Table 399. IhTrend Table (continued)

Column

Name

Data

Type
Description

• ScaledOutOfRange

• OffLine

• NoValue

• Really Unknown

Tag

ID.Tag

name

VT_BSTR Tagname property of the specified tag ID.

Tag

ID.De

scrip

tion

VT_BSTR User description for the specified tag ID.

Tag

ID.EngU

nits

VT_BSTR Engineering unit description for the specified tag ID.

Tag

ID.Com

ment

VT_BSTR User comment associated with the specified tag ID.

Tag

ID.Data

Type

VT_BSTR The data type for the specified tag ID:

• Scaled

• SingleFloat

• DoubleFloat

• SingleInteger

• DoubleInteger

• QuadInteger

• UnsignedSingleInteger

• UnsignedDoubleInteger

• UnsignedQuadInteger

• FixedString

• VariableString

• Byte

• Boolean

Historian | 38 - OLE DB Provider | 2701

Table 399. IhTrend Table (continued)

Column

Name

Data

Type
Description

• BLOB

• Time

• Undefined

The data type returned in this column is the data type that you defined in Historian

Administrator application.

Tag

ID.Fixed

String

Length

VT_UI1 This value is 0 unless the data type is FixedString. If the data type is FixedString,

this number represents the maximum length of the string value.

Tag

ID.Col

lector

Name

VT_BSTR The name of the collector responsible for collecting data for the specified tag ID.

Tag

ID.Source

Address

VT_BSTR The address used to identify the specified tag ID at the data source. For iFIX sys

tems, this is the NTF (Node.Tag.Field).

Tag

ID.Col

lection

Type

VT_BSTR Type of collection used to acquire data for the tag:

• Unsolicited: The collector accepts data from the source whenever the source

presents the data.

• Polled: The collector acquires data from a source on a periodic schedule de

termined by the collector.

Note:

Not all collectors support unsolicited collection.

Tag

ID.Col

lection

Interval

VT_I4 The time interval, in milliseconds, between readings of data from this tag.

For polled collection, this field represents the time between samples. For unsolicited

collection, this field represents the minimum time allowed between samples.

Historian | 38 - OLE DB Provider | 2702

Table 399. IhTrend Table (continued)

Column

Name

Data

Type
Description

Tag

ID.Col

lection

Offset

VT_I4 The time shift from midnight, in milliseconds, for collection of data from this tag.

Tag

ID.Load

Balanc

ing

VT_BOOL Indicates whether the data collector should automatically shift the phase of sam

pling to distribute the activity of the processor evenly over the polling cycle for the

specified tag ID. This is sometimes called phase shifting.

Tag

ID.Time

Stamp

Type

VT_BSTR The timestamp type applied to data samples at collection time:

• Source: The source delivers the timestamp along with the data sample.

• Collector: The collector delivers the timestamp along with the collected data.

Tag

ID.Hi

Engi

neering

Units

VT_R8 The high end of the engineering units range. Used only for scaled data types and in

put scaled tags.

Tag

ID.Lo

Engi

neering

Units

VT_R8 The low end of the engineering units range. Used only for scaled data types and in

put scaled tags.

Tag

ID.In

putScal

ing

VT_BOOL Indicates whether the measurement should be converted to an engineering units val

ue. When set to False, the measurement is interpreted as a raw measurement.

When set to True, the system converts the value to engineering units by scaling the

value between the HiScale and LoScale values. If not enabled, the system assumes

the measurement is already converted into engineering units.

Tag

ID.HiS

cale

VT_R8 The high-end value of the input scaling range used for the tag.

Historian | 38 - OLE DB Provider | 2703

Table 399. IhTrend Table (continued)

Column

Name

Data

Type
Description

Tag

ID.LoS

cale

VT_R8 The low-end value of the input scaling range used for the tag.

Tag

ID.Col

lector

Compres

sion

VT_BOOL Indicates whether collector compression is enabled for the specified tag ID.

Collector compression applies a smoothing filter to incoming data by ignoring incre

mental changes in values that fall within a deadband centered around the last col

lected value. The collector passes (to the archiver) any new value that falls outside

the deadband and then centers the deadband around the new value.

Tag

ID.Col

lector

Dead

band

Percent

Range

VT_R4 The current value of the compression deadband.

Tag

ID.Archive

Compres

sion

VT_BOOL Indicates whether archive collector compression is enabled for the tag.

Tag

ID.Archive

Dead

band

Percent

Range

VT_R4 The current value of the archive compression deadband.

Tag

ID.Col

lector

General1

VT_BSTR The general (or spare) configuration fields for the specified tag ID.

Historian | 38 - OLE DB Provider | 2704

Table 399. IhTrend Table (continued)

Column

Name

Data

Type
Description

Tag

ID.Col

lector

General2

VT_BSTR The general (or spare) configuration fields for the specified tag ID.

Tag

ID.Col

lector

General3

VT_BSTR The general (or spare) configuration fields for the specified tag ID.

Tag

ID.Col

lector

General4

VT_BSTR The general (or spare) configuration fields for the specified tag ID.

Tag

ID.Col

lector

General5

VT_BSTR The general (or spare) configuration fields for the specified tag ID.

Tag

ID.Read

Securi

tyGroup

VT_BSTR The name of the Windows security group that controls the reading of data for the

specified tag ID.

Refer to "Implementing Historian Security" in the Getting Started with Historian manu

al for definitions of the various security levels and groups.

Tag

ID.Write

Securi

tyGroup

VT_BSTR The name of the Windows security group that controls the writing of data for the

specified tag ID.

Refer to "Implementing Historian Security" in the Getting Started with Historian manu

al for definitions of the various security levels and groups.

Tag

ID.Ad

minis

trator

Securi

tyGroup

VT_BSTR The name of the Windows security group responsible for controlling configuration

changes for the specified tag ID.

Historian | 38 - OLE DB Provider | 2705

Table 399. IhTrend Table (continued)

Column

Name

Data

Type
Description

Tag

ID.Cal

culation

VT_BSTR The equation for the calculation performed for the specified tag ID.

Tag

ID.Last

Modified

VT_DB

TimeS

tamp

The date and time that the tag configuration was last modified. The time structure

includes milliseconds.

Tag

ID.Last

Modi

fiedUser

VT_BSTR The username of the Windows user who last modified the tag configuration.

Tag

ID.Col

lector

Type

VT_BSTR The type of collector responsible for collecting data for the specified tag ID:

• Undefined

• iFIX

• Simulation

• OPC

• File

• iFIXLabData

• ManualEntry

• Simulation

• Other

TagID.S

toreMil

lisec

onds

VT_BOOL Indicates whether time resolution in milliseconds is enabled for the specified tag ID.

If not enabled, time resolution is in seconds instead of milliseconds. Maximum data

compression is achieved when this value is set to False. This is the optimum setting

for most applications.

Tag

ID.UTCBias

VT_I4 The time zone bias for the specified tag ID. Time zone bias is used to indicate the

natural time zone of the tag expressed as an offset from UTC (Universal Time Coor

dinated) in minutes.

UTC is the international time standard, the current term for what was commonly re

ferred to as Greenwich Mean Time (GMT).

Historian | 38 - OLE DB Provider | 2706

Table 399. IhTrend Table (continued)

Column

Name

Data

Type
Description

Tag

ID.Aver

ageCol

lection

Time

VT_I4 The average time it takes to execute the calculation tag since you started the Calcu

lation collector for the specified tag ID.

Tag

ID.Col

lection

Disabled

VT_I4 Indicates whether collection is enabled (0) or disabled (1) for the specified tag ID.

The default setting is enabled (0).

Tag

ID.Col

lector

Compres

sion

Timeout

VT_I4 Indicates the maximum amount of time the collector will wait between sending sam

ples to the archiver. This time is kept per tag, as different tags report to the archiver

at different times.

This value should be in increments of your collection interval, and not less.

Ideally, this field is used for polled data values. It can be used with unsolicited data,

but when you do so, you are dependent on the data source for the value to change.

With unsolicited data, since Historian only records the value when it changes, the ac

tual time before the timeout might exceed the compression timeout.

Tag

ID.Archive

Compres

sion

Timeout

VT_I4 Indicates the maximum amount of time from the last stored point before another

point is stored, if the value does not exceed the archive compression deadband for

the specified tag ID.

Tag

ID.In

terface

Absolut

eDead

banding

VT_BOOL Indicates whether absolute collector deadband is enabled for the specified tag ID.

Tag

ID.In

VT_R8 Indicates the value for absolute collector deadband.

Historian | 38 - OLE DB Provider | 2707

Table 399. IhTrend Table (continued)

Column

Name

Data

Type
Description

terface

Absolut

eDead

band

Tag

ID.Archive

Absolut

eDead

banding

VT_BOOL Indicates whether absolute archive deadband is enabled for the specified tag ID.

Tag

ID.Archive

Absolut

eDead

band

VT_R8 Indicates the value for absolute archive deadband.

Tag

ID.Spike

Logic

VT_BOOL Indicates whether Spike Logic is enabled on the collector.

Tag

ID.Spike

LogicOv

erride

VT_BOOL Indicates whether the Spike Logic setting for the specified tag ID overrides the col

lector setting (True) or the collector setting is used (False).

Use care when building queries against the ihTrend table. Because a query to this table compares

multiple tags at the same time, it takes longer to query the ihTrend table than it does the ihRawData

table. The ihTrend table can be quite large, so be sure to either use the default start and end times, or

define a specific time interval. See Query Performance Optimization (on page 2611) for more ideas on

how to optimize your query of the ihTrend table.

ihTrend Examples

Example SQL statements for the ihTrend table are outlined in the following examples.

Historian | 38 - OLE DB Provider | 2708

Example 1: Retrieve Value and Quality of the First 50 Tags

SELECT timestamp, *.value, *.quality FROM ihtrend

Example 2: Retrieve Value of the First 100 Tags

SELECT timestamp, *.value FROM ihTrend

Example 3: Retrieve Values of All Tags That Match a Specific Pattern

SELECT timestamp,*0001.value FROM ihtrend ORDER BY MY_SERVER.Simulation00001.Value

Example 4: Retrieve Hourly Interpolated Values of TagNames That Match *0001

SET samplingmode=interp, intervalmilliseconds=1h

SELECT timestamp, *0001.value FROM ihtrend

ORDER BY Simulation00001.value DESC, timestamp DESC

Example 5: Retrieve Maximum Values of All TagNames That Match *0001

The following example shows how to use a TagName (simulation.00001.Value) in a WHERE clause.

SELECT timestamp, *0001.value FROM ihtrend

WHERE timestamp>='28-nov-2001 00:00'

AND timestamp<='29-nov-2001 00:00:00'

AND samplingmode=calc

AND intervalmilliseconds=1h

AND calculationmode=max

AND simulation00001.Value > 1000 ORDER BY timestamp

Example 6: Select Interpolated Values for All Single Float Tags

The following example shows how to select interpolated values for all single float tags, without doing a

JOIN with the ihTags table to retrieve the DataType property.

SELECT timestamp, *.value,*.description FROM ihtrend

WHERE timestamp>>='28-nov-2001 00:00'

AND timestamp<='29-nov-2001 00:00:00'

AND samplingmode=calculated

AND intervalmilliseconds=2h

AND *.datatype = singlefloat ORDER BY timestamp

Historian | 38 - OLE DB Provider | 2709

Example 7: Select Interpolated Data for TagNames That Match sim*

The following example shows how to sort the returned rows by a TagName , simulation.00001.Value.

SET starttime='28-nov-2001 00:00', endtime='29-nov-2001 00:00:00', samplingmode=interp, intervalmilliseconds=1h

SELECT timestamp, sim*.*, sim*.description, sim*.lastmodifieduser FROM ihtrend

WHERE sim*.description LIKE '*sim*'

AND sim*.description like '*first*'

AND *.datatype = singlefloat

ORDER BY simulation00001.value DESC, timestamp

ihQuerySettings Table

The ihQuerySettings table contains the current session settings. These settings are applied to all

queries you make in a session, unless overridden with a WHERE clause. This table displays settings stored

in the provider, and has nothing to do with the data stored in the archives.

The ihQuerySettings table provides a convenient way to display all your session settings. You cannot,

however, write or update settings in this table. This table contains only one row with the settings for the

current session. The only way to change these parameters is by using the SET statement.

The following table describes the columns of the ihQuerySettings table.

Table 400. ihQuerySettings Table

Col

umn

Name

Da

ta

Type

Description

Start

Time

VT_

DB

Time

S

tamp

The start time of the query. This represents the earliest timestamp for any tag contained in

the query.

If no StartTime value is specified, the start time is two hours prior to execution of the query.

End

Time

VT_

DB

Time

S

tamp

The end time of the query. This represents the latest timestamp for any tag contained in

the query.

If no EndTime value is specified, the end time is the time that you execute the query.

Historian | 38 - OLE DB Provider | 2710

Table 400. ihQuerySettings Table (continued)

Col

umn

Name

Da

ta

Type

Description

Sam

pling

Mode

VT_

BSTR

The mode of sampling data from the archive:

• CurrentValue: Retrieves the current value. Time frame criteria are ignored.

• Interpolated: Retrieves evenly spaced interpolated values based on interval or Num

berOfSamples and time frame criteria.

• RawByTime: Retrieves raw archive values based on time frame criteria.

• RawByNumber: Retrieves raw archive values based on the StartTime, NumberOfSamples,

and Direction criteria.

Note:

EndTime criteria are ignored for this mode.

• RawByFilterToggle: Returns filtered time ranges. The values returned are 0 and 1. If

the value is 1, then the condition is true and 0 means false. This mode is used with

the time range and FilterTag conditions. Results start and end with timestamps.

• Calculated: Retrieves evenly spaced calculated values based on NumberOfSamples, in

terval, time frame, and CalculationMode criteria.

• Lab: Returns actual collected values without interpolation.

• Trend: Returns the raw minimums and maximums for each specified interval. Use

this mode to maximize performance when retrieving data points for plotting. If the

sampling period does not evenly divide by the interval length, Historian ignores any

leftover values at the end instead of putting them into a smaller interval.

• Trend2: Returns the raw minimums and maximums for each specified interval. Use

this mode to maximize performance when retrieving data points for plotting. If the

sampling period does not evenly divide by the interval length, Historian puts leftover

values into a remainder interval. This mode is more suitable than the Trend mode for

analysis of minimums and maximums and for plotting programs that can handle un

evenly spaced data.

• InterpolatedtoRaw: Provides raw data in place of interpolated data when the number

of samples is less than the number of available samples.

• TrendtoRaw: This mode almost always produces the same results as the Trend mode.

The exception is that when the number of samples requested is greater than the

number of raw data points, this mode returns all available raw data points with no

Historian | 38 - OLE DB Provider | 2711

Table 400. ihQuerySettings Table (continued)

Col

umn

Name

Da

ta

Type

Description

further processing. This mode is therefore used instead of Trend when the number

of actual data samples is less than the requested number of samples.

• TrendtoRaw2: This mode almost always produces the same results as the Trend2

mode. The exception is that when the number of samples requested is greater than

the number of raw data points, this mode returns all available raw data points with

no further processing. This mode is therefore used instead of Trend2 when the num

ber of actual data samples is less than the requested number of samples.

• LabtoRaw: Provides raw data for the selected calculated data when the number of re

quested samples is less than the number of available samples.

Calculated is the default setting.

Di

rec

tion

VT_

BSTR

The direction (Forward or Backward from the start time) of data sampling from the archive.

The default value is Forward.

Num

ber

Of

Sam

ples

VT_

I4

Number of samples to retrieve from the archive.

Samples will be evenly spaced within the specified start and end times defined for most

sampling modes. For the RawByNumber mode, this column determines the maximum number

of values to retrieve. For the RawByTime mode, this column is ignored.

Note:

The NumberofSamples and IntervalMilliseconds columns are mutually exclusive. If

NumberofSamples is used, IntervalMilliseconds is not used.

In

ter

val

Mil

lisec

onds

VT_

I4

For non-raw sampled data, this column represents a positive integer for the time interval (in

milliseconds) between returned samples.

Note:

The NumberofSamples and IntervalMilliseconds columns are mutually exclusive. If

IntervalMilliseconds is used, NumberofSamples is not used.

Cal

cula

VT_

BSTR

This column applies only if the SamplingMode is set to Calculated. It represents the type of

calculation to perform on archive data:

Historian | 38 - OLE DB Provider | 2712

Table 400. ihQuerySettings Table (continued)

Col

umn

Name

Da

ta

Type

Description

tion

Mode

• Average

• Count

• Maximum

• MaximumTime

• Minimum

• MinimumTime

• OPCQOr and OPCQAnd

• StandardDeviation

• StateCount

• StateTime

• Total

• RawAverage

• RawStandardDeviation

• RawTotal

• TimeGood

• FirstRawValue

• FirstRawTime

• LastRawValue

• LastRawTime

• TagStats

The default value is Average.

Fil

ter

Tag

VT_

BSTR

Tagname used to define the filter, if specified. Only a single tag can be specified. Wildcards

are not supported.

Fil

ter

Mode

VT_

BSTR

The type of time filter:

• ExactTime: Retrieves data for the exact times that the filter condition is True.

• BeforeTime: Retrieves data from the time of the last False filter condition to the time

of the next True condition.

Historian | 38 - OLE DB Provider | 2713

Table 400. ihQuerySettings Table (continued)

Col

umn

Name

Da

ta

Type

Description

• AfterTime: Retrieves data from the time of the last True filter condition to the time of

the next False condition.

• BeforeAndAfterTime: Retrieves data from the time of the last False filter condition to

the time of the next False condition.

This value defines how time periods before and after transitions in the filter condition

should be handled.

For example, AfterTime indicates that the filter condition should be True starting at the

timestamp of the archive value that triggered the True condition and ending at the time

stamp of the archive value that triggered the False condition.

Fil

ter

Com

par

ison

Mode

VT_

BSTR

The type of comparison to be made on the filter comparison value:

• Equal: Filter condition is True when the FilterTag value is equal to the comparison

value.

• EqualFirst: Filter condition is True when the FilterTag value is equal to the first

comparison value.

• EqualLast: Filter condition is True when the FilterTag value is equal to the last com

parison value.

• NotEqual: Filter condition is True when the FilterTag value is not equal to the com

parison value.

• LessThan: Filter condition is True when the FilterTag value is less than the compari

son value.

• GreaterThan: Filter condition is True when the FilterTag value is greater than the

comparison value.

• LessThanEqual: Filter condition is True when the FilterTag value is less than or equal

to the comparison value.

• GreaterThanEqual: Filter condition is True when the FilterTag value is greater than or

equal to the comparison value.

• AllBitsSet: Filter condition is True when the binary FilterTag value is equal to all the

bits in the condition. It is represented as ^ to be used in FilterExpression.

• AnyBitSet: Filter condition is True when the binary FilterTag value is equal to any of

the bits in the condition. It is represented as ~ to be used in FilterExpression.

Historian | 38 - OLE DB Provider | 2714

Table 400. ihQuerySettings Table (continued)

Col

umn

Name

Da

ta

Type

Description

• AnyBitNotSet: Filter condition is True when the binary FilterTag value is not equal to

any one of the bits in the condition. It is represented as !~ to be used in FilterEx

pression.

• AllBitsNotSet: Filter condition is True when the binary FilterTag value is not equal

to all the bits in the condition. It is represented as !^ to be used in FilterExpression.

This option defines how archive values for the FilterTag value should be compared to the

FilterValue value to establish the state of the filter condition. If FilterTag and FilterCom

parisonValue values are specified, time periods are filtered from the results where the filter

condition is False.

Fil

ter

Value

VT_

BSTR

The value with which to compare the FilterTag value to determine appropriate filter times.

Fil

ter

Ex

pres

sion

VT_

BSTR

An expression which includes one or more filter conditions. The type of conditions used

are:

• AND

• OR

• Combination of AND and OR

This column can be used instead of the FilterTag, FilterComparisonMode, and FilterVal

ue columns. While using FilterExpression, the expression is passed within single quotes.

For complex expressions, you write the conditions within parentheses. There is no maxi

mum length for this value, but if called using OLE DB or Excel, these tools may have their

own limitations.

Time

Zone

VT_

BSTR

The type of time zone used:

• Client

• Server

• Explicit bias number (number of minutes from GMT)

Day

light

VT_

BOOL

Indicates whether Daylight Saving Time logic should be applied to timestamps.

Historian | 38 - OLE DB Provider | 2715

Table 400. ihQuerySettings Table (continued)

Col

umn

Name

Da

ta

Type

Description

Sav

ing

Time

Row

Count

VT_

I4

Indicates the maximum number of rows that can be returned. A value of 0 indicates that

there is no limit to the number of rows returned.

If the query result contains more rows than the RowCount value, the Historian OLE DB

provider truncates the extra rows. The truncation is performed last. For instance, if you use

ORDER BY in your SELECT statement, the truncation occurs after the rows are ordered.

Alarm

Type

VT_

BSTR

Indicates the alarm type:

• Alarms

• Alarm_History

• Events

ihQuerySettings Examples

Example SQL statements for the ihQuerySettings table are outlined in the following examples.

Example 1: Show All Settings for the Current Session

SELECT * FROM ihquerysettings

Example 2: Show the Selected Session Settings

SELECT starttime, endtime FROM ihquerysettings

ihCalculationDependencies Table

The ihCalculationDependencies table contains the calculation and server-to-server tags and their

triggers. The following table describes the columns of the ihCalculationDependencies table.

Historian | 38 - OLE DB Provider | 2716

Table 401. ihCalculationDependencies Table

Column

Name

Data

Type
Description

Tagname VT_

BSTR

A calculation or server-to-server tag with unsolicited collection and at least one de

pendent tag.

Depen

dentTag

name

VT_

BSTR

A dependent tagname. If a tag has multiple dependent tags, there are multiple rows

in the table for that tagname.

RowCount VT_I4 Indicates the maximum number of rows that can be returned. A value of 0 indicates

that there is no limit to the number of rows returned.

ihCalculationDependencies Examples

Example SQL statements for the ihCalculationDependencies table are outlined in the following

examples.

Example 1: Show the Dependencies for a Specific Tag

SELECT * FROM ihcalculationdependencies WHERE tagname = c1

Example 2: Show the Dependencies for a Specific Dependent Tag

SELECT * FROM ihcalculationdependencies

WHERE dependenttagname=brahms.ai1.f_cv

ihAlarms Table

The ihAlarms table contains collected alarms and events data. The following table describes the

columns of the ihAlarms table.

CAUTION:

When you perform joins of the ihRawData and ihAlarms tables, you can easily construct

queries that temporarily consume all your system resources. Although this scenario typically

does not affect data collection, it can interfere with data analysis. To avoid this issue, always

define a start and end time for the query to limit the number of rows returned.

Historian | 38 - OLE DB Provider | 2717

Table 402. ihAlarms Table

Column

Name

Data

Type
Description

AlarmID VT_I4 The unique ID of the alarm or event in the Historian alarm database.

ItemID VT_BSTR The OPC ItemID of the alarm. This contains the source address of the data access

tag with which the alarm is associated. This can contain a NULL value if an alarm is

not associated with a tag.

Source VT_BSTR The unique identifier used by the OPC AE Collector for the alarm or event.

DataSource VT_BSTR The collector interface name associated with the alarm or event.

Tagname VT_BSTR The Historian tag name associated with the alarm. This value is NULL unless the

tag is also collected by Historian.

AlarmType VT_BSTR The alarm type:

• Alarms: In Historian, the full life cycle of an alarm is stored as a single

record in the alarm archive.

• Alarm_History: The separate transitions for all alarms. One row per transi

tion is returned.

• Events: The simple and tracking events.

EventCate

gory

VT_BSTR The OPC event category of the alarm or event.

Condition VT_BSTR The OPC condition of the alarm. Does not apply to event data. This value com

bined with the Source value comprises an alarm.

SubCondi

tion

VT_BSTR The OPC subcondition of the alarm. Does not apply to event data. This value repre

sents the state of the alarm.

StartTime VT_DB

TimeS

tamp

The start time or timestamp of the alarm or event.

EndTime VT_DB

TimeS

tamp

The end time of the alarm. Does not apply to event data.

Historian | 38 - OLE DB Provider | 2718

Table 402. ihAlarms Table (continued)

Column

Name

Data

Type
Description

AckTime VT_DB

TimeS

tamp

The time the alarm was acknowledged. Does not apply to event data.

Microsec

onds

VT_I4 The microsecond portion of the date and time.

Message VT_BSTR The message attached to the alarm or event.

Acked VT_BOOL Stores the acknowledgement status of the alarm. If the alarm is acknowledged,

this is set to TRUE.

Severity VT_I4 The severity of the alarm or event. Stored as an integer value with a range of 1–

1000.

Actor VT_BSTR The operator who acknowledged the alarm, or caused the tracking event.

Quality VT_

VARIANT

The quality of the alarm or event. Stored as a string, with values of GOOD or BAD.

TimeZone VT_BSTR The type of time zone used:

• Client

• Server

• Explicit bias number (number of minutes from GMT)

Daylight

SavingTime

VT_BOOL Indicates whether Daylight Saving Time logic should be applied to timestamps.

RowCount VT_I4 The maximum number of rows returned by the current query.

User-De

fined

Variable

#X

VT_

VARIANT

User-defined variables. This is a dynamic list of columns that varies based on the

collectors running on the Historian system.

Note:

Additional fields may be added by third-party products such as iFIX. Please consult the relevant

product documentation for further information.

Historian | 38 - OLE DB Provider | 2719

ihAlarms Examples

Example 1: Show All Alarms for the Last Two Hours, Including Vendor Attributes

SELECT * FROM ihAlarms

SELECT * FROM ihAlarms WHERE alarmtype = alarms //same as above

Example 2: Show Alarm History

SELECT * FROM ihAlarms WHERE alarmtype = alarm_history

Example 3: Show Tracking and System Events

SELECT * FROM ihAlarms WHERE alarmtype = events

Example 4: Return All Closed Events and Associated Tag Data

SELECT

alarmid, ihalarms.tagname, ihalarms.starttime, ihalarms.endTime, ihrawdata.timestamp, ihrawdata.value

FROM ihalarms, ihrawdata

WHERE ihalarms.tagname=ihrawdata.tagname

AND ihalarms.starttime <= ihrawdata.timestamp

AND ihalarms.endtime >= ihRawdata.timestamp

AND ihalarms.subcondition == "OK"

OR ihalarms.quality = "Bad"

ORDER BY ihalarms.starttime

Note:

When you join data from the ihRawData and ihAlarms tables, be sure to specify a timestamp

range.

Example 5: Return All Open Alarms and Associated Tag Data

SELECT

alarmid, ihalarms.tagname, ihalarms.starttime, ihalarms.endTime, ihrawdata.timestamp, ihrawdata.value

FROM ihalarms, ihrawdata

WHERE ihalarms.tagname=ihrawdata.tagname

AND ihalarms.starttime <= ihrawdata.timestamp

AND ihalarms.endtime >= ihRawdata.timestamp

AND ihalarms.subcondition <> "OK"

AND ihalarms.quality = "Good"

Historian | 38 - OLE DB Provider | 2720

ORDER BY ihalarms.starttime

Note:

When you join data from the ihRawData and ihAlarms tables, be sure to specify a timestamp

range.

ihEnumeratedSets Table

The ihEnumeratedSets table contains information about enumerated sets that are defined in the

system. The following table describes the columns of the ihEnumeratedSets table.

Table 403. ihEnumeratedSets Table

Column Name
Data

Type
Description

SetName VT_BSTR The name of the set.

Description VT_BSTR The description of the set.

NumberofStates VT_I4 The number of states a set contains.

NumberofTag

References

VT_I4 The number of tags with which a set is associated.

SetDataType VT_BSTR The data type of the set.

Administrator

SecurityGroup

VT_BSTR The security group to which the set belongs.

LastModified

User

VT_BSTR Indicates which user last modified the set.

LastModified

Time

VT_DB

TimeS

tamp

Indicates the last time the set was modified.

RowCount VT_I4 Indicates the maximum number of rows that can be returned. A value of 0 in

dicates that there is no limit to the number of rows returned.

ihEnumeratedSets Examples

Sample SQL statements for the ihEnumeratedSets table are outlined in the following examples.

Historian | 38 - OLE DB Provider | 2721

Example 1: Retrieve All Sets By Using Integer States

SELECT * FROM ihEnumeratedSets

WHERE SetDataType=’integer’

Example 2: Retrieve a Set By Name From Sets

SELECT * FROM ihEnumeratedSets

WHERE setname like PLC1

ihEnumeratedStates Table

The ihEnumeratedStates table contains information about enumerated sets that are defined in the

system. The following table describes the columns of the ihEnumeratedStates table.

Table 404. ihEnumeratedStates Table

Column Name
Data

Type
Description

SetName VT_BSTR The name of the set.

Description VT_BSTR The description of the set.

NumberofStates VT_I4 The number of states a set contains.

NumberofTag

References

VT_I4 The number of tags with which a set is associated.

SetDataType VT_BSTR The data type of the set.

Administrator

SecurityGroup

VT_BSTR The security group to which the set belongs.

LastModified

User

VT_BSTR Indicates which user last modified the set.

LastModified

Time

VT_DB

TimeS

tamp

Indicates the last time the set was modified.

RowCount VT_I4 Indicates the maximum number of rows that can be returned. A value of 0 in

dicates that there is no limit to the number of rows returned.

Historian | 38 - OLE DB Provider | 2722

ihEnumeratedStates Examples

Sample SQL statements for the ihEnumeratedStates table are outlined in the following examples.

Example 1: Retrieve All States That Belong to a Specific Set

SELECT * FROM ihEnumeratedStates

WHERE setname=plcset1 order by statelowvalue ascending

Example 2: Retrieve All States From a Specific Set

SELECT * FROM ihEnumeratedStates

WHERE setname = 'setname'

ihUserDefinedTypes Table

The ihUserDefinedTypes table contains information about user-defined data types in the system.

Use this table to see the set of types and get information about each field in the data type.

The following table describes the columns of the ihUserDefinedTypes table.

Table 405. ihUserDefinedTypes Table

Column Name
Data

Type
Description

TypeName VT_BSTR The name of the user-defined type.

DataType VT_BSTR The data type of the user-defined type.

Description VT_BSTR The description of the user-defined type.

StoreField

Quality

VT_BOOL Indicates whether the field-level quality is stored.

NumberofFields VT_I4 The number of fields a user-defined type contains.

NumberofTag

References

VT_I4 The number of tags with which a user-defined type is associated.

Administrator

SecurityGroup

VT_BSTR The security group to which the user-defined type belongs.

LastModified

User

VT_BSTR Indicates which user last modified the user-defined type.

Historian | 38 - OLE DB Provider | 2723

Table 405. ihUserDefinedTypes Table (continued)

Column Name
Data

Type
Description

LastModified

Time

VT_DB

TimeS

tamp

Indicates the last time the user-defined type was modified.

RowCount VT_I4 Indicates the maximum number of rows that can be returned. A value of 0 in

dicates that there is no limit to the number of rows returned.

ihUserDefinedTypes Examples

Sample SQL statements for the ihUserDefinedType table are outlined in the following examples.

Example 1: Retrieve All User-Defined Types

SELECT * FROM ihuserdefinedtypes

Example 2: Retrieve a User-Defined Type By Name

SELECT * FROM ihuserdefinedtypes WHERE typename LIKE New

ihFields Table

The ihFields table contains information about field elements that are specified in user-defined data

types. The following table describes the columns of the ihFields table.

Table 406. ihFields Table

Column

Name

Data

Type
Description

TypeName VT_

BSTR

The name of the user-defined type.

FieldName VT_

BSTR

The name of the field.

Descrip

tion

VT_

BSTR

The description of the field.

FieldVal

ueDataType

VT_

BSTR

The data type of the field.

Historian | 38 - OLE DB Provider | 2724

Table 406. ihFields Table (continued)

Column

Name

Data

Type
Description

Master

Field

VT_

BOOL

Indicates whether the field is a master field.

RowCount VT_I4 Indicates the maximum number of rows that can be returned. A value of 0 indicates

that there is no limit to the number of rows returned.

ihFields Examples

Sample SQL statements for the ihFields table are outlined in the following examples.

Example: Retrieve All Fields for a Specific Type

SELECT * FROM ihfields WHERE typename='MyUserDefinedType'

Chapter 39. The Excel Add-In for Historian

Overview of the Excel Add-In for Historian
The Excel Add-In for Historian enhances the power and benefits of using the Historian data archiving and

retrieval system.

Features:

• You can add tags to Historian by generating a tag worksheet using the standard Excel tools, editing

the parameters, and then importing the information in bulk directly into Historian.

• You can export tag parameters from Excel, make bulk changes using similar techniques, and then

import the changes back into Historian.

• You can retrieve selected data from any archive file and include it in a customized report.

• You can plot the data in any of the standard chart formats.

• You can calculate derived variables from raw data values.

• You can perform mathematical functions to smooth or characterize data.

• You can import, export, and modify tags, data, and messages — all with familiar Excel commands,

macros, and computational techniques.

• You can create dynamic reports that you can share among users.

Excel Add-In window Conventions

The Excel Add-In uses several conventions in its windows that allow you to take full advantage of the

features of the Historian Excel Add-In:

• You can select tags, times, and events either by cell references or by manually entering the values.

• Many windows support selecting multiple statistics or attributes. You can select multiple items in a

list using one of the following methods:

◦ Dragging the mouse over multiple items.

◦ Pressing the Shift key and selecting the ends of a contiguous range.

◦ Pressing the Control key and selecting multiple individual items.

• Specifying an output cell is optional. If you do not specify an output cell, the active cell is used

as the starting point for output. When you specify an output cell, that cell is used as the starting

point for output. If you select a range for an output cell, the top left cell in the range is used as the

starting point for output.

• Specifying an output range determines how many data points are retrieved from a given query.

It is important for these functions to specify whether you want the data points to be sorted in

ascending or descending order by selecting the appropriate option.

Historian | 39 - The Excel Add-In for Historian | 2726

• When you specify an output range or an output cell, ensure that the active cells are not the same

cells that you specified with tag name cell references. Otherwise, it will lead to circular cell

referencing and incorrect values.

• Specifying data retrieval into rows or columns determines how multiple attributes or statistics are

displayed in the worksheet.

• Specifying data retrieval into rows or columns only applies when the window inserts a single

function into the worksheet. When you select a multi-cell output range, the orientation of that range

determines whether the requested data is returned into rows or columns.

• Excel does not support the use of the right and left arrow keys of the keyboard to move between

characters in text boxes and fields in the windows.

• If no parameters in an Excel formula change, the formula does not recalculate unless you edit the

formula. For example, if you change a Hi Scale value from 100 to 50 and then import a tag, the Hi

Scale field will still display 100 when looking at the tag information.

• When retrieving data, leave at least one blank line at the top of the output display for the column

header labels. If you do not, the header labels will not appear.

• When you retrieve data for more than one tag, if you choose to display the timestamp in the output,

then the timestamp will be displayed only once and the parameter values of the selected tags will

be shown based on the orientation selected.

• In several fields, an underscore appears at the right side of the field. If you select the underscore,

the window instantly changes to a minimized display. You can return to the original display by

selecting the box again. The purpose of this feature is to allow you to see an unobstructed view of

your worksheet or other windows as you work your way through the window and to allow you to

select a cell or range of cells in the worksheet.

Setting Up

Install the Historian Excel Add-in Using the Installer

Install one of the following 32-bit or 64-bit Microsoft® Excel® applications:

• Microsoft® Excel® 2019

• Microsoft® Excel® 2016

• Microsoft® Excel® 2013

• Microsoft® Excel® 2010

You can install Excel Add-In separately or during Client Tools installation. This topic describes how to

install Excel Add-In separately using the installer. You can also install it at a command prompt (on page

Historian | 39 - The Excel Add-In for Historian | 2727

195). However, if installing via a command prompt, do not install the Excel Add-In on the machine that you

have installed the Historian Administrator or data archiver.

1. Run the InstallLauncher.exe file.

2. Select Install Excel Add-in for Historian.

The installer runs through the installation steps.

Note:

If using certain versions of Windows (like Windows 10 or Windows 2019), you may receive

an error message, stating that some of the DLL files are not registered. You can ignore

these messages.

3. When prompted to reboot your system, select Yes.

Excel Add-In is installed.

Activate Excel Add-In (on page 197).

Install the Historian Excel Add-in at a Command Prompt

1. Install one of the following 32-bit or 64-bit Microsoft® Excel® applications:

◦ Microsoft® Excel® 2019

◦ Microsoft® Excel® 2016

◦ Microsoft® Excel® 2013

◦ Microsoft® Excel® 2010

2. Install Excel Add-in using the installer (on page 195) on your machine:

a. Open the Command Prompt as an Administrator. (From the Start menu, right-click the

Command Prompt app, and select Run as Administrator.)

b. On the Historian install media, navigate to the Excel folder.

c. Run the following command line: setup.exe -r.

d. When the install runs, select the Excel option and leave the other options greyed out as they

cannot be removed.

When you run this install, a template file named setup.iss is created at C:\Windows. This

file stores the installation options that you have provided during the installation.

After completing the installation, you can then use this .iss file to install Excel Add-in at a

command prompt on other machines.

Historian | 39 - The Excel Add-In for Historian | 2728

On the other Client machine where you want to install the Excel Add-in, place a copy of the

setup.iss on the local directory and open a Command Prompt (Run as Administrator). Run

the silent install with following command:

setup.exe /s

If your iss file is not called setup.iss or is in different directory than setup.exe you need to

add the flag: /f1. For example:

setup.exe /s /sms /f1"C:\Temp\setup.iss

Wait for few minutes (probably 3-5 minutes) for the install to complete.

You can install Excel Add-In separately or during Client Tools installation. However, do not install Excel

Add-In on the machine on which you have installed Historian Administrator or data archiver.

1. Copy the setup.iss file to each machine on which you want to install Excel Add-in at a command

prompt.

2. In the folder that contains the setup.iss file, run the following command: setup.exe /s /sms

The installer runs through the installation steps.

Note:

If using certain versions of Windows (like Windows 10 or Windows 2019), you may receive

an error message, stating that some of the DLL files are not registered. You can ignore

these messages.

3. When prompted to reboot your system, select Yes.

Excel Add-In is installed.

Activate Excel Add-In (on page 197).

Activate Excel Add-In

Install Excel Add-In (on page 195).

1. Open a new Microsoft Excel worksheet.

2. Select File > Options.

The Excel Options window appears.

3. Select Add-Ins.

4. In the Manage box, select Excel Add-ins, and then select Go.

Historian | 39 - The Excel Add-In for Historian | 2729

The Add-Ins window appears.

5. Select the Proficy Historian Add-In and Proficy_Historian_Helper check boxes, and then select OK.

If the Proficy Historian Add-In and Proficy_Historian_Helper check boxes do not appear, select

Browse to locate the Historian.xla file for the check boxes to appear. This file is created if

you have installed Microsoft Excel after installing Excel Add-In. By default, the Historian.xla

file is located in the C:\Program Files\Proficy\Historian or C:\Program Files

(x86)\Proficy\Historian folder.

Excel Add-In is now ready to use and the Proficy Historian menu is now available in the Microsoft

Excel toolbar.

Historian | 39 - The Excel Add-In for Historian | 2730

Querying Data

Query Current Values

You can query the following types of data using the add-in:

• Current values: Retrieves the most recently updated value of one or more tags or process

variables.

Note:

If you attempt to perform a query with two worksheets open, the add-in may become

unstable and unresponsive. This is a known Microsoft Excel issue. To avoid this issue,

work with only one Excel spreadsheet at a time.

• Raw data: Raw data values are the values actually stored in the archive, after applying collector and

archive compression, but before applying any interpolation, smoothing, or other signal processing

calculations. Querying raw data retrieves these values for a selected tag.

In addition, you can query filtered data (on page 2732) and calculated data (on page 2734).

1. Open an Excel worksheet.

2. If you want to query current values, select Historian > Query Current Value. If you want to query

raw data, select Historian > Query Raw Data.

The Historian Current Value Query or the Historian Raw Data Query window appears.

3. Select the Historian server from the drop-down list box. If you do not specify a server, the default

server is considered.

Tip:

To set the selected server as default, ensure that the Set Server to Default option is

enabled.

4. Select a tag on your worksheet, and then place the cursor in the Tag Name field.

Optionally, you can select the tag from the Advance Tag Search window. For more information,

refer to Advanced Tag Search (on page 2744).

The tag name is automatically entered. You can also enter a tag name manually in the Tag Name

field.

5. Enter values as described in the following table.

Historian | 39 - The Excel Add-In for Historian | 2731

Field Description

Query Type Select the type of data search:

◦ By Time: Using this option, you can search for data val

ues between a start time and an end time. You can also

use relative time entries to this field.

◦ By Number Forward: Using this option, you can search

for a number of values after a specified time. Enter val

ues into the After Time and Number of Values fields.

◦ By Number Backward: Using this option, you can search

for a number of values before a specified time. Enter val

ues in the Values Before Time and Number of Values

fields.

Query Criteria String Enter the query criteria along with the # symbol. For example, if

the query criteria string is to retrieve only good data quality val

ues, enter #ONLYGOOD. For more information, see Query Modi

fiers (on page 2738).

Output Display Select one or more parameters for the output.

Output Range Select a range of cells in a single row or column to determine

where the returned data is placed.

Rows or Columns Select either Columns or Rows for the output display. Selecting

Columns displays a table of values with parameters arranged in

columns with header labels at the top. Selecting Rows rotates

the table 90 degrees.

Ascending or Descending Specify the order of the retrieved data.

6. Select OK.

The query returns a number of data points based on the number of rows or columns specified in

the output range. If all the data points do not appear, select enough rows or columns to display all

the data.

Note:

For an array tag, each element is displayed in separate rows with the tag name and index.

Historian | 39 - The Excel Add-In for Historian | 2732

Query Filtered Data

You can filter tag data based on a specific batch ID, lot number, or product code. You can also filter data

that meets certain limits (for example, all the data points in which the temperature exceeds a certain

value).

When querying filtered data, you can use a Filter Expression instead of FilterTag, FilterMode, and

FilterValue parameters. You can use multiple filter conditions in the filter expression. For more

information and examples on filter expression, refer to Advanced Topics.

Note:

Do not use the Desc option for the Output Range in the Filtered Data Query window. Using this

option may cause the Excel Add-In to become unstable. If you use this option and find that Excel

is unstable, try minimizing the Excel application window, expose the Filtered Data Query window,

and close the window. Excel should then function normally.

1. Open an Excel worksheet.

2. Select Historian > Query Filtered Data.

The Historian Filtered Data Query window appears.

3. Select the Historian server from the drop-down list box. If you do not specify a server, the default

server is considered.

Tip:

To set the selected server as default, ensure that the Set Server to Default option is

enabled.

4. Select a tag on your worksheet, and then place the cursor in the Tag Name field.

If entering multiple tag names manually, separate each tag name with a colon. If your tag name has

a colon within it, then select the tag names via cell references only.

Do not use wildcards in this field. If you use a tag mask instead of a tagname, Historian only

returns the first possible match.

Optionally, you can select the tag from the Advance Tag Search window. For more information,

refer to Advanced Tag Search (on page 2744).

The tag name is automatically entered. You can also enter a tag name manually in the Tag Name

field.

5. Enter values as specified in the following table.

Historian | 39 - The Excel Add-In for Historian | 2733

Field Description

Query Time Enter the start time and end time for the query. You can also use

relative time entries.

Query Criteria String Enter the query criteria along with the # symbol. For example, if

the query criteria string is to retrieve only good data quality val

ues, enter #ONLYGOOD. For more information, see Query Modi

fiers (on page 2738).

Sampling Type Select the sampling type. For information, refer to Sampling

Types (on page 2781).

Calculation Field Select a calculation algorithm. This field is enabled only if you

select Calculated Sampling in the Sampling Type field.

Sampling Interval Select one of the following options:

◦ By Interval: Using this option, you can query the data for

a specific interval. option displays two entry fields, and .

Enter values in both. For example, if you want to query

the data for 10-minute intervals, enter 10 in the Interval

field, and select Minutes in the Time Unit field.

◦ By Samples: Using this option, you can query the data for

a specific number of samples. For example, to query 100

samples, enter 100 in the Number of Samples field.

State Value Enter the state value. This field is enabled only if you selected

Calculated in the Sampling Type field and if you selected State

Count or State Time in the Calculation Field field.

Output Display Select one or more parameters for the output.

Filter Definition Enter the filter parameters in the available fields.

Output Range Select a range of cells in a single row or column to determine

where the returned data is placed.

Rows or Columns Select either Columns or Rows for the output display. Selecting

Columns displays a table of values with parameters arranged in

columns with header labels at the top. Selecting Rows rotates

the table 90 degrees.

Ascending or Descending Specify the order of the retrieved data.

Historian | 39 - The Excel Add-In for Historian | 2734

6. Select OK.

The query returns a number of data points based on the number of rows or columns specified in

the output range. If all the data points do not appear, select enough rows or columns to display all

the data.

Note:

◦ For an array tag, each element is displayed in separate rows with the tag name and

index.

◦ The TagStats Calculation mode is not supported.

Querying Calculated Data

You can query data that is the result of performing calculations on raw data.

Note:

If you attempt to perform a query with two worksheets open, the add-in may become unstable

and unresponsive. This is a known Microsoft Excel issue. To avoid this issue, work with only one

Excel spreadsheet at a time.

1. Open an Excel worksheet.

2. Select Historian > Query Calculated Value.

The Historian Calculated Query window appears.

3. Select the Historian server from the drop-down list box. If you do not specify a server, the default

server is considered.

Tip:

To set the selected server as default, ensure that the Set Server to Default option is

enabled.

4. Select a tag on your worksheet, and then place the cursor in the Tag Name field.

Optionally, you can select the tag from the Advance Tag Search window. For more information,

refer to Advanced Tag Search (on page 2744).

The tag name is automatically entered. You can also enter a tag name manually in the Tag Name

field.

5. Enter values as described in the following table.

Historian | 39 - The Excel Add-In for Historian | 2735

Field Description

Query Time Enter the start time and end time for the query. You can also use

relative time entries.

Query Criteria String Enter the query criteria along with the # symbol. For example, if

the query criteria string is to retrieve only good data quality val

ues, enter #ONLYGOOD. For more information, see Query Modi

fiers (on page 2738).

Sampling Type Select the sampling type. For information, refer to Sampling

Types (on page 2781).

Calculation Select a calculation algorithm. This field is enabled only if you

select Calculated Sampling in the Sampling Type field.

Sampling Interval Select one of the following options:

◦ By Interval: Using this option, you can query the data for

a specific interval. option displays two entry fields, and .

Enter values in both. For example, if you want to query

the data for 10-minute intervals, enter 10 in the Interval

field, and select Minutes in the Time Unit field.

◦ By Samples: Using this option, you can query the data for

a specific number of samples. For example, to query 100

samples, enter 100 in the Number of Samples field.

State Value Enter the state value. This field is enabled only if you selected

Calculated in the Sampling Type field and if you selected State

Count or State Time in the Calculation Field field.

Output Display Select one or more parameters for the output.

Output Range Select a range of cells in a single row or column to determine

where the returned data is placed.

Rows or Columns Select either Columns or Rows for the output display. Selecting

Columns displays a table of values with parameters arranged in

columns with header labels at the top. Selecting Rows rotates

the table 90 degrees.

Ascending or Descending Specify the order of the retrieved data.

6. Select OK.

Historian | 39 - The Excel Add-In for Historian | 2736

The query returns a number of data points based on the number of rows or columns specified in

the output range. If all the data points do not appear, select enough rows or columns to display all

the data.

Note:

◦ For an array tag, each element is displayed in separate rows with the tag name and

index.

◦ The TagStats Calculation mode is not supported.

Query Alarms and Events Data Using the Excel Add-In

Querying Alarms and Events data in the Excel Add-In retrieves alarms and events data according to your

Query Criteria. Three query types are available: Alarm, Alarm history, and Events.

Note:

You cannot use an OPC alarms and events server with FIX32 SCADA systems. To collect alarm

data from these systems, you can use a proxy for alarms through an iFIX node with an OPC

alarms and events server. The OPC Classic Alarms and Events collector of Proficy Historian

can then collect the data. For more information, refer to Using the OPC AE Collector with FIX32

SCADA Systems (on page 1225).

1. Open an Excel worksheet.

2. Select Historian > Query Alarms & Events.

The Query Alarms & Events window appears.

3. Enter values as described in the following table.

Field Description

Server Select the SQL server that contains the alarms and events data.

Query Type Select one of the following values:

◦ Alarms: In Historian, an alarm's entire life cycle is stored

as a single record in the alarm archive. Thus, when re

trieving from the archive, the entire life cycle of an alarm

will be returned in a single record.

◦ Alarm History: Each change in the alarm's state will be re

turned in a single record.

◦ Events: One row per event is returned.

Historian | 39 - The Excel Add-In for Historian | 2737

Field Description

Query Criteria Enter the criteria that you want to use in the query. For example,

you may want to include alarms where the Alarm ID is equal to

a specific Alarm ID occurring after a specific start time. In ad

dition, you can specify which attributes must be displayed and

how the results must be sorted in the spreadsheet.

Output Range Select a range of cells in a single row or column to determine

where the returned data must be placed.

Output Orientation Select either Columns or Rows for the output display. Selecting

Columns displays a table of values with parameters arranged in

columns with header labels at the top. Selecting Rows rotates

the table 90 degrees.

Maximum Results Enter the maximum number of results for the query to return.

Note:

An Excel spreadsheet can display up to 255 columns

and 32,767 rows.

Output Display Specify the attributes that you want to display in the spread

sheet.

Output Sorting Select the parameter using which you want to sort the results:

◦ Alarm Time: Sorts the data by the start time. The results

appear in the reverse chronological order.

◦ Custom Sort: Allows you to select the field using which

you want to sort the results.

◦ None: The results are not sorted at all. They are returned

in the order they are received from the alarms and events

database.

4. Select OK.

The query results appear.

Modify a Query

You can change query parameters such as tag name, start time, end time, and so on. You cannot,

however, narrow down the output range. For example, you cannot reduce the number in the

Historian | 39 - The Excel Add-In for Historian | 2738

NumberOfSamples field, or you cannot change the Output Orientation to values that result in fewer rows

or columns.

1. Open an Excel worksheet.

2. Access the query that you want to modify.

3. In the Add-In drop-down list box, select Edit Query or icon. Or you can double-click any cell

that has the query formula.

The Edit Query window appears.

4. Modify the query, and then select OK.

Query Modifiers

Query modifiers are used to retrieve data that has been stored in the archive. They are used along with

sampling and calculation modes to get a specific set of data.

If you want to use a query modifier, when you create or modify a query, in the Query Criteria String field,

enter #, and then enter the query modifier. For example, if you want to retrieve only good data quality

values, enter #ONLYGOOD.

Query

Modifier
Results

ONLYGOOD Excludes bad and uncertain data quality values from retrieval and calculations.

Although you can use this modifier with any sampling or calculation mode, it is most useful

with raw and current value queries. All the calculation modes such as minimum or average

exclude bad values by default, so this modifier is not required in those cases.

INCLUD

EREPLACED

Normally, when you query raw data, any values that have been replaced with a different value

for the same timestamp are not returned.

The INCLUDEREPLACED modifier is used to specify that you want replaced values to be re

turned, in addition to the updated values. However, you cannot query only the replaced da

ta and the retrievable values that have replaced the other values. You can query all currently

visible data and get the data that has been replaced.

This modifier is only useful with the rawbytime or rawbynumber retrieval. Do not use it with

any other sampling or calculation mode.

Historian | 39 - The Excel Add-In for Historian | 2739

Query

Modifier
Results

INCLUD

EDELETED

Retrieves the value that was previously deleted. Data that has been deleted from the archiv

er is never actually removed but is marked as hidden. Use the INCLUDEDELETED modifier to re

trieve the values that were deleted, in addition to the current values.

This modifier is only useful with the rawbytime or rawbynumber retrieval. Do not use it with

any other sampling or calculation mode.

ONLYIF

CONNECTED

and ON

LYIFUPTO

DATE

Retrieve bad data if the collector is not currently connected and sending data to the archiver.

You can use these modifiers with any sampling or calculation mode.

The bad data is not stored in the IHA file but is only returned in the query. If the collector re

connects and flushes data and you run the query again, the actual stored data is returned in

the following situations:

• Collector loses connection to the archiver

• Collector crashes

• Collector compression is used and no value exceeds the deadband

ONLYRAW Retrieves only the raw samples. It does not add interpolated or lab sampled values at the be

ginning of each interval during calculated retrieval such as average, minimum, or maximum.

Normally, a data query for minimum value will interpolate a value at the start of each interval

and use that together with any raw samples to determine the minimum value in the interval.

Interpolation is necessary because some intervals may not have any raw samples stored.

Use this query modifier with calculation modes only, not with raw or sampled retrieval like in

terpolated modes.

LABSAM

PLING

Affects the calculation modes that interpolate a value at the start of each interval. Instead of

using interpolation, lab sampling is used. When querying highly compressed data, you may

have intervals with no raw samples stored.

For example, an average from 2 pm to 6 pm on a one-hour interval will interpolate a value at

2 pm, 3 pm, 4 pm, and 5 pm, and uses those in addition to any stored samples to compute

averages. When you specify LABSAMPLING, the lab sampling mode is used instead of the in

terpolated sampling mode to determine these hourly values. A lab sampled average is used

when querying a tag that never ramps up but changes in a step pattern such as a state val

ue or a set point. Use this query modifier with calculation modes only, not raw or sampled re

trieval like interpolated modes.

Historian | 39 - The Excel Add-In for Historian | 2740

Query

Modifier
Results

ENUM

NATIVE

VALUE

Retrieves the native, numeric values such as 1 or 2 instead of string values such as on/off

for the data that has enumerated states associated with it.

You can use this modifier with any sampling or calculation mode.

INCLUDE

BAD

Normally, when you query calculated data from Historian, only good data quality raw sam

ples are considered. INCLUDEBAD modifier includes bad data quality values in calculations.

You can use this modifier with any sampling or calculation mode.

FILTERIN

CLUDEBAD

Normally, while filtering, we use only good data quality values. When we use FILTERINCLUDE

BAD, the bad data quality values are considered when filtering to determine time ranges. This

modifier is not always recommended.

USE

MASTER

FIELDTIME

Returns the value of all the fields at the same timestamp of the master field time, in each in

terval returned. It is used only for the multi-field tags.

HON

ORENDTIME

Normally, a query keeps searching through archives until the required number of samples

has been located, or until it gets to the first or last archive. However, there are cases where

you would want to specify a time limit as well. For example, you may want to output the re

turned data for a RawByNumber query in a trend page, in which case there is no need to return

data that would be off page.

If you want to specify a time limit, provide an end time in your RawByNumber query and include

the HONORENDTIME query modifier. Since RawByNumber has direction (backward or forward), the

end time must be older than the start time for a backward direction or later than the start

time for a forward direction. Use this query modifier only with the RawByNumber sampling

mode.

EXAMINE

FEW

Queries using calculation modes normally loop through every raw sample, between the given

start time and end time, to compute the calculated values.

When using FirstRawValue, FirstRawTime, LastRawValue, and LastRawTime calculation modes,

we can use only the raw sample near each interval boundary and achieve the same result.

The EXAMINEFEW query modifier enables this. If you are using one of these calculation modes,

you may experience better read performance using the EXAMINEFEW query modifier.

Using this query modifier is recommended when:

Historian | 39 - The Excel Add-In for Historian | 2741

Query

Modifier
Results

• The time interval is great than 1 minute.

• The collection interval is greater than 1 second.

• The data node size is greater than the default 1400 bytes.

• The data type of the tags is String or Blob. Query performance varies depending on all

of the above factors.

Use this query modifier only with FirstRawValue, FirstRawTime, LastRawValue, and LastRawTime

calculation modes.

Access Archive Statistics

You can access a list of selected statistics about an archive file. You can specify the server, the archive

file name, and the type of information you want to access (such as start time, end time, file name, target

file size, current file size, current or read-only status, last backup time, and last backup users). You can

also specify a range of cells for the display.

1. Open an Excel worksheet.

2. Select Historian > Administration > List Archives.

The Historian Archive List window appears.

3. Select a server from the drop-down list. If you do not specify a server, the default server is

considered.

4. Enter values as described in the following table.

Field Description

Archive Name Enter a archive name. Do not use wildcards in

this field.

Tip:

To return details for more than one

item, specify a substring in the Archive

Name field that exists in each archive

you want listed. For example, if you

have archive files named from Hero5_

Archive001 to Hero5_Archive010, enter

Historian | 39 - The Excel Add-In for Historian | 2742

Field Description

Hero5_Archive to return the details for

all those archives.

Output Display Select one or more parameters for the output

display.

Output Range Select a range of cells in a single row or column

to determine where the returned data is placed.

5. Select Asc or Desc to sort the archives in ascending or descending order.

6. Select either Columns or Rows for the output display.

Note:

When selecting multiple tags, the orientation of the return data is based on the orientation

of the selected tags and the Row/Col selection is ignored.

7. Select OK.

The statistics of the selected archives appear.

Access Collector Statistics

You can access a list of selected statistics of a collector instance. You can specify the server, the

collector instance, and the type of information you want to access. You can also specify the range of cells

for the display.

1. Open an Excel worksheet.

2. Select Historian > Administration > List Collectors.

The Historian Collector List window appears.

3. Select a server from the drop-down list. If you do not specify a server, the default server is

considered.

4. Enter values as described in the following table.

Field Description

Collector Name Enter a collector instance name. Do not use

wildcards in this field.

Historian | 39 - The Excel Add-In for Historian | 2743

Field Description

Tip:

To return details for more than one

item, specify a substring in the Col

lector Name field that exists in each

collector you want listed. For exam

ple, if you have collectors named from

Hero5_Collector0001 to Hero5_Collec

tor010, enter Hero5_Collector to return

the details for all those collectors.

Output Display Select one or more parameters for the output

display.

Output Range Select a range of cells in a single row or column

to determine where the returned data is placed.

5. Select either Columns or Rows for the output display.

Note:

When selecting multiple tags, the orientation of the return data is based on the orientation

of the selected tags and the Row/Col selection is ignored.

6. Select OK.

The statistics of the selected collector instances appear.

Managing Tags

Search for a Tag (Basic)

You can search for tags and perform actions on them.

This topic describes how to perform a basic search of tags. You can also perform an advanced search (on

page 2744).

1. Open an Excel worksheet.

2. Select Historian > Search Tags.

The Historian Tag Search window appears.

Historian | 39 - The Excel Add-In for Historian | 2744

3. In the Server field, select a server from the drop-down list. If you do not specify a server, the default

server is considered.

4. In the Tag Mask, enter a wildcard character to search for tags (for example, *).

5. Select Search.

The Historian Tag Search window is populated with a tag list.

6. Move tags from the left section to the right section to add them to the search query.

7. Use the Search Display section to choose whether you want to display tag names or tag

description. It also displays the number of tags returned.

8. Use the Output With to choose whether the output shows the names of the selected tags or the

cell computation formulas.

You can use the Output with Formula to place a dynamic formula in the worksheet instead of just

copying the selected tag names. When you do so, the list of tags returned are dynamic based on

the tag mask criteria. This is useful when selecting a cell reference for the tag mask as opposed to

typing in a tag mask directly in the window.

9. Use the Output Range field to determine where in the worksheet the output data must appear.

10. Use the Output Display section to select the type of data to be displayed.

11. Select OK to apply your choices and initiate the query.

A list of tags appears based on your search criteria.

Search for a Tag (Advanced)

You can search for tags and perform actions on them.

This topic describes how to perform a advanced search of tags. You can also perform a basic search (on

page 2743).

When you perform an advanced search, the most recently used search criteria are saved in a file named

DefaultSearchCriteria.xml in c:\user- s\<username>\AppData. These criteria are automatically

loaded into the window the next time you access the Excel worksheet. You can reuse or modify the

criteria rather than entering them each time. If you want to reset your criteria, delete the XML file.

While performing an advanced search, you can:

• Add multiple search criteria.

• Modify the existing criteria.

• Delete the unwanted search criteria from the list.

• Save the criteria to a file and reuse it.

• View the details of a tag in the search results.

Historian | 39 - The Excel Add-In for Historian | 2745

1. Open an Excel worksheet.

2. Select Historian > Search Tags > Advanced Tag Search.

3. In the Tag Criteria field, specify one or more tag criteria (on page 2784).

4. Provide values in the Tag Criteria Value field.

5. Select Add Criteria.

The criteria are listed in the Search Criteria section.

6. Select Search.

All tags that satisfy the query criteria are displayed in the Available section.

7. Move tags from the Available List section.

8. To modify the Tag Criteria Value already entered:

a. Double-click the criteria from the list.

b. Change the Tag Criteria Value.

c. Select Update Criteria. The criteria value is updated with the new value.

9. To delete the search criteria from the list, select the criteria from the list, and then select Delete.

10. To save a search criteria list to be reused:

a. Create your search criteria list.

b. Select Save.

The Save As window appears.

c. Enter the file name, and select Save.

Your criteria list is saved.

11. To load an existing criteria list:

a. Select Load.

The Open window appears.

b. Choose the XML file you saved earlier, and then select Open.

The criteria list is loaded to the Advanced Tag Search window.

12. To view the tag attributes, double-click the tag from the available section or from the selected

section.

The Tag Attributes window appears with the attribute details.

13. Select OK.

Historian | 39 - The Excel Add-In for Historian | 2746

Export Tags

You can export tags from a Historian server into an Excel worksheet or to another system (either local or

remote). After you export tags into an Excel worksheet, you can add/modify tags (on page 2747) in bulk,

and then import them (on page 2748).

Note:

You cannot enter more than 32,767 characters in a single cell in an Excel worksheet.

1. Open an Excel worksheet.

2. Select Historian > Administration > Export Tags.

The Export Tags from Historian window appears.

3. Select a server from the drop-down list. If you do not select a server, the add-in uses the default

server.

4. Enter values as described in the following table.

Field Description

Filter Criteria Enter the name or description of the tag you

want to export. You can use a tag mask to se

lect a group of tags. To select a tag, use cell ref

erences instead of manually typing them.

Note:

You cannot export multiple tags when

tagnames are read from multiple cells.

If you specify a range of tagnames

to read from multiple cells in the Tag

Historian | 39 - The Excel Add-In for Historian | 2747

Field Description

Mask or Tag Name(s) fields, only the

first tag in the range will be exported.

Collector Enter the collector name.

Data Type Enter the data type.

5. Select one or more field names from the list in the right hand window. Always include tag names in

the list of fields to export.

6. In the Export Options section, specify whether you want to export tags into a new Excel worksheet,

a CSV file, or an XML file. If you select CSV or XML, you must also enter a path and file name for the

destination file.

7. Select OK.

The data is exported.

Add/Modify Tags

Using the add-in, you can add tags to Historian or modify existing tags. To do so, include the tags in an

Excel worksheet either automatically or manually, and then import them in bulk into Historian.

This can be a very convenient mechanism when you are working with large numbers of tags. If any

conflicting names or parameters occur, an error occurs; you can then resolve the conflict and try again.

1. Create a tags worksheet in Excel either manually or automatically (using macros or any other

tools).

Since Historian requires information about each tag that varies with the type of the tag, ensure

that you have included all the required information in the worksheet before attempting to import it

into Historian. To determine what specific tag information is required, refer to the documentation

provided with your SCADA application.

2. Import the tags into Historian (on page 2748).

Note:

If any errors on the import occur, a window appears, specifying the issues encountered

during the import. If an error occurs with any line of the import, the whole import is

aborted.

Historian | 39 - The Excel Add-In for Historian | 2748

Import Tags

In an Excel worksheet, add/modify the tags that you want to import (on page 2747).

Using the add-in, you can add tags to Historian or modify existing tags. To do so, include the tags in an

Excel worksheet either automatically or manually, and then import them in bulk into Historian (either local

or remote).

For example, with the Excel Add-In you can successfully import unsolicited tags without a calculation

dependency (trigger), which you cannot do using Historian Administrator. Similarly, you can import

circular references, which you cannot do using Historian Administrator.

Note:

Do not add or update the following spare configurations as the data may get corrupted or

overwritten:

• The Spare 1 field for OSI PI Distributor. OSI PI distributor reads data from the Historian tag

displayed in the Tag Source Address field and sends it to the OSI PI tag name displayed in

the Spare 1 field.

• The Spare 5 field for the Server-to-Server collector and the Server-to-Server distributor

because it is only used for internal purposes.

1. Open an Excel worksheet.

2. Select Historian > Administration > Import Tags.

A message appears.

3. Select Yes to initiate the operation.

A message appears, confirming that the import is complete.

4. Select OK.

If errors occur, a window appears detailing the issues encountered during the import. If an error

occurs with any line of the import, the whole import operation is aborted.

f you export all the fields and attempt to import the read-only fields LastModified and

LastModifiedUser, you may receive the following error message: Import failed, Error with Import

Header. To avoid this issue, export the tags without selecting the read-only fields, and then import

the tags.

Rename Tags

To rename a tag, you must be a member of the administrator's group with tag-level security.

Historian | 39 - The Excel Add-In for Historian | 2749

When you rename a tag, you can choose between the following options:

• Rename using an alias: In this case, the old name is called the tag alias. You can retrieve tag data

using the tag alias as well. When you copy a tag, the tag alias is captured as well to aid in an audit

trail.

• Rename permanently: In this case, the old name is no longer captured. Therefore, you can create

another tag with this old name. You cannot store and forward data using the old name. This

implies that data for the tag is collected separately for the new name.

1. Export the tags (on page 2746) that you want to rename.

Important:

You must only include tag name in the list of fields to export.

2. In the Excel worksheet, to the right of the Tagname column, insert a column named New Tagname.

3. For each tag that you want to rename, enter the new name in the New Tagname column.

Important:

You must specify a tag name in all the rows of the New Tagname column. If you do not

want to rename any of those exported tags, you must delete that row.

4. If you want to rename the tags permanently, to the right of the New Tagname column, insert a

column named Permanent Rename.

5. For each tag that you want to rename permanently, enter TRUE in the Permanent Rename column.

For the remaining tags, enter FALSE.

6. Select Historian > Administration > Rename Tags.

A message appears, asking you to confirm that you want to rename the tags.

7. Select Yes.

The tags are renamed.

Working with Array Tags

Historian allows you to store a set of values with a single timestamp and then read the elements

back individually or as an array tag. In Historian, we can modify a tag to an array tag by specifying the

NumberOfElements as -1. Where NumberOfElements indicates the tag is an array tag. If the NumberOfElements

is -1, then the tag is an array tag.

Historian | 39 - The Excel Add-In for Historian | 2750

Tags with zero NumberOfElements are not array tags. Since the size of the array is dynamic there is no

single number of elements that can be returned. In Excel Add-in each element of the array tag is displayed

in separate rows with tagname with index (Tag-name[]) and values. You can perform all operations that

you use for a tag on an Array tag. You can export, import and query an array tag or an array element.

Note:

• Array tags do not support Enumerated set.

• TagStats Calculation Mode is not supported.

Importing and Exporting Data

Import Tag Data

The Import Data command is the converse of the Export Data command. It moves selected information

from your current worksheet into the specified Server in the same way the Import Tags command

functions.

Note:

If you use the Active Hours setting while importing data using the Excel Add-In, note that if the

first tags imported are not within the Active Hours settings, no subsequent tags will be returned

on that import (even if they are within the set active hours).

1. Select Administration and then select Import Data from the Historian menu.

A message box appears.

2. Select Yes to initiate the operation. If successful, a window appears confirming the completion of

the import function.

Select OK to close the window. If errors occur on the import, a window appears detailing the issues

encountered in the import. If an error occurs in any line of the import, the whole import is aborted.

Import Alarms and Events Data into a Spreadsheet

Using the Historian Excel add-in, you can import alarms and events data into a spreadsheet. It helps you

include alarms and events data into the Historian archive that is not normally collected by Historian or

when you are migrating data from an older system into Historian.

Historian | 39 - The Excel Add-In for Historian | 2751

Note:

• The Excel worksheet must contain at least the source and timestamp columns.

• If an error occurs while importing data, the whole operation is aborted.

1. Open an Excel worksheet.

2. Select Historian > Administration > Import Alarms.

The alarms and events data is imported.

Export Tag Data

The Export Data function allows you to move values from the Historian Server to your Excel worksheet or

to another system in the same way you move tag information with Export Tags.

Note:

Before importing or exporting tags, data, or messages, you should be aware of a convention

used with the Historian application. The Server is the reference point for all import and export

functions. If you want to move tag information from the Server into your worksheet, you must

use the Export Tags command. Conversely, if you want to move data from your worksheet to the

server, you must use the Import Data command.

1. Open an Excel worksheet.

2. Select Historian > Administration > Export Raw Data.

The Export Data from Historian window appears.

3. If you want to specify a server, select a server from the drop down list. If you do not specify a

server, the Add-In uses the default server.

4. Select a tag on your worksheet or enter the tag names manually.

Note:

If your tag name has a colon within it, then you should select the tag names via cell

references only.

5. Optionally, you can select the tag name from the Advance Tag Search window.

See Search for a Tag (Advanced) (on page 2744)

6. In the Query Criteria String, enter the query criteria along with the # symbol.

Historian | 39 - The Excel Add-In for Historian | 2752

For example, if the query criteria string is to retrieve only good data quality values, then you should

specify #ONLYGOOD as the Query Criteria String. See Query Modifiers (on page 2738).

7. In the Query Time section enter values of time in the Start Time and End Time fields.

You can also use relative time entries to this field. See Relative Time Entries (on page 2777).

8. In the Sampling Type section, select a type from the drop-down list.

9. The Calculation field is active only after you select Calculated Sampling as the Sample Type.

Select a Calculation Algorithm type from the drop-down list.

10. In the Sampling Interval section, select either the By Interval or By Samples option.

The By Interval option displays two entry fields, Interval and Time Unit. Enter values in both. For

example, to sample at 10 minute intervals, enter 10 in the interval field and select Minutes in the

Time Unit field. The By Samples option displays a Number of Samples field.

To specify a number of samples for the data query, enter a number in this field. For example, to

query 100 samples, enter 100 in this field.

11. In the Filter Definition section, enter filter parameters in the fields for Filter Tag, Filter Comparison,

Include Date Where Value Is Equal To, and Include Times.

These fields are optional. If you do not enter any values, the query returns all values without

filtering.

12. In the Fields To Export section, select one or more fields.

To select multiple individual tags, press the Control key and select the tagnames. To select a

sequence of tags, press the Shift key and select the first and last tagname of the sequence.

13. In the Export Options section, select one of three options:

◦ To New Worksheet

◦ To CSV File or

◦ To XML File

14. If you select To CSV File or To XML File, you must enter a file name and path for the new file in the

File Name field.

15. Select OK to initiate the export. Select Cancel to abort the operation and close the window.

Export Alarms and Events Data from a Spreadsheet

Using the Historian Excel add-in, you can export alarms and events data into a new worksheet or into a

CSV or an XML file.

1. Open an Excel worksheet.

2. Select Historian > Administration > Export Alarms.

The Historian Alarm Export window appears.

3. Enter values as described in the following table.

Historian | 39 - The Excel Add-In for Historian | 2753

Field Description

Server Select the SQL server that contains the alarms and events data.

Query Type Select one of the following values:

◦ Alarms: In Historian, an alarm's entire life cycle is stored

as a single record in the alarm archive. Thus, when re

trieving from the archive, the entire life cycle of an alarm

will be returned in a single record.

◦ Alarm History: Each change in the alarm's state will be re

turned in a single record.

◦ Events: One row per event is returned.

Query Criteria Enter the criteria that you want to use in the query. For example,

you may want to include alarms where the Alarm ID is equal to

a specific Alarm ID occurring after a specific start time. In ad

dition, you can specify which attributes must be displayed and

how the results must be sorted in the spreadsheet.

Output Range Select a range of cells in a single row or column to determine

where the returned data must be placed.

Output Orientation Select either Columns or Rows for the output display. Selecting

Columns displays a table of values with parameters arranged in

columns with header labels at the top. Selecting Rows rotates

the table 90 degrees.

Maximum Results Enter the maximum number of results for the query to return.

Note:

An Excel spreadsheet can display up to 255 columns

and 32,767 rows.

Output Display Specify the attributes that you want to display in the spread

sheet.

Output Sorting Select the parameter using which you want to sort the results:

Historian | 39 - The Excel Add-In for Historian | 2754

Field Description

◦ Alarm Time: Sorts the data by the start time. The results

appear in the reverse chronological order.

◦ Custom Sort: Allows you to select the field using which

you want to sort the results.

◦ None: The results are not sorted at all. They are returned

in the order they are received from the alarms and events

database.

Export Options Select the format in to which you want to export the data:

◦ To New Worksheet: Exports the data to a new Excel work

sheet.

◦ To CSV File: Exports the data with comma separated val

ues to a new file.

◦ To XML File: Exports the data to a new XML file.

4. Select OK.

The data is exported.

Working with Messages

Search for Messages

You can search the archive for selected types of messages generated during a specific time period and

to display selected fields from those messages. When you do so, a dynamic formula is placed in the

worksheet, using which you can build a dynamic message report that you can build, save, and reuse.

1. Open an Excel worksheet.

2. Select Historian > Administration > Search Messages.

The Historian Message Search window appears.

3. Select a server from the drop-down list. If you do not specify a server, the default server is used.

4. Enter values as described in the following table.

Field Description

Topic Select one of the message types from the drop-down list.

Query Times Enter values for the start time and end time.

Historian | 39 - The Excel Add-In for Historian | 2755

Field Description

Search String Enter a search string for the text of messages. You need not en

ter * for wildcards.

Output Display Select one or more parameters for the output display. Select a

name to select it.

Output Range Select a range of cells in a single row or column to determine

where the returned data is placed.

Asc or Desc Specify whether you want to sort the messages in ascending or

descending order.

Note:

When selecting multiple tags, the orientation of the re

turn data is based on the orientation of the selected

tags and the Row/Col selection is ignored.

5. Select OK.

A list of messages appear based on the search criteria.

Import Messages

You can import all the messages from an Excel worksheet into a Historian server. You can, however, only

add messages to Historian; you cannot modify or remove them.

1. Open an Excel worksheet.

2. Select Historian > Administration > Import Messages.

A message appears, asking you to confirm that you want to import messages.

3. Select Yes to execute the import. A window appears when the operation is complete. Select OK to

close the window.

A message appears, stating that the import is successful. If, however, an error occurs in any line of

the import, the whole import is aborted.

Export Messages

You can export messages from a Historian server to your worksheet, a CSV file, or an XML file.

You can specify which fields of the messages are exported, such as timestamp, topic, message string,

message number, substitutions, or username.

Historian | 39 - The Excel Add-In for Historian | 2756

1. Open an Excel worksheet.

2. Select Historian > Administration > Export Messages.

The Export Messages From Historian window appears.

3. Select a server from the drop-down list box. If you do not specify a server, the default server is

considered.

4. Enter values as described in the following table.

Field Description

Topic Select one of six types of messages from the

drop-down list box.

Filter Criteria Enter values for the start time, end time, and

search text string in the corresponding fields.

Fields to Export Select one or more field names from the list

that you want to export.

Export Options Specify whether you want to export messages

to a new worksheet, a CSV file, or an XML file.

For a CSV or an XML file, you must enter a file

name and path for the new file in the File Name

field.

5. Select OK.

The messages that meet the search criteria are exported.

Managing Enumerated Sets
Before You Begin
Export the enumerated sets into an Excel worksheet (on page 2758).

Before importing enumerated sets into Historian from an Excel worksheet, you can perform the following

actions:

• Add sets (on page 2757)

• Delete sets (on page 2757)

• Modify set description (on page 2757)

• Add states (on page 2757)

• Modify states (on page 2758)

• Delete states (on page 2758)

Historian | 39 - The Excel Add-In for Historian | 2757

To add sets:

1. Enter details in the following columns in the Excel worksheet.

◦ SetName

◦ SetDescription

◦ StateName

◦ StateDescription

◦ StateLowValue

◦ StateHighValue

◦ StateRawValueDataType

◦ NumberOfStatesInThisSet

We recommend that you fill the columns in the aforementioned sequence.

2. Select Import Enumerated Sets.

To delete sets:

1. Select the row that contains the state you want to delete.

2. Right-click the row, and then select Delete.

To modify the description of a set:

Place the cursor in the StateDescription cell and modify the description.

You cannot modify the name of the set. If you change the name of the set, it is considered a new set.

To add states:

1. Select the set to which you want to add a set.

2. Add the name of the set in the SetName column.

The name match the set you selected.

3. Enter the details in the SetDescription, StateName, StateDescription, StateLowValue,

StateHighValue, and StateRawValueDataType columns.

4. Enter the total number of states in the NumberOfStatesInThisSet column.

Ensure that this value is the same for the current state and existing states in the set. For example,

if a state has two states already and you are adding a third state, the number of states for all the

three states must be changed to three.

A new state is added to the set.

Historian | 39 - The Excel Add-In for Historian | 2758

To modify states:

1. Modify the values of each state.

The states are modified.

To delete states:

1. Select the row that contains the state you want to delete.

2. Right-click the row, and then select Delete.

The state is deleted.

What to do Next
Import the enumerated sets (on page 2759).

Export Enumerated Sets

You can export enumerated sets in bulk into an Excel worksheet, add/modify/delete them (on page

2756), and then import them (on page 2759) into Historian.

1. Open an Excel worksheet.

2. Select Historian > Administration > Export Enumerated Sets.

The Historian Export Tags window appears.

3. Select a server from the drop-down list box. If you do not select a server, the default server is

considered.

4. Enter values as described in the following table.

Field Description

Filter Criteria In the EnumeratedSet Mask/EnumeratedSet

Name field, search for the sets set you want to

export. You can enter a set name or name mask

(or description and a description mask (*) crite

ria). All the sets matching the criteria appear.

Export Options Specify whether you want to export the enumer

ated sets into an Excel worksheet, a CSV file,

or an XML file. For a CSV or XML file, you must

also enter a path and file name for the destina

tion file.

Historian | 39 - The Excel Add-In for Historian | 2759

5. Select OK.

A message appears, stating that the export is successful.

6. Select OK.

Add/modify/delete enumerated sets (on page 2756) as needed, and then import them (on page 2759)

into Historian.

Import Enumerated Sets

Export the enumerated sets (on page 2758) and add/modify/delete them (on page 2756) as needed.

You can create or modify enumerated sets in the Historian server by importing them from an Excel

worksheet.

1. Open an Excel worksheet.

2. Select Historian > Administration > Import Enumerated Sets.

A message appears, asking you to confirm that you want to import the enumerated sets.

3. Select Yes.

A message appears, confirming that importing the enumerated sets is successful.

4. Select OK .

Rename Enumerated Sets

1. Export the enumerated sets (on page 2758) that you want to rename.

2. In the exported worksheet, remove all the fields except setname.

3. Change setname to EnumeratedSetName in the header.

4. To the right of the EnumeratedSetName column, insert a column named

NewEnumeratedSetName.

5. In the NewEnumeratedSetName column, enter a new name for each enumerated set that you want

to rename.

Important:

If you do not want to rename any of the exported enumerated sets, delete that row from

the spreadsheet and rename the remaining enumerated sets.

6. Select Historian > Administration > Rename Enumerated Sets.

The Proficy Historian Rename Enumerated Sets window appears.

7. Select Yes.

The enumerated sets are renamed.

Historian | 39 - The Excel Add-In for Historian | 2760

Managing User-Defined Types
Before importing a User Defined Type set into Historian from an Excel Worksheet, you can perform the

following actions:

• Add a User Defined Type (on page 2760)

• Modify a User Defined Type (on page 2760)

• Add fields (on page 2760)

• Modify fields (on page 2761)

• Delete fields (on page 2761)

To add User Defined Types:

1. Enter details into the columns in the excel worksheet.

Note:

The columns are listed here according to the way they appear in the Excel

worksheet. However, it is recommended to fill the columns in the following

sequence: UserDefinedTypeName, User- DefinedTypeDescription, FieldName,

FieldDescription, FieldDatatype, IsMasterField, NumberOfFields, StoredFieldQualities and

AdminSecurityGroup.

2. Select Import UserDefinedTypes to import the types.

To modify the description of a User Defined Type:

1. Select in the User Defined Type Description cell and modify the description.

Note:

You cannot modify the name of the type. If you change the name of the type, it is

considered as a new type.

2. Select the Import User Defined Types to import the types.

To add fields:

1. Select the UserDefinedType to which you wish to add a field.

2. Add the name of the type in the UserDefinedTypeName column. The name should be same as the

type selected by you.

Historian | 39 - The Excel Add-In for Historian | 2761

3. Enter the details in the UserDefinedTypeDescription, FieldName, FieldDescription, FieldDatatype,

IsMasterField, NumberOfFields, StoredFieldQualities and AdminSecurityGroup columns.

4. In the NumberOfFields column, enter the total number of fields. Ensure that this value is the same

for the current field and existing fields in the user defined type.

For example, if a UserDefinedType has two fields already and you are adding a third field, the

number of fields for all the three fields should be changed to three. A new field is added to the

UserDefinedType on import.

To modify fields:

1. Select the field you wish to modify by selecting the row in the Excel worksheet.

2. Modify the values by selecting in the respective columns. The field/fields are modified on import.

To delete fields:

1. Select the row that has the field you wish to delete.

2. Right-select the row and select Delete. Alternatively, you can also use the Delete key on your key-

board.

3. Select the Import UserDefinedTypes to update your changes.

Export User-Defined Types

You need to have appropriate security permissions to import and export a user defined type. For more

information, refer to Getting Started with Historian Guide > Implementing Historian Security for the

definition of the various security levels and groups.

You can export user-defined types in bulk into an Excel worksheet, add/modify/delete them (on page

2760)add/modify/delete them (on page 2756), and then import them (on page 2762) into Historian.

1. Open an Excel worksheet.

2. Select Historian > Administration > Export User Defined Types.

The Historian Export User Defined Types window appears.

3. Select a server from the drop-down list. If you do not select a server, the default server is

considered.

4. Enter values as described in the following table.

Field Description

Filter Criteria In the UserDefinedType Mask/UserDefined

Type Name field, search for the sets set you

Historian | 39 - The Excel Add-In for Historian | 2762

Field Description

want to export. You can use * for a wildcard

search.

Export Options Specify whether you want to export the user-de

fined types to an Excel worksheet, a CSV file, or

an XML file. For a CSV or an XML file, you must

also enter a path and file name for the destina

tion file.

5. Select OK.

The user-defined types are exported.

Import User-Defined Types

Export the user-defined types (on page 2761) and add/modify/delete them (on page 2760).

You can create or modify user-defined data types in an Excel worksheet and then import them into

Historian.

1. Open an Excel worksheet.

2. Select Historian > Administration > Import MultiField Source Addresses.

A message box appears asking you to confirm whether to import the sets.

A message appears, asking you confirm that you want to import the user-defined types.

3. Select Yes.

The user-defined types are imported.

Reference

Excel Add-In Options

Field Description

Internal vs. External

References

Choosing Use External References allows your application to reference cells

in other worksheets and workbooks in addition to the current one. If you

choose Use Internal References instead, you can only access cells in the cur

rent worksheet. The default setting is Use External References.

Automatically Update

Links to Add- In (Yes/

No)

Add-In functions are maintained as worksheet links. If users who share work

sheets do not have Microsoft Office installed the same way, it is necessary

to turn this feature on. When on, this feature automatically re-establishes

Historian | 39 - The Excel Add-In for Historian | 2763

Field Description

any formula links that may be broken due to differences among users in Mi

crosoft Office installation. The default setting enables this feature.

The Auto Update feature allows sharing of worksheets. You must, however,

install the Excel Add-In in the exact same Microsoft Office Library Path as the

other worksheets if you want to use the sharing feature.

When opening a worksheet with links to another worksheet, you may receive

a message prompting you to update all linked information in the workbook

(Yes) or keep the existing information (No). It is recommended that you se

lect No and keep the existing information. The links will be automatically up

dated for your worksheet. Save your worksheet after the links have been up

dated.

Show/Hide Header La

bels

This option lets you display or suppress the column header labels that are au

tomatically placed in the worksheet when entering formulas throughout the

Historian windows. The default setting is Show Labels.

Color Allows you to select the header name color from the drop-down list: black,

blue, red, green, magenta, cyan, or yellow.

Assign Default Server This window shows the current server assignment. You can modify the set

ting by selecting the Edit button and accessing the Historian Server Man

agers window. This window allows you to save user connection information,

add or connect to a new server, delete a server, and modify the default server.

Adjust Column Widths This option lets you automatically adjust the width of columns in your work

sheet as formulas are inserted by Historian windows. Select Adjust Header

Column Width to modify the width of header labels; select Adjust Data Col

umn Width to modify the data column widths to accommodate the data val

ues. Enabling these options usually makes the worksheet much more read

able. However, doing so can sometimes make the worksheet calculate too

much when building a large report. In such cases, disable the automatic fea

ture and adjust individual columns manually.

Save/Default/Cancel These action buttons let you apply your choices of options. Select Save to ap

ply the settings you entered, select Default to select default settings for all

options, and select Cancel to close the window.

Historian | 39 - The Excel Add-In for Historian | 2764

Reports

You can generate a wide range of custom reports. You can use all the standard, familiar Excel tools and

techniques to access the Historian archives and build reports and charts of all types to fit your specific

needs. You can use the sample reports included with Historian almost as is — just change the tags to fit

your application. As an alternative, use the setup worksheets as a starting point and adapt them to your

particular situation.

Defining Reports

You can define a report so that Excel recalculates the worksheet whenever the contents

of specific cells, such as start times or dates, change. In this way, the report generates a

dynamic snapshot of process performance, updated regularly in real time. You can also

manually initiate recalculation at anytime.

Building Dynamic Reports

The primary rule to follow in building a dynamic report is to use formulas with cell

references that contain variable information rather than fixed data, so that recalculation

produces new data each time it occurs. You then initiate recalculation by changing certain

inputs manually or automatically.

Sharing Reports

You can share any Excel reports you develop with the Historian Excel Add-In as you would

any other Excel workbook. For each client using the worksheets, set up the Excel Add-In for

Historian.

Using the Sample Reports

The Historian application includes three typical sample reports that demonstrate the power and ease-of-

use of the Excel Add-In. Use them directly in your application or modify them to fit your requirements.

The three sample Excel reports are built using tags from the Simulation collector. You must create an

instance of the Simulation collector and start it in order for these reports to work. The Historian

Batch Report Sample.xls file also uses Batch ID and Product ID tags from the Simulation collector.

These are Simulation Collector points that are configured to store string data types.

To ensure that the sample reports work correctly, you must add the string tags. These are the last five

tags in the tag collector list. Add the string tags in Historian Administrator by browsing the Simulation

collector and adding all of the tags by selecting the Add All Tags check box. Alternatively, you can run the

Add Tags to Simulation Collector.bat batch file in the Historian\Server directory of the

machine that has the Simulation collector.

Historian | 39 - The Excel Add-In for Historian | 2765

In addition, when you create an instance of the Simulation collector, it prompts you for the number of

simulation tags it should create (but you must still add the tags for collection using one of the two

methods above). The default is 1000. Do not enter a value less than 30.

When opening a sample Excel report, you may receive a message prompting you to update all linked

information in the workbook or keep the existing information. It is recommended that you select No (that

is, keep the existing information). The links will be automatically updated for your worksheet. Save your

worksheet after the links have been updated.

Historian Statistical Analysis Sample Report

For a specific duration, this report calculates a number of statistical properties of a tag, such as the

average, maximum, minimum, standard deviation, 2 sigma and 3 sigma control limits, and correlation

coefficients for other tags. It displays charts of various types for several of these variables.

The chart at the lower left is a plot of the main variable vs. time with sigma control limits indicated by

the straight lines. The two charts to the right are scatter diagrams that show the correlation between the

main variable and two other variables. The chart at the top right is a histogram of data values of the main

variable that shows how the data points are distributed.

Historian | 39 - The Excel Add-In for Historian | 2766

The following figure shows the worksheet associated with the sample report that contains the data used

to generate the report.

Daily Performance Sample Report

This sample report shows how the measured values and selected statistical properties of specified tags

have varied in the last 24 hours. This sample is an example of a typical daily performance report in an

industrial plant.

Historian | 39 - The Excel Add-In for Historian | 2767

The report shown in the following image is a collection of chart plots of the data displayed in the report of

the previous image.

Historian | 39 - The Excel Add-In for Historian | 2768

The following figure shows the worksheet used to set up the Daily Sample Report. Edit the worksheet to

adapt this report to your application.

Historian | 39 - The Excel Add-In for Historian | 2769

Batch Sample Report

This is an example of a report that might be used with a batch type of industrial process. The table at the

top of the report shows the batch identification, the start and end times, product name, and computed

statistics for several process variables. The charts show how selected process parameters varied during

the batch cycle.

Historian | 39 - The Excel Add-In for Historian | 2770

This is the configuration worksheet used to generate the report shown in the previous image. Modify this

worksheet to adapt it to your requirements.

Historian | 39 - The Excel Add-In for Historian | 2771

Troubleshooting the Excel Add-In Sample Reports

If you follow the recommended installation procedures, you should not have any difficulty in running the

sample reports. If you do encounter any problems, they are likely to relate to the locations of files and the

links to those files.

When opening a sample Excel report, you may receive a message prompting you to update all linked

information in the workbook or keep the existing information. We recommend that you select No (that

is, keep the existing information). The links will be automatically updated for your worksheet. Save your

worksheet after the links have been updated.

For problems in the worksheets themselves, refer to Excel online Help for assistance.

Running a Report Using Visual Basic

The following Visual Basic example shows you how to create a hidden instance of Microsoft Excel, open

a preconfigured Historian report in that instance, and then print the report to the default printer. To use the

example, you must modify the path of the .XLA and .XLS files. The paths that you need to edit are in bold

font in the following example.

Historian | 39 - The Excel Add-In for Historian | 2772

To use this example, you must have the privileges to run the collector as a Windows service and a default

printer must be installed. If Historian security is enabled, you must be a member of the iH Readers group.

Tag-level security can override this privilege.

You can trigger this example to run on an event basis or on a polled basis. Most likely, you would run this

example on an event basis. However, you can run it on a polled basis using Windows Task Scheduler.

Sub CreateExcelObjects()

Dim xlApp As Excel.Application Dim wkbNewBook As Excel.Workbook Dim wksSheet As Excel.Worksheet Dim strBookName As

 String

' Create new hidden instance of Excel. Set xlApp = New Excel.Application

' Open the preconfigured Historian Excel Add-in report.

Workbooks.Open "C:\Program Files\Microsoft Office\Office11\Library\iHistorian.xla"

Set wkbNewBook = Workbooks.Open("c:\testih.xls", 0, False)

'xlApp.Visible = True

With wkbNewBook

For Each wksSheet In .Worksheets

Select Case wksSheet.Name Case "tag1" wksSheet.Select

.RefreshAll

.PrintOut End Select Next wksSheet

.Close False

End With

Set wkbNewBook = Nothing xlApp.Quit

Set xlApp = Nothing

End Sub

Array Formulas for the Historian Excel Add-In

In Excel, an array formula is a data request that inputs a set of parameters and returns results. The

Historian Excel Add-In uses the following array formulas:

ihSearchTags

(pServer,pTagMask,pDescriptionMask,pCollector,pArraySize,pSort,pRowCol,Parameters())

ihQueryData

(pServer-,pTagName,pStartTime,pEndTime,pSamplingMode,pCalculationMode,pSamplingInterval,pNumberOfSamples,pDirection,pFi

lterTag,pFilterMode,pFilterComparisonMo ())

ihQueryData3

Historian | 39 - The Excel Add-In for Historian | 2773

(pServer,pTagName,pStartTime,pEndTime,pSamplingMode,pCalculationMode,pSamplingInterval,pNumberOfSamples,pDirection,pFil

terTag,pFilterMode,pFilterComparisonMo ())

ihQueryMessages

(pServer,pTopic,pStartTime,pEndTime,pSearchText,pArraySize,pSort,pRowCol,Parameters())

ihListArchives

(pServer,pArchiveNameMask,pArraySize,pSort,pRowCol,Parameters())

ihListCollectors

(pServer,pCollectorNameMask,pArraySize,pSort,pRowCol,Parameters())

When inserting an array formula, you cannot overwrite part of the range of another array formula in your

worksheet. The range includes cells without data displayed. An error message appears if you try to do so.

Reselect a different output range to insert the formula.

Array Formula Parameters

The following table describes the parameters for the array formulas for the add-in.

Para

meter
Description

p

Archive

Name

Mask

A search mask you can use to browse the archivers. Use standard Windows wildcard charac

ters.

pArray

Size

The number of cells that the array spans.

pCalcu

lation

Mode

The type of the calculation mode (on page 1073).

pCol

lector

The collector or collector mask that you want to query.

pCol

lector

Name

Mask

A search mask for browsing collectors. Use standard Windows wildcard characters.

Historian | 39 - The Excel Add-In for Historian | 2774

Para

meter
Description

pDe

scrip

tion

Mask

A search mask for browsing tag descriptions. Use standard Windows wildcard characters.

pDirec

tion

The direction (forward/backward from the start time) of data sampling from the archive.

pEnd

Time

The end time used to refine your query.

pFil

ter

Compar

ison

Mode

The type of comparison to be made on the filter comparison value:

• Equal: Filter condition is True when the FilterTag is equal to the comparison value.

• EqualFirst: Filter condition is True when the FilterTag is equal to the first comparison

value.

• EqualLast: Filter condition is True when the FilterTag is equal to the last comparison

value.

• NotEqual: Filter condition is True when the FilterTag is NOT equal to the comparison

value.

• LessThan: Filter condition is True when the FilterTag is less than the comparison value.

• GreaterThan: Filter condition is True when the FilterTag is greater than the comparison

value.

• LessThanEqual: Filter condition is True when the FilterTag is less than or equal to the

comparison value.

• GreaterThanEqual: Filter condition is True when the FilterTag is greater than or equal to

the comparison value.

• AllBitsSet: Filter condition is True when the binary value of the FilterTag is equal to all

the bits in the condition. It is represented as ^ to be used in Filter Expression.

• AnyBitSet: Filter condition is True when the binary value of the FilterTag is equal to any

of the bits in the condition. It is represented as ~ to be used in Filter Expression.

• AnyBitNotSet: Filter condition is True when the binary value of the FilterTag is not equal

to any one of the bits in the condition. It is represented as !~ to be used in Filter Expres

sion.

• AllBitsNotSet: Filter condition is True when the binary value of theFilterTag is not equal

to all the bits in the condition. It is represented as !^ to be used in Filter Expression.

Historian | 39 - The Excel Add-In for Historian | 2775

Para

meter
Description

pFil

ter

Compar

isonVa

lue

The value to compare the filter tag with when applying the appropriate filter to the DataRecord

set query (to determine the appropriate filter times).

pFil

terEx

pres

sion

An expression that includes multiple filter conditions. The type of conditions used are:

• AND condition

• OR condition

• Combination of both AND and OR

You can use a filter expression instead of FilterTag, FilterComparisonMode and FilterValue pa

rameters. While using FilterExpression, the expression is passed within single quotes, and for

complex expressions, enclose the conditions in parentheses. There is no maximum length for

a filter expression.

pFil

terMode

The type of the time filter:

• ExactTime: Retrieves data for the exact times that the filter condition is True (only True).

• BeforeTime: Retrieves data from the time of the last False filter condition up until the

time of the True condition (False until True).

• AfterTime: Retrieves data from the time of the True filter condition up until the time of

the next False condition (True until False).

• BeforeAndAfterTime: Retrieves data from the time of the last False filter condition up un

til the time of next False condition (While True).

• The FilterMode: Defines how time periods before and after transitions in the filter condi

tion should be handled.

For example, AfterTime indicates that the filter condition should be True starting at the

timestamp of the archive value that triggered the True condition and leading up to the

timestamp of the archive value that triggered the False condition.

pFil

terTag

The single tagname used when applying the filter criteria.

Historian | 39 - The Excel Add-In for Historian | 2776

Para

meter
Description

pNum

berOf

Samples

Number of samples from the archive to retrieve.

Samples will be evenly spaced within the time range defined by start time and end time for

most sampling modes. For the RawByNumber sampling mode, the NumberOfSamples column deter

mines the maximum number of values to retrieve. For the RawByTime sampling mode, the Num

berOfSamples is ignored.

pRowCol The sorting criteria used: 0 for columns and 1 for rows.

pSam

pling

Inter

val

For non-raw sampled data, this column represents a positive integer for the time interval (in

milliseconds) between returned samples.

pSam

pling

Mode

The type of the sampling mode (on page 1044) used by the query.

p

Search

Text

The text or mask that you want to search for in the message.

pServer Name of the server from which you are retrieving data. If you are running Excel on the same

server from which you are retrieving data, you need not enter a string, as the default server is

used.

pSort The sorting criteria used for the rows or columns: 0 for descending and 1 for ascending.

pStart

Time

The start time used to refine your query.

pTag

Mask

A search mask for browsing tagnames. Use standard Windows wildcard characters.

pTag

Name

The tagname or tagname mask that you want to query.

pTopic The message topic:

• Connections

• Configuration

Historian | 39 - The Excel Add-In for Historian | 2777

Para

meter
Description

• General

• Services

• Performance

• Security

Parame

ters()

Output display of the array formula. This field can include be one or more parameters.

Relative Time Entries

When entering the Start and End times for Excel Add-in queries and exports, you can already enter them

as exact literal dates and times such as “1/28/14 09:00:00” in the query windows like Query Calculated

Data, or you can use a cell reference to an exact time, or use an Excel function such as =Now() or =Today().

Apart from the mentioned ways, you can use relative time entries using a base value and an offset value

as described in the following tables.

For example, you can use Yesterday+8H for 8am yesterday or Now-15m for 15 minutes before the current

time. The typical use of a relative time entry, is to type the time values using a base and an offset into the

start and end time of the Query window or the Export window, instead of having to put =Now() or =Today()

in a cell and making a cell reference to that, or use the base Monday to produce weekly reports.

Base Values

Base

Value
Description

Now The current date and time.

Today The current date at midnight.

Yesterday The previous day at midnight.

Sunday Today or the most recent Sunday at midnight.

Monday Today or the most recent Monday at midnight.

Tuesday Today or the most recent Tuesday at midnight.

Wednesday Today or the most recent Wednesday at mid

night.

Historian | 39 - The Excel Add-In for Historian | 2778

Base

Value
Description

Thursday Today or the most recent Thursday at midnight.

Friday Today or the most recent Friday at midnight.

Saturday Today or the most recent Saturday at midnight.

Offset Values

Offset Value Description

d One 24 hour day

h One hour

m One minute

s One second

Filter Parameters for Data Queries

Para

me

ters

Description

Filter

Tag

The single tag name used when applying the filter criteria.

Note:

You can enter your filter conditions using Filter tag, Filter Comparison Mode, and Filter

Comparison Value or you can put that all that information in a single Filter Expression.

Filter

Ex

pres

sion

An expression that includes one or more filter conditions. The types of conditions used are:

• AND Condition

• OR Condition

• Combination of both AND and OR

FilterExpression can be used instead of FilterTag, FilterComparisonMode and FilterValue para

meters. There is no maximum length for a filter expression.

Filter

Mode

The type of time filter:

Historian | 39 - The Excel Add-In for Historian | 2779

Para

me

ters

Description

• ExactTime — Retrieves data for the exact times that the filter condition is True (only

True).

• BeforeTime — Retrieves data from the time of the last False filter condition up until the

time of the True condition (False until True).

• AfterTime — Retrieves data from the time of the True filter condition up until the time of

next False condition (True until False).

• BeforeAndAfterTime — Retrieves data from the time of the last False filter condition up

until the time of next False condition (While True).

The Filter Mode defines how time periods before and after transitions in the filter condition

should be handled.

For example, AfterTime indicates that the filter condition should be True starting at the time

stamp of the archive value that triggered the True condition and leading up to the timestamp of

the archive value that triggered the False condition.

Filter

Com

par

ison

Mode

The type of comparison to be made on the filter comparison value:

• Equal — Filter condition is True when the Filter Tag is equal to the comparison value.

• EqualFirst — Filter condition is True when the Filter Tag is equal to the first comparison

value.

• EqualLast — Filter condition is True when the Filter Tag is equal to the last comparison

value.

• NotEqual — Filter condition is True when the Filter Tag is NOT equal to the comparison

value.

• LessThan — Filter condition is True when the Filter Tag is less than the comparison val

ue.

• GreaterThan — Filter condition is True when the Filter Tag is greater than the compari

son value.

• LessThanEqual — Filter condition is True when the Filter Tag is less than or equal to the

comparison value.

• GreaterThanEqual — Filter condition is True when the Filter Tag is greater than or equal

to the comparison value.

• AllBitsSet — Filter condition is True when the binary value of the Filter Tag is equal to all

the bits in the condition. It is represented as ^ to be used in Filter Expression.

Historian | 39 - The Excel Add-In for Historian | 2780

Para

me

ters

Description

• AnyBitSet — Filter condition is True when the binary value of the Filter Tag is equal to

any of the bits in the condition. It is represented as ~ to be used in Filter Expression.

• AnyBitNotSet — Filter condition is True when the binary value of the Filter Tag is not

equal to any one of the bits in the condition. It is represented as !~ to be used in Filter

Expression.

• AllBitsNotSet — Filter condition is True when the binary value of the Filter Tag is not

equal to all the bits in the condition. It is represented as !^ to be used in Filter Expres

sion.

• Alarm Condition — Specifies an alarm condition to filter data by. For example, Level.

• Alarm SubCondition — Specifies an alarm sub-condition to filter data by. For example,

HIHI.

The Filter Comparison Mode defines how archive values for the Filter Tag should be compared

to the Filter Value to establish the state of the filter condition. If a Filter Tag and Filter Compar

ison Value are supplied, time periods are filtered from the results where the filter condition is

False.

Note:

Filter Comparison Mode is only used if Filter Tag is filled in.

Fil

ter

Com

par

ison

Value

The value to compare the filter tag with when applying the appropriate filter to the data record

set query (to determine the appropriate filter times).

Note:

Filter Comparison Value is only used if Filter Tag is filled in.

Batch IDs

If you had a BatchID going into a Historian tag, that BatchID will either have a timestamp at the beginning

of the batch or at the end of the batch. Different batch systems report the BatchID as the batch is started,

and other systems do not report the BatchID until the batch is finished.

If your BatchID is reported at the beginning of a batch, you would need to use the AfterTime option

because you would want to include all data for a particular BatchID after the time the BatchID was

Historian | 39 - The Excel Add-In for Historian | 2781

reported up until the next BatchID was reported. If your BatchID was being reported at the end of the

batch, you would want to use the BeforeTime option because you would want to include all data for

a particular Batch ID before the time the Batch ID was reported back to the previous BatchID being

reported.

Sampling Types

Interpolated Sampling

Calculates values between two data points using a linear interpolation algorithm.

Calculated Sampling

Computes values using an algorithm selected in the Calculation field.

Lab Sampling

Computes intermediate values between two data points by using the last actual value. This

type of sampling displays as a stair step type of curve.

Trend Sampling

Returns the raw minimum and raw maximum value for each specified interval. Use the Trend

sampling mode to maximize performance when retrieving data points for plotting. For the

Trend sampling mode, if the sampling period does not evenly divide by the interval length,

Historian ignores any leftover values at the end, rather than putting them into a smaller

interval.

InterpolatedtoRaw Sampling

Provides raw data in place of interpolated data when the number of samples fall lesser than

the available samples.

TrendtoRaw Sampling

The TrendtoRaw sampling mode almost always produces the same results as the Trend

sampling mode. The exception is that, when more samples are requested than there are raw

data points, the TrendtoRaw sampling mode returns all of the available raw data points with

no further processing. TrendtoRaw is therefore used rather than Trend when the number of

actual data samples are fewer than the requested number of samples.

LabtoRaw Sampling

Provides raw data for the selected calculated data over the plot, when the number of

samples fall lesser than the available samples.

RawByFilterToggle Sampling

Historian | 39 - The Excel Add-In for Historian | 2782

Returns filtered time ranges with values 0 and 1. If the value is 1, then the filter condition

is true and 0 means false. This sampling mode is used with the time range and filter tag

conditions. The result starts with a starting time stamp and ends with an ending timestamp.

Trend2 Sampling

Returns the raw minimum and raw maximum value for each specified interval. Use the

Trend2 sampling mode to maximize performance when retrieving data points for plotting.

Also, if the sampling period does not evenly divide by the interval length, Historian creates

as many intervals of the interval length as will fit into the sampling period, and then creates

a remainder interval from whatever time is left. Trend2 sampling mode is more suitable than

Trend sampling mode for analysis of mins and maxes and for plotting programs that can

handle unevenly spaced data.

TrendtoRaw2 Sampling

The TrendtoRaw2 sampling mode almost always produces the same results as the Trend2

sampling mode. The exception is that, when more samples are requested than there are raw

data points, the TrendtoRaw2 sampling mode returns all of the available raw data points

with no further processing. TrendtoRaw2 is therefore used rather than Trend2 when the

number of actual data samples are fewer than the requested number of samples.

Calculation Algorithm Types

Average

A time weighted arithmetic mean.

Minimum

The lowest value in the group.

Maximum

The highest value in the group.

Standard Deviation

The square root of the arithmetic mean of deviations from the time- weighted arithmetic

mean of all values in the group.

Total

The time-weighted total of all values in the group. Note that Engineering Units are assumed

to be in Units/Day. If your Engineering Units were not measured in Units/Day, you must scale

your total to the actual time units of the measurement. For example, if the measurement

Historian | 39 - The Excel Add-In for Historian | 2783

were in Units/Minute (such as GPM), you would multiply the total number by 1440 (minutes

in a day) to scale the value into the correct time units.

Count

The total number of values in the group.

Raw Average

The unweighted arithmetic mean of all values in the group.

Raw Standard Deviation

The square root of the arithmetic mean of deviations from the unweighted arithmetic mean

of all values in the group.

Raw Total

The unweighted total of all values in the group.

Time of Minimum Value

The time at which the minimum value occurred. l Time of Maximum Value - the time at

which the maximum value occurred.

Time Good

The amount of time (in milliseconds) during the interval when the data quality is good.

State Count

Displays the number of times a tag has transitioned to another state from a previous state.

A state transition is counted when the previous good sample is not equal to the state value

and the next good sample is equal to state value.

State Time

Displays the duration that a tag was in a given state within an interval.

First Raw Value

Returns the first good raw sample value in the given time interval.

First Raw Time

Returns the time stamp of the first good raw sample in the given time interval.

Last Raw Value

Returns the last good raw sample value in the given time interval.

Last Raw Time

Returns the time stamp of the last good raw sample in the given time interval.

Historian | 39 - The Excel Add-In for Historian | 2784

TagStats

Returns the values of multiple calculation modes in a single query.

Delta Positive, Delta Negative, and Delta

Return the delta over a time interval. For more information, refer to:

• DELTAPOS (on page 1116)

• DELTANEG (on page 1132)

• DELTA (on page 1141)

Tag Criteria List

The following table outlines the tag criteria available:

Criteria Description

Tagname Tagname or tag mask property of the tag.

Description User description of the tag.

Data Type The data type of the tag.

Collector Name Name of the collector responsible for collecting data for the

specified tag.

Collector Type The type of collector responsible for collecting data for the

tag.

Note:

Do not use wildcards in this field.

Collection Type Type of collection used to acquire data for the tag.

Data Store Name Indicates the name of the data store to which the tag be

longs to.

EGU Description Indicates the engineering units assigned to the tag.

Note:

Do not use wildcards in this field.

Comment Comments that is applied to the tag.

Historian | 39 - The Excel Add-In for Historian | 2785

Criteria Description

Note:

Do not use wildcards in this field.

Source Address The address for the selected tag in the data store.

Note:

Do not use wildcards in this field.

Collection Interval The time interval between the readings of data. The value

entered is in milliseconds.

Collector Compression Whether or not collector compression is enabled as a de

fault setting.

Archive Compression Indicates the current effect of archive data compression.

Last Modified User The name of the person who last modified the tag configu

ration parameters.

Enumerated Set Name Indicates the enumerated set name associated with the tag.

Troubleshooting Issues with the Add-In
Troubleshooting General Imports

• Review the HistorianSDKErrors.log file. This file is usually located in the

LogFiles folder in your Historian program folder. Historian records additional

information for some errors in this file. Sometimes, by reviewing this file, you can

determine the cause of the error.

• If using Historian security, verify that the user has the appropriate security rights.

If the rights are incorrect, log in as a user with the correct privileges or change the

rights for the current user.

• Verify that there are no empty rows between valid rows in your spreadsheet. These

empty rows can cause issues.

• Note if any errors occur. If an error occurs with any line of the import, Historian aborts

the whole import.

Troubleshooting Tag Imports

Historian | 39 - The Excel Add-In for Historian | 2786

• If you remove or add Historian servers, and then if you attempt to search for tags, the

add-in may not recognize the default server, and may display a message, stating that

the default server has not been set. To avoid this issue, close and reopen the Search

Tags window.

• Make sure that you are not trying to import the Calculation Execution Time, Last

Modified, or Last Modified User fields for each tag. These fields are read-only. As

such, you can export them but cannot import them.

• Verify that your collector does not contain any duplicate tagnames.

• Verify that the number of tags that you want to import does not exceed the maximum

licensed tag count. If it does, you will not be able to import the tags.

Troubleshooting Data Imports

• Ensure that the time stamps of any online archives are not prior to the start time of

the oldest online archive.

• Ensure that the time stamps are within the active hours setting in the Data Store

Maintenance page of Historian Administrator.

• Ensure that the time stamps are not for a time greater than 15 minutes ahead of the

system time on the Historian server.

• Ensure that the tags are valid Historian tags. To do this, import your tags before

importing their associated data.

Troubleshooting Data or Tag Exports

You cannot export data or tags to a remote path using the add-in.

You can export a 64-bit tag, include it in a report and perform calculations on it. However,

there will be a minor precision loss while retrieving the data due to a Visual Basic limitation.

Importing Tags Fails

Description: If you export all the fields and attempt to import the read-only fields

LastModified and LastModifiedUser, you may receive an error message.

Error Message: Import failed, Error with Import Header.

Workaround: Export the tags without selecting the read-only fields, and then import the tags.

Unable to Run Sample Reports

Historian | 39 - The Excel Add-In for Historian | 2787

Description: If you follow the recommended installation procedures, you should not have

any difficulty in running the sample reports. If you do encounter any problems, they are likely

to relate to the locations of files and the links to those files.

Workaround: When opening a sample Excel report, you may receive a message prompting

you to update all linked information in the workbook or keep the existing information. We

recommend that you select No (that is, keep the existing information). The links will be

automatically updated for your worksheet. Save your worksheet after the links have been

updated.

For problems in the worksheets themselves, refer to Excel online Help for assistance.

Error Occurs While Inserting an Array Formula

When inserting an array formula, you cannot overwrite part of the range of another array

formula in your worksheet. The range includes cells without data displayed. An error

message appears if you try to do so. Reselect a different output range to insert the formula.

Chapter 40. The Excel Addin for Operations Hub

Overview of the Excel Add-In for Operations Hub
The Excel Add-in for Operations Hub enhances the benefits of using Operations Hub. It enables you to

retrieve the object data that can be used to perform further analysis using Excel features.

Features:

• Query: Enables you to perform the model query and to import the data into Excel. You can query

historical data based on object types, objects, and data variables.

• Configuration: Enables you to connect to Operations Hub and save the server details.

• About: Displays the version information of the add-in.

• Help: Displays the product documentation for the add-in.

• Logs: Opens the folder where you can view the logs.

In addition, you can:

• View the metadata of the selected data variables and objects in Excel.

• Select the data filter options with which you can filter the data to be retrieved.

• Select the output display options for which you want to view the data.

Limitations:

• If you query the data variables of data type string, byte, or array, a null value is returned

• You cannot query current value for an array tag using the Excel Add-In for Operations Hub. .

• If you query the following calculation modes, an error occurs:

◦ Minimum Time

◦ Maximum Time

◦ First Raw Time

◦ Last Raw Time

◦ Time Good

Historian | 40 - The Excel Addin for Operations Hub | 2789

About Operations Hub

Operations Hub is an end-to-end solution for developing, managing, and delivering applications to

leverage the capabilities of big data analytics and the internet of things. Using Operations Hub, you can

create applications that will collect and analyze data from a machine or a server, and trigger actions

based on certain events.

Operations Hub provides you a user-friendly interface to create components of an application such as

queries, database tables (called entities), events, email templates, users, and so on without the need to

use your programming skills. You can also design pages and dashboards using these components.

Advantages of using Operations Hub

• Operations Hub is quick, easy, and cost-effective. You do not need programming skills to develop

an application.

• The Operations Hub applications use HTML5 and CSS3, and hence, they are platform-independent.

• You can access an application using a computer or a mobile device.

• You can provide controlled access to an application and data, based on user roles.

• You can create entities and queries for a relational database.

For more information about Operations Hub, refer to

https://www.ge.com/digital/documentation/opshub/windows/windows/

c_overview_of_app_designer.html

Setting Up

Software Requirements

The following components are required to use Excel Add-in for Operations Hub:

Component Version Description

Operations Hub 2.0 and above. If you have purchased the stan

dard or enterprise license of His

torian, you receive a no-cost li

cense for Operations Hub, which

enables you to:

https://www.ge.com/digital/documentation/opshub/windows/windows/c_overview_of_app_designer.html
https://www.ge.com/digital/documentation/opshub/windows/windows/c_overview_of_app_designer.html

Historian | 40 - The Excel Addin for Operations Hub | 2790

Component Version Description

• Access to the Historian

Analysis run-time applica

tion, which is an in-built

HTML5 application in Op

erations Hub.

• Perform advanced trend

analysis, including insert

ing annotations.

• Define an asset model in

cluding tag mapping.

Microsoft Excel 2016 and 2019 (32 bit or 64 bit)

Historian REST APIs Historian REST APIs are required

to integrate between Historian

and Operations Hub. Historian

REST APIs are installed automat

ically when you install Historian

Web-based Clients (on page 155).

Install Excel Add-In for Operations Hub

Install the Historian server (on page 104) and other software requirements (on page 198).

1. Run the InstallLauncher.exe file.

2. Select Install Excel Add-in for Operations Hub.

The welcome page appears.

3. Select Next.

4. Read and accept the license agreement, and then select Next.

5. Select the available disk to install the Excel Add-in for Operations Hub, and then select Next.

Note:

We recommend that you select the drive where Microsoft Excel is installed.

6. Provide the details of Operations Hub, and then select Next.

Historian | 40 - The Excel Addin for Operations Hub | 2791

The You are ready to install page appears.

7. Select Install.

Excel Add-In for Operations Hub is installed.

Copy/export the issuer certificate (on page 200), and then install/import it (on page 201).

Copy or Export the Issuer Certificate on Server

Install Excel Add-In for Operations Hub (on page 199).

This topic describes how to copy or export the issuer certificate on Server. If this is not done, you will get

an error while querying data as shown in the image below.

Historian | 40 - The Excel Addin for Operations Hub | 2792

1. Navigate to the machine where Operations Hub is installed.

2. Select Site Information (Not secure).

3. Select Certificate (invalid).

The Certificate window appears.

4. Select Certificate Path.

5. Select the Root CA certificate.

6. Select Details.

7. Select Copy to file.

The Certificate Export Wizard window appears.

8. Select DER encoded binary X.509(.CER) format and select Next.

9. Select Browse to save the certificate file at desired location.

10. Complete the certificate export.

Install or import the certificate (on page 201).

Install/Import the Issuer Certificate

Copy or export the issuer certificate (on page 200) on the machine on which Excel Add-In for Operations

Hub is installed.

1. Right-click the certificate, and then select Install Certificate.

The Certificate Import Wizard page appears

2. Select Local Machine, and then, select Next.

3. Select Place all certificates in the following store.

4. Select Trusted Root certification Authorities, and then select OK.

5. Select Next, and then select Finish.

The certificate is imported.

Configure the Operations Hub server (on page 202).

Historian | 40 - The Excel Addin for Operations Hub | 2793

Connect to Operations Hub

To query a model defined in Operations Hub, you must first connect to the Operations Hub server. You will

then receive a token from the server, which will be used for authentication.

1. Select Configuration menu in Admin.

The Operations Hub Configuration window appears.

2. Provide values as described in the following table.

Field Details

Operations Hub Server The Operations Hub server name to which you

want to connect and get the data.

Operations Hub Proficy Authentication Server

(url)

The URL of the Proficy Authentication service

of Operations Hub.

Example: https://<ophubservername>/uaa

Note:

The Token Status field indicates the status of the connection with Operations Hub server.

3. Select Connect.

The login page appears.

4. Provide the User Identifier and Password to connect to Operations Hub.

5. Select Open UaaAuthSchemeHandler.

Operations Hub Server to which you are connected and the status of the token appears.

6. Select Save to save the Operations Hub server details. The configuration will be retained and used

when you open excel add-in again.

Querying an Operations Hub Model
You can query an Operations Hub model using the object types, data variables, and objects:

Item Description

Object types Define the structure of the equipment within your

model (for example, a car).

Object types are represented by .

Historian | 40 - The Excel Addin for Operations Hub | 2794

Item Description

Data variables Define the actual data that is received from a data

source - that is, how to use a property in the Views

feature. For example, you can define a property to

appear as a trend line on a trend chart. For each

object type, such as a car, you set up all the data

variable names (such as color, speed). Any object

associated with this type can reuse them in its own

definition.

Data variables are represented by .

Objects Instances of object types or pieces of equipment

(for example, BMW, BENZ).

Objects are represented by .

The following image shows the object types, data variables, and objects in the add-in.

Query Operations Hub Model

1. Access an Excel worksheet.

2. Select the object type from the Object Type drop-down list box. Example: Car.

Historian | 40 - The Excel Addin for Operations Hub | 2795

The corresponding data variables and contained types are displayed in the Data Variables list for

the selected Object Type.

3. Optional: Select the Get Full Object Type Hierarchy check box to get the complete object type

hierarchy for the selected object type in the data variables

Note:

Selecting this option might impact the performance and you may experience the delay in

retrieving and browsing the object type hierarchy.

4. Select the data variables from the Data Variables list.

Note:

Only one level of the object type hierarchy is displayed. Double-click the object types to

browse through the other levels.

Tip:

You can right select in the Data Variables section to perform the following actions:

◦ Check All: Selects all the data variables.

◦ Collapse All: Collapses the hierarchy.

◦ Expand All: Expands the hierarchy displaying all the data variables.

◦ Uncheck All: Deselects all the data variables.

5. Optional: Enter a search criterion in the Search String text box and then, select the Search icon to

filter the data variables based on the string entered.

Note:

‘*’ can be used as wild card character in the search text box.

The resultant data variables matching the filter string appear in the data variables list.

6. Optional: Select the Auto Search check box to filter the data variables as you type the string in the

Search String text box. Note: Auto search option is recommended only when your model has less

number data variables.

7. Select the objects from the Objects list. You can right-select in the Objects section to perform the

following actions:

◦ Check All: Selects all the objects.

◦ Uncheck All: Deselects all the objects.

Historian | 40 - The Excel Addin for Operations Hub | 2796

8. Select Apply to apply the selection to query the model.

9. Select View Selected to view the metadata of selected data variables and objects. The details will

appear on Excel.

Note:

You can continue with building the query returning to the Build Query window by selecting

the Query button.

10. Optional: You can select the Clear Selections button to clear all selections.

11. Select the Data Filter Options to retrieve the data based on the sampling and calculation modes:

◦ Start/End Time: The duration for which you want to retrieve the data.

◦ Sampling modes: The sampling mode for the data. It specifies the way data will be retrieved

from Historian. Example: CurrentValue, Interpolated, Calculated and RawByTime. For more

information, refer to Sampling Modes (on page 1044).

◦ Calculation modes: Calculation modes are used when the sampling mode is set

to Calculated. The data type of all calculated values will be DoubleFloat except for

MinimumTime, MaximumTime, FirstRawTime and LastRawTime which will be a Date. The

datatype of the values of FirstRawValue and LastRawValue will be the same as that of the

selected tag.

The Calculation Field is active only after you select Calculated Sampling as the Sample

Type. You can select a Calculation Algorithm type from the drop-down list.

The calculation modes supported by Historian are supported by Excel Add-in for Operations

Hub except Minimum Time, Maximum Time, First Raw Time, Last Raw Time, Time Good,

State Count, State Time.

Note:

Minimum Time, Maximum Time, First Raw Time, Last Raw Time, Time Good

calculation modes are listed in the Calculation Modes drop-down but are not

supported.

For more information, refer to Calculation Modes (on page 1085).

Historian | 40 - The Excel Addin for Operations Hub | 2797

Note:

Some of the calculation modes such as Minimum Time,Maximum Time, First Raw Time,

Last Raw Time, Time Good are returning bad data upon query.

12. Select the Data Quality based on which you want to export the samples.

13. Select the Data Display Options

◦ Columns: Select the Columns for which you want the values to be displayed. By default,

Node, Node Id (Tag Name) will be selected.

◦ Data time to display: Choose the timestamp format to be displayed.

▪ Default: To display the time format as in Operations Hub.

▪ Local: To display the time in local time zone.

▪ ISO 8601 Format: To display time in ISO 8601 readable format. (Result will include T

for the time designator and Z for the zero UTC offset)

Note:

When you query for a data variable in a duration which has no data, the

Default mode selection displays time value as 0 and Local and ISO 8601

format displays time as 1970 year because, the 0 epoch time converted to

local time is 1970.

14. Select Get Data to read and display data for the selected data variables in the excel sheet.

Troubleshooting Issues with the Add-In
Query Error

Error Message: Failed to read objects-by-types. Check the log for details. The request was aborted: Could

not create SSL/TLS secure channel.

Workaround: Provide values as described in the following table:

Historian | 40 - The Excel Addin for Operations Hub | 2798

Field Details

Name SchUseStrongCrypto

Value '1'

Type DWord

Operations Hub Proficy Authenti

cation Server (url)

HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Mi

crosoft\.NetFramework\v4.0.30319

Error Occurs if you Query an Object Type with many properties and containment objects

Error Message: Proxy server could not handle the request.

Workaround: Use the on-demand approach.

Blank Login Page Appears

Issue: When Operations Hub Proficy Authentication is opened (logged in) in browser and then if you try

to connect to Operations Hub Proficy Authentication from Excel Add-in, sometimes, a blank login page

appears.

Workaround: Refresh the browser window which pops up authorize window and then, select Open

UaaAuthSchemeHandler.

Data Variable Selections are not Retained

Issue: When the data variables are searched and selected from the Object Type hierarchy, previously

made selections of data variables (before search) are not retained.

Workaround: Remove the text entered in the Search text box and select Apply for all the previous

selections to be applied.

Error Occurs Even Before Performing an Action

Error Message: Failed to get access_token.

Workaround: Get the token from the Operations Hub Proficy Authentication server by selecting

Configuration in the add-in.

Chapter 41. Trend Client

Overview of Trend Client
Trend Client provides a simple and intuitive interface to analyze your process and equipment data to:

• Troubleshoot and improve your processes.

• Save operational cost, money, and risk.

Using Trend Client, you can plot trend charts and current-value tables, which help you visualize timeseries

data.

To install Trend Client, install Web-based Clients.

Access Trend Client

Web-based Clients.

1. On the desktop, select . Alternatively, you can access the following URL: https://<Trend

Client web server name>/uaa/login#/home

2. Log in with the credentials you provided while installing Web-based Clients.

The Trend Client home page appears.

Access Help

In the upper-right corner of Trend Client, select .

The Help documentation for Trend Client appears.

Access a Tag
When you search for a tag, you can narrow down the search results further by performing a basic search

or an advanced search.

Note:

By default, maximum one million tags are retrieved. If the Historian clients are configured to

retrieve more than a million tags, to retrieve all of them, add the MaxTagsToRetrieve registry key

under HKEY_LOCAL_MACHINE\SOFTWARE\Intellution, Inc.\iHistorian\Services

https://www.ge.com/digital/documentation/historian/version2024/c_about_installing_web_based_clients.html
https://www.ge.com/digital/documentation/historian/version2024/c_about_installing_web_based_clients.html

Historian | 41 - Trend Client | 2800

\DataArchiver\, and then set the maximum number of tags that you want to retrieve. Restart

the Historian Data Archiver service for the change to reflect.

1. Access Trend Client (on page 2799).

2. If you want to access all tags, select Tags > Search.

The Tags Search window appears.

3. If you want to access all tags, select .

A list of all the tags in the Historian server appears. You can filter the list of tags by entering the

name or description in the text box.

4. If you want to perform an advanced search:

a. On the Tags page, select Advance Search.

The Advanced Tag Search window appears.

b. Expand Select Tag Criteria, and enter values in the search criteria.

Note:

Supported wildcard characters in search are * and ?. The following table provides

examples of searching using wildcard characters.

Search String Result

W* All tags starting with letter W

*e All tags ending with letter e

W*e All tags starting and ending with W and e respectively

Tag? All four letter named tags, where the last letter can be any

thing

W*0000? All tag names staring with W and ending with 0000 followed

by any single letter

c. Select Find Tags.

A list of tags that match the search criteria appears.

Note:

Do not add or update the following spare configurations as the data may get

corrupted or over written:

Historian | 41 - Trend Client | 2801

▪ The Spare 1 field for OSI PI Distributor. OSI PI distributor reads data from the

Historian tag displayed in the Tag Source Address field and sends it to the

OSI PI tag name displayed in the Spare 1 field.

▪ The Spare 5 field for Server to Server Collector and Server to Server

Distributor as it is only used for internal purposes.

To analyze the tag data, add it in a trend chart (on page 2802), current value table (on page 2803), value

card (on page 2803), or a text box (on page 2804).

Add Tags for Analysis

Before you access the trend chart or value table of a tag, you must add it to the Tags section.

1. On the Tags page, select Advance Search.

The Advanced Tag Search window appears.

2. Expand Select Tag Criteria, and enter values in the search criteria.

Note:

Supported wildcard characters in search are * and ?. The following table provides

examples of searching using wildcard characters.

Search String Result

W* All tags starting with letter W

*e All tags ending with letter e

W*e All tags starting and ending with W and e respectively

Tag? All four letter named tags, where the last letter can be anything

W*0000? All tag names staring with W and ending with 0000 followed by

any single letter

3. Select Find Tags.

A list of tags that match the search criteria appears.

4. In the row containing each tag that you want to add, select , and then select Apply.

The tags appear in the Summary and Tags sections.

Historian | 41 - Trend Client | 2802

To analyze the tag data, add it in a trend chart (on page 2802), current value table (on page 2803), value

card (on page 2803), or a text box (on page 2804).

Creating a Display

Add a Trend Chart

By default, the sample size limit that is plotted on a trend chart is 2000. If you want to change this value:

1. In the upper-right corner of Trend Client, select the drop-down list box, and then select System

Config.

The System Configuration page appears.

2. In the Analysis Sample Size Limit field, enter the sample size, and press Enter.

The changes are automatically saved.

SImilarly, maximum 30 days of data is plotted on a trend chart; you can change this value.

Trend charts are graphical representations for showing how the value of one or more items changes over

time. Trend charts can show information as Line, Area, Scatter, and Statistics Charts.

1. Access Trend Client (on page 2799).

2. Select .

3. Add tags for analysis (on page 2801).

4. Select the tags, and drag and drop them into the chart area.

Historian | 41 - Trend Client | 2803

A trend chart is plotted for the selected tags. A blue dot appears in the row containing each tag in

the Tags section, indicating that you have added it to the chart.

Tip:

By default, the title of the table is Chart <number>. You can rename the title as needed.

You can add more trend charts, or you can add a current value table (on page 2803), value card (on page

2803), or a text box (on page 2804) to the display.

Add a Current Value Table

A current value table provides the current value of each tag, along with the quality, description, units of

measurement, and so on.

1. Access Trend Client (on page 2799).

2. Select .

A blank current value table appears.

3. Add tags for analysis (on page 2801).

4. In the Tags section, select each tag that you want to include in the current value table, and drag and

drop it to the table.

The tags are added to the current value table, displaying the current value, quality, description, and

so on.

Tip:

By default, the title of the table is Current Values <number>. You can rename the title as

needed.

You can add more current value tables, or you can add a trend chart (on page 2802), value card (on page

2803), or a text box (on page 2804) to the display.

Add a Value Card

The value card is a snapshot of the most current value of a tag. Each value card is limited to a single tag.

1. Access Trend Client (on page 2799).

2. Select .

A blank current value card appears.

Historian | 41 - Trend Client | 2804

3. Add the tag for analysis (on page 2801).

4. In the Tags section, select the tag that you want to include in the value card, and drag and drop it to

the value card.

The tags are added to the value card, displaying the current value, quality, description, timestamp,

and so on.

Tip:

By default, the title of the table is Current Values <number>. You can rename the title as

needed.

You can add more value cards, or you can add a trend chart (on page 2802), current value table (on page

2803), or a text box (on page 2804) to the display.

Add a Text Box

You can add a text box to enter free-form text to your display. The text box contains standard editing

icons.

1. Access Trend Client (on page 2799).

2. Select .

A blank text box appears.

3. Enter text and apply formatting as needed.

You can add more text boxes, or you can add a trend chart (on page 2802), current value table (on page

2803), or a value card (on page 2803) to the display.

Access a Display

1. In the upper-right corner of Trend Client, select .

A list of displays that you have saved appears.

2. Select the display that you want to access.

Historian | 41 - Trend Client | 2805

The display appears in the main section.

Tip:

If you want to remove the legends and statistics, and arrange the items in the display

vertically with two elements in each row, select and then Column View. If you want to

view only the trend charts, select and then Stacked View.

Provide a Title to a Display

1. Access Trend Client (on page 2799).

2. In the Click to add title box, enter the title of the display, and then press Enter.

The name must be unique and must not contain commas.

The title of the display is saved.

Filter Data

After adding tags to a trend chart, table, or a value card, you can filter the data based on certain criteria.

You can apply the filter only to a selected item in a display or to all the items.

Note:

You cannot filter data from multiple Historian servers.

This topic describes how to filter data based on tag values. You can also filter data based on the duration

(on page 2812).

1. Access the display in which you want to filter data.

2. Select Filter.

3. Select the tag, operator, and value in the corresponding drop-down list boxes. For example,

suppose you have plotted a tag named Tag1 on a trend chart. If you want to plot only the values

greater than 150, select Tag1, is greater than (>), and 150, respectively.

4. Ensure that the Enabled toggle is switched on.

5. As needed, add more conditions by selecting Add Condition.

6. If you want to apply the filter only to the selected item, select Apply. If you want to apply the filter to

all the items in the display, select Apply to All.

The data is filtered based on the criteria you have specified.

Historian | 41 - Trend Client | 2806

Change the Sampling Mode

By default, the sampling mode of items in a display is interpolated (1000 samples over the last hour). You

can change the sampling mode of data in a display. You can change the mode only to a selected item in a

display or to all the items.

You can choose from various sampling modes.

1. Access the display for which you want to change the mode.

2. Select Mode.

3. In the Sampling Mode field, select the sampling mode that you want to apply.

4. In the Sample Increment field, select one of the following options:

◦ By Size: Select this option if you want each sample to contain a specific number of data

points, and then enter the size. You must enter a value less than the value in the System

Configuration page. Otherwise, an error message appears.

◦ By Time: Select this option if you want each sample to contain the data points collected in a

fixed duration of time.

5. If you want to use the sampling mode only to the selected item, select Apply. If you want to use the

sampling mode to all the items in the display, select Apply to All.

The sampling mode is changed.

Change the Time Zone

By default, the local time zone is used for a display. You can change it to UTC.

1. In the upper-right corner of Trend Client, select the drop-down list box, and then select System

Config.

The System Configuration page appears.

https://www.ge.com/digital/documentation/historian/version2024/c_sampling_modes.html

Historian | 41 - Trend Client | 2807

2. Under Time Display, select the time zone you want to use.

A message appears, confirming that the time zone has been changed.

3. Log out of Trend Client, and log in again.

The time zone is changed.

Export Data

• Install Microsoft Excel 2007 or 2010.

• By default, the sample size limit that is plotted on a trend chart is 2000. In addition, you can export

data for a maximum duration of 30 days (43200 minutes) or 100,000 data points, whichever option

contains less data. And, the default delimiter is a semicolon. If you want to change these default

values:

1. In the upper-right corner of Trend Client, select the drop-down list box, and then select

System Config.

The System Configuration page appears.

2. In the Export Download Settings section, change the default values as needed. For the

delimiter, do not enter a character that is used in xml tags (such as <, >, &).

The changes are automatically saved.

You can export raw tag data or the data in a trend chart.

1. Select the charts with the tag data you want to export.

2. If you want to export raw data, select , and then select Export Raw Data. If you want to export

trend data, select , and then select Export Trended Data.

The data is exported as a CSV file.

Historian | 41 - Trend Client | 2808

Set the Refresh Interval

By default, the content in a display is refreshed every 30 seconds. You can change this value. Remember

that decreasing the interval can increase the server load.

1. In the upper-right corner of Trend Client, select the drop-down list box, and then select System

Config.

The System Configuration page appears.

2. In the Content Refresh Interval, select the duration, and press Enter.

The refresh interval is changed.

Working with a Trend Chart

Add a Trend Chart

By default, the sample size limit that is plotted on a trend chart is 2000. If you want to change this value:

Historian | 41 - Trend Client | 2809

1. In the upper-right corner of Trend Client, select the drop-down list box, and then select System

Config.

The System Configuration page appears.

2. In the Analysis Sample Size Limit field, enter the sample size, and press Enter.

The changes are automatically saved.

SImilarly, maximum 30 days of data is plotted on a trend chart; you can change this value.

Trend charts are graphical representations for showing how the value of one or more items changes over

time. Trend charts can show information as Line, Area, Scatter, and Statistics Charts.

1. Access Trend Client (on page 2799).

2. Select .

3. Add tags for analysis (on page 2801).

4. Select the tags, and drag and drop them into the chart area.

A trend chart is plotted for the selected tags. A blue dot appears in the row containing each tag in

the Tags section, indicating that you have added it to the chart.

Tip:

By default, the title of the table is Chart <number>. You can rename the title as needed.

You can add more trend charts, or you can add a current value table (on page 2803), value card (on page

2803), or a text box (on page 2804) to the display.

Historian | 41 - Trend Client | 2810

Switch the Y-Axis of a Trend Chart

You can switch the y-axis to the other side of a trend chart.

In the trend chart, select the drop-down list box that is labelled after the tag name, and then select Switch

Y-Axis.

The y-axis for the tag is shifted to the other side of the trend chart.

Change the Format of a Trend Chart

You can choose to plot each tag in any of the following formats:

• Line:

• Area:

Historian | 41 - Trend Client | 2811

• Scatter:

• Statistics:

Historian | 41 - Trend Client | 2812

If you select Statistics, a box and whisker chart are displayed in the trend chart. When you pause

over, the minimum, maximum, average, standard deviation, and data sample counts within the

interval as determined by the Historian Sampling Mode for the chart appear.

1. In the trend chart, select the drop-down list box that is labelled after the tag name, and then select

Edit.

The Chart Editor window appears.

2. For the tag selected in the Select Series field, in the Type field, select the trend chart format that

you want to use.

3. Select OK.

The format of the trend chart is changed for the selected tags.

Change the Duration of a Display

By default, the duration used for items in a display is one hour up to the current time. You can choose of

the following durations:

• One hour

• Eight hours

• One day

Historian | 41 - Trend Client | 2813

• One week

• One month

In addition, you can set the start and end dates and timezone.

1. Select Tags, and then select one of the following durations:

◦ 1h (one hour)

◦ 8h (eight hours)

◦ 1d (one day)

◦ 1w (one week)

◦ 1m (one month)

The items in the display are plotted for the selected duration.

2. If you want to change the start and end dates:

a. Select Time.

b. Enter values in the Start and End fields.

c. If you want to apply the start and end dates only for the selected item, select Apply. If you

want to apply the changes to all the items in the display, select Apply to All.

Access the Statistics of a Trend Chart

You can access the following statistics of a trend chart:

• First raw value

• Last raw value

• Minimum value

• Maximum value

• Count

• Raw total

• Raw average

• Raw standard deviation

1. Select the trend chart whose statistics you want to access.

2. Select Statistics.

The statistics of the trend chart appear.

Change the Sampling Mode of a Trend Chart

1. Select the trend chart whose sampling mode you want to change.

2. After you have added a chart(s), select Mode at the top of the page.

Historian | 41 - Trend Client | 2814

3. Select your Historian Sampling Mode from the drop-down menu.

◦ If your selection for Sampling Mode is Calculated, chose your calculation from the drop-

down menu.

4. Select the Sample Increment from the drop-down menu as either By Size or By Time.

Note:

Number of samples by size must be equal to or less than the limit defined by your System

Administrator; otherwise, a warning message informs you that the data will NOT be

retrieved.

5. Select Apply to apply to a specific chart, or select Apply to All to apply to all the charts in this

analysis session.

Change the Scale of a Trend Chart

By default, depending on the minimum and maximum tag values plotted in a trend chart, the upper scale

and lower scale of the y-axis are considered. You can, however, choose to enter these scales manually.

1. In the trend chart, select the drop-down list box that is labelled after the tag name, and then select

Edit.

The Chart Editor window appears.

2. For the tag selected in the Select Series field, switch the Auto Scale toggle.

The Min and Max fields appear.

3. Enter the lower scale and upper scale values in the Min and Max field respectively, and then select

OK.

The scale of the trend chart is changed.

Historian | 41 - Trend Client | 2815

Managing Favorites

Access a Favorite

1. In the upper-right corner of Trend Client, select .

A list of favorites appears.

2. Select the favorite that you want to access.

The favorite appears in the main section.

Export a Favorite

You can share your favorites with another uses by exporting the favorites. When you do so, a JSON file is

downloaded, containing the details of the favorites. Another user can then import this JSON file (on page

2816) to access your favorites.

• Open the Action menu for a single favorite and select on Export.

Your JSON file will be saved in your Downloads folder.

1. In the upper-left corner of Trend Client, select .

A list of favorites appears.

2. In the row containing the favorite that you want to export, select , and then select Export.

If you want to export all your favorites, select .

The favorites are exported as a JSON file.

Share the JSON file with the user who wants to import the favorites (on page 2816).

Historian | 41 - Trend Client | 2816

Import a Favorite

1. Copy the JSON file created by exporting the favorites that you want to import. For information, refer

to Export a Favorite (on page 2815).

2. If you want to import the favorites to Trend Client installed on a different Historian server, update

the Historian server name in all the tag names in the JSON file.

1. In the favorites section, select .

The Import Favorites window appears.

2. Select Browse, and select the JSON file that contains the favorites you want to import.

3. Select OK.

The favorites are imported.

Delete a Favorite

1. In the upper-left corner of Trend Client, select .

A list of favorites appears.

2. In the row containing the favorite that you want to delete, select , and then select Delete.

A message appears, asking you to confirm that you want to delete the favorite.

3. Select Yes.

The favorite is deleted.

Chapter 42. Historian Web Admin Console

Overview

Overview of the Web Admin Console

The Web Admin console is a web-based user interface, which you can use to monitor, supervise, archive,

retrieve, and control data gather functions from the Historian server, a client, or one or more remote web-

based nodes. It contains a diagnostic dashboard and Configuration Manager.

Using the Web Admin console, you can:

• Monitor and troubleshoot the system performance.

• Maintain and configure the Historian System.

• Retrieve and analyze archived information.

• Set up and maintain configuration and other parameters for tags, collectors, and archives.

• Perform specific supervisory and security tasks for the Historian system.

The WhereTo page is displayed when you logout and login to the Web Admin console without closing tab

or browser.

Workaround: Logout and close the tab or browser and reopen it.

Difference Between the Web Admin Console and Historian Administrator

The following features are available in the Web Admin consoleand not in Historian Administrator:

• Diagnostic Manager

• Ability to add or configure mirror nodes

The following features are available in Historian Administrator and not in the Web Admin console:

• A single interface to access all the servers.

• Ability to create a calculated tag.

• Ability to assign read/write/admin groups to a tag or a set of tags.

• Ability to define enumerated sets.

• Ability to define user-defined types.

• Ability to configure an OPC HDA server.

Historian | 42 - Historian Web Admin Console | 2818

Note:

Regardless of whether you perform a task using the Web Admin console or Historian

Administrator, the changes are reflected in both the applications.

Actions You Can Perform Using the Web Admin Console

• Examine key operating statistics for archives and collectors, and displays them in an interactive

user interface.

• Mirror stored data on multiple nodes to provide high levels of data reliability and redundancy. With

Data Mirror, you can have continuous data read and write functionality. Data Mirroring gives you:

◦ High availability of Historian Server as any of the mirrored nodes can answer read requests.

◦ Data Redundancy because data is stored in multiple locations.

• Perform archive maintenance, including:

◦ Set archive size.

◦ Select options and parameters.

◦ Display security parameters.

◦ Add and restore archives.

◦ Perform routine backup and restoration tasks.

• Perform tag maintenance, including:

◦ Add, delete, and copy tags.

◦ Search for tags in a data source or in the Historian Database.

◦ Start and stop collection on a tag.

◦ Configure display, and edit tag parameters and options.

◦ Display trend data for selected tags.

• Perform data collector maintenance, including:

◦ Add or delete collectors.

◦ Configure, display, and edit parameters for all types of collectors.

◦ Create calculation formulas.

◦ Display performance trends for selected collectors.

Access the Web Admin Console

Install Historian Web-based Clients (on page 154).

1. In a web browser, enter a URL in the following format: https://<web server name>/historian-

visualization/hwa#/home, where <web server name is the computer name on which you have

installed the Web Admin console.

The login page appears.

Historian | 42 - Historian Web Admin Console | 2819

2. Log in with your username and password.

The Web Admin console appears.

Understanding the Interface

Understand the Historian Interface

The main interface consists of several panels or windows and appears as shown in the following image:

The elements for this interface are defined as follows:

Table 407. Interface Descriptions

Number Item Description

1 Dashboard This link at the top left of the page opens the Historian Dashboard

page – the one that you are currently viewing, which displays the

overall picture of the system health.

2 Configuration This link opens the configuration panel. From there, you can view

and modify the details of collectors, client services, data stores, tags

Historian | 42 - Historian Web Admin Console | 2820

Table 407. Interface Descriptions (continued)

Number Item Description

and active jobs. For more information, refer to the Configuration

Panel (on page 2830) topic.

3 Auto / Manual Re

fresh

If Auto Refresh is ON, then the page is refreshed automatically. If Au

to Refresh is OFF, then you can manually refresh the page or the indi

vidual section of the dashboard by selecting the icon.

4 Data Node This panel displays the basic information of the nodes (Primary

Node & Mirror Nodes) currently available. To view the details of a

particular node, select the Details button of the node. The Data Node

page appears.

5 Read Sample Rate This panel gives you the trend of the average read sample rate

across all archives in the data store per sample per minute. You can

choose the time scales by selecting on the time options provided on

the top right area of the page. To scale the panel, select the icon. Re

ceive Rate This panel gives you the trend of the recent rate at which

the samples have been received per minute. You can choose the

time scales by selecting on the time options provided on the top

right area of the page. To scale the panel, select the icon.

6 Collectors This panel displays the details of all the unhealthy collectors con

nected to the system. To view the details of a particular collector, se

lect the Details button. The Collector Detail Diagnostics window ap

pears. To view all the collectors in the system select the Show All

Collectors button. The Configuration Page appears. For more infor

mation on the collector panel, refer to the Collector Statistics topic.

7 Clients This panels displays the client statistics of the top five read and

write clients in the order of the load that they impose on the server.

For more information, refer to the Client Statistics topic.

8 Color codes The Error, Warning, and Information color codes are displayed based

on the status of the Data Node, Collectors or Clients.

Client Panel

The Client panel in the Dashboard shows the details of all the connected clients in the system in the order

of their fault levels.

Historian | 42 - Historian Web Admin Console | 2821

Table 408. Client Statistics

Field Description

Connection Indicates the status of the current connection.

Machine Name The host name from where the client is connected.

Log-In User Name The user name with which the client is connected.

Connected On The date and time when the connection was established.

Last Activity On The time when the last read and write request was made.

Queries/Min The current rate at which the query requests are made.

Average Query Execution Time The average time taken to execute a query.

Timed Out Reads The number of timed out read requests made by clients. This

counter increments when a query made by a client is taking longer

time than "Max Query Time" or returning more samples than speci

fied in the "Max Query Intervals".

Samples Written/Min The current rate at which the data samples are written.

Details Select this button to view more client details. To view all the clients,

select the Show All Clients button. The All Clients page appears

Client Details

This page, which is accessed from the Client Statistics panel in the dashboard, shows the following

additional detail for a client.

Historian | 42 - Historian Web Admin Console | 2822

Field Description

Named Client/IP The name of the client or IP address from where the client is con

nected.

Last Query Exec Time The time taken to execute the last query.

Retrieved Samples/Min The current rate at which the data samples are received. For more in

formation, refer to the Client Statistics topic.

Collector Panel

The Collector panel in the Dashboard shows details of all the collectors whose performance does not

meet the required performance status. The collector statistics panel displays data described in the

following table. Select the Show All Collectors button to view all the collectors connected to the system.

The View All Collectors page is displayed.

Field Description

Connection Indicates the status of the current connection. "Running" (Green) indicates

that the collector is operating. "Stopped" (Red) indicates that it is in pause

mode and not collecting data. "Unknown" indicates that status information

about the collector is unavailable at present, perhaps as a result of a lost con

nection between collector and server.

Name The name of the computer the collector is running on.

Overruns Since Yester

day

The overruns in relation to the total events collected for the past 24 hours.

This value is calculated by using the following equation: OVERRUN_PCT = OVER

Historian | 42 - Historian Web Admin Console | 2823

Field Description

RUNS / (OVERRUNS + TOTAL_EVENTS_COLLECTED). Overruns are a count of the

total number of data events not collected on their scheduled polling cycle. In

normal operation, this value should be zero. You may be able to reduce the

number of overruns on the collector by increasing the tag collection intervals

(per tag).

Out of Order Since Yes

terday

The number of samples within a series of timestamped data values normally

transmitted in sequence have been received out of sequence for the past 24

hours. This field applies to all collectors. Even though events are still stored,

a steadily increasing number of out of order events indicates a problem with

data transmission that you should investigate. For instance, a steadily in

creasing number of out of order events when you are using the OPC Collector

means that there is an out of order between OPC Server and the OPC Collec

tor. This may also cause an out of order between the OPC Collector and the

Data Archiver, but that is not what this statistic indicates.

Reconnects/Day Displays the number of reconnections that happened in the last 24 hours.

Last Samples Received Displays the delayed data sample duration.

Comments Displays the comments if any.

Details Select this button to view the Collector Detail Diagnostics

Selecting the Details option for a particular collector pops up a display that shows the current statistics

on the operation of that selected data collector.

Historian | 42 - Historian Web Admin Console | 2824

To view or modify the configuration details of the collector, select the Configure button. The statistics

displayed on this page are computed independently on various time scales and schedules. As a result,

they may update at different times. You can choose the time scales by selecting on the time options

provided on the top right area of the page.

The collector detail diagnostics page has the following types of fields.

• Trendable Fields

◦ These fields can be trended.

◦ These fields can be distinguished by the trend icon next to the field name.

◦ To graphically view a particular trendable field based on the timestamp, select on the field

name.

• Non-Trendable Fields

◦ These fields cannot be trended.

◦ These fields have no trend icon next to the field name.

Historian | 42 - Historian Web Admin Console | 2825

Table 409. Trendable Fields

Field Description

Report Rate This display is a trend chart that displays the average rate at which data is

coming into the server from the selected collector. This is a general indica

tor of load on the Historian collector. Since this chart displays a slow trend of

compressed data, it may not always match the instantaneous value of Report

Rate displayed in the Collector panel of the System Statistics page.

Compression This display is a trend chart that displays the effectiveness of collector com

pression. If the chart displays a low current value, you can widen the com

pression deadbands to pass fewer values and increase the effect of com

pression.

Overruns Percent This trend chart displays the value at which data overruns are occurring.

This value is calculated by the following equation: OVERRUN_PCT =OVERRUNS /

(OVERRUNS + TOTAL_EVENTS_COLLECTED) Overruns are a count of the total

number of data events not collected. Under normal conditions, the current

value should always be zero. If the current value is not zero, which indicates

that data is being lost, you should take steps to reduce peak load on the sys

tem, by increasing the collection interval.

Total Events Collected Counts the total number of events collected from the data source by the col

lector.

Total Events Reported Counts the total number of events reported to the Historian archive from the

collector. This number may not match the Total Events Collected field due to

collector compression.

Out of Order The number of samples within a series of timestamped data values normally

transmitted in sequence have been received out of sequence since collector

startup. This field applies to all collectors. Even though events are still stored,

a steadily increasing number of out of order events indicates a problem with

data transmission that you should investigate. For instance, a steadily in

creasing number of out of order events when you are using the OPC Collector

means that there is an out of order between the OPC Server and the OPC Col

lector. This may also cause an out of order between the OPC Collector and

the data archiver but that is not what this statistic indicates.

Minimum Event Rate Specifies the minimum number of data samples per minute sent to the

archiver from all sources.

Historian | 42 - Historian Web Admin Console | 2826

Table 409. Trendable Fields (continued)

Field Description

Maximum Event Rate Specifies the maximum number of data samples per minute sent to the

archiver from all sources.

Status The current status of collection. "Running" indicates that the collector is op

erating. "Stopped" indicates that it is in pause mode and not collecting data.

"Unknown" indicates that status information about the collector is unavail

able at present, perhaps as a result of a lost connection between collector

and server

Table 410. Non-Trendable Fields

Field Description

Last Sample Timestamp Displays when the last data sample was written.

Redundancy Indicates whether collector redundancy is enabled or disabled.

Machine Name Displays the machine name where the collector is running.

Tag# Displays the number of tags added to the collector.

Data Node Panel

The Data Node panel displays the basic information of the Historian Data Archivers (Primary Node plus

Mirrors) currently available.

The Data Node panel displays data as described in the following table:

Field Description

Connection Indicates the status of the current connection. "Running" (Green) indicates

that the Data Archiver is active. "Stopped" (Red) indicates that the Data

Archiver is inactive. "Pause" indicates that the user has manually paused it.

Historian | 42 - Historian Web Admin Console | 2827

Field Description

Name The logical name of the service.

IP The IP address or the host name of the service.

Reason Displays why the Data Node is not performing as expected. The reason is a

warning message for the disk running out of space or memory. To view the

details of the problem, move the mouse over the reason.

Details Select this button to view the Data Node Detail Diagnostics.

Data Node Detail Diagnostics

The Data Node Detail diagnostics displays the data described in the following table. For each field, you

can see the graphical representation of the values based on the time scales selected.

Note:

The statistics displayed on this page are computed independently on various time scales and

schedules. As a result, they may update at different times.

You can choose the time scales by selecting on the time options provided on the top right area of the

page. To graphically view a particular parameter based on the timestamp, select the chart icon of the

parameter. Select the data store available with the selected data node to view its disk free space and its

statistics.

Historian | 42 - Historian Web Admin Console | 2828

Table 411. Utilization Stats

Field Description

Memory Utilization Indicates how much server memory is being consumed.

Write Cache Hit Ratio The hit ratio of the write cache in percent of total writes. It is a measure of

how efficiently the system is collecting data and should typically range from

95 to 99.99%. If the data is changing rapidly over a wide range, however, the

hit percentage drops significantly because current values differ from recent

ly cached values. More regular sampling may increase the hit percentage. Out

of order data also reduces the hit ratio.

Archive Compression The current effect of archive data compression. If the value is zero, it indi

cates that archive compression is either ineffective or turned off. To increase

the effect of data compression, increase the value of archive compression

deadbands on individual tags in the Tag Maintenance page to activate com

pression. In computing the effect of archive compression, Historian counts

internal system tags as well as data source tags. Therefore, when working

with a very small number of tags and with compression disabled on data

source tags, this field may indicate a value other than zero. If you use a realis

tic number of tags, however, system tags will constitute a very small percent

age of total tags and will therefore not cause a significant error in computing

the effect of archive compression on the total system.

Failed Writes The number of samples that failed to be written. Since failed writes are a

measure of system malfunctions or an indication of offline archive problems,

the value shown in the display should be zero. If you observe a non-zero val

ue, investigate the cause of the problem and take corrective action. The His

torian also generates a message if a write fails. Note that the message only

appears once per tag, for a succession of failed writes associated with that

tag. For example, if the number displayed in this field is 20, but they all pertain

to one Historian tag, you will only receive one message until the Historian tag

is healthy again.

Out of Order The number of samples within a series of timestamped data values normally

transmitted in sequence have been received out of sequence since collector

startup. This field applies to all collectors. Even though events are still stored,

a steadily increasing number of out of order events indicates a problem with

data transmission that you should investigate. For example, a steadily in

creasing number of out of order events when you are using the OPC Collector

Historian | 42 - Historian Web Admin Console | 2829

Table 411. Utilization Stats (continued)

Field Description

means that there is an out of order between the OPC Server and the OPC Col

lector. This may also cause an out of order between the OPC Collector and

the data archiver but that is not what this statistic indicates.

Table 412. Process Rate

Field Description

Read Queue Rate Specifies the number of read requests processed per minute, that came into

the archiver from all clients. A read request can return multiple data samples.

Write Queue Rate Specifies the number of write requests processed per minute, that came in

to the archiver from all clients. A write request can contain multiple data sam

ples.

Message Queue Rate Specifies the number of messages processed per minute.

Table 413. Queue Size

Field Description

Read Queue Size Displays the total number of messages present in the Read queue.

Write Queue Size Displays the total number of messages present in the Write queue.

Message Queue Size Displays the total number of messages present in the Message queue.

Table 414. Disk Usage

Field Description

Disk Free Space The amount of disk space (in MB) left in the current archive.

Est. Days to Fill The amount of time left before the archive is full, based on the current con

sumption rate. At that point, a new archive must be opened (could be auto

matic). To increase the days to full, you must reduce the Consumption Rate

as noted above.

To ensure that collection is not interrupted, you should make sure that the Au

tomatically Create Archives option is enabled in the Data Store Maintenance

page (the Global Options section).

Historian | 42 - Historian Web Admin Console | 2830

Table 414. Disk Usage (continued)

Field Description

You may also want to enable Overwrite Old Archives if you have limited disk

capacity. Enabling overwrite, however, means that some old data will be lost

when new data overwrites the data in the oldest online archive. Use this fea

ture only when necessary.

The Estimated Days Until Full field is dynamically calculated by the server and

becomes more accurate as an archive gets closer to completion. This num

ber is only an estimate and will vary based on a number of factors, including

the current compression effectiveness. The System sends messages notify

ing you at 5, 3, and 1 days until full.

Consumption Rate The speed at which you are using up archive disk space. If the value is too

high, you can reduce it by slowing the poll rate on selected tags or data points

or by increasing the filtering on the data (widening the compression dead

band to increase compression).

Configuration Panel

The Configuration page displays the current system status and performance statistics of Collectors (on

page 2822) and Clients (on page 2820), and allows configuration of the various components of the

Historian system. This page displays the data described in the following table.

Historian | 42 - Historian Web Admin Console | 2831

Table 415. Configuration Page Fields

Field Description

Services Displays the number of services running. For more information, refer to the

Configure Services (on page 2834) section.

Data Stores Displays the number of data stores configured in the system. For more infor

mation, refer to the Data Stores (on page 2833) section.

Tags The number of tags available with the data archiver. For more information, re

fer to the Tags (on page 2835) section.

Active Jobs Displays the number of current active jobs in the system. For more informa

tion, refer to the Jobs Page (on page 2834) section.

Collectors Displays the details of all the collectors available. For configuration of Collec

tors (on page 2822), refer to the Configure Collectors section.

Clients Displays the details of all the clients present in the system. For more informa

tion, refer to the Clients (on page 2820) section.

Configure Collectors

The Collectors panel in the Configuration page displays a mix of similar and additional data as the

Dashboard, as described in the following table.

Field Description

Connection Indicates the status of the current connection. "Running" indicates that the

collector is operating. "Stopped" indicates that it is in pause mode and not

collecting data. "Unknown" indicates that status information about the collec

tor is unavailable at present, perhaps as a result of a lost connection between

the collector and server.

Name The collector ID, which is used to identify the collector in an Historian system.

Rate The current rate in number of samples/minute at which the server is receiving

data from the collector. It is a measure of the collection rate and also of da

ta compression activity. A value equal to the data acquisition rate, when Col

lector Compression Percent is zero, indicates that every data value received

from the data source is being reported to the server. This means that the col

lector is not performing any data compression. You can lower the report rate,

and make the system more efficient, by increasing the data compression at

Historian | 42 - Historian Web Admin Console | 2832

Field Description

the collector. To do this, widen the collection compression deadbands for se

lected tags.

Overruns The overruns in relation to the total events collected since startup. This val

ue is calculated by using the following equation: OVERRUN_PCT = OVERRUNS /

(OVERRUNS + TOTAL_EVENTS_COLLECTED) Overruns are a count of the total

number of data events not collected on their scheduled polling cycle. In a nor

mal operation, this value should be zero. You may be able to reduce the num

ber of overruns on the collector by increasing the tag collection intervals (per

tag).

Out of Order The number of samples within a series of timestamped data values normal

ly transmitted in sequence that have been received out of sequence since

collector startup. This field applies to all collectors. Even though events are

still stored, a steadily increasing number of out of order events indicates a

problem with data transmission that you should investigate. For example,

a steadily increasing number of out of order events when you are using the

OPC Collector means that there is an out of order between the OPC Server

and the OPC Collector. This may also cause an out of order between the OPC

Collector and the data archiver but that is not what this statistic indicates.

Events Collected Counts the total number of events collected from the data source by the col

lector.

Events Reported Counts the total number of events reported to the Historian archive from the

collector. This number may not match the Total Events Collected field due to

collector compression.

Last Change The timestamp when the last collection happened.

Redundancy Displays the current redundancy status of the collector. "Active" state indi

cates that the collector is currently collecting data and "Standby" indicates

that the collector is the standby for the primary collector.

Note:

This status will be displayed only when the Redundant Collector prop

erty of the collector is Enabled.

Details Select this button to view the Collector Detail Diagnostics. .

Historian | 42 - Historian Web Admin Console | 2833

Field Description

View/Edit Select this button to examine or modify configuration parameters for any col

lector in your system. For more information, refer Collector Details Page.

Configure Clients

This page shows all clients in the system. For more information on the fields, refer to the field and

description table in the Client Statistics (on page 2820) topic.

Data Stores Page

The data store Information page lets you read, add, rename, and delete the data stores. To view the data

stores, select the Configuration link, and then select Data Stores. The Data Stores page appears and

displays the list of available data stores and their details. For more information, refer to the Configure

Data Stores section.

The following table describes the fields available in the Data Stores page:

Field Description

Data Store Name Displays the name of the data store.

Type Indicates whether the storage type is Historical or SCADA buffer.

Description Displays the description of the data store.

Is Default Indicates whether the data store is the default store. Select Yes if

you want to set the data store as the default data store.

Number of Tags Displays the number of tags the data store contains.

Historian | 42 - Historian Web Admin Console | 2834

Field Description

State The state that the data store is in. The data store state is always run

ning until you delete the data store.

Edit Select this button to edit the data store configuration.

Delete Select this button to delete the data store.

Details Select this button to view the archive details of the data store.

Jobs Page

When you add a mirror node, replicate a node, re-synch an archive file, back up an archive file or restore

an archive file then a job is initiated with a Job ID, which will be seen on the user interface of the Historian

Web Admin console.

To view the jobs, you can select the Active Jobs link in any of the Collector, Client, or Configuration pages.

You can view the number of jobs that are currently running on the system from this page and can also

search a job based on its Job ID by entering the Job ID and selecting the search button in the search field.

Field Description

Status Displays the current status of the job (Succeeded, Failed and In Progress) in

different color codes. If you see a Failed job, you can expand it to see the de

scription of the failure.

Job ID The unique ID given to a particular job.

Type The type of job.

Description The description of the job.

Percentage The percentage of completion of the job.

Start Time The time at which the job started.

Complete Time The time at which the job was completed.

Services Page

The Services page displays all the services running in the system. You can also add a mirror node from

the Services page. To refresh the services page, select the Refresh icon.

By default, a node will have four services installed during creation:

Historian | 42 - Historian Web Admin Console | 2835

• Client Manager

• Configuration Manager

• Data Archiver

• Diagnostic Manager

Table 416. Service Configuration

Field Description

Computer Name The name of the computer the service is currently running.

Service Name The name of the service and its current status.

Port The port number. After you change the port number of a service, ensure that

it is updated in the following registry key: HKEY_LOCAL_MACHINE\SOFT

WARE\Intellution, Inc.\iHistorian\Services, and restart the ser

vice.

Type The type of the node service.

Editing a Service

1. Select the Edit icon.

The Edit Service Configuration window appears.

2. Modify the configuration details.

3. Select Save.

Tags Page

To display the Tags page, select the Tags link in any of the Collectors, Clients, or Configuration page. The

Tags page lets you read and modify all tag parameters of the Historian system. To access information on

a specific tag or group of tags, however, you must first search for the tags.

You can search for tags in the Historian Tag Database by selecting the Search button or the Advanced

Search button. You can also add tags manually or from the collector by selecting the appropriate icons on

the Tags page.

The Tags page has two sections: Tag Viewer and Tag Editor.

Tag Viewer

Historian | 42 - Historian Web Admin Console | 2836

Displays all the tags available in the system. You can choose to display the total number of tags you

want to view by selecting the Show entries. To view all the tags, select the page numbers available at the

bottom right of the section.

From this section, you can perform the following operations on the tags:

• Add Tag

• Delete Tag

• Rename Tag

• Search for Tags

• Filtering Tags

• Copy Tag

• Display a Tag

To select a tag, select on the tag name on the page. You can select multiple tags at a time. To clear your

selection, select the Clear Selections button. To edit the tag parameters, select the tag and select the

Edit button. The tag details are displayed in the Tag Editor. If you select multiple tags and select the Edit

button, then the details of the first tag are displayed and when you update, all of the common parameters

of the selected tags are updated.

Tag Editor

In this section, you can view and edit specific tag parameters and options. To view all the tags, select the

page numbers available at the bottom right of the section.

The Tag Editor allows you to edit specific tag parameters and options for one or more selected tags.

To modify the values, enter new values in the appropriate fields and then select the Update button at

the bottom of the page to apply the changes. The Update button, when selected, applies all parameter

changes you have made on any tabs in this page. If you want to cancel changes and return to the original

values or settings, open a different page and then return to the Tag Details page without selecting the

Update button. For more information, refer to the following sections.

The Advanced Section

To display or edit advanced parameters, select Advanced. To modify the values, enter new values in the

appropriate fields and then select the Update button at the bottom of the page to apply the changes. Until

you select the Update button, entering a new value changes the display of the field name to blue. The

fields in the Advanced section contain the following information:

Historian | 42 - Historian Web Admin Console | 2837

Table 417. Data Collection Options

Field Description

Time Assigned By The source of the timestamp for a data value is either the collector or the da

ta source. All tags, by default, have their time assigned by the collector. When

you configure a tag for a polled collection rate, the tag is updated based on

the collection interval. For example, if you set the collection interval to 5 sec

onds with no compression, the archive is updated with a new data point and

timestamp every 5 seconds, even if the value is not changing. However, if you

change the Time Assigned By field to Source for the same tag, the archive up

dates only when the device timestamp changes. For example, if the poll time

is still 5 seconds, but the timestamp on the device does not change for 10

minutes, no new data is added to the archive for 10 minutes.

Note:

This field is disabled for Calculation and Server-to-Server tags.

Time Zone Bias The number of minutes from GMT that should be used to translate time

stamps when retrieving data from this tag. For example, the time zone bias

for Eastern Standard time is -300 minutes (GMT-5). This property is not used

during collection. Use this option if a particular tag requires a time zone ad

justment during retrieval other than the client or server time zone. For exam

ple, you can retrieve data for two tags with different time zones by using the

tag time zone selection in the iFIX chart.

Time Adjustment If the Server-to-Server collector is not running on the source computer, select

the Adjust for Source Time Difference option if you want to compensate for

the time difference between the source archiver computer and the collector

computer. The Time Adjustment field applies only to Server-to-Server tags

that use a polled collection type.

Data Store The data store to which the tag belongs.

The Collection Section

To display or edit collection parameters, select Collection. To modify the values, enter new values in the

appropriate fields and then select the Update button at the bottom of the page to apply the changes. Until

you select the Update button, entering a new value changes the display of the field name to blue. The

fields in the Collection section contain the following information:

Historian | 42 - Historian Web Admin Console | 2838

Table 418. Data Source

Field Description

Collector The name of the collector for the selected tag. Select the drop-down arrow to

display a list of all collectors.

Source Address The address for the selected tag in the data source. Select the Browse button

(...) to display a browse window. Leave the Source Address field blank for Cal

culation and Server-to-Server tags.

Note:

When exporting or importing tags using the EXCEL Add-In, the Calcu

lation column, not the SourceAddress column, holds the formulas for

the Calculation or Server-to-Server tags.

Data Type A list of data types.

Note:

If you change the data type of an existing tag between a numeric and

a string or binary data type (and vice versa), the tag's compression

and scaling settings will be lost.

Data Length The number of bytes for a fixed string data type. This field is active only for

fixed string data types. This field is adjacent to the Data Type field.

Enumerated Set Name The name of the Enumerated Set that can be assigned to the tags. Select the

Browse button (...) to display the Define Enumerated Set window.

Is Array Tag Indicates the tag is an array tag.

Calc Type Indicates the type of tag. Analytic Tag, Raw tag or Expression Tag.

Choosing a Data Type

The main use of the scaled data type is to save space. Instead of using 4 bytes of data, it uses only 2

bytes. The scaled data type accomplishes this by storing the data as a percentage of the EGU limit. This

saving of space results in a loss of precision. Because of the way that the scaled data type stores data,

changing of the EGU limits will result in a change in the values that are displayed. For example, if the

original EGU values were 0 to 100 and a value of 20 was stored using the scaled data type and if the EGUs

are changed to 0 to 200 at a later date, that value of 20 will be represented as 40.

Historian | 42 - Historian Web Admin Console | 2839

Table 419. Collection Options

Field Description

Collection Select the appropriate option to enable or disable collection for this tag. The

default setting is Enabled. If you disable collection for the tag, Historian stops

collecting data for the tag, but does not delete the tag or any data.

Collection Type Select the type of data collection used for this tag, which can be polled or un

solicited. Polled means that the data collector requests data from the data

source at the collection interval specified in the polling schedule. Unsolicited

means that the data source sends data to the collector whenever necessary

(independent of the data collector polling schedule).

Collection Interval Enter the time interval between readings of data from this tag. With Unsolicit

ed Collection Type, this field defines the minimum interval at which unsolicit

ed data will be sent by the data source.

Collection Offset Used with the collection interval to schedule collection of data from a tag.

Note:

The minimum value you can enter in this field is 1000 ms. If you en

ter a value in milliseconds, note that the value must be in intervals of

1000 ms. For example, 1000, 2000, and 3000 ms are valid values, but

500 and 1500 ms are invalid values. For example, if you want to col

lect a value for a tag every hour at thirty minutes past the hour (12:30,

1:30, 2:30, and so on), you would enter a collection interval of 1 hour

and an offset of 30 minutes. As another example, if you want to col

lect a value each day at 8am, you would enter a collection interval of

1 day and an offset of 8 hours.

Time Resolution Select the precision for timestamps, which can be either seconds, millisec

onds or microseconds.

Condition-Based Collection

Condition-based collection is a method to control the storage of data for data tags by assigning a

condition. Data is always collected but it is written to the Data Archiver only if the condition is true;

otherwise, the collected data is discarded. This condition is driven by a trigger tag; a tag collected by the

collector evaluating the condition. Ideally, condition-based collection should be used only with tags that

are updating faster than the trigger tag.

Historian | 42 - Historian Web Admin Console | 2840

Note:

Condition-based collection is supported only by the archiver and collectors of Historian version

4.5 and above.

Condition-based collection can be used to archive only the specific data that is required for analysis,

rather than archiving data at all times, as the collector is running. For example, if a collector has tags

for multiple pieces of equipment, you can stop collection of tags for one piece of equipment during its

maintenance.

It is typically used on tags that use fast polled collection but you don't want to use collector compression.

While the equipment is running, you want all the data but when the equipment is stopped, you don't

want any data stored. The trigger tag will also typically use polled collection. But, either tag could use

unsolicited collection.

The condition is evaluated every time data is collected for the data tag. When a data sample is collected,

the condition is evaluated and data is either queued for sending to the archiver, or discarded. If the

condition cannot be evaluated as true or false (for example, if the trigger tag contains a bad data quality

or the collector is not collecting the trigger tag), the condition is considered true and the data is queued

for sending.

No specific processing occurs when the condition becomes true or false. If the condition becomes true,

no sample is stored to the data tag using that condition, but the data tag will store a sample the next time

it collects. When the condition becomes false, no end of the collection marker is stored until the data tag

is collected. For example, if the condition becomes false at 1:15 and the data tag gets collected at 1:20,

the end of collection marker is created at 1:20 and has a timestamp of 1:20, not 1:15.

This condition-based collection is applicable only to the following collectors:

• Simulation Collector

• OPC Collector

• iFIX collector

• PI Collector

Condition-based collection does not apply to alarm collectors.

Field Description

Condition Based Select the appropriate option to enable or disable condition-based collection

for a tag. The default setting is Disabled.

Historian | 42 - Historian Web Admin Console | 2841

Field Description

Trigger Tag The name of the tag used in the condition. Use the browse button to select a

trigger tag from the list of tags associated with the collector.

Comparison Select the appropriate comparison operator from the drop-down list. The fol

lowing is a list of comparison operator parameters:

< = Setting condition as Trigger Tag value less than or equal to

the Compare Value.

> = Setting condition as Trigger Tag value greater than or equal

to the Compare Value.

< Setting condition as Trigger Tag value less than the Com

pare Value.

> Setting condition as Trigger Tag value greater than the Com

pare Value

= Setting condition as Trigger Tag value equals the Compare

Value.

!= Setting condition as Trigger Tag value not the same as the

Compare Value.

Collection will resume only when the value of the triggered Undefined tag

changes. This is considered as an incomplete configuration, so condi

tion-based collection is turned off and all of the collected data is sent to the

archiver.

Compare Value Enter an appropriate target value which is compared against the value of the

triggered tag. Make sure while using '=' and '!=' comparison parameters, that

the format of the compared value and triggered tag are similar. For exam

ple, for a float type trigger tag, the compare value must be a float value; other

wise, the condition result is an invalid configuration, condition-based collec

tion is disabled, and all the data is sent to the archiver.

End of Collection Mark

ers

Select the appropriate option to enable or disable end of collection mark

ers. The default setting is enabled. When the condition becomes false, all

the tag’s values are marked as "Bad", and subquality as "ConditionCollection

Halted." Trending and reporting applications can use this information to in

dicate that the real-world value is unknown after this time until the condition

Historian | 42 - Historian Web Admin Console | 2842

Field Description

becomes true and a new sample is collected. If disabled, a bad data marker

is not inserted when the condition becomes false.

Compression Tab

To display or edit compression parameters, select Compression. To modify the values, enter new

values in the appropriate fields and then select the Update button at the bottom of the page to apply the

changes. Until you select the Update button, entering a new value changes the display of the field name to

blue.

Note:

The Compression section is disabled for Array Tags.

The fields in the Compression section contain the following information:

Table 420. Collector Compression

Field Description

Collector Compression

(Enabled, Disabled)

Select the appropriate option to enable or disable compression at the collec

tor level. Collector compression applies a smoothing filter to incoming da

ta by ignoring incremental changes in values that fall within a deadband cen

tered on the last reported value. The collector reports any new value that falls

outside the deadband to the Historian archive and then centers the deadband

on the new value.

Collector Deadband The current value of the compression deadband. This value can be comput

ed as a percentage of the span, centered on the data value or given as an ab

solute range around the data value.

Note:

With some OPC Servers, the whole deadband value is added to and

subtracted from the last data value. This effectively doubles the mag

nitude of the deadband compared to other OPC Servers.

Engineering Unit Converts the deadband percentage into engineering units and displays the

result. This value establishes the deadband range that is centered around

the new value. When enabling Archive Compression or Collector Compres

Historian | 42 - Historian Web Admin Console | 2843

Table 420. Collector Compression (continued)

Field Description

sion, the Engineering Units field represents a calculated number created to

give an idea of how large a deadband you are creating in Engineering Units.

The deadband is entered in percent (%) and Historian multiplies that percent

by the range (Hi Engineering Units-Lo Engineering Units) to calculate the per

centage in Engineering Units.

Collector Compression

Timeout

Indicates the maximum length of time the collector will wait between sending

samples for a tag to the archiver. This time is kept per tag, as different tags

report to the archiver at different times. For polled tags, the Collector Com

pression Timeout value should be in multiples of your collection interval. Af

ter the timeout value is exceeded, the tag stores a value at the next sched

uled collection interval, and not when the timeout occurred. For example, if

you have a 10 second collection interval, a 1 minute compression timeout,

and a collection that started at 2:14:00, then if the value has not changed, the

value is logged at 2:15:10 and not at 2:15:00. For unsolicited tags, a value is

guaranteed in, at most, twice the compression timeout interval. A non-chang

ing value is logged on each compression timeout. For example, an unsolicit

ed tag with a 1 second collection interval and a 30 second compression time

out is stored every 30 seconds. A changing value for the same tag may have

up to 60 seconds between raw samples. In this case, if the value changes

after 10 seconds, then that value is stored, but the value at 30 seconds (if

unchanged) will not be stored. The value at 60 seconds will be stored. This

leaves a gap of 50 seconds between raw samples which is less than 60 sec

onds. Compression timeout is supported in all collectors except the PI collec

tor.

Archive Compression

(Enabled, Disabled)

Select the appropriate option to enable or disable compression at the Histo

rian archive level. If enabled, Historian applies the archive deadband settings

against all reported data from the collector.

Archive Deadband The current value of the archive deadband expressed as a percent of span

or an absolute number. Each time the system reports a new value, it com

putes a line between this data point and the last archived value. The dead

band is calculated as a tolerance centered about the slope of this line. When

the next data point is reported, the line between the new point and the last

archived point is tested to see if it falls within the deadband tolerance calcu

Historian | 42 - Historian Web Admin Console | 2844

Table 420. Collector Compression (continued)

Field Description

lated for the previous point. If the new point passes the test, it is reported and

is not archived. This process repeats with subsequent points. When a val

ue fails the tolerance test, the last reported point is archived and the system

computes a line between the new value and the newly archived point, and the

process continues.

Engineering Unit Converts the deadband percentage into engineering units and displays the re

sult. This value establishes the deadband range that is centered on the new

value. When enabling Archive Compression or Collector Compression, the En

gineering Units field represents a calculated number created to give an idea

of how large a deadband you are creating in Engineering Units. The dead

band is entered in percent (%) and Historian multiplies that percentage by the

range (Hi Engineering Units-Lo Engineering Units) to calculate the percentage

in Engineering Units.

Archive Compression

Timeout

Indicates the maximum length of time from the last stored point before an

other point is stored, if the value does not exceed the archive compression

deadband. The data archiver treats the incoming sample after the timeout oc

curs as if it exceeded compression. It then stores the pending sample. For

more information on Collector and Archive Corruption, refer to the Notes on

Collector and Archive Compression topic.

To determine how your specific server handles deadband, refer to the documentation of your OPC Server.

Example: The engineering units are 0 to 200. The deadband value is 10%, which equals 20 units. If the

deadband value is 10% and the last reported value is 50, the value will be reported when the current value

exceeds 50 + 10 = 60 or is less than 50-10 = 40. Note that the deadband (20 units) is split around the

last data value (10 on either side.) Alternatively, you could specify an absolute deadband of 5. In this

instance, if the last value was 50, a new data sample will be reported when the current value exceeds 55

or drops below 45. If compression is enabled and the deadband is set to zero, the collector ignores data

values that do not change and records any that do change. If you set the deadband to a non-zero value,

the collector records any value that lies outside the deadband. If the value changes drastically, a pre-spike

point may be inserted. See the Spike Logic section for more details.

Historian | 42 - Historian Web Admin Console | 2845

Understand Collector and Archive Compression

This section describes the behavior of collector and archive compression. Understanding these two

Historian features will help you apply them appropriately to reduce the storage of unnecessary data.

Smaller archives are easier to maintain and allow you to keep a greater time span of historical data online.

Collector compression applies a smoothing filter, inside the collector, to data retrieved from the data

source. By ignoring small changes in values that fall within a deadband centered on the last reported

value, only significant changes are reported to the archiver. Fewer samples reported, yields less work for

the archiver and less archive storage space used. The definition of significant changes is determined by

the user by setting the collector compression deadband value.

For convenience, the Historian Web Admin console calculates and shows the deadband in engineering

units if you enter a deadband percentage. If you later change the high and low EGU limits, the deadband is

still a percentage, but of the new limits. A 20% deadband on 0 to 500 EGU span is 100 engineering units. If

you change the limits to 100 and 200, then the 20% is now 20 engineering units.

The deadband is centered on the last reported sample, not simply added to it or subtracted. If your intent

is to have a deadband of 1 unit between reported samples, you need a compression deadband of 2,

so that it is one to each side of the last reported sample. In an example of 0 to 500 EGU range, with a

deadband of 20%, the deadband is 100 units, and the value has to change by more than 50 units from the

last reported value.

Changes in data quality from good to bad, or bad to good, automatically exceed collector compression

and are reported to the archiver. Any data to that comes to the collector out of time order will also

automatically exceed collector compression.

It is possible for collected tags with no compression to appear in Historian as if the collector or archive

compression options are enabled. If collector compression occurs, you will notice an increase in the

percentage of the Compression value from 0% in the Collectors panel of the System Statistics page in

Historian Administrator. When archive compression occurs, you will notice the Archive Compression value

and status bar change on the System Statistics page.

For all collectors, except the File collector, you may observe collector compression occurring for your

collected data (even though it is not enabled) if bad quality data samples appear in succession. When a

succession of bad data quality samples appears, Historian collects only the first sample in the series. No

new samples are collected until the data quality changes. Historian does not collect the redundant bad

data quality samples, and this is reflected in the Collector Compression percentage statistic.

For a Calculation or Server-to-Server Collector, you may possibly observe collector compression (even

though it is not enabled) when calculations fail, producing no results or bad quality data.

Historian | 42 - Historian Web Admin Console | 2846

The effect of Collector Compression Timeout is to behave, for one poll cycle, as if the collector

compression feature is not being used. The sample collected from the data source is sent to the archiver.

Then the compression is turned back on, as configured, for the next poll cycle with new samples being

compared to the value sent to the archiver.

Archive Compression

Archive compression can be used to reduce the number of samples stored when data values for a tag

form a straight line in any direction. For a horizontal line (non-changing value), the behavior is similar

to collector compression. But, in archive compression, it is not the values that are being compared to a

deadband, but the slope of line those values produce when plotted against time.

Archive compression logic is executed in the data archiver and, therefore, can be applied to tags

populated by methods other than collectors. Archive compression can be used on tags where data is

being added to a tag by migration, or by the File collector, or by an SDK program for example.

Each time the archiver receives a new value for a tag, the archiver calculates a line between this incoming

data point and the last archived value. The deadband is calculated as a tolerance centered about the

slope of this line. The slope is tested to see if it falls within the deadband tolerance calculated for the

previous point. If the new point does not exceed the tolerance, it is held by the archiver rather than being

archived to disk. This process repeats with subsequent points. When an incoming value exceeds the

tolerance, the value held by the archiver is written to disk and the incoming sample becomes held.

The effect of the archive compression timeout is that the incoming sample is automatically considered to

have exceeded compression. The held sample is archived to disk and the incoming sample becomes the

new held sample. If the Archive Compression value on the System Statistics page indicates that archive

compression is occurring, and you did not enable archive compression for the tags, the reason could be

because of internal statistics tags with archive compression enabled.

Note:

Array tags do not support Archive and Collector Compression. If the tag is an array tag, then the

Compression tab is disabled.

General Tab

To display or edit the general parameters listed below, select General. To modify the values, enter new

values in the appropriate fields, and then select the Update button at the bottom of the page to apply the

changes. Until you select the Update button, entering a new value changes the display of the field name to

blue.

Historian | 42 - Historian Web Admin Console | 2847

Table 421. Description Panel

Field Description

Description The tag description of the selected tag.

EGU Description The engineering units, if any, assigned to the selected tag. Often re

ferred to as Unit of Measure, or UoM.

Comment Comments, if any, that apply to the selected tag.

StepValue This tag property is used to indicate that the actual measured val

ue changes in a sharp step instead of a smooth linear interpolation.

This option should be selected only for numeric data. Enabling this

option affects only data retrieval; it has no effect on data collection

or storage

Spare Configuration The Spare 1 through Spare 5 fields list any configuration information

stored in these fields.

Note:

Do not add or update the following spare configurations as the data may get corrupted or over

written:

• The Spare 5 field for Server to Server Collector and Server to Server Distributor.

• The Spare 1 field for OSI PI Distributor.

The Scaling Section

Scaling converts a data value from a raw value expressed in an arbitrary range of units, such as a number

of counts, to one in engineering units, such as gallons per minute or pounds per square inch. The scaled

data type can serve as a third form of data compression, in addition to collector compression and archive

compression, if it converts a data value from a data type that uses a large number of bytes to one that

uses fewer bytes. To display or edit scaling parameters, select Scaling. To modify the values, enter new

values in the appropriate fields and then select the Update button at the bottom of the page to apply the

changes. Until you select the Update button, entering a new value changes the display of the field name to

blue. The fields in the Scaling section contain the following information:

Historian | 42 - Historian Web Admin Console | 2848

Table 422. Input Scaling

Field Description

Input Scaling Select the appropriate option to enable or disable input scaling, which con

verts an input data point to an engineering units value.

Hi Scale Value The upper limit of the span of the input value. Lo Scale Value The lower limit

of the span of the input value.

For example, to rescale and save a 0-4096 input value to a scaled range of 0-100, enter 0 and 4096 as the

low and high input scale values and 0 and 100 as the low and high engineering units values, respectively.

If a data point exceeds the high or low end of the input scaling range, then Historian logs a bad data

quality point with a ScaledOutOfRange subquality. In the previous example, if your input data is less than

0, or greater than 4096, then Historian records a bad data quality for the data point. For example, a value

of 4097, in this case, yields a bad data quality.

OPC Servers and TRUE Values

Some OPC Servers return a TRUE value as -1. If your OPC Server is returning TRUE values as -1, modify

the following scaling settings in the Tag Maintenance page of Historian Administrator:

Hi Engineering Units = 0

Lo Engineering Units = 1

Hi Scale Value = 0

Lo Scale Value = -1

Input Scaling = Enabled

Configure General Collector Options

Configure General Collector Options

You can modify collector configurations from the following sections of the Collector Configuration Screen.

• Action Buttons

• Configuration Tab

• Defaults Tab

• Performance Tab

• Redundancy Tab

Historian | 42 - Historian Web Admin Console | 2849

Table 423. Action Buttons

Button Action

Resumes collection of the collector.

Pauses the collection of the collector

Refreshes the page

Update Updates the changes made.

Table 424. The Performance Section

Field Description

Report Rate This display is a trend chart that displays the average rate at which data is

coming into the server from the selected collector. This is a general indica

tor of load on the Historian collector. Since this chart displays a slow trend of

compressed data, it may not always match the instantaneous value of Report

Rate displayed in the Collector panel of the System Statistics page.

Out of Order The number of samples within a series of timestamped data values normal

ly transmitted in sequence that have been received out of sequence since col

lector startup. This field applies to all collectors.

Compression This display is a trend chart that displays the effectiveness of collector com

pression. If the chart displays a low current value, you can widen the com

pression deadbands to pass fewer values and increase the effect of com

pression.

Total Events Collected Displays the number of events collected from the data source.

Total Events Reported Displays the total number of events reported to the Historian archive from the

collector.

Overruns This trend chart displays the value at which data overruns are occurring. This

value is calculated by following equation: OVERRUN_PCT =OVERRUNS / (OVER

RUNS + TOTAL_EVENTS_COLLECTED) Overruns are a count of the total number of

data events not collected. Under normal conditions, the current value should

always be zero. If the current value is not zero, which indicates that data is

Historian | 42 - Historian Web Admin Console | 2850

Table 424. The Performance Section (continued)

Field Description

being lost, you should take steps to reduce peak load on the system by in

creasing the collection interval.

Table 425. The Defaults Section

Field Description

Prefix for Tag Names Displays a prefix, if any, that is automatically added to all tag names when

you browse and pick the specified collector. To change the prefix, enter a new

text string and select the Update button at the bottom of the page. This field

applies to all collectors except the File and Calculation collectors

Collection Type Indicates whether this collector is configured for polled data collection or un

solicited collection.

Collection Interval The time in milliseconds, seconds, minutes, or hours required to complete

a poll of a given tag on the selected collector. It is also used in unsolicited

collection. In effect, it specifies how frequently data can be read from a tag.

The collection interval can be individually configured for each tag. To change

it, enter a new value. NOTE: To avoid collecting repeat values with the OPC

Collector when using device timestamps, specify a collection interval that is

greater than the OPC Server update rate.

Time Assigned By Indicates whether the timestamp for the data value is supplied by the collec

tor or the data source. To change it, select a different type.

Compression Indicates whether or not collector compression is enabled as a

default setting. To change it, select the other option. This option is overridden

by Tag settings.

Deadband The default setting of the collector compression deadband in absolute or per

centage range values.

Timeout The default setting for the collector compression time-out for tags added

through the Add Multiple Tags From Collector window. You must enable the

Collector Compression option to use this field.

Spike Logic Control Spike logic monitors incoming data samples for spikes in a tag's values. If

spike logic is enabled, a sample of equal value to the previously archived

sample is inserted into the archive in front of the spike value.

Historian | 42 - Historian Web Admin Console | 2851

Table 425. The Defaults Section (continued)

Field Description

Multiplier The Multiplier option specifies how much larger a spike value must be than

the deadband range before spike logic is invoked. For example, if a value of

3 is entered in the Multiplier field and the deadband percentage is set to 5%,

spike logic will not be invoked until the difference between the spike value

and the previously archived data point is 15% of the EGU range.

Interval The Interval option specifies how many samples must have been com

pressed before spike logic is invoked. For example, if the Interval field is set

to 4, and 6 values have been compressed since the last archived data sample,

spike logic will be invoked.

On-Line Tag Config

Changes

Enabling this feature allows you to make on the fly changes to tags with

out having to restart the collector. If you disable this option, any changes

you make to tags do not affect collection until you restart the collector exe

cutable.

Sync Timestamp for

Server

Enabling this feature automatically adjusts all outgoing data timestamps to

match the server clock. This feature is not active when you configure time

stamps to be supplied by the data source. Note, that this does not change

collector times to match the server time, it adds or subtracts an increment of

time to compensate for the relative difference between the clocks of the serv

er and collector, independent of time zone or day light saving time (DST) dif

ferences. If the collector system clock is greater than 15 minutes ahead of

the archiver system clock, and the Synchronize Timestamps to Server option

is disabled, data will not be written to the archive.

Delay Collection @ Start

up (Sec)

Permits you to enter the number of seconds to delay collection on startup (af

ter loading its tag configuration). The default is 2 seconds.

Note:

Not all options in this section are available to all collectors. If an option is disabled, it doesn't

apply to the current type of collector.

Historian | 42 - Historian Web Admin Console | 2852

Table 426. Configuration Tab

Field Description

Description The name of the selected collector.

Number of Tags Displays the number of tags currently added to the Simulation Collector. Edit

this field to modify the number of Simulation tags available for addition to the

Historian System.

Function Period (Se

conds)

The period, in seconds, of the SIN, STEP, and RAMP functions implemented in

the Simulation collector. The default is 60 seconds.

Computer Name The machine name of the computer that the collector is installed on.

Memory Buffer Size The size of the memory buffer currently assigned to the store and forward

function. The memory buffer stores data during short-term or momentary in

terruptions of the server connection; the disk buffer handles long duration

outages. To estimate the size you need for this buffer, you need to know how

fast the collector is trying to send data to the server and how long the server

connection is likely to be down. With those values and a safety margin, you

can calculate the required size of the buffer. NOTE: If you enter a new value

for this parameter, the change is effective the next time you restart the collec

tor.

Minimum Free Space The minimum free disk space that must be available on the computer. If the

minimum space required is not available when the collector starts, the collec

tor will shut down.

Heartbeat Output Ad

dress

The address in the source database into which the collector writes the heart

beat signal output. This address should be connected to a writable analog

field. For an iFIX data collector, use an iFIX tag for the output address. Enter

the address as NODE.TAG.FIELD (for example, MyNode.MyCollector_AO.F_

CV). For an OPC Collector, use the OPC address in the server. Refer to your

OPC documentation for more information. The data collector writes the val

ue of 1 to this location every 60 seconds while it is running. You could pro

gram the iFIX database to generate an alarm if the Heartbeat Output Address

is not written to once every 60 seconds, notifying you that the data collector

has stopped.

Status Output Address Address in the source database into which the collector writes the current

value of the collector status (running, stopping, stopped, unknown, or start

Historian | 42 - Historian Web Admin Console | 2853

Table 426. Configuration Tab (continued)

Field Description

ing) output, letting an operator or the HMI/SCADA application know the cur

rent status of the collector.

This address should be connected to a writable text field of at least 8 charac

ters. This value is updated only upon a change in status of the collector. For

an iFIX data collector, use a TX tag for the output address. Enter the address

as NODE.TAG.FIELD (for example, MyNode.MyCollector_TX.A_CV).

For an OPC Collector, use an OPC address in the server. Refer to your OPC

documentation for more information. The text string usually displays Run

ning, Stopped, or Unknown, matching the Status column value displayed in

the collector pane in the System Statistics page of Historian Administrator.

Rate Output Address The address in the source database into which the collector writes the cur

rent value of the events/minute output, letting an operator or the HMI/SCADA

application know the performance of the collector. This should be connected

to a writable analog field. The value is written once per minute.

For an iFIX data collector, use an iFIX tag for the output address. Enter the ad

dress as NODE.TAG.FIELD (for example, MyNode.MySIM_AO.F_CV).

For an OPC Collector, use a writable OPC address in the server. Refer to your

OPC documentation for more information. This value displays the same value

as the Report Rate field in the collector pane in the System Statistics page of

Historian Administrator.

Redundancy Tab

Historian includes support for collector redundancy, which decreases the likelihood of lost data due to

software or hardware failures. Implementing collector redundancy ensures that collection of your data

remains uninterrupted. Collector redundancy makes use of two or more collectors, gathering data from a

single source. Two or more collectors may be configured in a redundant group. All collectors in the group

actively gather the same tags from a data source but only the "active" collector forwards its samples to

the Historian server. The non-active collectors buffer their data against failover of the active collector. The

Historian server actively monitors the health of the redundant collectors and will automatically switch to a

backup if certain user-configurable trigger conditions are met.

The Redundancy section displays the following information:

Historian | 42 - Historian Web Admin Console | 2854

Field Description

Backup Collector If enabled, specifies that this is a redundant collector.

Backup For Specifies the primary collector.

Note:

This configuration will be preserved if you disable collector redun

dancy. This allows you to temporarily take a redundant collector of

fline without losing its configuration.

Backup Collector Status The current status of this collector.

Backed Up By The name of the collector providing redundancy for the selected collector.

Watchdog Tag Specifies a tag to use to determine the status of the collector. If the watch

dog tag meets any of the conditions specified below, the secondary collector

will be brought on line to replace it.

Failover on Bad Quality If enabled, the secondary collector is promoted when a data sample from the

watchdog tag is received with bad quality. Failover happens on every write of

a bad data sample to the watchdog, not just on the transition from good to

bad quality

Failover When Value

Transitions from Zero

If selected, the secondary collector is promoted when a data sample from the

watchdog tag with a non-zero value is received from the primary collector.

Failure happens every time a non-zero value is received, not just when the val

ue promotes from zero to a non-zero value

Failover When No Value

Changes for __ Seconds

If selected, the secondary collector is promoted when no data value changes

have been received within the time period specified. This could be tied into

a heartbeat status indicator where the value is checked every 5 seconds. To

prevent failure, there must be a value change.

Maintain, Operate, and Monitor Historian

Plan For Data Recovery

Planning for data recovery means always having up-to-date backup files for important information to call

up and restore quickly when the need arises.

Key Files

Historian | 42 - Historian Web Admin Console | 2855

• The .IHC file contains all configuration information.

• The *.IHA file is the current online archive files.

The .IHC file is automatically backed up when, and only when, you back up the current archive .IHA file.

The .IHC uses the following naming convention: ComputerName_Config-Backup.ihc

By default, the .IHC backup path is the same as the archives path. If the default backup path is different

than the archives path, the .IHC file is copied to the backup folder with the standard .IHC naming

convention ComputerName_Config.ihc

Restoring the IHC file restores the system configuration (tag, archive, and collector configuration) to the

state it was in before the event occurred. If you restore the archive file (IHA) along with the configuration

file (IHC), you can quickly pick up where you left off when the event occurred with minimum loss of data.

Develop a Maintenance Plan

The primary goal of a maintenance plan is to maintain integrity of the data collected. If you are successful

in this regard, you will always be able to recover from a service interruption and continue operations with

minimal or no loss of data. Since you can never ensure 100% system uptime, you must frequently and

regularly back up current data and configuration files, and maintain non-current archive files in a read-only

state. It is recommended that you use the following guidelines for backup and routine maintenance.

Daily Maintenance

On a daily schedule, perform the following backup operations unless you use ihArchiveBackup.exe to

back up archives automatically.

1. Use the Historian Web Admin console to back up the current archive and most recent .IHA archived

data file. This preserves data collected up to this moment in time. You do not need to back up any

read-only archive files after they have been backed up once.

2. Use Windows Explorer to back up the .IHC file if it has been modified by anyone (unless it is backed

up automatically). This file contains all current configuration information (tag configuration, archive

configuration, and collector configuration). Using this file, you can restore the system configuration

after an unplanned shutdown.

Monitor Historian Performance

Historian provides a variety of performance counters and performance tags that can be used to monitor

how well the Historian components are performing. These performance tags or counters can also be

used to determine the resource usage on the computer that runs the Historian application.

Historian | 42 - Historian Web Admin Console | 2856

Use performance tags to view information in an Excel report or SDK program, possibly along with other

Historian tags. Use performance counters to view information in Windows Performance monitor, possibly

along with non-Historian counter information.

Performance counters are useful when the Historian Web Admin console is not installed or cannot

connect. Like any Windows performance counter, you must add the counters for collection to view history.

Performance tags are always being collected and you can view past data any time.

Performance counters are updated in real time. Performance tags are updated once per minute with the

activity over the last minute.

Performance counters contain more information than tags. Any counter can be collected to a tag using

the Historian Windows Performance Collector. Those tags will count against your licensed tag count.

Historian Performance Tags

The following table provides information about the various Historian Server Performance tags.

Table 427. Server Performance Tags

Tag Name Description

PerfTag_CompressionRatio Specifies the current effect of archive data compression.

PerfTag_MinimumCompression

Ratio

Specifies the minimum compression ratio.

PerfTag_MaximumCompression

Ratio

Specifies the maximum compression ratio.

PerfTag_TotalEvents Specifies the total number of data samples reported to the Historian

archive from all sources. .

PerfTag_TotalOutOfOrder Specifies the total out of order data samples.

PerfTag_AverageEventRate Specifies the average number of data samples per minute sent to

archiver from all sources

PerfTag_MinimumEventRate Specifies the minimum number of data samples per minute sent to

archiver from all sources.

PerfTag_MaximumEventRate Specifies the maximum number of data samples per minute sent to

archiver from all sources.

Historian | 42 - Historian Web Admin Console | 2857

Table 427. Server Performance Tags (continued)

Tag Name Description

PerfTag_WriteCacheHitRatio Specifies the hit ratio of the write cache in percent of the total

writes.

PerfTag_TotalFailedWrites Specifies the total number of samples since startup that failed to be

written.

PerfTag_TotalMessages Specifies the total messages (for example, connection or audit mes

sages) received by the archiver since startup

PerfTag_TotalAlerts Specifies the total number of alerts received by the data archiver

since startup.

PerfTag_FreeSpace Indicates the free disk space left in the current archive.

PerfTag_SpaceConsumptionRate Specifies an archive disk space consumption rate in megabytes per

day.

PerfTag_PredictedDaysToFull Indicates the approximate number of days required for an archive to

fill.

PerfTag_MemoryUsage Specifies the amount of RAM used by the Data Archiver.

PerfTag_MemoryVMSize Specifies the amount of virtual memory used by the Data Archiver.

PerfTag_TotalAlarms Specifies the total number of alarms received by the Data Archiver

since starting up.

PerfTag_AverageAlarmRate Specifies the average alarm rate in alarms per minute received by

Data Archiver.

PerfTag_TotalFailedAlarms Specifies the total number of alarms since startup that failed to be

written.

Perftag_ReadQueueSize Specifies the total number of messages present in the Read queue.

Perftag_AverageReadRate Specifies the total number of data samples per minute returned from

the Data Archiver for all read requests.

Perftag_ ReadQueuePushRate Specifies the number of read requests per minute that came into

the archiver from all clients. A read request can return multiple data

samples.

Historian | 42 - Historian Web Admin Console | 2858

Table 427. Server Performance Tags (continued)

Tag Name Description

Perftag_ WriteQueuePushRate Specifies the number of write requests per minute that came into the

archiver from all clients. A write request can contain multiple data

samples.

The following table provides information about the various Historian Collector Performance Tags.

Note:

Replace the placeholder %CollectorName% with the name of a Collector.

Table 428. Collector Performance Tags

Tag Name Description

PerfTag_%CollectorName%_InterfaceStatus Specifies the status of an interface.

PerfTag_%CollectorName%_InterfaceTotalEventsCol

lected

Specifies the total number of events collected by

an interface.

PerfTag_%CollectorName%_InterfaceTotalEventsRe

ported

Specifies the total number of events reported by an

interface.

PerfTag_%CollectorName%_InterfaceOutOfOrder

Events

Specifies the total out of order events.

PerfTag_%CollectorName%_InterfaceAverageEvent

Rate

Specifies the average event rate of an interface.

PerfTag_%CollectorName%_InterfaceMinimumEvent

Rate

Specifies the minimum event rate of an interface.

PerfTag_%CollectorName%_InterfaceMaximumEven

tRate

Specifies the maximum event rate of an interface.

PerfTag_%CollectorName%_InterfaceOverruns Specifies the interface overruns.

PerfTag_%CollectorName%_InterfaceCompression Specifies the compression of an interface.

PerfTag_%CollectorName%_InterfaceOverrunsPer

cent

Specifies the number of overruns in relation to the

total events collected since startup.

Historian | 42 - Historian Web Admin Console | 2859

Historian Server Performance Counters

The Windows performance counters are exposed as objects with counters. In the table below, you can

see each counter and the object to which it belongs. Each object has one or more instances as shown in

the Windows Performance Monitor.

Table 429. Historian Archive Object Counters

Archive Counter Description

Cache Priority Relative priority of items from the archive stored to the Windows Cache. A

higher priority means the item is more likely to stay in cache.

Disk Read Time (usec) Duration of last disk read in microseconds.

Disk Read Time Max

(usec)

Maximum duration across all disk reads from the archive in microseconds.

Disk Reads Number of disk reads from archive.

Disk Write Time (usec) Time of last disk write in microseconds.

Disk Write Time Max

(usec)

Maximum duration of all disk writes to the archive in microseconds.

Disk Writes Number of disk writes to archive.

File Size (MB) Size of the archive file in MB.

Read Calls Number of read calls to the archive since startup.

Read Rate (Calls/min) Number of read calls to the archive per minute.

Write Count Number of data samples written to archive since startup.

Write Count Rate Number of data samples written to archive per minute.

Writes Compressed Number of data samples since startup that were compressed writes to the

archive.

Writes Expensive Number of data samples since startup that were expensive or slow.

Writes Failed Number of data samples that were failed writes to the archive.

Writes OutofOrder Number of data samples that were out of time order writes to the archive.

Historian | 42 - Historian Web Admin Console | 2860

Table 430. Historian Cache Object Counters

Cache Counter Description

Hit Percentage Hit rate percentage (0-100) for successful data retrieval calls to the cache.

Higher numbers represent more efficiency.

Hits Number of hits in the cache since startup. To reset the count, restart the

Archiver.

Misses Number of misses in the cache.

Num Adds Total number objects added to cache.

Num Deletes Total number of objects deleted from cache.

Num High Prio Objs Number of high priority objects available for deletion.

Num Low Prio Objs Number of low priority objects available for deletion.

Num Med Prio Objs Number of medium priority objects available for deletion.

Obj Count Number of objects in the cache.

Size (KB) Size of cache in KB.

Table 431. Historian DataStores Object Counters

DataStores Counter Description

Compression Ratio (Av

erage)

Archive compression ratio for this data store.

Compression Ratio

(Max)

Maximum archive compression ratio for the data store.

Compression Ratio

(Min)

Minimum archive compression ratio for the data store.

Messages (Total Alerts) Total alerts since startup

Messages (Total) Total messages since startup.

Read Calls Number of read calls to the data store.

Read Rate (Calls/min) Average read rate across all archives in the data store. (Read Calls/Minute)

Read Samp Rate (Samp/

min)

Average read rate across all archives in the data store. (Samples/Minute)

Historian | 42 - Historian Web Admin Console | 2861

Table 431. Historian DataStores Object Counters (continued)

DataStores Counter Description

Space (Consumption

MB/day)

Disk space consumption rate. (MB/day)

Space (Days To Full) Number of days until current archive is full.

Space (Free in MB) Free disk space in the current archive.

Write Rate (Average) Average event rate across all archives. (Samples/Minute)

Write Rate (Max) Minimum event rate across all archives. (Samples/Minute)

Write Rate (Min) Minimum event rate across all archives. (Samples/Minute)

Writes (Cache Hit Ratio) Write Cache hit ratio.

Writes (Compressed) Total number of compressed data samples since startup.

Writes (Total Failed) Total failed data sample writes since startup.

Writes (Total OutOf

Order)

Total out of order data samples since startup.

Writes (Total) Total data samples across all archives since startup.

Table 432. Historian Overview Object Counters

Overview Counter Description

Compression Ratio (Average) Average archive compression ratio of all data stores.

Compression Ratio (Max) Average maximum compression ratio of all data stores.

Compression Ratio (Min) Average minimum compression ratio of all data stores.

Memory Usage (KB) Private bytes memory usage for Data Archiver.

Memory VM Size (KB) Virtual Bytes memory usage for Data Archiver.

Messages (Total Alerts) Sum of total alerts of all data stores since startup.

Messages (Total) Sum of total messages of all data stores since startup.

Read Rate (Calls/min) Sum of all average read rates of all data stores. (Samples/Minute)

Read Samp Rate (Samp/min) Average read rate across all archives. (Samples/Minute)

Space (Consumption MB/day) Sum of space consumption rate (MB/day) of all data stores.

Historian | 42 - Historian Web Admin Console | 2862

Table 432. Historian Overview Object Counters (continued)

Overview Counter Description

Space (Days To Full) Minimum number of days until current archive is full for all data

stores.

Space (Free in MB) Sum of all free space in the current archive of all data stores.

Write Rate (Average) Sum of all average event rates of all data stores. (Samples/Minute)

Write Rate (Max) Sum of all maximum event rates of all data stores.

Write Rate (Min) Sum of all minimum event rates of all data stores.

Writes (Cache Hit Ratio) Average write Cache hit ratio of all data stores.

Writes (Compressed) Sum of total number of compressed data samples of all data stores.

Writes (Expensive) Sum of total number of expensive writes data samples of all data

stores. One of the reasons for expensive writes is out-of-order data.

Writes (Total Failed) Sum of total failed data sample writes of all data stores.

Writes (Total OutOfOrder) Sum of total out of order data samples of all data stores.

Writes (Total) Sum of total data samples across all archives of all data stores.

Table 433. Historian Queue Object Counters

Queue Counters Description

ClientQueues with Msgs The number of client queues with messages current on them. A lower num

ber means all clients are up to date. A higher number means that the archiver

is not up to date with incoming network traffic

Count (Max) Maximum number of messages on the queue. (memory and disk)

Count (Total) Number of messages on the queue. (memory and disk)

Disk Buf Msg Reads Number of messages read from the disk buffer file.

Disk Buf Msg Writes Number of messages written to the disk buffer file.

Processed Count Number of messages processed from the queue since startup.

Processed Rate (msg/

min)

Recent rate at which messages have been processed for the queue.

Processing Time (Ave) Average time in milliseconds to process a message.

Historian | 42 - Historian Web Admin Console | 2863

Table 433. Historian Queue Object Counters (continued)

Queue Counters Description

Processing Time (Last) Time in milliseconds to process the last message.

Processing Time (Max) Maximum time in milliseconds to process a message.

Recv Count (msgs) Number of messages received into the queue.

Recv Rate (msgs/min) Recent rate at which messages have been received for the queue.

Size Kb (Mem&Disk

Max)

Max size of messages in Kb on the queue. (memory and disk).

Size Kb (Mem&Disk) Size of messages in Kb on the queue. (memory and disk)

Size Kb (Mem) Size of messages in Kb on the queue. (memory only)

Threads Number of worker threads allocated to process this queue. This is the num

ber of created threads but they may be idle.

Threads Working Number of queue processing worker threads currently processing messages.

Time in Queue (Ave) Average time in milliseconds that a message was in the queue, waiting to be

processed.

Time in Queue (Last) Time in milliseconds that the last message was in the queue, waiting to be

processed.

Time in Queue (Max) Maximum time in milliseconds that a message was in the queue, waiting to

be processed.

Table 434. Historian Config Counters

Config Counters Description

File Size The size of the Configuration File in MB

Hist Tags(Actual) Number of the Historical tags in the system

Hist Tags (Licensed) Total licensed Historian tags.

Hist Tags(Used) Effective number of Historical Licensed Tags in the system. Can be greater

than the number of tags because some tags count as more than one Li

censed Tag.

Hist Tags (UsedBy

Arrays)

Effective number of Historical Licensed Array Tags in the system (Not the

raw tag count, the effective licensed count).

Historian | 42 - Historian Web Admin Console | 2864

Table 434. Historian Config Counters (continued)

Config Counters Description

Hist Tags (UsedByUser

Def)

Effective number of Historical Licensed User Defined Tags in the system (Not

the raw tag count, the effective licensed count).

Number of Collectors Number of collectors defined on the system.

Number of EnumSets Number of enumerated sets defined on the system.

Number of

UserDefTypes

Number of user defined types defined on the system.

SCADA Tags (Actual) Number of SCADA Tags in the system.

SCADA Tags (Licensed) Total Licensed SCADA tags.

SCADA Tags (Used) Effective number of SCADA Licensed Tags in the system. Can be greater than

the number of tags because some tags count as more than one Licensed

Tag.

SCADA Tags (UsedBy

Arrays)

Effective number of SCADA Licensed Array Tags in the system (Not the raw

tag count, the effective licensed count).

SCADA Tags (UsedBy

UserDef)

Effective number of SCADA Licensed User Defined Tags in the system (Not

the raw tag count, the effective licensed count).

Adding a Performance Tag

1. In the Tag Maintenance page, select the Tags link on the toolbar.

The Tag Maintenance page appears.

2. Select the Add Tag Manually link on the toolbar.

The Add Tag window appears.

3. Enter a name for the Performance Tag.

4. Select OK.

The Tag Maintenance page displays with the specified tag properties.

Viewing Tag or Counter Trend Data

How to display a trend of data for a selected tag or performance counter

1. On the Tag Maintenance page, select a tag.

2. Right-select the tag and select Trend. The trend for the selected tag displays.

Historian | 42 - Historian Web Admin Console | 2865

Evaluate Data Compression Performance

You can determine how effectively data compression is functioning at any given time by examining the

Collector Detail Diagnostics on the Collectors section of the Dashboard, as shown in the Understanding

the Interface topic.

The compression field at the top of the page shows the current effect of archive compression. If the value

is zero, it indicates that compression is either ineffective or turned off. If it shows a value other than zero,

it indicates that archive compression is operating and effective. The value itself indicates how well it is

functioning. To increase the effect of data compression, increase the value of the archive compression

deadband so that compression becomes more active. Values for this parameter should typically range

from 0 to 9%.

Handling Value Step Changes with Collector Data Compression

Note:

Individual tags can be configured to retrieve step value changes. Refer to the General section for

more information.

If you enable collector compression, the collector does not send any new input values to the archiver if

the value remains within its compression deadband. Occasionally, after several sample intervals inside

the deadband, an input makes a rapid step change in value during a single sample interval. Since there

have been no new data points recorded for several intervals, an additional sample is stored one interval

before the step change with the last reported value to prevent this step change from being viewed as a

slow ramp in value. This value marks the end of the steady-state, non-changing value period, and provides

a data point from which to begin the step change in value. The collector uses an algorithm that views the

size of the step change and the number of intervals since the last reported value to determine if a marker

value is needed. The following is an example of the algorithm:

BigDiff=abs(HI_EGU-LO_EGU)*(CompressionDeadbandPercent/(100.0*2.0))*4.0

If (Collector Compression is Enabled)

If (Elapsed time since LastReportedValue>=(SampleInterval * 5))

If (abs(CurrentValue-LastReportedValue) > BigDiff)

Write LastReportedValue,Timestamp=(CurrentTime-SampleInterval)

In the example above, if a new value was not reported for at least the last 4 sample intervals, and the

new input value is at least 4 deltas away from the old value (where a single delta is equal to half of the

compression deadband), then a marker value is written.

Historian | 42 - Historian Web Admin Console | 2866

Note:

These settings are also adjustable from the Registry. Please contact technical support for more

information.

Example: Value Spike with Collector Compression

A collector reads a value of X once per second, with a compression deadband of 1.0. If the value of X is

10.0 for a number of seconds starting at 0:00:00 and jumps to 20.0 at 0:00:10, the data samples read

would be:

Time X

0:00:00 10.0 (steady state value)

0:00:10 20.0 (new value after step change)

However, without the marker value, if this data were to be put into a chart, it would look like the data value

ramped over 10 seconds from a value of 10.0 to 20.0, as shown in the following chart.

The addition of the marker value to the data being stored results in the following data values:

http://globalcare.ge-ip.com

Historian | 42 - Historian Web Admin Console | 2867

Time X

0:00:00 10.0 (steady state value)

0:00:09 10.0 (inserted Marker value)

0:00:10 20.0 (new value after step change)

If you chart this data, the resulting trend accurately reflects the raw data and likely real world values

during the time period as shown in the following chart.

Historian Data Types

Historian uses the following data types.

Table 435. Data Types

Data Type Size Description

Single Float 4 bytes The single float data type stores decimal values up to

6 places. Valid ranges for the single float data type are

1.175494351e-38F to 3.402823466e+38F

Historian | 42 - Historian Web Admin Console | 2868

Table 435. Data Types (continued)

Data Type Size Description

Double Float 8 bytes The double float data type stores decimal values up to

15 places. Valid values for the double float data type are

2.2250738585072014e-308 to 1.7976931348623158e+308

Single Integer 2 bytes The single integer data type stores whole numbers, without

decimal places. Valid values for the single integer data type

are -32767 to +32767.

Double Integer 4 bytes The double integer data type stores whole numbers, without

decimal places. Valid values for the double integer data type

are - 2147483648 to +2147483648.

Quad Integer 8 bytes The quad integer data type stores whole numbers without

decimal places. Valid values for the quad integer data type

are -9,223,372,036,854,775,808 (negative 9 quintillion) to

+9,223,372,036,854,775,807 (positive 9 quintillion).

Unsigned Single In

teger

2 bytes The unsigned single integer data type stores whole numbers

without decimal places. Valid values for the unsigned single

integer data type are 0 to 65535.

Unsigned Double

Integer

4 bytes The unsigned double integer data type stores whole numbers

without decimal places. Valid values for the unsigned double

integer data type are 0 to 4,294,967, 295 (4.2 billion).

Unsigned Quad In

teger

8 bytes The unsigned quad integer data type stores whole numbers

without decimal places. Valid values for the unsigned quad

integer data type are 0 to 18,446,744,073,709,551,615 (19

quintillion).

Byte 1 byte The Byte data type stores integer values. Valid values for the

byte data type are -128 to +127.

Boolean 1 byte The Boolean data type stores boolean values. Valid values for

the boolean data type are 0=FALSE and 1=TRUE. If the user

sends zero, the value is taken as zero. Anything other than

zero is treated as one.

Fixed String Configured by user The fixed string data type stores string data of a fixed size.

Valid values are between 0 and 255 bytes.

Historian | 42 - Historian Web Admin Console | 2869

Table 435. Data Types (continued)

Data Type Size Description

Variable String No fixed size The variable string data type stores string values of undeter

mined size. This data type is useful if you cannot rely on a

constant string length from your data source.

Binary Object No fixed size The binary object data type stores binary data. This is useful

for capturing data that can not be classified by any other data

type.

Scaled 2 bytes The scaled data type lets you store a 4-byte float as a 2-byte

integer in the Historian archive. The scaled data type saves

disk space but sacrifices data precision as a result.

Additional Notes on Data Types

Quad Integer

If a tag is associated with Quad Integer, Unsigned Double Integer, or Unsigned Quad Integer data types

and if you are retrieving data using Non-Web Admin, Excel Add-in, Calculation, ihSQL, and ihSDK, then

there may be a loss of precision value due to a Visual Basic limitation.

Calculation collector supports only the calculations performed using the current value calculation. It does

not support other calculations due to a Visual Basic script limitation.

The high and low EGU limits for Quad Integer, Unsigned Single Integer, Unsigned Double Integer, and

Unsigned Quad Integer are between 2.2250738585072014e-308 to 1.7976931348623158e+308.

Fixed String Data Types

The fixed string data type lets you store string data of a fixed size. This is useful when you know exactly

what data will be received by Historian. If a value is larger than the size specified in the Data Length field,

it will be truncated.

Scaled Data Types

Historian uses the high and low EGU values to both store and retrieve archived values for the scaled data

type. This allows you to store 4 byte floats as 2 byte integers in the Historian archive. Though this saves

disk space, it also sacrifices data precision as a result. The smaller the span is between the high and low

EGU limits, the more precise the retrieved value will be.

Historian | 42 - Historian Web Admin Console | 2870

When calculating the value of a scaled data type, use this formula:

ArchivedValue = (((RealWorldValue - EngUnits->Low) / (EngUnits->High - EngUnits->Low) * (float) HR_SCALED_MAX_VALUE)

 + .5);

For example: A value of 12.345 was stored in a scaled tag whose high EGU was 200 and low EGU was 0.

When later retrieved from the Historian archive, a value of 12.34473 would be returned.

Note:

Values that are outside of the EGU range of a scaled data type tag get stored as "bad" or

"scaledoutofrange" in Historian. You cannot correct values for scaled data types that were

inserted while EGUs were incorrect. Changing either the High or Low EGU tags does not affect

existing data, but only affects the new data with new timestamps. If necessary, contact technical

support for additional information.

Setting a Value For the Fixed String Data Type

1. In the Admin App, select Tags.

2. Select the tag you want to configure.

3. Select Collection.

4. In the Data Type drop-down list, select Fixed String.

5. Enter a value in bytes in the adjacent field. This field is enabled only when the data type selected is

Fixed String.

Managing Tags

Access a Tag

1. Access the Web Admin console (on page 2818).

2. Select Configuration or Show All Collectors or Show All Clients.

3. Select Tags.

The Tags page appears.

4.

Add a Tag to a Data Source

To display the Tags page, select the Tags link in any of the Historian Web Admin console pages. The Tags

page lets you read and modify all tag parameters for the Historian system. To access information on a

specific tag or group of tags, however, you must first search for the tags. You can search for the tags

using the Search for Tags button.

Historian | 42 - Historian Web Admin Console | 2871

You can add tags manually through the tags page or choose the tags from the listed collectors. Typically,

you add tags to Historian by browsing the data source. You can also add tags manually or add tags from

the collector by selecting the appropriate link in the second line of the display.

If you add a tag with a tag name greater than 25 characters in length, the characters beyond 25 are not

visible in the Tags list on the Tags page. To see the entire tag name, place the mouse cursor over the tag

to see a ToolTip that displays the complete tag name.

Note:

Do not add or update the following spare configurations as the data may get corrupted or over

written:

• The Spare 1 field for OSI PI Distributor. OSI PI distributor reads data from the Historian tag

displayed in the Tag Source Address field and sends it to the OSI PI tag name displayed in

the Spare 1 field.

• The Spare 5 field for Server to Server Collector and Server to Server Distributor as it is only

used for internal purposes.

Add a Tag Manually

Note:

If you manually add a Server-to-Server tag that uses the polled collection type, make sure that

you set the Time Adjustment field for the tag to the Adjust for Source Time Difference option

after you add the tag. The Time Adjustment field is located in the Advanced section in the Tag

Maintenance page.

1. Select the icon link in the Tag Details page and select Add Tags Manually.

The Add Tag window appears.

2. Select a collector from the drop-down list in the Collector Name field. This associates the new tag

with a specific collector.

3. Enter the Source Address and Tag Name in the appropriate fields.

4. Select the data store in the Data Store field.

5. Select a Data Type from the drop-down list.

6. For fixed string data types only, enter a value in the field adjacent to the Data Type field.

7. Select Seconds, Milliseconds, or Microseconds in the Time Resolution field.

Historian | 42 - Historian Web Admin Console | 2872

8. If the tag is an Array Tag, select the Is Array Tag option.

9. Select Add to add the tag.

Add a Source Address to a Tag

1. Select a collector from the drop-down list in the Collector Name field.

This associates the new tag with a specific collector.

2. Enter the Source Address or select Browse.

The Add Tags from Collectors window appears.

3. Select the tag you want to associate with the source address.

You can select only one tag.

4. Select OK.

The source address of the tag is added.

Adding OPC Tags from a Collector

1. Select the link in the Tag Details page.

2. Select Add Tags from Collector.

The Add Tags from Collector window appears.

3. Select the collector from the Collector name list.

4. Enter the Source Tag Name or select Browse.

The list of folders available with the collector is displayed.

5. Expand the folder to select the desired tags.

The > symbol indicates that you need to navigate further within the folder. You can select a single

tag or multiple tags. If you want a series of tags, press and hold the Shift key and select the series.

6. Select Add or Add All to add tags.

The selected tags appear in the right hand section.

7. To preview the selected tag details, select Preview.

8. To add the selected tags from the collectors, select Add Selected Tags.

Adding Simulation Tags from a Collector

1. Select the link in the Tag page and then select Add Tags from Collector.

The Add Tags from Collector window appears.

2. Select the collector from the Collector name list.

3. Enter the Source Tag Name or select Browse.

The list of available tags is displayed.

4. Select the desired tags and select Add or select Add All to add tags.

Historian | 42 - Historian Web Admin Console | 2873

You can select a single tag or multiple tags. If you want a series of tags, press and hold the Shift

key and select the series.

The selected tags appear in the right hand section.

5. To preview the selected tag details, select Preview.

6. To add the selected tags from the collectors, select the Add Selected Tags.

Filter and Search Tags

Using the Search window you can:

• Add multiple search criteria based on the tag criteria and the criteria value.

• Modify the existing criteria value.

• Delete unwanted search criteria from the list.

• Automatically load the most recently used criteria for re-use.

• Search the Historian database based on search criteria.

• View the details of a tag.

Filtering Tags

By default, the Tags page displays all available tags. To filter the tags based on a set of criteria, use the

Filter option.

1. On the Tags page, select the Filter button.

The section expands to show the filter criteria.

2. Select the criteria and enter a value to filter by.

3. Select Add Criteria .

4. Select Apply to filter the tags based on the criteria.

Select Remove to remove the criteria selected or select Reset to reset your input.

Searching for Tags: Simple Search

1. Select the Search button in the Tags page.

The Search box appears.

Historian | 42 - Historian Web Admin Console | 2874

2. Enter a tag mask in the Search field using either the full/partial tagname or standard Windows

wildcard characters.

This will help you to filter the search query more precisely. If wildcard characters are not used, then

the search will result in all the tags containing the given search string.

Note:

Supported wildcard characters in simple search are * and ?.

Example for using wildcard characters in search strings:

Search String Result

W* All tags starting with letter W

*e All tags ending with letter e

W*e All tags starting and ending with W and e respectively

Tag? All four letter named tags, where the last letter can be anything

W*0000? All tag names staring with W and ending with 0000 followed by any sin

gle letter

3. Select Enter.

The relevant tag(s) are listed.

Searching for Tags: Advanced Search

The Advanced Tag Search window allows you to search for a set of tags that match the search criteria

and then perform actions on one or more tags that you select from the list.

It saves the most recently used search criteria to a file named DefaultSearchCriteria.xml in the Excel App

Data path, which is: c:\users\<username>\AppData, and this criteria is automatically loaded into

the window the next time it is opened. This allows you to re-use or modify the criteria rather than entering

them each time. To reset your criteria, delete the XML file.

1. Select the Advanced Search button.

The Advanced Search window appears.

2. In the Step 1 section, select the tag criteria from the list.

3. Enter or select the Tag Criteria Value.

If you leave the field blank, the search returns all of the available tags.

Historian | 42 - Historian Web Admin Console | 2875

4. (optional) Select the Add Criteria button to add more criteria to narrow your search.

5. Select the Find Tags button.

All the tags that satisfy the query criteria are displayed in the Step 2 section.

6. Select tags from the list by selecting Add .

To select all of the tags, select the Add All button. To remove a selected tag, select Remove .

7. Select Apply to return the list of tags on the parent window.

Select Reset to clear your search criteria. Select Cancel to close the window.

Access the Trend Chart of Tag Values

This topic describes how to access the values of a tag in a trend chart. The difference in the timestamp

of consecutive values depends on the time resolution of the tag. For example, if the time resolution is

seconds, the timestamp of consecutive values of the tag will be one second apart.

You can plot the values of multiple tags in a single trend chart.

1. Access the Web Admin console (on page 2818).

2. Select one or more tags on the Tag Details page.

3. Select the button at the bottom of the page and select the Trend option.

The Trend page displays the trend of the last 10 minutes with an interval of 1 minute and

interpolated sampling mode. By default, all selected tag trends are shown.

• To zoom in on the trend, select and drag to select the region to zoom in on.

• To zoom out on the trend, select the Reset Zoom button.

• To see the tag name, date/time, quality, and value at an instance, hover your mouse over the trend.

• You can change the type of trend you want to view: Line, Column, or Area.

• Selected tag names are shown as legends; select to see a particular tag's trend and select again to

hide the trend.

• Select the Refresh button to refresh the page.

• Select the Close button to cancel the operation.

Displaying Raw Data Samples

You can view the most recent ten raw samples for one or more selected tags.

Historian | 42 - Historian Web Admin Console | 2876

1. Select one or more tags on the Tag Details page.

Note:

If you choose Select All, only the data for the first 10 tags selected will be displayed.

2. Select the button at the bottom of the page and select the Last 10 Raw Values option.

The Last 10 Raw Values for selected Tag(s) window appears, displaying the tag name, timestamp,

value, and quality for each selected tag.

• For each selected tag, values are sorted by timestamp in descending order.

• Where necessary, tag names are truncated and indicated with an ellipsis "..."

• To view the full name, hover over the tag name. A tooltip displays the full tag name.

• Panes can be collapsed and expanded to see the last 10 raw values for more selected tags.

• Select Refresh button to refresh the page.

• Select Close button to cancel the operation.

Dynamic Collector Updates

The dynamic collector update feature ensures that any modifications done to the tag configuration do

not affect all the tags in a collector. Only the tags that stop data collection will record zero data and bad

quality without restarting the collector. In other words, the tags that do not stop data collection do not

record bad data samples to the collection.

Whenever you add tags, delete tags, or modify certain tag properties, the following collectors reload only

the modified tag(s) without restarting the collectors.

• OPC Collector

• iFIX collector

• Calculation collector

• Simulation Collector

• Server to Server Collector

• PI Collector

• PI Distributor

If you disable On-line Tag Configuration Changes option, any changes you make to the tags do not affect

collection until after you restart the collector and the data archiver. You can restart the data archiver

from Windows services. To restart the collector, stop and start the collector service or executable (or

use Configuration Hub (on page 639)). Restarting the collector stops and restarts the tag(s) collection

and records bad data samples to the collection. If the modified tags get zero bad markers and available

Historian | 42 - Historian Web Admin Console | 2877

runtime values at the same time, then precedence is given to available runtime values instead of zero bad

markers.

All the collector configuration changes done within a 30 second time frame are batched together. When

possible, update/modify a small set of tags at a time to collect the modified data faster. However,

when updating large sets of tags at the same time, best practice is to disable On-line Tag Configuration

Changes and restart the collector after you are finished.

Starting or Stopping Data Collection For a Tag

For a tag to stop and restart collection without restarting the collector, the On-line Tag Configuration

Changes option must be enabled. By default, the On-line Tag Configuration Changes option is enabled. If

necessary, enable the On-line Tag Configuration Changes option on the Advanced section of the Collector

Maintenance page.

1. In the Tag Viewer section of the Tags page, select the tag from the list.

2. In the Tag Editor section, select Collection.

3. Scroll down to the Collection field and either:

◦ Disable the collection option.

◦ Enable the collection option.

4. Select Update.

Reload Tag Parameters

Whenever you modify certain tag parameters, the following collectors reload only the modified tags

without restarting the collectors.

• OPC Collector

• iFIX collector

• Calculation collector

• Simulation Collector

• Server to Server Collector

• PI Collector

• PI Distributor

For a tag to stop and restart the collection without restarting the collector, you must select the On-line

Tag Configuration Changes option on the Advanced section of the Collector Maintenance page. By

default, the On-line Tag Configuration Changes option is enabled.

Historian | 42 - Historian Web Admin Console | 2878

If you disable the On-line Tag Configuration Changes option, any changes you make to the tags do not

affect collection until after you restart the collector. To restart the collector you must stop and start

the collector service or executable. Restarting the collector stops and restarts the tag(s) collection and

records bad data samples to the collection. All the collector configuration changes done within a 30

second time frame are batched together and applied to the collector. If the modified tags get zero bad

markers and available runtime values at the same time, then precedence is given to available runtime

values instead of zero bad markers.

It is recommended that you update/modify a small set of tags at a time to collect the modified data

faster. It is recommended to you disable the On-line Tag Configuration Changes option while updating

large sets of tags at the same time, and restart the collector after modification.

Tag Properties that Cause the Tag Collection to Stop and Restart

Changes to the following tag properties cause an updated/modified tag to stop and restart the collection,

when the On-Line Tag Configuration Changes option is enabled:

• Collector Name

• Collector Type

• SourceAddress

• Spare 1 – 5

• Data Type

• Collection Interval

• Collection Offset

• Collection Disabled/Enabled (CollectionDisabled in SDK)

• Collection Type

• TimeStampType

• Calculation Dependencies (in SDK) or Calculation Triggers (in Historian Administrator) – applies to

Server-to-Server and Calculation collectors only

Tag Properties that Do Not Cause the Tag Collection to Stop and Restart

The following tag properties do not cause the tag collection to stop and restart, but the collectors use

these new values immediately (when the On-Line Tag Configuration Changes option is enabled):

• High Engineering Units

• Low Engineering Units

• Input Scaling

• High Scale

• Low Scale

Historian | 42 - Historian Web Admin Console | 2879

• Collector Compression

• Collector Deadband Percent Range

• Collector Compression Timeout

Rename Tags

Note:

To rename tags, you must be a member of the administrator's group with tag level security.

New tag names are called active tag names and old tag names are called aliases.

You can also rename or permanently rename tags using the Non-Web Historian Administrator, the Excel

Add-in, or the Application Program Interfaces (ihSDK, ihUAPI, or ihAPI).

If you modify the properties of a renamed tag, the properties of all of its aliases will also be updated.

Whenever you rename a tag, only the active (newest) tag name will be visible in the Tags list on Historian

Administrator Tag page. You can rename tags multiple times, but only the latest, active tag name will be

visible in the Tags list.

You can also retrieve the data using any alias (that is, the new or old tag names). However, the Tag page

will display only an active tag name (that is, the new tag name). Whenever you change or copy a tag name,

the information about the old tag name, new tag name, and time stamps are all recorded in the audit trail.

Be aware of the following when you are using the Tag Rename feature:

• If you modify a renamed tag property, then all of the alias' tag properties will also be updated.

• If you delete a renamed tag, then all the aliases will also be deleted.

• You can rename tags multiple times, but only the latest active tag name (renamed tag name) will

be visible in the Tags list.

• If you rename a tag, the tag count does not increase.

• If you copy a tag, then the tag count increases.

• An alias can be queried, but cannot be modified or deleted.

Permanently Rename a Tag

You can permanently rename a tag if you no longer want to read from and write to a tag by its previous

name. Permanently renaming makes the previous tag name available for new usage. For example, if you

had permanently renamed Tag A to Tag B, you can create a new tag with the tag name Tag A with no

linkage to the previous tag.

Historian | 42 - Historian Web Admin Console | 2880

Things you need to know when you are using the Permanent Rename feature:

• If you permanently rename a tag, the tag name will be updated with the new tag name and the old

tag name will be lost.

• You can permanently rename tags multiple times, but only the latest tag name (new tag name) will

be visible in the Tags list.

• If you permanently rename a tag, the tag count does not increase.

• Store and forward data will be lost if you do a permanent rename and the data is sent using the old

tag name.

• There will be loss of data during the process of permanently renaming a tag. If you are going to

perform permanent rename, it is recommended to stop the collector and then permanently rename

the tag.

• If a tag is permanently renamed and is a trigger tag to other tags, then you need to re-assign the

new trigger name to the tags.

Copying a Tag

If you copy a tag, then the tag count increases.

1. Select the Copy button in the Tags page.

The Copy Tag window appears.

2. Enter a tag name for the new tag.

3. Select OK.

Renaming a Tag

Renaming a tag creates an alias for the tag. Only the name changes; none of the tag's properties are

changed. The tag data can be referred to using any alias for that tag, including the current name.

Renaming a tag does not increase the tag count.

1. Double-click the Tag link in the Tag Details page.

The tag name becomes editable.

2. Enter a new tag name and press the Enter key.

If you are connecting to Historian 3.5 collectors, then you must restart the respective collectors before

browsing the tags.

Renaming a Tag Permanently

Tag renaming only changes the tag's name without changing any of the tag's properties.

Historian | 42 - Historian Web Admin Console | 2881

1. In the Tag page, select the tag you want to rename.

2. Select the arrow button in the right-hand section and select Rename.

The Rename Tag window appears.

3. Enter a new tag name.

4. Select OK.

A message box appears confirming that you want to permanently rename the tag.

5. Select Yes to permanently rename the tag.

If you are connecting to Historian 3.5 collectors, then you must restart the respective collectors before

browsing the tags.

Stale Tag Management

Stale tags are tags that have no new data samples within a specified period of time. These tags add

to system overhead and slow down user queries. The Data Store Configuration option allows system

administrators to configure the time period after which tags are considered stale and how often the

system should check for stale tags.

Under the default configuration, tags are never considered stale. This effectively disables stale tag

management.

To see the names and descriptions of all currently stale tags, use the IsStale criteria in a tag search.

To improve performance, permanently delete (on page 2882) unused tags. Perform a tag search using

the IsStale criteria and select Permanently Delete Tag.

Delete Tags

There are key differences between deleting and permanently deleting a tag.

Delete Permanently Delete

The tag is removed from the tag database but any

data for that tag is retained in the archive

All data associated with the tag is completely lost

and the tag name is available for reuse.

Tag data is still available from the archive, so you

can still reference that tag, for example, from with

in a calculation formula or by using the Excel Add-

In.

Tag data is no longer available from the archives

and you will not be able to query the existing data

for that tag.

Historian | 42 - Historian Web Admin Console | 2882

Deleting a Tag

1. In the Tag page, select a tag from the list.

2. Select the button at the bottom right of the page. The Delete Tag window appears.

3. Select the Remove Tag(s) from System option and select OK. This removes the tag from the Tag

Database but retains any data for that tag in the archive.

4. A message box appears asking you to confirm the deletion. Select Yes to delete the tag.

Deleting a Tag Permanently

1. In the Tag page, select a tag from the list.

2. Select the Delete button. The Delete Tag window appears.

3. Select the Permanently Remove Tag(s) from System option and select OK. This permanently

removes the tag from the Tag Database.

4. A message box appears asking you to confirm the deletion. Select Yes to delete the tag.

Managing Data Stores

About Data Stores

A data store is a logical collection of tags. It is used to store, organize, and manage tags according to the

data source and storage requirements. A data store can have multiple archive files (*.IHA), and includes

both logical and physical storage definitions.

Tags can be segregated into separate archives through the use of data stores. The primary use of data

stores is to segregate tags by data collection intervals. For example, you can put a name plate or static

tags where the value rarely changes into one data store, and your process tags into another data store.

This can improve query performance.

Historian data stores are stored as archive files that contain data gathered from all data sources during a

specific period of time. You can write and read data from the archive files.

You can define two types of data stores:

• Historical Data Store: Tags stored under historical data store will store data as long as the disk

space is available. Depending on your license, you may be able to create multiple historical data

stores. The maximum number of historical data stores supported depends on the license.

• SCADA Buffer Data Store: Tags stored under the SCADA buffer data store will store data for a

specific duration of time based on license.

Historian | 42 - Historian Web Admin Console | 2883

When you install the Historian server, two historical data stores are installed by default.

• System: Stores Historian messages and performance tags. This is only for internal usage within

Historian, and you cannot add tags to this data store. You cannot rename or delete the system data

store.

• User: Stores tag data. This is a default data store. You can rename and delete a user data store as

long as there is another default data store set for tag addition.

Based on your license, a SCADA Buffer data store may also be installed. It stores short-term tags and

data.

Moving Tags Between Data Stores

You can move tags from one data store to another. After a tag is moved, the incoming data is stored in the

new data store.

When you move a tag, only the tag itself is moved; the data already associated with that tag does not

automatically move with it. Moving the old data is optional, but if the old data is not moved to the new

data store, it cannot be retrieved.

1. In the Tags page, select a single tag or multiple tags.

2. In the Tag Editor section, select Advanced.

3. Select Data Store to select the tag's new data store.

A message appears asking you to confirm the change.

4. Select Yes.

5. Select Update.

A message appears confirming that the tag's data store has changed and reminding you that the

data has to be manually moved using MigrateIHA.exe.

(optional) Move the data associated with the tags you just moved with the migration utility tool

(MigrateIHA.exe). If you moved multiple tags, you can move the data for all, some, or none of the tags.

Before moving any data, best practice is to back up the archive file(s) that contain the old data.

Note:

When migrating tags using MigrateIHA.exe, ensure that you select the Migrate using the tag

mask option and specify the tag name or wildcard mask to migrate the tag you want to include.

Refer to the How to use the IHA Migration Tool section in Important Product Information.

Historian | 42 - Historian Web Admin Console | 2884

Adding a Data Store

The number of data stores you can create depends on your license.

1. Access the Web Admin console (on page 2818).

2. Select Data Stores.

A list of data stores appears.

3. Enter values as described in the following table.

Field Description

Data Store Name Enter a unique name for the data store. A value is required. You can

use all alphanumeric characters and special characters except / \ * ?

< > |

Description Enter a description for the data store.

Is Default Switch the toggle on if you want to set this data store as the default

one. A default data store is the one that is considered if you do not

specify a data store while adding a tag. You can set only one data

store as default.

4. Select .

The data store is created.

When you add tags to the data store, it will have its own set of .IHA (iHistorian Archive) files.

Ensure that you back up the new data store archives periodically.

When you add the tags to the new data store, it will have its own set of .IHA (iHistorian Archive) files.

Ensure that you back up (on page 2896) the new data store archives periodically.

Deleting a Data Store

You can delete a data store if it is no longer needed. You cannot delete the System data store. You cannot

delete the last User store; at least one User store must exist.

1. If there are tags assigned to the data store, reassign them to other data stores or delete them.

2. In the Data Stores page, select the unwanted data store and then select Delete.

A message appears asking you to confirm deletion

3. Select OK to delete the data store.

Historian | 42 - Historian Web Admin Console | 2885

Editing a Data Store

The following special characters cannot be used in data store file names: / \ * ? < > |

1. Select the Edit button.

The Edit Data Store Configuration window appears.

2. Make the desired change(s):

a. To rename the data store, enter the new name in the Data Store New Name field.

b. Enter or modify the Description.

c. Toggle the Is Default option.

3. Select Save to save the changes.

Managing Data Archives

Configure Data Archives

About Data Archives

Historian archives are stored data files, each of which contains data gathered from all data sources during

a specific period of time. There are two types of archive files in an Historian archives directory:

Machinename_Config.ihc – the single .IHC file contains information about the archiver, tag

configuration, and collector configuration.

Machinename_ArchiveXXX.iha – archive data files where x is a number indicating the place of

the file in a time-based sequence.

Since archived data files can be quite large, adjust system parameters carefully so that you limit data

collection to meaningful data only and so that you minimize the required size of system storage. This

chapter describes techniques you can use in your application to accomplish these goals.

Note:

You must have a minimum of 10 GB free space available for the Data Archiver to start.

Historian now supports a maximum archive size of 256 GB per archive. When you start Historian, it may

take a longer time to start an archiver depending on the number of archives online, number of tags, and

number of connections.

Note:

The limit for the number of LUNs is 100.

Historian | 42 - Historian Web Admin Console | 2886

Archive Creation

Archive files are created to store data as the Historian server receives it until they reach their duration

limit. When the limit is reached, a new archive is created and the data is loaded into that archive. These

archives can be created based on number of days or hours. You can observe the archives on the left side

of the Data Store page, under Archives, with the name of the archive and start time for each archive

Note:

As of Historian 7.0, Historian archives are time-based only. Historian will asynchronously create a

new empty archive when data starts loading into an existing archive. If the option to automatically

create archives is not enabled, however, you must open a new archive manually.

To create archives based on days:

1. Open the Data Stores page and then select Edit. The Archive Configuration page appears.

2. Select Configuration.

3. In the Archive Duration field, select the Days option from the drop-down list.

4. Enter the number of days for which you want to create archives.

5. Select Update.

Setting Days to 1 means that a new archive will be created every day starting from the time your first

archive is created. The next archive is created after one day (24 hours) from the time the first archive was

created.

To create archives based on hours:

1. Open the Data Stores page, and then select Edit. The Archive Configuration page appears.

2. Select Configuration.

3. In the Archive Duration field, select the Hours option from the drop-down list.

4. Enter the number of hours for which you want to create archives.

5. Select Update.

Setting Hours to 1 means that a new archive will be created after every hour starting from the time your

first archive has been created.

The Archive Configuration Screen

To access the Archive Configuration page, select Edit on the Data Stores page.

Historian | 42 - Historian Web Admin Console | 2887

The Archive Configuration page lets you read and modify the parameters of archives and data stores. In

this page, you can see the list of all archives of the selected data store.

To examine a particular archive, select the archive and then select Edit. The details of the archive are

displayed in the Archive Details section.

• Action Buttons

• Statistics Section

• Archives Section

• Archive Details Section

Points To Remember

• You may need to add an archive when the current archive is almost full and you have not enabled

automatic creation of archives.

• You may need to restore an archive when you start up after an unplanned shutdown or when you

need to retrieve data from an old, inactive archive.

• You may need to back up an archive before a planned Historian software product upgrade.

• You may need to manually resynchronize archives when the archives in the mirrored environment

are not synchronized.

Action Buttons

Select a button to perform the action indicated by the name. The following table describes these buttons.

Button Action

Add Archive Select this button to add a new archive to the data store.

Remove Archive
Remove an archive. First select an archive name to select it, and then select

Remove. Selecting OK removes the archive file from the list of archives for

the system, and places it in the \Archives\Offline directory. This does not

delete the archive file from the system. An archive must be closed before it

can be removed.

Close Archive
Manually close the current archive. An archive must be closed before it can

be removed.

Backup Archive
Back up a selected archive. Verify the file name and path and then select OK

to save the file.

Historian | 42 - Historian Web Admin Console | 2888

Button Action

Restore Archive
Restores an archive from backup.

Update Apply all parameter changes that you have made in this page. If you want to

cancel changes and return to the original values or settings, open a different

page and then return to the Archive Configuration page.

Edit Select this to edit the Archive configuration details.

Statistics Section
Indicates the current status of the collector.

• Running indicates that the collector is operating.

• Stopped indicates that it is in pause mode and not collecting data.

• Unknown indicates that status information about the collector is unavailable at present, perhaps as

a result of a lost connection between collector and server.

Table 436. Configuration Tab

Field Description

Default Archive Path The path name that will be used for any newly created archives. If

you change the path, the change takes effect the next time a new

archive is created.

Note:

Do not use a period in the default archive path field. If a peri

od is present in the default archive path, you will not be able

to specify a default archive name.

Default Backup Path The location to which the backup file will be saved.

Archive Duration (Days/Hours) Specifies the duration of a newly created archive in days or hours.

A new archive will be created after the selected number of days or

hours.

Historian | 42 - Historian Web Admin Console | 2889

Table 436. Configuration Tab (continued)

Field Description

Note:

When the Archive Duration property is changed in a mir

rored environment, the changes will take effect only after a

time gap of 15 minutes.

Data is Read-only After (Hours) The number of hours, prior to now, for which data can be stored in a

read/write archive. After the time expires, that portion of the archive

file is automatically made read-only. Incoming data values with time

stamps prior to this time are rejected.

A single archive file, therefore, may contain a read-only section, an

other read-write section containing recently written data, and unused

free space.

Note:

A read-only archive file cannot be moved using Windows

Explorer. To move a read-only archive file, select the file

and select the Remove button on the Details section of the

Archive Maintenance page. The Archiver then releases its

locks, which permits you to move the file at will.

Base Archive Name A prefix that is automatically added to the file name of all created

archives. To change the prefix, enter a new text string and select Up

date.

Free Space Required (MB) Indicates the remaining disk space required after a new archive is

created. If the available space is less than the requirement, a new

archive is not created. The default is 5000 MB.

The Free Space Required field does not apply to alarms and events

archives. The alarms and events archiver will continue writing to the

alarms and events archive until the drive is full. If this occurs, the

alarms and events archiver will buffer incoming alarms and events

data until the drive has free space. An error will also be written to the

Historian message log.

Historian | 42 - Historian Web Admin Console | 2890

Table 436. Configuration Tab (continued)

Field Description

Automatically Create Archives

(Enable/Disable)

Select the appropriate button to enable or disable this function.

When enabled, the server automatically starts a new archive in the

default path directory whenever the current archive fills up. If dis

abled, no new data will be written to the archives once the default

size has been reached.

Note:

To create multiple archives at the same time, Automatically

Create Archives must be Disabled.

Overwrite Old Archives (En

able/Disable)

Select the appropriate button to enable or disable this function.

When enabled, the system replaces the oldest archived data with

new data when the default size has been reached.

• To create multiple archives at the same time, Overwrite Old

Archives must be Disabled.

• If you enable both Automatically Create Archives and Over

write Old Archives, then you must set ihArchiveFreeSpace

HardLimit to TRUE using APIs.

CAUTION:

Since this action deletes historical data, exercise caution

in using this feature. Be sure that you have a backup of the

archive so that you can restore it later.

SCADA Buffer Duration (Days) Indicates the maximum number of days the trend data can be

stored. The maximum number of days is 200 days.

This field applies only to SCADA buffer data stores.

Use Caching (Enabled/Disabled) When reading data from the archiver, some data is saved in the sys

tem memory and retrieved using caching. This results in faster re

trieval as the data is already stored in the buffer. Enable the Use

Caching option to retrieve data faster.

This option is not available for SCADA buffer data stores.

Historian | 42 - Historian Web Admin Console | 2891

Table 436. Configuration Tab (continued)

Field Description

Generate Message on Data Up

date (Enabled/Disabled)

If this option is enabled, an audit log entry will be made any time the

value of a previously archived data point in the Historian archive is

overwritten. This log entry will contain both the original and new val

ues.

To create multiple archives at the same time, Generate Message on

Data Update must be Disabled.

This option is not available for SCADA buffer data stores.

Store OPC Quality (Enabled/Dis

abled)

Stores the OPC data quality.

To create multiple archives at the same time, Store OPC Quality

must be Disabled.

Stale Period Specifies the time period after which tags are considered stale for

this data store. The value is defined in days. Valid values are:

• 0 (zero): This default value means that tags are never consid

ered stale. This effectively disables stale tag management.

• 7 days (1 week) to 36500 days (100 years)

Stale Period Check Specifies the frequency with which the staleness of the tag is

checked. The value is defined in days. Valid values are 1 day (the de

fault) to 30 days.

Archives Section

The Archives section displays the list of archives available with the selected data store. To edit an archive,

select the archive and select the Edit button. The details of the archive are displayed in the Archive Details

section.

Field Description

Name The name of the archive.

Start Time The time of the oldest sample in the archive.

End Time The time the archive is automatically or manually closed.

Historian | 42 - Historian Web Admin Console | 2892

Archive Details Section

Archive Details section of the page lets you read and modify all archiving parameters for the Historian

system.

Table 437. Archiving Parameters

Field Description

Status The current operating state of the archive: Active, Current, Empty.

• Current: Archive is actively accepting data.

• Active: Archive contains data but is not currently accepting data.

• Empty: Archive was created but has never accepted data.

Start Time The time of the oldest sample in the archive.

End Time The time the archive is automatically or manually closed.

Last Backup On The date and time the last backup was performed on this archive.

Backup By User name (at time of login to Historian Administrator) of the person who

performed the last backup of the archive.

File Location The path and name of the archive file.

File Size (MB) The size (in MB) of the archive file.

Note:

Historian now supports a maximum Archive Size of 256 GB per

archive.

File Attribute The attribute to set a closed archive to Read-only or Read/Write.

Note:

If you plan to create multiple archives at the same time, then you

must set File Attribute to Read/Write.

Calculate Required Archive Size

Historian will asynchronously create a new empty archive when data starts loading into an existing

archive. Whenever the current archive becomes full, Historian will immediately serve data to a newly

created archive. This significantly reduces archive creation and transition time. If the option to

Historian | 42 - Historian Web Admin Console | 2893

automatically create archives is not enabled, however, you must open a new archive manually. As of

Historian 7.0, Historian archives are time-based only.

CAUTION:

When the default size limit is reached, if automatic archive creation is disabled and you do not

manually create a new archive, new data will not be written to the archives .

CAUTION:

If the available disk space is less than the configured amount of free disk space, Historian cannot

automatically create new archives.

If you enable the Overwrite Old Archives option, the system replaces the oldest archived data with new

data. Since this action deletes historical data, exercise caution in using this feature. Be sure that you have

a backup of the archive so that you can restore it later.

If you enable the Overwrite Old Archives option and if you want to retrieve time-based information, create

an additional archive to overcome the early loss of data due to archive preparedness. For example, if you

want to save 12 months of data into 12 archives, create 13 archives.

During archiver startup and every 60 seconds while the server is running, Historian checks to make sure

that you have configured enough free disk space to save the archives, buffer files, and log files. If there is

insufficient disk space, the Data Archiver shuts down and a message is logged into the log file. For each

archive, you need approximately 1MB of archive space for every 1000 tags, for tag information.

By default, you can view the Historian archiver log file in Historian Data\LogFiles

[03/03/10 15:28:41.398] Insufficient space available in [d:\Historian\Archives\]

[03/03/10 15:28:41.399] The server requires a minimum of [5000 MB] to continue

[03/03/10 15:28:41.679] USER: DataArchiver TOPIC: ServiceControl MSG: DataArchiver(DataArchiver) Archiver s

[03/03/10 15:28:41.807] DataArchiver Service Stopped.

[03/03/10 15:28:41.809] [d:\Historian\LogFiles\DataArchiver-34.log] Closed.

Archive size is a function of the rate at which you archive data and the time period that you want the

archive to cover. You may want the archive to cover a time period of perhaps, 30 days.

Factors that affect the rate at which you archive data are:

• Number of tags – a large number of tags increases the data rate.

• Polling frequency of each tag – a high polling frequency increases the data rate.

Historian | 42 - Historian Web Admin Console | 2894

• Compression settings – disabling compression or setting narrow deadband parameters increases

the data rate.

• Data types – choosing data types that increase the number of bytes per value increases the data

rate.

The following is an example of a manual calculation of required archive size, using typical parameter

values.

Table 438. Assumptions

Number of tags 5000

Polling rate 1 value/5 seconds

% Pass Compression 5% (Pass Compression is the number of data values archived rela

tive to the number of values read, expressed as percent.)

Bytes/value: 4

Duration: 1 month (30 days)

Calculation

The calculation shows that a file size of 500 MB is adequate for archiving one month of data for this

application.

If you believe the calculated size is too large for your application, you can modify parameters as follows:

• Decrease the polling frequency.

• Increase compression deadband, reducing the pass percentage.

• Reduce the number of tags.

• Add more disk capacity to your computer.

Historian | 42 - Historian Web Admin Console | 2895

Archive Size Calculator

An Archive Size Calculator tool is available to estimate archive size based on your input and estimates

the archive size and collector compression based upon a tag that has already been configured. Log on

to http://support.ge-ip.com/devsupport/ to download this and other GE Intelligent Platforms freeware

product solutions.

Prepare for Multiple Archive Creation

If you plan to create multiple archives at the same time, set the following parameters. These parameters

apply only when creating multiple archives at the same time.

• In the Archive Details section, set File Attribute to Read/Write.

• In the Configuration Tab:

◦ set Automatically Create Archives to Disabled.

◦ set Overwrite Old archives to Enabled.

◦ set Store OPC Quality to Disabled.

◦ set Data is Readonly After (Hours) to 1 month.

◦ set Generate Message on Data Update to Disabled.

Before you begin creating multiple archives on a remote machine, ensure that you have enough hard disk

space on that machine. The Allocate Space slider does not display a remote machine's hard disk space;

the r;percentage of available disk space will be used message displayed by the Allocate Space slider

will be inaccurate if it appears at all.

If you receive the error message Runtime error 330 Invalid Property Value while creating multiple

archives on a remote machine, it is probably because you did not have enough hard disk space on that

machine. When you select OK on the error message, Historian Administrator may disappear. You must

now clean up the remote machine's hard disk space and restart Historian Administrator.

Adding One or More Archives

You may need to add an archive when the current archive is almost full and you have not enabled

automatic creation of archives.

Note:

Historian now supports a maximum archive size of 256 GB per archive. When the current archive

is full, the system will write to the next archive in the sequence in which it was created. As of

Historian 7.0, Historian archives are time-based only.

http://globalcare.ge-ip.com

Historian | 42 - Historian Web Admin Console | 2896

1. In the Archives section, select the icon.

The Add New Archive(s) window appears.

2. In the Archive Name field, enter the name of the archive. The archive name must be the same as

the filename.

3. In the File Location field, enter the path of the archive from a local drive or specify a UNC path.

4. In the Archive Size (MB) field, enter the size of the file in MB that you want to create.

5. Select OK.

6. Select Cancel to stop the operation.

If you cancel the operation, any archives already created during this operation will be deleted.

Back up Historian Archive Files

Back up your Historian archive files periodically to ensure your data is protected. Historian bundles alarms

and events data with tag data in its backup files, and stores them as ZIP files. After an archive has been

backed up, it can be stored to a shared network location, stored off-site, or written to physical media.

Note:

• Use Microsoft® Volume Shadow Copy Service to back up archives more than 2 GB in size.

(on page 2898).

• Ensure that you have enough hard drive space on your default backup location before

backing up your archives.

• For Historian 6.0 or later clients, you can only back up time-based archives.

The .IHC file is automatically backed up when, and only when, you back up the "current" archive .IHA file.

By default, the .IHC backup path is the same as the archives path. The .IHC uses the following naming

convention: ComputerName_Config-Backup.ihc If the default backup path is different than the

Historian | 42 - Historian Web Admin Console | 2897

archives path, the .IHC file is copied to the backup folder with the standard .IHC naming convention

ComputerName_Config.ihc.

If you back up an archive more than once, the backup tool will (by default) attempt to use the same name

for the backup file and will detect that an archive with the same name already exists. Rename the backup

archive file or move the original backup archive file from the target backup directory.

Backing up Archives using Historian

Best practice is to store archive backups in a different location than the archive files.

1. Open the Archive Configuration page.

2. In the Archives section, select an existing archive.

3. Select the Backup button.

The Backing up Archive window appears.

4. Enter the Archive Name.

5. Save the backup file to the archive backup file location.

A new Job Id is created and the details of the status are displayed in the Jobs Page.

Including Alarm Data in Archive Backups

When backing up your Historian archives, any alarms that have a life cycle that overlaps the data archive

being backed up will be included. This means that an alarm with a long life cycle can be included up in

multiple backups. For example, say the following alarm and archive dates were the following:

Alarm/Data Archive Start Time End Time

Alarm1 09/02/2004 09/06/2004

Archive1 09/01/2004 09/03/2004

Archive2 09/03/2004 09/04/2004

Archive3 09/04/2004 09/06/2004

If any or all of these archives are backed up, Alarm1 will go into the backup for each one. When the

archives are restored, Historian will analyze the included alarm data and, if the data is already in the

Historian archive, is intelligent enough to know it already has the alarm.

Use the following procedure to change alarm timestamp checking.

Historian | 42 - Historian Web Admin Console | 2898

1. From the Start menu, select Run and enter Regedit.

2. Open the following key folder HKEY_LOCAL_MACHINE\SOFTWARE\Intellution, Inc.\iHistorian

\Services\DataArchiver\

3. Create a new DWORD called AlarmTimestampCheck and set its value to 1.

Set AlarmTimestampCheck to 2 for slower timestamp checking. Set AlarmTimestampCheck to 0

to disable timestamp checking entirely.

4. Select OK.

5. Close the Registry Editor

6. Open Historian Administrator.

7. Restart the Data Archiver for the changes to take effect.

Backing up Archives Using Volume Shadow Copy Service

Historian can use the Microsoft® Volume Shadow Copy Service to back up and restore large archive files

reliably and in a short period of time without affecting the data collection. The Historian Data Archiver

uses ihArchiverBackup.exe as the default backup system. If you want to back up your archiver files

regularly, you can set the scheduler to back up your files automatically.

VSS provides fast volume capture of the state of a disk which is called a snapshot or shadow copy.

When the snapshot is taken, disk writes are suspended for a brief period of time, typically on the order of

milliseconds. After the snapshot, disk writes can resume, but the original state of the files are maintained

by a difference file. The different file allows the state of the original file at the time of the snapshot to be

reconstructed. This behavior allows files to be backed up while new data is being written to files.

If you are using ihArchiveBackup.exe before the upgrade, your backup will continue to work in the same

or similar manner as it did before the upgrade. There is no change in the backup procedure and the Auto

Recovery Backup Files option remains unchanged.

Note:

You can use both ihArchiveBackup.exe or VSS for backup, however, VSS is a better choice for

larger archives to reduce the load on the Data Archiver service.

The Volume Shadow Copy feature is provided by Windows Operating System, and the instructions to

use backup and restore vary depending on the backup application that is used in the Windows operating

system.

Historian supports using the Volume Shadow Copy Service in the following operating systems.

Historian | 42 - Historian Web Admin Console | 2899

• Microsoft® Windows® Server 2019 (64-bit)

• Microsoft® Windows® Server 2016 (64-bit)

• Microsoft® Windows® Server 2012 R2 (64-bit)

• Microsoft® Windows® 10 IoT (32-bit or 64-bit)

• Microsoft® Windows® 10 (32-bit or 64-bit)

• Microsoft® Windows® 8.1 Professional (32-bit or 64-bit)

Microsoft uses a backup format called Virtual Hard Disk (VHD) to back up files. If you create an archive

backup using Microsoft® Volume Shadow Copy Service, you must first restore the archives files (that

is, convert .bkf or .vhd into .iha) using the Windows Restore wizard, and then restore the archives (.iha)

into Historian. For more information on restoring an archive (.iha) into Historian, refer to the Restoring an

Archive (on page 2899) topic.

In addition to using the Backup and Restore wizard, you can also use the command line utilities:

• Refer to How to use command line parameters with the Ntbackup command: http://

support.microsoft.com/kb/814583

• Refer to How to use command line parameters with the Wbadmin command: http://

technet.microsoft.com/en-us/library/cc754015(WS.10).aspx

• If you need additional assistance about using Windows Server Backup Wizard, refer to Microsoft's

website at: http://technet.microsoft.com/en-us/library/cc753528.aspx

Restore Historian Archive Files

Under certain circumstances, you may want to restore tag and alarms and events data to Historian. This

may be after an unplanned shutdown, or you may need to retrieve data from an old, inactive archive. You

can restore only time-based archives.

Warning:

Never restore an archive to a production Historian server without a current archive already online.

CAUTION:

Restoring an archive is a resource-intensive operation and should be scheduled for non-peak

usage times.

http://support.microsoft.com/kb/814583
http://support.microsoft.com/kb/814583
http://technet.microsoft.com/en-us/library/cc754015(WS.10).aspx
http://technet.microsoft.com/en-us/library/cc754015(WS.10).aspx
http://technet.microsoft.com/en-us/library/cc753528.aspx

Historian | 42 - Historian Web Admin Console | 2900

Restoring Archives from Historian Backup Files

If it is not already present, copy the archive file to the default archive path. Leave the original backup file

where it is. Archives that have been previously removed from Historian can be found in the \Archives

\Offline directory. Archives on removable media must also be copied into the default archive path.

1. Open the Archive Configuration page.

2. Select the Restore Archive icon.

The Restore Archive window appears.

3. In the Archive Name field, enter the name of the archive you want to restore.

4. In the File Location field, enter the path name of the archive from a local drive or specify a UNC

path.

5. Verify that the file name and path are correct.

6. In the Data Store field, select the name of the data store to load the archive file into.

If Historian is unable to find the specified data store, the file will be loaded to the default data store.

7. Select OK.

The restored archive is moved to the \Archive directory and is made available for querying.

Chapter 43. Extract, Transform, and Load (ETL)

Overview of the Historian ETL Tools
Transferring data from one Historian server to another is typically performed by Proficy Historian

collectors. These collectors provide a connected streaming data transfer mechanism (except the

Calculation and File collectors). In a system where a steady network connection is not possible or not

cost-effective, a periodic file-oriented data transfer is preferred. The Historian Extract, Transform, and

Load (ETL) tools consist of a comprehensive set of file-oriented data extraction, transfer, and loading

tools.

Potential ways of using ETL tools:

• Data transfer from any of the following sources:

◦ An eDNA server

◦ An ODBC data source

◦ Proficy Historian

◦ PI Historian

• Data transfer via radio or low bandwidth cellular connection

• Data transfer where there is no connectivity (read and write using portable media)

• Data transfer for periodic connectivity applications (for example, ships can transfer data when they

arrive at a port)

• Data migration from OSI PI Server to Proficy Historian

• Data extraction to import into other applications

• Data import from other applications

Components of Historian ETL:

• Extract: Using this tool, you can extract time series data from an eDNA server, an ODBC data

source, Proficy Historian or PI Server. For Proficy Historian, you can also extract alarms and events

data, perform scaling and absolute deadband compression.

• Transform: Using this tool, you can transfer data from an onsite Historian server or an ODBC data

source to the destination Historian server using a file-sharing application such as FTP, BITS, and so

on.

• Load: Using this tool, you can load data into Proficy Historian. This tool monitors a file directory,

unzips the files, and processes them.

Depending on the use case, you can use these tools independently or together.

Historian | 43 - Extract, Transform, and Load (ETL) | 2902

Limitations:

• The ETL tools do not support array data.

Workflow for Transferring Data from eDNA

To transfer data from an eDNA server, you must perform the following steps.

Step

Number
Description Notes

1 Install Historian ETL (on page 202). This step is required. You must install ETL

on both the source and destination ma

chines of the data transfer.

Note:

If you want to upgrade ETL:

1. Uninstall the existing version

of ETL.

2. Backup the configuration

files, and delete them.

3. Install the latest version of

ETL.

2 Specify the tags whose data you want to

extract. You can do so using the utility (on

page 2911), creating the configuration file

manually (on page 2912), using a template

(on page 2913), or using a blank spread

sheet (on page 2914).

This step is required. It involves providing a

list of tags whose data you want to extract.

3 Configure the extract settings (on page

2933).

This step is required. It involves providing

the .xml files that contain the tags list and

the tables list, along with other parameters.

4 Start the data extraction (on page 2937). This step is required. It involves extracting

tag data and compressing it so that it can

Historian | 43 - Extract, Transform, and Load (ETL) | 2903

Step

Number
Description Notes

be transferred to the destination Historian

server.

5 Transfer the data using BITS (on page

2957), FTP (on page 2959), or any other

file-sharing application.

This step is required. It involves setting up

the file-sharing application that you want

to use and then transferring the data to the

machine on which the destination Historian

server is installed.

6 Load the data (on page 2961) into the desti

nation Historian server.

This step is optional. It involves extracting

the .zip files transferred by the file-sharing

application and then loading the data into

the destination Historian server.

Note:

Depending on the use case, you can use these tools independently or together.

Workflow for Transferring Data from an ODBC Data Source

To transfer data from an ODBC data source, you must perform the following steps.

Step

Number
Description Notes

1 Install Historian ETL (on page 202). This step is required. You must install ETL

on both the source and destination ma

chines of the data transfer.

Note:

If you want to upgrade ETL:

Historian | 43 - Extract, Transform, and Load (ETL) | 2904

Step

Number
Description Notes

1. Uninstall the existing version

of ETL.

2. Backup the configuration

files, and delete them.

3. Install the latest version of

ETL.

2 Specify the tags and tables whose data you

want to extract. You can do so manually

(on page 2924), using a template (on page

2926), or using a blank spreadsheet (on

page 2928).

This step is required. It involves providing a

list of tags whose data you want to extract

and the tables from which you want to ex

tract data.

3 Configure the extract settings (on page

2933).

This step is required. It involves providing

the .xml files that contain the tags list and

the tables list, along with other parameters.

4 Start the data extraction (on page 2937). This step is required. It involves extracting

tag data and compressing it so that it can

be transferred to the destination Historian

server.

5 Transfer the data using BITS (on page

2957), FTP (on page 2959), or any other

file-sharing application.

This step is required. It involves setting up

the file-sharing application that you want

to use and then transferring the data to the

machine on which the destination Historian

server is installed.

6 Load the data (on page 2961) into the desti

nation Historian server.

This step is optional. It involves extracting

the .zip files transferred by the file-sharing

application and then loading the data into

the destination Historian server.

Note:

Depending on the use case, you can use these tools independently or together.

Historian | 43 - Extract, Transform, and Load (ETL) | 2905

Workflow for Transferring Data from Proficy Historian

To transfer data from Proficy Historian, you must perform the following steps.

Step Number Description Notes

1 Install Historian ETL (on page

202).

This step is required. You must

install ETL on both the source

and destination machines of the

data transfer.

Note:

If you want to upgrade

ETL:

1. Uninstall the exist

ing version of ETL.

2. Backup the con

figuration files,

and delete them.

3. Install the latest

version of ETL.

2 Specify the tags and tables

whose data you want to extract.

You can do so manually (on page

2938), using a template (on page

2939), or using a blank spread

sheet (on page 2940).

This step is required. It involves

providing a list of tags whose da

ta you want to extract and the ta

bles from which you want to ex

tract data.

3 Configure the extract settings (on

page 2942).

This step is required. It involves

providing the .xml files that con

tain the tags list and the tables

list, along with other parameters.

You can also extract alarms and

events data.

4 Start the data extraction (on page

2947).

This step is required. It involves

extracting tag data and com

Historian | 43 - Extract, Transform, and Load (ETL) | 2906

Step Number Description Notes

pressing it so that it can be trans

ferred to the destination Histori

an server.

5 Transfer the data using BITS

(on page 2957), FTP (on page

2959), or any other file-sharing

application.

This step is required. It involves

setting up the file-sharing appli

cation that you want to use and

then transferring the data to the

machine on which the destina

tion Historian server is installed.

6 Load the data (on page 2961) in

to the destination Historian serv

er.

This step is optional. It involves

extracting the .zip files trans

ferred by the file-sharing applica

tion and then loading the data in

to the destination Historian serv

er.

Note:

Depending on the use case, you can use these tools independently or together.

Workflow for Transferring Data from PI Historian

To transfer data from PI Historian, you must perform the following steps.

Step Number Description Notes

1 Install Historian ETL (on page

202).

This step is required. You must

install ETL on both the source

and destination machines of the

data transfer.

Note:

If you want to upgrade

ETL:

Historian | 43 - Extract, Transform, and Load (ETL) | 2907

Step Number Description Notes

1. Uninstall the exist

ing version of ETL.

2. Backup the con

figuration files,

and delete them.

3. Install the latest

version of ETL.

2 Specify the tags and tables

whose data you want to extract.

You can do so manually (on page

2948), using a template (on page

2949), or using a blank spread

sheet (on page 2950).

This step is required. It involves

providing a list of tags whose da

ta you want to extract and the ta

bles from which you want to ex

tract data.

3 Configure the extract settings (on

page 2952).

This step is required. It involves

providing the .xml files that con

tain the tags list and the tables

list, along with other parameters.

4 Start the data extraction (on page

2957).

This step is required. It involves

extracting tag data and com

pressing it so that it can be trans

ferred to the destination Histori

an server.

5 Transfer the data using BITS

(on page 2957), FTP (on page

2959), or any other file-sharing

application.

This step is required. It involves

setting up the file-sharing appli

cation that you want to use and

then transferring the data to the

machine on which the destina

tion Historian server is installed.

6 Load the data (on page 2961) in

to the destination Historian serv

er.

This step is optional. It involves

extracting the .zip files trans

ferred by the file-sharing applica

tion and then loading the data in

Historian | 43 - Extract, Transform, and Load (ETL) | 2908

Step Number Description Notes

to the destination Historian serv

er.

Note:

Depending on the use case, you can use these tools independently or together.

Install the Historian ETL Tools
• If you want to use the Historian Extract, Transform, and Load (ETL) tools to transfer data from a PI

Historian server, install the PI SDK package.

• If you want to use the ETL tools to transfer data from an eDNA server, copy the following eDNA

binaries to the <installation drive>\Program Files\GE Digital\Historian ETL

eDNA Extract folder:

◦ EzDnaApi.dll

◦ EzDNAApiNet.dll

By default, these files are available in the following folder on the machine on which the eDNA

server is installed: C:\Program Files(x86)\eDNA

Installing ETL installs the following tools:

• The Extract tool

• The Transform tool

• The Load tool

This topic describes how to install ETL to extract, transform, and load data from an onsite Historian

machine to the destination Historian server. You must install Historian ETL on both the onsite Historian

machine and the destination Historian server (that is, the source and destination machines for data

transfer).

1. Run the InstallLauncher.exe file.

2. Select Install Historian ETL Tools.

The welcome page appears.

3. Select Next.

The license agreement appears.

4. Select the Accept check box, and then select Next.

The default installation drive appears.

Historian | 43 - Extract, Transform, and Load (ETL) | 2909

5. If required, modify the installation drive for Historian ETL, and then select Next.

A message appears, stating that you are ready to install ETL.

6. Select Install.

The Historian ETL tools are installed on your machine.

• The following folders are created in the <installation drive>/Program Files/GE

Digital folder:

◦ Historian ETL eDNA Extract

◦ Historian ETL Extract

◦ Historian ETL Load

◦ Historian ETL ODBC Extract

◦ Historian ETL PI Extract

◦ Historian ETL Transform

• The following services are installed:

◦ Historian ETL eDNA Extract

◦ Historian ETL Extract

◦ Historian ETL ODBC Extract_x64

Historian | 43 - Extract, Transform, and Load (ETL) | 2910

◦ Historian ETL ODBC Extract_x86

◦ Historian ETL Load

◦ Historian ETL PI Extract

• The following registry paths are created:

◦ HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\GE Digital\Historian ETL

eDNA Extract

◦ HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\GE Digital\Historian ETL

ODBC Extract

◦ HKEY_LOCAL_MACHINE\SOFTWARE\GE Digital\Historian ETL Extract

◦ HKEY_LOCAL_MACHINE\SOFTWARE\GE Digital\Historian ETL ODBC Extract

◦ HKEY_LOCAL_MACHINE\SOFTWARE\GE Digital\Historian ETL PI Extract

◦ HKEY_LOCAL_MACHINE\SOFTWARE\GE Digital\Historian ETL Load

1. If you want to extract data from an eDNA server, copy the Customdna.ini file in the eDNA server

into the C:\Windows folder on the machine on which you have installed ETL.

2. Extract data from an eDNA server (on page 2910), ODBC data source (on page 2924), Proficy

Historian (on page 2938), or PI Historian (on page 2948).

Upgrade the ETL Tools

1. Uninstall the existing version of Historian ETL.

2. Backup the configuration files, and delete them.

3. Install the latest version of Historian ETL (on page 202).

About Extracting Data from an eDNA Server
The Historian ETL eDNA Extract tool extracts data as follows:

1. Extracts data related to tags into text files, which are named in the following format:

YYYYDDMMHHRR_<OSM name>.txt. These files are stored in the following folder:

<installation drive>\Historian ETL eDNA Extract\Hist Files.

You can only extract tag data; you cannot extract alarms and events data.

2. After a specified number of files are extracted (by default, 6), the files are compressed into a .zip

file, which is named in the following format: YYYYDDMMHHRR_<OSM name>.zip. These files

are stored in the following folder: <installation drive>\Program Files\GE Digital

\Historian ETL eDNA Extract\Zip Files.

3. Deletes the text files in the <installation drive>\Program Files\GE Digital

\Historian ETL eDNA Extract\Hist Files folder after they are compressed.

Historian | 43 - Extract, Transform, and Load (ETL) | 2911

Specify Tags for the eDNA Data Extraction Using a Utility

Before you extract data, you must specify the tags whose data you want to extract.

This topic describes how to specify the tags by generating the tag configuration file automatically using

the Historian ETL eDNA Extract utility. Alternatively, you can specify the tags by creating a configuration

file manually (on page 2912), using a template spreadsheet (on page 2913), or using a blank spreadsheet

(on page 2914).

1. Run the HistorianETLeDNAExtractConfigTool file located in the <installation

drive>\Program Files\GE Digital\Historian ETL eDNA Extract folder.

Tip:

You can also enter ETL eDNA Extract in Windows Run.

The Historian ETL eDNA Extract Settings window appears, displaying the Basic Configuration

section.

2. Select Files, and then provide values as specified in the following table.

Field Description

Service Name Enter the service name used by the Historian ETL eDNA Extract tool to con

nect to the eDNA server. You can enter multiple values separated by com

mas.

Tag Name Specify whether you want to use the extended ID or the long ID in the tag

name. If you select ExtendedID, the name of the tag created in Historian will

contain the extended ID (and the spare field of the tag will contain the long

ID). Similarly, if you select LongID, the name of the tag created in Historian

will contain the long ID (and the spare field of the tag will contain the extend

ed ID).

OSM Name Enter a name to identify the Original Equipment/Sales Manufacturer (OSM).

This name is included in the .zip files that are extracted on this machine.

Zip TagConfig Select True if you want to create a .zip file of the metadata of eDNA tags. It is

a good practise to create a .zip file of the metadata.

Historian | 43 - Extract, Transform, and Load (ETL) | 2912

3. Select Tag Config File.

A file named TagConfig.xml is generated in the <installation drive>:\Program Files

\GE Digital\Historian ETL eDNA Extract folder. This file contains the list of tags and

their properties.

Configure the eDNA Data Extraction settings (on page 2916).

Specify Tags for eDNA Data Extraction Manually

Before you extract data, you must specify the tags whose data you want to extract.

This topic describes how to specify the tags by creating a configuration file manually. Alternatively, you

can specify the tags using the utility (on page 2911), a template spreadsheet (on page 2913), or a blank

spreadsheet (on page 2914).

1. Run the HistorianETLeDNAExtractConfigTool file located in the <installation

drive>\Program Files\GE Digital\Historian ETL eDNA Extract folder.

Tip:

You can also enter ETL eDNA Extract in Windows Run.

The Historian ETL eDNA Extract Settings window appears, displaying the Basic Configuration

section.

2. Select Files, and then select Sample Tag Config.

A sample tag configuration .xml file is created.

3. Include the tag properties (on page 2916) for all the tags whose data you want to extract.

Tag properties for a tag named voltage used in an eDNA server:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<Taglist>

 <Tag Name="SUBSTN.TATANAGR.BUS.6B1.MES1.KV">

 <LocalName>A0000001</LocalName>

 <RemmoteName>SUBSTN.TATANAGR.BUS.6B1.MES1.KV</RemoveName>

 <ServiceName>JHARMP.SCADA1</ServiceName>

 <DataType>Float</DataType>

 <RemoteNameDesc>SUBSTN.TATANAGR.BUS</RemoteNameDesc>

 <RemoteNameSpare4>SUBSTN.TATANAGR.BUS</RemoteNameSpare4>

 <RemoteNameSpare5>SUBSTN.TATANAGR.BUS</RemoteNameSpare5>

 <RemoteNameEnggUnits>MW</RemoteNameEnggUnits>

Historian | 43 - Extract, Transform, and Load (ETL) | 2913

 <TagName>ExtendedID</TagName>

 </Tag>

</Taglist>

4. In the HistorianETLeDNAExtractConfigTool file located at <installation

drive>\Program Files\GE Digital\Historian ETL eDNA Extract, select Files, and

then in the Tag Configuration File field, provide the path to the configuration file that you have

created, and then select Save.

The tag configuration file is specified.

Configure the eDNA Data Extraction settings (on page 2916).

Specify Tags for eDNA Data Extraction Using a Template

Before you extract data, you must specify the tags whose data you want to extract.

This topic describes how to specify the tags using a template spreadsheet, which is provided with the

Historian ETL package. Alternatively, you can specify the tags using the utility (on page 2911), using a

blank spreadsheet (on page 2914), or by creating a configuration file manually (on page 2912).

1. Access the eDNAHistTagConfigGenerateExcel.xlsx file located in the Historian eDNA

ETL Extract folder.

2. Optional: If you want to modify an existing tag configuration file, you can import the data from

that .xml file by selecting Developer > Import.

Tip:

If the Developer tab is not available, right-click the menu bar of the spreadsheet, select

Customize the Ribbon, and then select the Developer check box.

Data from the .xml file is imported into the spreadsheet.

Note:

If an error occurs, stating that the data is not valid according to the schema, verify that:

◦ You have provided values in all the red-colored columns.

◦ There are no blank rows.

◦ The values that you have entered are valid and of the same data type as defined for

each property.

For details, refer to Tag Properties (on page 2916).

Historian | 43 - Extract, Transform, and Load (ETL) | 2914

3. For each tag, enter or modify values in the columns for the tag properties (on page 2916). A value

is required in the red-colored columns.

4. Save the file.

5. Select Developer > Export.

Tip:

If the Developer tab is not available, right-click the menu bar of the spreadsheet, select

Customize the Ribbon, and then select the Developer check box.

6. Enter a name and location for the .xml file.

The tag configuration file is created with the list of tags and their properties to be extracted.

If an error occurs, stating that the data is not valid according to the schema, verify that:

◦ You have provided values in all the red-colored columns.

◦ Values in the Name column are unique.

◦ There are no blank rows.

◦ The values that you have entered are valid and of the same data type as defined for each

property.

For details, refer to Tag Properties (on page 2916).

7. In the HistorianETLeDNAExtractConfigTool file located at <installation

drive>\Program Files\GE Digital\Historian ETL eDNA Extract, select Files, and

then in the Tag Configuration File field, provide the path to the configuration file that you have

created, and then select Save.

The tag configuration file is specified.

Configure the eDNA Data Extraction settings (on page 2916).

Specify Tags for eDNA Data Extraction Using a Blank Spreadsheet

Before you extract data, you must specify the tags whose data you want to extract.

This topic describes how to specify the tags manually by creating a configuration file. Alternatively, you

can specify the tags using the utility (on page 2911), a template spreadsheet (on page 2913) or a blank

spreadsheet (on page 2914).

1. Create a Microsoft Excel file.

2. Enter column names matching the names of the tag properties (on page 2916).

3. Optional: If you want to modify an existing tag configuration file, you can import the data from

that .xml file by selecting Developer > Import.

Historian | 43 - Extract, Transform, and Load (ETL) | 2915

Tip:

If the Developer tab is not available, right-click the menu bar of the spreadsheet, select

Customize the Ribbon, and then select the Developer check box.

Note:

If a message appears, stating that the .xml file is not linked to schema, ignore the

message.

4. Select Developer > Source > XML Maps > Add.

5. Select the eDNAHistTagConfigSchema.xsd file located in the <installation drive>:

\Program Files\GE Digital\Historian ETL eDNA Extract folder.

6. Map each column name with each entry under Taglist in the XML Source section. To do so, select

each column name, and then double-click the corresponding property under Taglist.

Each property under Taglist changes to bold formatting, indicating that it is mapped to the

corresponding column.

7. For each tag, enter or modify values in the columns.

8. Select Design > Properties, select the Validate data against schema for import and export check

box, and then select OK.

9. Save the file.

10. Select Developer > Export.

11. Enter a name and location for the .xml file.

The tag configuration file is created with the list of tags and their properties to be extracted.

If an error occurs, stating that the data is not valid according to the schema, verify that:

◦ You have provided values in all the red-colored columns.

◦ Values in the Name column are unique.

◦ There are no blank rows.

◦ The values that you have entered are valid and of the same data type as defined for each

property.

For details, refer to Tag Properties (on page 2916).

12. In the HistorianETLeDNAExtractConfigTool file located at <installation

drive>\Program Files\GE Digital\Historian ETL eDNA Extract, select Files, and

then in the Tag Configuration File field, provide the path to the configuration file that you have

created, and then select Save.

The tag configuration file is specified.

Configure the eDNA Data Extraction settings (on page 2916).

Historian | 43 - Extract, Transform, and Load (ETL) | 2916

Tag Properties for eDNA Data Extraction

This topic provides a list of tag properties that you can define for each tag that you want to extract from

an eDNA server.

Column Name Data Type Description

Name String Enter the name of the tag. A value is required and must be

unique.

LocalName String Enter a unique identifier for the tag. A value is required and

must be unique.

RemoteName String Enter the name of the tag that you want to use after it is im

ported to Historian. A value is required.

ServiceName String Enter the service name used to connect to the eDNA server.

You can enter multiple values separated by commas. A value

is required.

DataType String Enter the data type of the tag. A value is required.

RemoteNameDesc String Enter the description of the remote name. A value is required.

RemoteNameS

pare4

String Enter the longID or extendedID of the tag. A value is required.

RemoteNameS

pare5

String Enter a description for the value in the RemoteNameSpare4

parameter. A value is required.

RemoteNameEngg

Units

String Enter the engineering units of the tag values. A value is re

quired.

TagName String Specify whether you want to use the extended ID or the long

ID in the tag name.

Configure the eDNA Data Extraction Settings

Specify the tags whose data you want to extract from an eDNA server. You can do so by using the utility

(on page 2911), creating a configuration file manually (on page 2912), using a template (on page 2913),

or using a blank spreadsheet (on page 2914).

This topic describes how to configure the settings for eDNA data extraction. These settings are saved in

the eDNAHistorianETLExtract.exe.config file.

Historian | 43 - Extract, Transform, and Load (ETL) | 2917

1. Run the HistorianETLeDNAExtractConfigTool file located in the <installation

drive>\Program Files\GE Digital\Historian ETL eDNA Extract folder.

Tip:

You can also enter ETL eDNA Extract in Windows Run.

The Historian ETL eDNA Extract Settings window appears, displaying the Basic Configuration

section.

2. If the configuration details are stored in a file, select Import Config to import the settings, and skip

to step 6.

3. Provide values as specified in the following table.

Field Description Default Value

Service Name Enter the service name used by the Historian

ETL eDNA Extract tool to connect to the eDNA

server. You can enter multiple values separated

by commas.

Tag Name Specify whether you want to use the extend

ed ID or the long ID in the tag name. If you se

lect ExtendedID, the name of the tag created in

Historian will contain the extended ID (and the

spare field of the tag will contain the long ID).

Similarly, if you select LongID, the name of the

tag created in Historian will contain the long ID

(and the spare field of the tag will contain the

extended ID).

Run Interval (Seconds) Enter the interval, in seconds, at which the His

torian ETL eDNA Extract tool will extract data.

You must enter a value greater than or equal to

60.

150 (that is, a text file

is created for data that

is extracted in 150 sec

onds)

Min # of Files to Com

press

Enter the number of files that must be com

pressed into a single .zip file.

6 (that is, a .zip file is

created for every six

text files)

Extract Type Specifies whether you want to extract only the

current data or historical data or both.

Both (Historical and

Current)

Historian | 43 - Extract, Transform, and Load (ETL) | 2918

Field Description Default Value

OSM Name Enter a name to identify the Original Equip

ment/Sales Manufacturer (OSM). This name is

included in the .zip files that are extracted on

this machine.

Host name of the local

machine

Zip TagConfig Select True if you want to create a .zip file of

the metadata of eDNA tags.

4. Select Files, and then provide values as specified in the following table.

Field Description Default Value

Historian Export

Path

Enter the path to the folder in which

the text files containing the extracted

data must be stored.

<installation drive>\Pro

gram Files\GE Digi

tal\Historian ETL eDNA Ex

tract\Hist Files

Tag Configuration

File

Enter the path to the tag configu

ration that you have created. You

can create it automatically (on page

2911), manually (on page 2912),

a template spreadsheet (on page

2913), or using a blank spreadsheet

(on page 2914).

<installation drive>\Pro

gram Files\GE Digi

tal\Historian ETL eDNA Ex

tract\TagConfiguration.xml

Zip Export Path Enter the path to the folder in which

the compressed files must be stored.

<installation drive>\Pro

gram Files\GE Digital\His

torian ETL eDNA Extract\Zip

Files

State File Enter the path to the file that the His

torian ETL eDNA Extract tool will cre

ate to store the timestamp of the last

successful export. This timestamp is

used to identify the start time for the

next iteration of extraction. This en

sures that there is no loss of data dur

ing extraction.

<installation drive>\Pro

gram Files\GE Digi

tal\Historian ETL eDNA Ex

tract\State.xml

Historian | 43 - Extract, Transform, and Load (ETL) | 2919

Field Description Default Value

For example, suppose the current

time is 11am, and data has been ex

tracted only till 9am. The state file

contains the timestamp for 9am.

Therefore, when data extraction is re

sumed, it is extracted from 9am.

The state file is created after you ap

ply the Historian ETL eDNA Extract

settings. It is updated each time .zip

files are transferred to the destination

Historian server or when the Historian

ETL eDNA Extract tool is stopped. For

a sample state file, refer to Example

of a State File (on page 2968).

Regen File Enter the path to the regeneration file.

You can use this field to extract data.

If the Gen Sample Regen File field is

set to True, a sample regeneration

file will be created after you apply the

settings. You can modify this file as

needed, and specify the path of the

same file in the Regen File field. For a

sample regeneration file, refer to Ex

ample of a Regeneration File (on page

2966).

<installation drive>\Pro

gram Files\GE Digital\His

torian ETL eDNA Extract\Re

gen.xml

Gen Sample Re

gen File

Specify whether you want to generate

the sample regeneration file. You can

then modify this file as needed.

False

Sample Regen

File

Enter the path to the sample regen

eration file that will be created if the

Gen Sample Regen File field is set

to True. You can modify this file as

needed.

<installation drive>\Pro

gram Files\GE Digi

tal\Historian ETL eDNA Ex

tract\Sample_Regen.xml

Historian | 43 - Extract, Transform, and Load (ETL) | 2920

Field Description Default Value

Tag Config File Select this button to generate a file

with the list of tags from which you

want to extract data. For instructions,

refer to Specify Tags for the eDNA

Data Extraction Using a Utility (on

page 2911).

Sample Tag Con

fig

Select this button to generate a sam

ple tag configuration file. You can

then include the list of tags from

which you want to extract data. For

instructions, refer to Specify Tags for

eDNA Data Extraction Manually (on

page 2912).

5. Select Advanced Configuration, and then provide values as specified in the following table.

Field Description Default Value

Log Level Select the log level to indicate the amount of in

formation to be logged. The following options

are available:

◦ Info

◦ Error

◦ Debug

Info

Delay Interval The duration, in seconds, by which the data re

trieval time will be reduced. For example, if da

ta will be retrieved for 10 minutes, and if you en

ter 60 in this field, data for the last 60 seconds

will not be retrieved in that batch; it will be re

trieved in the next batch. This will ensure the re

trieval of any dynamic records that were updat

ed in that duration.

60

Catch Up Interval

(Minutes)

Enter the catchup interval, in minutes, used to

size files when catching up to the current time.

10

Historian | 43 - Extract, Transform, and Load (ETL) | 2921

Field Description Default Value

Save Limit Enter the number of files to be exported after

which the State.xml file must be updated.

20

Catch Up Time Limit

(Hours)

Enter the maximum time, in hours, to go back

when catching up after a restart. If you want to

extract historical data as well, enter the dura

tion for which you want to extract the data. For

example, if you want to extract data for the past

one day, enter 24.

168

Quality Conversion

Good

Enter the mapping details for good quality be

tween eDNA hexadecimal codes and SCADA bi

nary codes.

For example, if the hexadecimal code for good

quality is 8203, and if the binary codes in a

SCADA system for good quality are 1, 27, and

30, enter 8203=1,27,30.

Use a semicolon to separate multiple entries

(for example, 8203=27,30,1;8003=30;203=34).

If this field is blank, all the values are consid

ered as bad quality, without storing any binary

digits.

Quality Conversion

Bad

Enter the mapping details for bad quality be

tween eDNA hexadecimal codes and SCADA bi

nary codes.

For example, if the hexadecimal code for bad

quality is C003, and if the binary codes in a

SCADA system for good quality are 2, 4, and 6,

enter C003=2,4,6.

Use a semicolon to separate multiple entries

(for example, C003=2,4,6;C406=8,9).

Historian | 43 - Extract, Transform, and Load (ETL) | 2922

Field Description Default Value

If this field is blank, all the values are consid

ered as bad quality, without storing any binary

digits.

6. Select Save.

The changes to the settings are applied and saved in the

HistorianETLeDNAExtract.exe.config file.

Start the data extraction (on page 2923).

Extract Historical eDNA Data

By default, the ETL tools extracts both current and historical data. This topic describes how to configure

the settings to extract historical data using the ETL tools.

1. Create a regeneration file, specifying the start time, end time, and interval for which you want to

capture the historical data. For a sample regeneration file, refer to Example of a Regeneration File

(on page 2966).

2. Run the HistorianETLeDNAExtractConfigTool file located in the <installation

drive>\Program Files\GE Digital\Historian ETL eDNA Extract folder.

Tip:

You can also enter ETL Historian eDNA Extract in the Windows Start menu.

The Historian ETL Extract Configuration window appears, displaying the Basic Configuration

section.

3. Select Advanced Configuration, and then provide values as specified in the following table.

Field Description Default Value

Regen File Enter the path to the regeneration file

that you have created.

<installation drive>\Pro

gram Files\GE Digital\His

torian ETL eDNA Extract\Re

gen.xml

Catch Up Time

Limit

Enter the duration, in hours, for which

you want to extract historical data.

168

Historian | 43 - Extract, Transform, and Load (ETL) | 2923

Field Description Default Value

For example, if you want to extract

data for the past one day, enter 24.

Temp Regen File Enter the path to the temporary re

generation file.

<installation drive>\Pro

gram Files\GE Digi

tal\Historian ETL eDNA Ex

tract\Temp_Regen.xml

Generate Temp

Regen File

Select True. False

4. As needed, provide values in the remaining fields (on page 2942).

Start the data extraction (on page 2923).

Start the eDNA Data Extraction

• Configure the Historian ETL eDNA Extract settings (on page 2916).

• If the machine on which you want to extract the data is different from the eDNA sever, access the

hosts file located in C:\Windows\System32\drivers\etc, and add the host name and IP

address of the eDNA server in the following format:

<IP address> <eDNA service directory name>

For example: 100.300.50.7 dna_svcdir_01

1. Run the HistorianETLeDNAExtractConfigTool file located in the <installation

drive>\Program Files\GE Digital\Historian ETL eDNA Extract folder.

Tip:

You can also enter ETL Historian eDNA Extract in the Windows Start menu.

The Historian ETL eDNA Extract Configuration window appears.

2. Select Start Service.

Data extraction from the eDNA server begins.

Tip:

If the tool does not start as expected, access the logs using Windows Event Viewer.

Historian | 43 - Extract, Transform, and Load (ETL) | 2924

Transfer data using BITS (on page 2957), FTP (on page 2959), or any other file-sharing application.

About Extracting Data from an ODBC Data Source
The Historian ETL ODBC Extract tool extracts data as follows:

1. Extracts data related to tags into text files, which are named in the following format:

YYYYDDMMHHRR_<onsite Historian computer name>.txt. These files are stored in the

following folder: <installation drive>\Program Files\GE Digital\Historian ETL

ODBC Extract\Hist Files.

You can only extract tag data; you cannot extract alarms and events data.

2. After a specified number of files are extracted (by default, 6), the files are compressed into a .zip

file, which is named in the following format: YYYYDDMMHHRR_<DSN>.zip. These files are stored

in the following folder: <installation drive>\Program Files\GE Digital\Historian

ETL ODBC Extract\Zip Files.

3. Deletes the text files in the <installation drive>\Program Files\GE Digital

\Historian ETL ODBC Extract\Hist Files folder after they are compressed.

Specify Tags and Tables for ODBC Data Extraction Manually

Before you extract data, you must specify the tags and tables whose data you want to extract.

This topic describes how to specify the tags and tables manually by creating a configuration file.

Alternatively, you can specify them using a template spreadsheet (on page 2926) or a new spreadsheet

(on page 2928).

1. Create an .xml file to include the tag properties (on page 2931) for all the tags whose data you

want to extract.

Tag properties for a tag named Pressure used in an ODBC data source:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<Taglist>

 <Tag Name="Pressure">

 <LocalName>ValvePressure</LocalName>

 <RemoteName>ValvePressure</RemoteName>

 <DataType>int</DataType>

 <TableName>Valve_Pressure_Table</TableName>

 </Tag>

</Taglist>

Historian | 43 - Extract, Transform, and Load (ETL) | 2925

2. Create another .xml file to include the column names of the table for each tag whose data you want

to extract. This file is used to identify the column names in the database table whose data you

want to extract. For a list of table properties that you can specify, refer to Table Properties for an

ODBC Data Source (on page 2932).

Suppose you want to extract values of a tag named Pressure from a table named

Valve_Pressure_Table. Suppose this table contains the following columns in the database:

◦ TagName

◦ TagQuality

◦ TagTimestamp

◦ TagValue

In this case, provide these column names as follows:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<TableList>

 <Table>

 <TableName>Valve_Pressure_Table</TableName>

 <TagName>TagName</TagName>

 <Timestamp>TagTimestamp</Timestamp>

 <Value>TagValue</Value>

 <Quality>TagQuality</Quality>

 <Condition></Condition>

 </Table>

</TableList>

In addition, you can specify other properties to determine the quality of each value. For example,

suppose you want to define the quality values as follows:

Tag Value Quality

0-50 Good

51-100 Bad

101 and 102 Uncertain

103, 104, and 105 Not applicable

In that case, provide these values as follows:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<TableList>

 <Table>

Historian | 43 - Extract, Transform, and Load (ETL) | 2926

 <TableName>PressureTable</TableName>

 <TagName>TagName</TagName>

 <Timestamp>TagTimestamp</Timestamp>

 <Value>TagValue</Value>

 <Quality>TagQuality</Quality>

 <QualityStatus>

 <ihOPCBad>0-50</ihOPCBad>

 <ihOPCGood>51-100</ihOPCGood>

 <ihOPCUncertain>101,102</ihOPCUncertain>

 <ihOPCNA>103,104,105</ihOPCNA>

 </QualityStatus>

 <Condition></Condition>

 </Table>

</TableList>

When you do so, if the tag value is, say, 56, the quality of the value is stored as Good in Historian.

However, if this value does not match the value in the Quality column, the value is stored as Bad in

Historian.

3. Verify that all the tags and tables that you specify in the first file contain the corresponding entries

in the second file.

Configure the Historian ETL ODBC Extract settings (on page 2933).

Specify Tags and Tables ODBC Data Extraction Using a Template

Before you extract data, you must specify the tags and tables whose data you want to extract.

This topic describes how to specify the tags using a template spreadsheet, which is provided with the

Historian ETL package. Alternatively, you can specify the tags using a new spreadsheet (on page 2928) or

by creating a configuration file manually (on page 2924).

1. Access the ETLODBCConfigXMLGenerate.xlsx file located in the Historian ETL ODBC

Extract folder.

2. Optional: If you want to modify an existing tag configuration file, you can import the data from

that .xml file by selecting Developer > Import. Similarly, if you want to modify an existing table

configuration file, import the data into a separate worksheet.

Historian | 43 - Extract, Transform, and Load (ETL) | 2927

Tip:

If the Developer tab is not available, right-click the menu bar of the spreadsheet, select

Customize the Ribbon, and then select the Developer check box.

Data from the .xml file is imported.

Note:

If an error occurs, stating that the data is not valid according to the schema, verify that:

◦ You have provided values in all the red-colored columns.

◦ There are no blank rows.

◦ The values that you have entered are valid and of the same data type as defined for

each property.

For details, refer to the Tag Properties (on page 2931) and Table Properties (on page

2932) topics.

3. For each tag, enter or modify values in the columns in the ETLODBCTagConfig worksheet. A value

is required in the red-colored columns. For a list of tag properties that you can provide, refer to Tag

Properties for ODBC Data Extraction (on page 2931).

4. Select the ETLODBCTableConfig worksheet.

5. For each tag that you specified in the ETLODBCTagConfig worksheet, specify the table properties

(on page 2932). A value is required in the red-colored columns.

6. Save the file.

7. To create a tag configuration file:

a. Select the ETLODBCTagConfig worksheet.

b. Select Developer > Export.

The Export XML window appears, asking you to choose whether you want to export the tag

configuration or the table configuration.

Historian | 43 - Extract, Transform, and Load (ETL) | 2928

c. Select Taglist_Map, and then select OK.

d. Provide a file name and location.

The tag configuration file is created with the list of tags whose data you want to extract.

8. To create a table configuration file:

a. Select the ETLODBCTableConfig worksheet.

b. Select Developer > Export.

The Export XML window appears, asking you to choose whether you want to export the tag

configuration or the table configuration.

c. Select TableList_Map, and then select OK.

d. Provide a file name and location.

The table configuration file is created with the list of tables from which you want to extract data.

Configure the Historian ETL ODBC Extract settings (on page 2933), providing the paths to the two .xml

files you have created.

Specify Tags and Tables for ODBC Data Extraction Using a Blank
Spreadsheet

Before you extract data, you must specify the tags and tables whose data you want to extract.

This topic describes how to specify the tags using a new spreadsheet. Alternatively, you can specify the

tags using a template spreadsheet (on page 2926) or by creating a configuration file manually (on page

2924).

Historian | 43 - Extract, Transform, and Load (ETL) | 2929

1. Create a Microsoft Excel file, and create the following worksheets:

◦ ETLODBCTagConfig

◦ ETLODBCTableConfig

2. In the ETLODBCTagConfig worksheet, enter column names matching the names of the tag

properties (on page 2931). Similarly, in the ETLODBCTableConfig worksheet, enter column names

matching the names of the table properties (on page 2932).

3. Import the tag configuration schema:

a. In the ETLODBCTagConfig worksheet, select Developer > Source > XML Maps > Add.

b. Select the ETLODBCTagConfigSchema file located in the Historian ETL ODBC

Extract folder.

c. Map each column name with each entry under Taglist in the XML Source section. To do so,

select each column name, and then double-click the corresponding property under Taglist.

Each property under Taglist changes to bold formatting, indicating that it is mapped to the

corresponding column.

4. For each tag, enter or modify values in the columns.

5. Import the table configuration schema:

a. In the ETLODBCTableConfig worksheet, select Developer > Source > XML Maps > Add.

b. Select the ETLODBCTableConfigSchema file located in the Historian ETL ODBC

Extract folder.

c. Map each column name with each entry under TableList in the XML Source section. To

do so, select each column name, and then double-click the corresponding property under

TableList.

Each property under TableList changes to bold formatting, indicating that it is mapped to the

corresponding column.

6. For each table, enter or modify values in the columns.

7. In both the worksheets, select Design > Properties, select the Validate data against schema for

import and export check box, and then select OK.

8. Save the file.

9. Select Developer > Export.

10. Create a tag configuration file:

Historian | 43 - Extract, Transform, and Load (ETL) | 2930

a. Select the ETLODBCTagConfig worksheet.

b. Select Developer > Export.

The Export XML window appears, asking you to choose whether you want to export the tag

configuration or the table configuration.

c. Select Taglist_Map, and then select OK.

d. Provide a file name and location.

The tag configuration file is created with the list of tags whose data you want to extract.

If an error occurs, stating that the data is not valid according to the schema, verify that:

◦ You have provided values in all the red-colored columns.

◦ Values in the Name column in the ETLODBCTagConfig worksheet are unique.

◦ There are no blank rows.

◦ The values that you have entered are valid and of the same data type as defined for each

property.

For information, refer to Tag Properties (on page 2931).

11. Create a table configuration file:

a. Select the ETLODBCTableConfig worksheet.

b. Select Developer > Export.

The Export XML window appears, asking you to choose whether you want to export the tag

configuration or the table configuration.

Historian | 43 - Extract, Transform, and Load (ETL) | 2931

c. Select TableList_Map, and then select OK.

d. Provide a file name and location.

The table configuration file is created with the list of tables from which you want to extract data.

If an error occurs, stating that the data is not valid according to the schema, verify that:

◦ You have provided values in all the red-colored columns.

◦ There are no blank rows.

◦ The values that you have entered are valid and of the same data type as defined for each

property.

For information, refer to Table Properties (on page 2932).

Configure the Historian ETL ODBC Extract settings (on page 2933), providing the paths to the two .xml

files you have created.

Tag Properties for ODBC Data Extraction

This topic provides a list of tag properties that you can define for each tag that you want to extract from

an ODBC data source.

Column Name Data Type Description

Name String Enter the name of the tag. A value is required and

must be unique.

LocalName String Enter the local name of the tag. A value is required.

RemoteName String Enter the remote name of the tag. This will be used

to name the tag after it is imported into Historian.

A value is required.

DataType String Select the data type of the tag. A value is required.

Historian | 43 - Extract, Transform, and Load (ETL) | 2932

Column Name Data Type Description

TableName String Enter the table that contains the tag data you want

to import. A value is required and must match the

name of a table in the list of table names you pro

vide. Otherwise, an error occurs.

Table Properties for an ODBC Data Source

This topic provides a list of table properties that you can define for each tag that you want to extract from

an ODBC data source.

Column Name Data Type Description

TableName String Enter the name of the table. A value is required and must

match the name of a table you specify in the list of tags.

TagNameColumn String Enter the name of the tag whose data you want to extract

from the table. A value is required and must match the name

of a tag you specify in the list of tags.

TimestampColumn String Enter the name of the column in the database table from

which you want to extract the timestamp values.

ValueColumn String Enter the name of the column in the database table from

which you want to extract the tag values.

QualityColumn String Enter the name of the column in the database table from

which you want to extract the quality values.

ihOPCBad String Enter the values or range of values whose quality must be

considered bad. For example, if a tag value is considered bad

when the value is between 0 and 50, enter <ihOPCBad>0-50</

ihOPCBad>. You can also enter words and values separated by

commas (for example, <ihOPCBad>bad, uneven</ihOPCBad>).

A value is required.

ihOPCGood String Enter the values or range of values whose quality must be

considered good. For example, if a tag value is considered

good when the value is between 51 and 100, enter <ihOPC

Good>51-100</ihOPCGood>. You can also enter words and val

Historian | 43 - Extract, Transform, and Load (ETL) | 2933

Column Name Data Type Description

ues separated by commas (for example, <ihOPCGood>good,

better, excellent</ihOPCGood>).

A value is required.

ihOPCUncertain String Enter the values or range of values whose quality must be

considered uncertain. For example, if a tag value is consid

ered uncertain when the value is 101 or 102, enter <ihOP

CUncertain>101,102</ihOPCUncertain>. You can also enter a

range of values.

ihOPCNA String Enter the values or range of values whose quality must be

considered not applicable. For example, if a tag value is con

sidered not applicable when the value is 103, 104, or 105, en

ter <ihOPCNA>103,104,105</ihOPCNA>. You can also enter a

range of values.

Condition String Enter the condition that you want to use to filter data. For ex

ample, if you enter Historian = 1, you can use this condition in

a WHERE clause when querying data.

Configure the ODBC Data Extraction Settings

Specify the tags whose data you want to extract from an ODBC data source. You can do so by creating

a configuration file manually (on page 2924), using a template (on page 2926), or using a blank

spreadsheet (on page 2928).

1. Run the HistorianETLODBCExtractConfigTool_x64 file (for Windows 32 bit) or the

HistorianETLODBCExtractConfigTool_x86 file (for Windows 64 bit) located in the

<installation drive>\Program Files\GE Digital\Historian ETL ODBC Extract

folder.

Tip:

You can also enter ETL ODBC Extract in Windows Run.

The Historian ETL ODBC Extract Settings window appears, displaying the Basic Configuration

section.

2. If the configuration details are stored in a file, select Import Config to import the settings, and skip

to step 6.

Historian | 43 - Extract, Transform, and Load (ETL) | 2934

3. Provide values as specified in the following table.

Field Description Default Value

Data Source Name

(DSN)

Enter the name of the data source from which

you want to extract data. It is the saved col

lection of settings required to connect to the

ODBC data source.

You can use only a 32-bit or a 64-bit DSN de

pending on whether your application is 32-bit or

64-bit.

If you do not have a DSN, select ODBC

DataSource, and create a system DSN.

Username Enter the username of the user to connect to

ODBC data source. A value is required only if

using SQL authentication.

Password Enter the password of the user to connect to

ODBC data source. A value is required only if

using SQL authentication.

Unit ID Enter the unit ID of the machine from which you

want to transfer data.

Min # of Files to Com

press

Enter the number of files that must be com

pressed into a single .zip file.

6 (that is, a .zip file is

created for every six

text files)

Run Interval (Seconds) Enter the interval, in seconds, at which the His

torian ODBC ETL Extract tool will extract data.

You must enter a value greater than or equal to

60.

150 (that is, a text file

is created for data that

is extracted in 150 sec

onds)

Delay Interval The duration, in seconds, by which the data re

trieval time will be reduced. For example, if da

ta will be retrieved for 10 minutes, and if you en

ter 60 in this field, data for the last 60 seconds

will not be retrieved in that batch; it will be re

trieved in the next batch. This will ensure the re

https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/connect-to-an-odbc-data-source-sql-server-import-and-export-wizard?view=sql-server-ver15#odbc_dsn

Historian | 43 - Extract, Transform, and Load (ETL) | 2935

Field Description Default Value

trieval of any dynamic records that were updat

ed in that duration.

4. Select File Configuration, and then provide values as specified in the following table.

Field Description Default Value

Data Extract Path Enter the path to the folder in which

the text files containing the extracted

data must be stored.

<installation drive>\Pro

gram Files\GE Digi

tal\Historian ETL ODBC Ex

tract\Hist Files

Zip Extract Path Enter the path to the folder in which

the compressed files must be stored.

<installation drive>\Pro

gram Files\GE Digital\His

torian ETL ODBC Extract\Zip

Files

Tag Configuration

File

Enter the path to the tag configura

tion file (on page 2924) that you have

created.

<installation drive>\Pro

gram Files\GE Digi

tal\Historian ETL ODBC Ex

tract\OSM_OSMName.xml

Table Configura

tion File

Enter the path to the table configura

tion file (on page 2924) that you have

created.

<installation drive>\Pro

gram Files\GE Digi

tal\Historian ETL ODBC Ex

tract\TableConfig.xml

State File Enter the path to the file that the His

torian ODBC ETL Extract tool will cre

ate to store the timestamp of the last

successful export. This timestamp is

used to identify the start time for next

iteration of extraction. This ensures

that there is no loss of data during ex

traction.

For example, suppose the current

time is 11am, and data has been ex

tracted only till 9am. The state file

contains the timestamp for 9am.

<installation drive>\Pro

gram Files\GE Digi

tal\Historian ETL ODBC Ex

tract\State.xml

Historian | 43 - Extract, Transform, and Load (ETL) | 2936

Field Description Default Value

Therefore, when data extraction is re

sumed, it is extracted from 9am.

The state file is created after you ap

ply the Historian ODBC ETL Extract

settings. It is updated each time .zip

files are transferred to the destination

Historian server or when the Historian

ODBC ETL Extract tool is stopped. For

a sample state file, refer to Example

of a State File (on page 2968).

Regen File Enter the path to the regeneration file.

You can use this field to extract data.

If the Generate Sample Regen File

field is set to True, a sample regener

ation file will be created after you ap

ply the settings. You can modify this

file as needed, and specify the path of

the same file in the Regen File field.

For a sample regeneration file, refer

to Example of a Regeneration File (on

page 2966).

<installation drive>\Pro

gram Files\GE Digital\His

torian ETL ODBC Extract\Re

gen.xml

Sample Regen

File

Enter the path to the sample regen

eration file that will be created if the

Generate Sample Regen File field is

set to True. You can modify this file

as needed.

<installation drive>\Pro

gram Files\GE Digi

tal\Historian ETL ODBC Ex

tract\Sample_Regen.xml

5. Select Advanced Configuration, and then provide values as specified in the following table.

Field Description Default Value

Log Level Select the log level to indicate the amount of in

formation to be logged. The following options

are available:

Info

Historian | 43 - Extract, Transform, and Load (ETL) | 2937

Field Description Default Value

◦ Info

◦ Error

◦ Debug

Extract Type Specifies whether you want to extract only the

current data or historical data or both. However,

we recommend that you extract only current da

ta.

Current Data

Generate Sample Re

gen File

Select True if you want to generate the sample

regeneration file. You can then modify this file

as needed.

False

Query Timeout The time, in seconds, after which a query to the

database times out.

30

Save Limit Enter the number of files to be exported after

which the State.xml file must be updated.

20

Catch Up Interval (Se

conds)

Enter the catch up interval, in seconds, used to

size files when catching up to the current time.

10

Catch Up Time Limit

(Hours)

Enter the maximum time, in hours, to go back

when catching up after a restart.

You can use this field to extract data.

168

6. Select Save.

The changes to the settings are applied and saved in the

HistorianETLODBCExtract.exe.config file.

Start the data extraction (on page 2947).

Start the ODBC Data Extraction

Configure the Historian ETL ODBC Extract settings (on page 2933).

1. Run the Historian ETL ODBC Extract Configuration file located in the Historian ETL

ODBC Extract folder.

The Historian ETL ODBC Extract Configuration window appears.

2. Select Start Service.

Historian | 43 - Extract, Transform, and Load (ETL) | 2938

Data extraction from the ODBC data source begins.

Tip:

If the tool does not start as expected, access the logs using Windows Event Viewer.

Transfer data using BITS (on page 2957), FTP (on page 2959), or any other file-sharing application.

About Extracting Data from Proficy Historian
The Historian ETL Extract tool extracts data as follows:

1. Extracts data related to tags into text files, which are named in the following format:

YYYYDDMMHHRR_<onsite Historian computer name>.txt. These files are stored in the

following folder: <Historian ETL installation location>/Historian ETL Extract/

HistFiles.

Note:

Data related to alarms and events is stored in .lax files. You can choose not to extract data

related to alarms and events.

2. After a specified number of files are extracted (by default, 6), the files are compressed into a .zip

file, which is named in the following format: YYYYDDMMHHRR_<onsite Historian computer

name>.zip. These files are stored in the following folder: <Historian ETL installation

location>/Historian ETL Extract/ZipFiles.

3. Deletes the text files in the <Historian ETL installation location>/Historian ETL

Extract/HistFiles folder after they are compressed.

Specify Tags for Proficy Historian Data Extraction Manually

Before you extract data, you must specify the tags whose data you want to extract.

This topic describes how to specify the tags manually by creating a configuration file. Alternatively, you

can specify the tags using a template spreadsheet (on page 2939) or a blank spreadsheet (on page

2940).

Create an .xml file to include the tag properties (on page 2942) for all the tags whose data you want to

extract.

Tag properties for a tag named Pressure used in Proficy Historian:

Historian | 43 - Extract, Transform, and Load (ETL) | 2939

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<Taglist>

 <Tag Name="Pressure">

 <LocalName>ValvePressure</LocalName>

 <RemoteName>ValvePressure</RemoteName>

 <Compression>1</Compression>

 <DeadbandRange>2.5</DeadbandRange>

 <DeadbandTimeout>2</DeadbandTimeout>

 <RequireRescale>1</RequireRescale>

 <HiEng>10</HiEng>

 <LowEng>8</LowEng>

 <HiScale>10</HiScale>

 <LowScale>8</LowScale>

 </Tag>

</Taglist>

Configure the Historian ETL Extract settings (on page 2942).

Specify Tags for Proficy Historian Data Extraction Using a Template

Before you extract data, you must specify the tags whose data you want to extract.

This topic describes how to specify the tags using a template spreadsheet, which is provided with the

Historian ETL package. Alternatively, you can specify the tags using a new spreadsheet (on page 2940) or

by creating a configuration file manually (on page 2938).

1. Access the ProficyHistTagConfigGenerateExcel.xlsx file located in the Historian

ETL Extract folder.

2. Optional: If you want to modify an existing tag configuration file, you can import the data from

that .xml file by selecting Developer > Import.

Tip:

If the Developer tab is not available, right-click the menu bar of the spreadsheet, select

Customize the Ribbon, and then select the Developer check box.

Data from the .xml file is imported into the spreadsheet.

Note:

If an error occurs, stating that the data is not valid according to the schema, verify that:

Historian | 43 - Extract, Transform, and Load (ETL) | 2940

◦ You have provided values in all the red-colored columns.

◦ There are no blank rows.

◦ The values that you have entered are valid and of the same data type as defined for

each property.

For details, refer to the Tag Properties (on page 2942) topic.

3. For each tag, enter or modify values in the columns for the tag properties (on page 2942). A value

is required in the red-colored columns.

4. Save the file.

5. Select Developer > Export.

Tip:

If the Developer tab is not available, right-select the menu bar of the spreadsheet, select

Customize the Ribbon, and then select the Developer check box.

6. Enter a name and location for the .xml file.

The tag configuration file is created with the list of tags and their properties to be extracted.

Note:

If an error occurs, stating that the data is not valid according to the schema, verify that:

◦ You have provided values in all the red-colored columns.

◦ Values in the Name column are unique.

◦ There are no blank rows.

◦ The values that you have entered are valid and of the same data type as defined for

each property.

For details, refer to the Tag Properties (on page 2942) topic.

Configure the Historian ETL Extract settings (on page 2942).

Specify Tags for Proficy Historian Data Extraction Using a Blank
Spreadsheet

Before you extract data, you must specify the tags whose data you want to extract.

This topic describes how to specify the tags using a new spreadsheet. Alternatively, you can specify the

tags using a template spreadsheet (on page 2939) or by creating a configuration file manually (on page

2938).

Historian | 43 - Extract, Transform, and Load (ETL) | 2941

1. Create a Microsoft Excel file.

2. Enter column names matching the names of the tag properties (on page 2942).

3. Optional: If you want to modify an existing tag configuration file, you can import the data from

that .xml file by selecting Developer > Import.

Tip:

If the Developer tab is not available, right-select the menu bar of the spreadsheet, select

Customize the Ribbon, and then select the Developer check box.

Note:

If a message appears, stating that the .xml file is not linked to schema, ignore the

message.

4. Select Developer > Source > XML Maps > Add.

5. Select the ProficyHistTagConfigSchema file located in the Historian ETL Extract

folder.

6. Map each column name with each entry under Taglist in the XML Source section. To do so, select

each column name, and then double-click the corresponding property under Taglist.

Each property under Taglist changes to bold formatting, indicating that it is mapped to the

corresponding column.

7. For each tag, enter or modify values in the columns.

8. Select Design > Properties, select the Validate data against schema for import and export check

box, and then select OK.

9. Save the file.

10. Select Developer > Export.

11. Enter a name and location for the .xml file.

The tag configuration file is created with the list of tags and their properties to be extracted.

Note:

If an error occurs, stating that the data is not valid according to the schema, verify that:

◦ You have provided values in all the red-colored columns.

◦ Values in the Name column are unique.

◦ There are no blank rows.

◦ The values that you have entered are valid and of the same data type as defined for

each property.

For details, refer to the Tag Properties (on page 2942) topic.

Historian | 43 - Extract, Transform, and Load (ETL) | 2942

Configure the Historian ETL Extract settings (on page 2942).

Tag Properties for Proficy Historian Data Extraction

This topic provides a list of tag properties that you can define for each tag that you want to extract from

Proficy Historian.

Column Name Data Type Description

Name String Enter the name of the tag. A value is required and must be

unique.

LocalName String Enter the local name of the tag. A value is required.

RemoteName String Enter the remote name of the tag. This will be used to name

the tag after it is imported into Historian. A value is required.

Compression Boolean • Enter 1 if you want to enable collector compression.

• Enter 0 if you do not want to enable collector compres

sion.

DeadbandRange Numeric Enter the collector deadband range (only absolute values, not

in percentage).

DeadbandTimeout Numeric Enter the collector compression timeout for the tag.

RequireRescale Boolean • Enter 1 if you want to enable scaling, which converts

an input data point to an engineering units value.

• Enter 0 if you do not want to enable scaling.

HiEng Numeric Enter the upper limit in engineering units for the tag.

LowEng Numeric Enter the lower limit in engineering units for the tag.

HiScale Numeric Enter the upper limit for the tag value if scaling is enabled.

LowScale Numeric Enter the lower limit for the tag value if scaling is enabled.

Configure the Proficy Historian Data Extraction Settings

Specify the tags whose data you want to extract from Proficy Historian. You can do so by creating

a configuration file manually (on page 2938), using a template (on page 2939), or using a blank

spreadsheet (on page 2940).

This topic describes how to configure the Historian ETL Extract tool to modify the default folders to store

the extracted data, to specify whether data related to alarms and events must be extracted, and so on.

Historian | 43 - Extract, Transform, and Load (ETL) | 2943

Note:

These settings are saved in the HistorianETLExtract.exe.config file.

1. Run the Historian ETL Extract Configuration file located in the Historian ETL

Extract folder.

Tip:

You can also enter ETL Historian Extract in Windows Run.

The Historian ETL Extract Configuration window appears, displaying the Basic Configuration

section.

2. If the configuration details are stored in a file, select Import Config to import the settings.

Otherwise, skip to the next step.

3. Provide values as specified in the following table.

Field Description Default Value

Historian Server Enter the host name or IP address of the onsite

Historian machine. If you leave it blank, the lo

cal host name is considered.

Historian User Enter the ID of the user to connect to the Histo

rian server on the onsite Historian machine. A

value is required only if security is enabled for

the Historian server.

Historian Password Enter the password of the user to connect to

the Historian server on the onsite Historian ma

chine. A value is required only if security is en

abled for the Historian server.

Unit ID Enter the unit ID of the machine from which you

want to transfer data.

OSMName

Run Interval Enter the interval, in seconds, at which the His

torian ETL Extract tool will extract data. You

must enter a value greater than or equal to 60.

300 (that is, a text file

is created for data that

is extracted in 300 sec

onds)

Historian | 43 - Extract, Transform, and Load (ETL) | 2944

Field Description Default Value

Min # of Files to Com

press

Enter the number of files that must be com

pressed into a single .zip file.

6 (that is, a .zip file is

created for every six

text files)

Alarms & Events Select False if you do not want to extract data

related to alarms and events.

True

4. Select Files, and then provide values as specified in the following table.

Field Description Default Value

Historian Export

Path

Enter the path to the folder in which

the text files containing the extracted

data must be stored.

<Installation folder of

Historian ETL>/Historian

ETL Extract/HistFiles

Tag Configuration

File

Enter the path to the tag configura

tion file that you have created.

<Installation folder of

Historian ETL>/Historian

ETL Extract/OSM_OSMName.xml

Zip Export Path Enter the path to the folder in which

the compressed files must be stored.

<Installation folder of

Historian ETL>/Historian

ETL Extract/ZipFiles

State File Enter the path to the file that the His

torian ETL Extract tool will create to

store the timestamp of the last suc

cessful export. This timestamp is

used to identify the start time for next

iteration of extraction. This ensures

that there is no loss of data during ex

traction.

For example, suppose the current

time is 11am, and data has been ex

tracted only till 9am. The state file

contains the timestamp for 9am.

Therefore, when data extraction is re

sumed, it is extracted from 9am.

<Installation folder of

Historian ETL>/Historian

ETL Extract/State.xml

Historian | 43 - Extract, Transform, and Load (ETL) | 2945

Field Description Default Value

The state file is created after you ap

ply the Historian ETL Extract settings.

It is updated each time .zip files are

transferred to the destination Histori

an server or when the Historian ETL

Extract tool is stopped. For a sample

state file, refer to Example of a State

File (on page 2968).

Regen File Enter the path to the regeneration file.

You can use this field to extract his

torical data (on page 2946).

If the Generate Sample Regen File

field is set to True, a sample regener

ation file will be created after you ap

ply the settings. You can modify this

file as needed, and specify the path of

the same file in the Regen File field.

For a sample regeneration file, refer

to Example of a Regeneration File (on

page 2966).

<installation folder of

Historian ETL>\Regen.xml

5. Select Advanced Configuration, and then provide values as specified in the following table.

Field Description Default Value

Log Level Select the log level to indicate the amount of in

formation to be logged. The following options

are available:

◦ Info

◦ Error

◦ Debug

Info

Catch Up Interval Enter the catch up interval, in seconds, used to

size files when catching up to the current time.

10

Historian | 43 - Extract, Transform, and Load (ETL) | 2946

Field Description Default Value

Save Limit Enter the number of files to be exported after

which the State.xml file must be updated.

20

Catch Up Time Limit Enter the maximum time, in hours, to go back

when catching up after a restart.

You can use this field to extract historical data

(on page 2946).

168

Delay Interval The duration, in seconds, by which the data re

trieval time will be reduced. For example, if da

ta will be retrieved for 10 minutes, and if you en

ter 60 in this field, data for the last 60 seconds

will not be retrieved in that batch; it will be re

trieved in the next batch. This will ensure the re

trieval of any dynamic records that were updat

ed in that duration.

60

Sample Regen File Enter the path to the sample regeneration file

that will be created if the Generate Sample Re

gen File field is set to True. You can modify this

file as needed.

<installation

folder of His

torian ETL>\Sam

ple_Regen.xml

Generate Sample Re

gen File

Select True if you want to generate the sample

regeneration file. You can then modify this file

as needed.

False

6. Select Save.

The changes to the settings are applied and saved in the HistorianETLExtract.exe.config

file.

Start the data extraction (on page 2947).

Extract Historical Data from Proficy Historian

By default, the ETL tools extract current data, starting from the time you have configured the tags for data

extraction. This topic describes how to extract historical data using the ETL tools.

Historian | 43 - Extract, Transform, and Load (ETL) | 2947

1. Create a regeneration file, specifying the start time, end time, and interval for which you want to

capture the historical data. For a sample regeneration file, refer to Example of a Regeneration File

(on page 2966).

2. Run the Historian ETL Extract Configuration file located in the Historian ETL

Extract folder.

Tip:

You can also enter ETL Historian Extract in the Windows Start menu.

The Historian ETL Extract Configuration window appears, displaying the Basic Configuration

section.

3. Select Advanced Configuration, and then provide values as specified in the following table.

Field Description Default Value

Regen File Enter the path to the regeneration file

that you have created.

<installation drive>\Pro

gram Files\GE Digital\His

torian ETL Extract\Re

gen.xml

Catch Up Time

Limit

Enter the duration, in hours, for which

you want to extract historical data.

For example, if you want to extract

data for the past one day, enter 24.

168

Temp Regen File Enter the path to the temporary re

generation file.

<installation drive>\Pro

gram Files\GE Digital\His

torian ETL Extract\Temp_Re

gen.xml

Generate Temp

Regen File

Select True. False

4. As needed, provide values in the remaining fields (on page 2942)

Start the data extraction (on page 2947).

Start the Proficy Historian Data Extraction

Configure the Historian ETL Extract settings (on page 2942).

Historian | 43 - Extract, Transform, and Load (ETL) | 2948

1. Run the Historian ETL Extract Configuration file located in the Historian ETL

Extract folder.

The Historian ETL Extract Configuration window appears.

2. Select Start Service.

Data extraction from the Proficy Historian server begins.

Tip:

If the tool does not start as expected, access the logs using Windows Event Viewer.

Transfer data using BITS (on page 2957), FTP (on page 2959), or any other file-sharing application.

Extracting Data from PI Historian
The Historian ETL PI Extract tool extracts data as follows:

1. Extracts data related to tags into text files, which are named in the following format:

YYYYDDMMHHRR_<onsite Historian computer name>.txt. These files are stored in

the following folder: <Historian ETL installation location>/Historian ETL PI

Extract/HistFiles.

2. After a specified number of files are extracted (by default, 6), the files are compressed into a .zip

file, which is named in the following format: YYYYDDMMHHRR_<onsite Historian computer

name>.zip. These files are stored in the following folder: <Historian ETL installation

location>/Historian ETL PI Extract/ZipFiles.

Specify Tags for PI Historian Data Extraction Manually

Before you extract data, you must specify the tags whose data you want to extract.

This topic describes how to specify the tags manually by creating a configuration file. Alternatively, you

can specify the tags using a template spreadsheet (on page 2949) or a blank spreadsheet (on page

2950).

Create an .xml file to include the tag properties (on page 2951) for all the tags whose data you want to

extract.

Tag properties for a tag named Pressure used in an ODBC data source:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<Taglist>

 <Tag Name="Pressure">

 <LocalName>ValvePressure</LocalName>

Historian | 43 - Extract, Transform, and Load (ETL) | 2949

 <RemoteName>ValvePressure</RemoteName>

 </Tag>

</Taglist>

Configure the Historian ETL PI Extract settings (on page 2952).

Specify Tags for PI Historian Data Extraction Using a Template

Before you extract data, you must specify the tags whose data you want to extract.

This topic describes how to specify the tags using a template spreadsheet, which is provided with the

Historian ETL package. Alternatively, you can specify the tags using a new spreadsheet (on page 2950) or

by creating a configuration file manually (on page 2948).

1. Access the PIHistTagConfigGenerateExcel.xlsx file located in the Historian PI ETL

Extract folder.

2. Optional: If you want to modify an existing tag configuration file, you can import the data from

that .xml file by selecting Developer > Import.

Tip:

If the Developer tab is not available, right-click the menu bar of the spreadsheet, select

Customize the Ribbon, and then select the Developer check box.

Data from the .xml file is imported into the spreadsheet.

Note:

If an error occurs, stating that the data is not valid according to the schema, verify that:

◦ You have provided values in all the red-colored columns.

◦ There are no blank rows.

◦ The values that you have entered are valid and of the same data type as defined for

each property.

For details, refer to the Tag Properties (on page 2951) topic.

3. For each tag, enter or modify values in the columns for the tag properties (on page 2951). A value

is required in the red-colored columns.

4. Save the file.

5. Select Developer > Export.

Historian | 43 - Extract, Transform, and Load (ETL) | 2950

Tip:

If the Developer tab is not available, right-select the menu bar of the spreadsheet, select

Customize the Ribbon, and then select the Developer check box.

6. Enter a name and location for the .xml file.

The tag configuration file is created with the list of tags and their properties to be extracted.

Note:

If an error occurs, stating that the data is not valid according to the schema, verify that:

◦ You have provided values in all the red-colored columns.

◦ Values in the Name column are unique.

◦ There are no blank rows.

◦ The values that you have entered are valid and of the same data type as defined for

each property.

For details, refer to the Tag Properties (on page 2951) topic.

Configure the Historian ETL PI Extract settings (on page 2952).

Specify Tags for PI Historian Data Extraction Using a Blank Spreadsheet

Before you extract data, you must specify the tags whose data you want to extract.

This topic describes how to specify the tags using a new spreadsheet. Alternatively, you can specify the

tags using a template spreadsheet (on page 2949) or by creating a configuration file manually (on page

2948).

1. Create a Microsoft Excel file.

2. Enter column names matching the names of the tag properties (on page 2951).

3. Optional: If you want to modify an existing tag configuration file, you can import the data from

that .xml file by selecting Developer > Import.

Tip:

If the Developer tab is not available, right-select the menu bar of the spreadsheet, select

Customize the Ribbon, and then select the Developer check box.

Historian | 43 - Extract, Transform, and Load (ETL) | 2951

Note:

If a message appears, stating that the .xml file is not linked to schema, ignore the

message.

4. Select Developer > Source > XML Maps > Add.

5. Select the PIHistTagConfigSchema file located in the Historian ETL PI Extract folder.

6. Map each column name with each entry under Taglist in the XML Source section. To do so, select

each column name, and then double-click the corresponding property under Taglist.

Each property under Taglist changes to bold formatting, indicating that it is mapped to the

corresponding column.

7. For each tag, enter or modify values in the columns.

8. Select Design > Properties, select the Validate data against schema for import and export check

box, and then select OK.

9. Save the file.

10. Select Developer > Export.

11. Enter a name and location for the .xml file.

The tag configuration file is created with the list of tags and their properties to be extracted.

Note:

If an error occurs, stating that the data is not valid according to the schema, verify that:

◦ You have provided values in all the red-colored columns.

◦ Values in the Name column are unique.

◦ There are no blank rows.

◦ The values that you have entered are valid and of the same data type as defined for

each property.

For details, refer to the Tag Properties (on page 2951) topic.

Configure the Historian ETL PI Extract settings (on page 2952).

Tag Properties for PI Historian Data Extraction

This topic provides a list of tag properties that you can define for each tag that you want to extract from

PI Historian.

Historian | 43 - Extract, Transform, and Load (ETL) | 2952

Column Name Data Type Description

Name String Enter the name of the tag. A value is required and must be

unique.

LocalName String Enter the local name of the tag. A value is required.

RemoteName String Enter the remote name of the tag. This will be used to name

the tag after it is imported into Historian. A value is required.

Configure the PI Historian Data Extraction Settings

Specify the tags whose data you want to extract from PI Historian. You can do so by creating a

configuration file manually, using a template, or using a blank spreadsheet.

This topic describes how to configure the Historian ETL PI Extract tool to modify the default folders to

store the extracted data.

Note:

These settings are saved in the PIHistorianETLExtract.exe.config file.

1. Run the Historian ETL PI Extract Configuration file located in the Historian ETL

PI Extract folder.

Tip:

You can also enter ETL PI Extract in Windows Run.

The Historian ETL PI Extract Configuration window appears, displaying the Basic Configuration

section.

2. If the configuration details are stored in a file, select Import Config to import the settings.

Otherwise, skip to the next step.

3. Provide values as specified in the following table.

Field Description Default Value

Historian Server Enter the host name or IP address of the PI

Server machine.

Historian | 43 - Extract, Transform, and Load (ETL) | 2953

Field Description Default Value

Historian User Enter the ID of the user to connect to the PI

Server machine. A value is required only if secu

rity is enabled for the Historian server.

Historian Password Enter the password of the user to connect to

the PI Server machine. A value is required only

if security is enabled for the Historian server.

Unit ID Enter the unit ID of the machine from which you

want to transfer data.

OSMName

Run Interval Enter the interval, in seconds, at which the His

torian ETL PI Extract tool will extract data. You

must enter a value greater than or equal to 60.

150 (that is, a text file

is created for data that

is extracted in 150 sec

onds)

Min # of Files to Com

press

Enter the number of files that must be com

pressed into a single .zip file.

6 (that is, a .zip file is

created for every six

text files)

4. Select Files, and then provide values as specified in the following table.

Field Description Default Value

Historian Export

Path

Enter the path to the folder in which

the text files containing the extracted

data must be stored.

<Installation folder of

Historian ETL>/Historian

ETL PI Extract/HistFiles

Tag Configuration

File

Enter the path to the tag configura

tion file that you have created.

<Installation folder of

Historian ETL>/Histori

an ETL PI Extract/OSM_OSM

Name.xml

Zip Export Path Enter the path to the folder in which

the compressed files must be stored.

<Installation folder of

Historian ETL>/Historian

ETL PI Extract/ZipFiles

State File Enter the path to the file that the His

torian ETL PI Extract tool will create

to store the timestamp of the last

successful export. This timestamp is

<Installation folder of

Historian ETL>/Historian

ETL PI Extract/State.xml

Historian | 43 - Extract, Transform, and Load (ETL) | 2954

Field Description Default Value

used to identify the start time for next

iteration of extraction. This ensures

that there is no loss of data during ex

traction.

For example, suppose the current

time is 11am, and data has been ex

tracted only till 9am. The state file

contains the timestamp for 9am.

Therefore, when data extraction is re

sumed, it is extracted from 9am.

The state file is created after you ap

ply the settings. It is updated each

time .zip files are transferred to the

destination Historian server or when

the Historian PI ETL Extract tool is

stopped. For a sample state file, refer

to Example of a State File (on page

2968).

5. Select Advanced Configuration, and then provide values as specified in the following table.

Field Description Default Value

Log Level Select the log level to indicate the amount of in

formation to be logged. The following options

are available:

◦ Info

◦ Error

◦ Debug

Info

Catch Up Interval Enter the catch up interval, in seconds, used to

size files when catching up to the current time.

10

Regen File Enter the path to the regeneration file. You can

use this field to extract historical data (on page

2946).

<installation

folder of His

torian ETL>\Re

gen.xml

Historian | 43 - Extract, Transform, and Load (ETL) | 2955

Field Description Default Value

If the Generate Sample Regen File field is set

to True, a sample regeneration file will be creat

ed after you apply the settings. You can modify

this file as needed, and specify the path of the

same file in the Regen File field. For a sample

regeneration file, refer to Example of a Regener

ation File (on page 2966).

Save Limit Enter the number of files to be exported after

which the State.xml file must be updated.

20

Catch Up Time Limit Enter the maximum time, in hours, to go back

when catching up after a restart.

You can use this field to extract historical data

(on page 2946).

168

Delay Interval The duration, in seconds, by which the data re

trieval time will be reduced. For example, if da

ta will be retrieved for 10 minutes, and if you en

ter 60 in this field, data for the last 60 seconds

will not be retrieved in that batch; it will be re

trieved in the next batch. This will ensure the re

trieval of any dynamic records that were updat

ed in that duration.

60

Sample Regen File Enter the path to the sample regeneration file

that will be created if the Generate Sample Re

gen File field is set to True. You can modify this

file as needed.

<installation

folder of His

torian ETL>\Sam

ple_Regen.xml

Generate Sample Re

gen File

Select True if you want to generate the sample

regeneration file. You can then modify this file

as needed.

False

6. Select Save.

The changes to the settings are applied and saved in the

PIHistorianETLExtract.exe.config file.

Start the data extraction (on page 2947).

Historian | 43 - Extract, Transform, and Load (ETL) | 2956

Extract Historical Data from PI Historian

By default, the ETL tools extract current data, starting from the time you have configured the tags for data

extraction. This topic describes how to extract historical data using the ETL tools.

1. Create a regeneration file, specifying the start time, end time, and interval for which you want to

capture the historical data. For a sample regeneration file, refer to Example of a Regeneration File

(on page 2966).

2. Run the Historian ETL PI Extract Configuration file located in the Historian ETL

PI Extract folder.

Tip:

You can also enter ETL PI Extract in the Windows Start menu.

The Historian ETL PI Extract Configuration window appears, displaying the Basic Configuration

section.

3. Select Advanced Configuration, and then provide values as specified in the following table.

Field Description Default Value

Regen File Enter the path to the regenera

tion file that you have created.

<installation dri

ve>\Program Files\GE

Digital\Historian ETL

Extract\Regen.xml

Catch Up Time Limit Enter the duration, in hours,

for which you want to extract

historical data. For example, if

you want to extract data for the

past one day, enter 24.

168

Temp Regen File Enter the path to the temporary

regeneration file.

<installation dri

ve>\Program Files\GE

Digital\Historian ETL

PI Extract\Temp_Re

gen.xml

Generate Temp Regen File Select True. False

4. As needed, provide values in the remaining fields (on page 2952).

Historian | 43 - Extract, Transform, and Load (ETL) | 2957

Start the data extraction (on page 2957).

Start the PI Historian Data Extraction

Configure the Historian ETL PI Extract settings (on page 2952).

1. Run the Historian ETL PI Extract Configuration file located in the Historian ETL

PI Extract folder.

The Historian ETL PI Extract Configuration window appears.

2. Select Start Service.

Data extraction from PI Server begins.

Tip:

If the tool does not start as expected, access the logs using Windows Event Viewer.

About Transferring Data Using Background Intelligent Transfer
Service (BITS)
After you extract data, you must transfer it to the destination machine. To do so, you can use BITS, FTP, or

any other file-sharing application.

To transfer data using BITS, perform the following steps:

1. Install the BITS IIS server extension.

2. Configure the BITS settings (on page 2957).

3. Transfer data to the destination machine (on page 2958).

Configure BITS

Install the BITS IIS server extension.

1. Using IIS Management Console, navigate to the default website node, select Add Virtual Directory,

and create a virtual directory named MD_BITS.

2. In the MD_BITS folder, create a folder named OSMUploads.

3. Enable the BITS IIS server extension:

a. Navigate to the virtual directory in IIS Manager.

b. From the list of features in the virtual directory, double-click BITS Uploads.

c. Select the Allow clients to upload files check box, and then select Apply.

4. Change the port number of the default website in IIS. By default, the port number is 80.

Historian | 43 - Extract, Transform, and Load (ETL) | 2958

a. In IIS Manager, in the Connections section, under the computer name > Sites, select Default

Web Site.

b. In the Actions pane, under Edit Site, select Bindings.

c. In the Site Bindings window, select http > Edit.

d. In the Edit Site Bindings window, in the Port field, enter the new port number (for example,

6150), and then select OK.

e. In the Site Bindings window, select Close.

f. In the Actions section, under Manage Web Site, select Stop, and then select Start.

Verify the data transfer settings (on page 2958).

Verify the Data Transfer Settings
This topic provides a list of tasks that you can perform to verify that the data transfer settings are correct.

• From you onsite Historian machine, using Internet Explorer, verify that you can access a web page

created on the destination machine.

• Verify that the Historian ETL Load tool running on the destination machine is configured to watch

the virtual folder in IIS for the incoming .zip files.

Transfer Data using BITS

Configure BITS (on page 2957).

You can transfer data using BITS by performing one of the following steps:

1. If you want to use the OSM_LBW_Transfer.vbs file to transfer files, perform the following steps:

a. Verify that the OSM_LBW_Transfer.vbs file is configured to watch the folder in the

destination machine in which the .zip files will be placed.

b. Run the OSM_LBW_Transfer.vbs script by running the OSM_LBW_Transfer.cmd file.

The script transfers files in the <Historian ETL installation location>/

Historian ETL Extract/ZipFiles folder to the destination machine.

2. If you want to use the OSMBitsDownload.vbs file to download files, perform the following steps.

a. Access the OSMBitsDownload.vbs file, and verify that the path to the files and folders

specified in the file is correct.

b. Run the OSMBitsDownload.vbs script by running the following command: cscript

OSMBitsDownload.vbs.

Historian | 43 - Extract, Transform, and Load (ETL) | 2959

The script uses the DownloadFilesToOSM.txt file to fetch the names of the files that

must be transferred.

Important:

▪ Ensure that the DownloadFilesToOSM.txt file exists in the same location

as the OSMBitsDownload.vbs file.

▪ In the DownloadFilesToOSM.txt file, enter the file names that you want to

download using the OSMBitsDownload.vbs script. If you want to transfer

all zip files, enter *.zip.

Tip:

To access the jobs created by BITS while transferring data, access the

BITSADMIN/LIST/ALLUSERS folder. If the tool does not start as expected, access

the logs using Windows Event Viewer.

Load the data into the destination Historian server (on page 2961).

About Transferring Data Using File Transfer Protocol (FTP)
After you extract data, you must transfer it to the destination Historian server. To do so, you can use BITS,

FTP, or any other file-sharing application.

Note:

The minimum bandwidth required to transfer data using FTP is 2 KBps.

To transfer data using FTP, perform the following steps:

1. Install an FTP server on the destination Historian server.

2. Configure the FTP settings (on page 2959).

3. Transfer data to the destination Historian server (on page 2960).

Configure FTP

Install FTP on the destination Historian server.

Historian | 43 - Extract, Transform, and Load (ETL) | 2960

1. Access the FTPFileTransfer file located in the <Installation folder of Historian

ETL>/Historian ETL Transform folder.

The FTP File Transfer Tool window appears.

2. If the FTP configuration details are saved in a file, select File > Load, and then select the

configuration file that contains the details. Otherwise, skip to the next step.

3. Provide values as specified in the following table.

Tip:

You can select File > New to create a new instance of the settings.

Field Description Default Value

FTP Server Address Enter the address of the FTP

server.

ftp://127.0.0.1/ftpserver

FTP UserID Enter the user ID to log in to

the FTP server.

Blank

FTP Password Enter the password to log in to

the FTP server.

Blank

Directory to Monitor Provide the folder from which

files must be transferred.

C:\

File Mask Enter the file mask for the FTP

server.

*.zip

4. Optional: Select Test Connection to test the FTP server connection.

5. Select File > Save to save the configuration details, which you can reuse.

6. Select File > Detail Log if you want a detailed logging, which will help you in troubleshooting.

The FTP server settings are configured.

Transfer data using FTP (on page 2960).

Transfer Data Using FTP

Configure FTP (on page 2959).

1. Access the FTPFileTransfer file located in the <Installation folder of Historian

ETL>/Historian ETL Transform folder.

The FTP File Transfer Tool window appears.

Historian | 43 - Extract, Transform, and Load (ETL) | 2961

2. Select Start.

Data is transferred from the ZipFiles folder to the machine on which the destination Historian is

installed.

Load the data into the destination Historian server (on page 2961).

About Loading Data
After the data is transferred to the machine on which the destination Historian is installed, you must load

it into the destination Historian server using the Historian ETL Load tool. This tool loads data as follows:

1. Extracts the .zip files in the <Historian ETL installation location>/Historian

ETL Load/ZipImportFiles folder and stores the text files in the <Historian ETL

installation location>/Historian ETL Load/ImportFiles folder in the destination

Historian server.

2. Loads the data into the destination Historian server.

3. Deletes the .zip files in the <Historian ETL installation location>/Historian ETL

Load/ZipImportFiles folder, and imports the text files to the destination Historian server.

4. Deletes the text files in the <Historian ETL installation location>/Historian ETL

Load/ImportFiles folder after importing them to the destination Historian server.

Configure the Historian ETL Load tool

This topic describes how to configure the Historian ETL Load service to modify the default folders to store

the extracted data, to specify whether data related to alarms and events must be transferred, and so on.

Note:

These settings are saved in the HistorianETLLoad.exe.config file.

1. Run the Historian ETL Load Configuration file located in the Historian ETL Load

folder.

Tip:

You can also enter ETL Historian Load in Windows Run.

The Historian ETL Load Configuration window appears, displaying the Basic Configuration section.

2. If the configuration details are stored in a file, select Import Config to import the settings.

Otherwise, skip to the next step.

Historian | 43 - Extract, Transform, and Load (ETL) | 2962

3. Provide values as specified in the following table.

Field Description Default Value

Historian Server Enter the host name or IP ad

dress of the destination His

torian server. If you leave this

field blank, the local host name

is considered.

Blank

Historian User Enter the ID of the user to con

nect to the destination Histori

an server. A value is required

only if security is enabled for

the destination Historian serv

er.

Blank

Historian Password Enter the password of the user

to connect to the destination

Historian server. A value is re

quired only if security is en

abled for the destination Histo

rian server.

Blank

IH Status Tagname Enter the name of the tag that

is used to check the state of

the destination Historian serv

er. This tag must exist in Histo

rian.

IHStatusTag

Alarms & Events Select False if you do not want

to load data related to alarms

and events.

True

Add Tag Automatically Select True to create a tag

automatically in the destina

tion Proficy Historian server if

the tag name that you entered

does not exist in the server.

False

4. Select Files, and then provide values as specified in the following table.

Historian | 43 - Extract, Transform, and Load (ETL) | 2963

Field Description Default Value

Historian File Path Enter the path to the folder in

which the text files containing

the extracted data are stored.

<Installation folder of

Historian ETL>/Histori

an ETL Load/ImportFiles

Zip File Path Enter the path to the folder in

which the compressed files are

available.

<Installation folder of

Historian ETL>/Histori

an ETL Load/ZipImport

Files

Error File Path Enter the path to the folder

in which file that could not

be loaded or deleted must be

stored.

<Installation folder of

Historian ETL>/Histori

an ETL Load/ErrorFiles

Error File Life Time (days) Enter the amount of time, in

days, error files must be stored

before deletion.

3.5

5. Select Advanced Configuration, and then provide values as specified in the following table.

Field Description Default Value

Log Level Select the log level to indicate

the amount of information to

be logged. The following op

tions are available:

◦ INFO

◦ ERROR

◦ DEBUG

INFO

Write Batch Size Enter the number of records to

write to the Historian server at

one time.

Tip:

A large batch size can

produce faster tag val

ue writes, but can lead

to poor performance

1000

Historian | 43 - Extract, Transform, and Load (ETL) | 2964

Field Description Default Value

if multiple collectors

share the same Histo

rian server. A 1000 to

2000 batch size is ide

al for a shared Histori

an server.

Wait Interval (seconds) Enter the amount to time, in

seconds, to wait to check for

new files.

90

Wait For Reply Select False if you do not want

the Historian ETL Load tool to

wait for the acknowledgement

from Historian that files are

transferred.

True

Error On Replace Select True if you want an error

to be logged if duplicate data

is transferred.

False

Max Retries Enter the maximum number of

times the Historian ETL Load

tool must try to resend data in

case of an error or failure.

2

Retry Timeout (seconds) Enter the amount of time, in

seconds, to wait before trying

to resend data.

5

6. Select Save.

The changes to the settings are applied and saved in the HistorianETLLoad.exe.config file.

Load data into the destination Historian server (on page 2965).

Historian | 43 - Extract, Transform, and Load (ETL) | 2965

Load Data into the Destination Historian Server

1. Configure the ETL Load tool (on page 2961).

2. Verify that the Historian ETL Load tool running on the destination Historian server is configured to

watch the IIS Virtual folder for the incoming .zip files.

1. Run the Historian ETL Load Configuration file located in the Historian ETL Load

folder.

The Historian ETL Load Configuration window appears.

2. Select Start Service.

Tip:

If the tool does not start as expected, access the logs using Windows Event Viewer.

The data is loaded in the destination Historian server.

Data File Format
This topic provides the format of the content in a text file that contains tag data extracted by the Historian

ETL Extract tool. Each line in the text file contains the following parameters, separated by commas:

Parameter Description Valid Values

Time The time at which the data

is captured. It is displayed in

the following format: <epoch

format>:<nanoseconds, hu

man-readable>

For example, if the value is

1601890328:76000000, then:

• 1601890328 indicates the

time in the epoch format.

• 76000000 indicates the

time in nanoseconds, hu

man-readable.

The value after the colon is

greater than 0 only if the time

N/A

Historian | 43 - Extract, Transform, and Load (ETL) | 2966

Parameter Description Valid Values

resolution of the tag is millisec

onds or microseconds.

Tag name The name of the tag for which

the data is captured.

Any tag that exists in the destina

tion Historian server

Note:

If the AddTagAutomati

cally parameter is set to

True, when you add a tag

that does not exist in the

Historian server, it will be

created.

Data value The value of the data that is cap

tured.

N/A

Data type The data type for the value that is

captured.

• short

• int

• float

• Double

• Single Byte String

Quality The quality of the data that is

captured.

• GOOD

• BAD

Note:

• The BLOB data type is not supported.

• Comments are not captured.

• Data quality other than GOOD and BAD is not supported.

Example of a Regeneration File

The following lines of code represent the content of a regeneration file, which provides the start time, end

time, and interval to export data. After all the requests are processed, the regeneration file is deleted.

Historian | 43 - Extract, Transform, and Load (ETL) | 2967

Note:

The regeneration file has three sections for setting the start time, end time, and interval. These

multiple sections act as a backup. That is, if the values provided in the first section are not valid

(for example, the start time is later than the end time, interval has a negative value), the values

from the next section are considered.

<?xml version="1.0"?>

<SOAP-ENV:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:clr="http://schemas.microsoft.com/soap/encoding/clr/1.0"

 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>

<a1:ArrayList id="ref-1" xmlns:a1="http://schemas.microsoft.com/clr/ns/System.Collections">

<_items href="#ref-2"/>

<_size>3</_size>

<_version>3</_version>

</a1:ArrayList>

<SOAP-ENC:Array id="ref-2" SOAP-ENC:arrayType="xsd:anyType[4]">

<item href="#ref-3"/>

<item href="#ref-4"/>

<item href="#ref-5"/>

</SOAP-ENC:Array>

<a3:RegenRequest id="ref-3"

 xmlns:a3="http://schemas.microsoft.com/clr/nsassem/ETLExtract/HistorianETLExtract%2C

%20Version%3D1.9.0.0%2C%20Culture%3Dneutral%2C%20PublicKeyToken%3Dnull">

<startTime>2020-07-02T09:39:37.3384336+05:30</startTime>

<endTime>2020-07-02T10:39:37.3384336+05:30</endTime>

<interval>3</interval>

</a3:RegenRequest>

<a3:RegenRequest id="ref-4"

 xmlns:a3="http://schemas.microsoft.com/clr/nsassem/ETLExtract/HistorianETLExtract%2C

%20Version%3D1.9.0.0%2C%20Culture%3Dneutral%2C%20PublicKeyToken%3Dnull">

<startTime>2020-07-02T09:39:37.3384336+05:30</startTime>

<endTime>2020-07-02T10:39:37.3384336+05:30</endTime>

Historian | 43 - Extract, Transform, and Load (ETL) | 2968

<interval>4.5</interval>

</a3:RegenRequest>

<a3:RegenRequest id="ref-5"

 xmlns:a3="http://schemas.microsoft.com/clr/nsassem/ETLExtract/HistorianETLExtract%2C

%20Version%3D1.9.0.0%2C%20Culture%3Dneutral%2C%20PublicKeyToken%3Dnull">

<startTime>2020-07-02T09:39:37.3384336+05:30</startTime>

<endTime>2020-07-02T10:39:37.3384336+05:30</endTime>

<interval>14.5</interval>

</a3:RegenRequest>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Example of a State File

The following lines of code represent the content of a state file indicating that the last successful export

occurred on June 6, 2010 at 5:00:04 PM in the UTC-4 time zone:

<SOAP-ENV:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:clr="http://schemas.microsoft.com/soap/encoding/clr/1.0"

 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>

<a1:Persist id="ref-1"

 xmlns:a1="http://schemas.microsoft.com/clr/nsassem/LBExport/LBExport%2C%20Version%3D1.0.1.0%2C%20Culture%3Dneutral%2C

%20PublicKeyToken%3Dnull">

<lastExport>2010-06-07T17:00:04.2017462-04:00</lastExport>

</a1:Persist>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Historian | 43 - Extract, Transform, and Load (ETL) | 2969

Troubleshooting ETL Issues
Recommendations

Some overall recommendations when working with ETL to minimize issues:

• Extract Historian data for 30000 tags with 18MM samples per day.

• Set the Regen Interval to be less than 10 minutes.

Unable to Start the ETL Tools

Issue: When you try to start the Historian ETL Extract, Historian ETL PI Extract, or the Historian ETL Load

service, an error occurs.

Diagnostics: If there is a limited bandwidth of the internet, the certificate publisher service times out after

30 seconds. To avoid this issue, disable the publisher service:

1. Access the configuration file for the service that you want to start. For example, for the Historian

ETL Extract service, access the HistorianETLExtract.exe.config file.

2. Set the element generatePublisherEvidence to disabled.

An Error Occurs When Importing Tag Data into an Excel Spreadsheet

Issue: To specify tags using a template spreadsheet, when you import the tags stored in an .xml file, an

error occurs, stating that the data is not valid according to the schema.

Diagnostics: Verify that:

• You have provided values in all the red-colored columns.

• Values in the Name column are unique.

• There are no blank rows.

• The values that you have entered are valid and of the same data type as defined for each property.

For details, refer to the Tag Properties (on page 2942) topic.

Issue: When you attempt to import tag data to an Excel spreadsheet from an .xml file, an error occurs,

stating that the .xml file is not linked to schema.

Workaround: Ignore the message.

	Cover Page
	Contents
	Chapter 1. Release Notes
	What's New
	Resolved Issues
	Known Issues and Limitations

	Chapter 2. Getting Started Guide
	Overview
	System Architecture
	System Components
	Data Collection/Migration Components
	Data Storage, Analysis, and Maintenance Components
	Data Retrieval Components

	About the Historian Server
	About Tags

	Prerequisites
	Setting Up the Historian Environment
	Activate the Historian License
	To activate the Historian license:

	Hardware Requirements
	Software Requirements
	Compatibility with Other Products
	Supported Formats
	Supported Regional Settings
	Supported Data Types
	Supported Date Formats

	Optimize Performance
	Enable Trust
	VMWare Support
	VMWare Best Practices and Limitations

	Installation
	Installation Workflow
	The Historian Server
	Install the Historian Server
	Install at a Command Prompt
	Set Up High Availability
	Set Up a Mirror of Mirror
	Upgrade
	About Historian Log Files
	FAQs on Installing Historian in a Distributed Environment
	Register with Configuration Hub
	Historian Installation Limitations

	Alarms and Events
	Install Using the Installer
	Upgrade

	Collectors
	Install Collectors
	Install at a Command Prompt
	Upgrade

	Client Tools
	Install the OLE DB Provider
	Install at a Command Prompt

	Web-based Clients
	Install Web-based Clients
	Install at a Command Prompt
	Connect to a Remote Proficy Authentication Service
	Set Up High Availability
	Upgrade
	Configure Web-based Clients

	Remote Management Agents
	Install Using the Installer
	Install at a Command Prompt

	Install the OPC UA HDA Server
	The Excel Add-In for Historian
	Install Using the Installer
	Install at a Command Prompt
	Activate

	The Excel Add-In for Operations Hub
	Install Using the Installer
	Copy or Export the Issuer Certificate on Server
	Install/Import the Issuer Certificate
	Connect to Operations Hub

	ETL
	Stand-Alone Help
	Install Standalone Help Using the Installer
	Install Help at a Command Prompt

	Configuring Certificate-based Security to use MTLS
	Overview of the Certificate-based Security
	Certificate-based Security Specifc Configurations
	Copy Server root certificate to the Client Machine
	Adding a Certificate to the Trusted Root Certification Authorities Folder
	Generate MTLS Certificate
	Generate Root Certificates for Proficy Historian Server Manually (Not recommended)
	Installing Certificates for Core Services

	Upgrade Scenarios when Working with Historian Server Certificates
	Troubleshooting Historian Server Certificates

	Using Proficy Authentication or LDAP Groups
	About Proficy Authentication
	About Proficy Authentication Groups
	Workflow
	Configurations Checklist to use Proficy Authentication Security Groups

	Using Server Certificates
	Change the Log Levels of Proficy Authentication

	Migrating Historian Data
	Migrating the Alarms and Events Data
	Workflow for Migrating Alarms and Events Data
	Back Up the Alarms and Events Data
	Restore the Alarms and Events Data

	Using the Migration Tool
	Migrating Historical Data
	Configuring Migration Options
	Server Pane
	Options Pane
	Tags to Migrate Pane
	Time to Migrate Pane

	Data Migration Scenarios
	Migrating a Tag and its Data
	Merging a Historian Server

	Migration Tool Command-Line Syntax
	Command Syntax
	Command-line Options
	Notes
	Creating a Batch File to Migrate Multiple IHA Files

	Interoperability of Historian Versions
	Migrate User Authentication Data from Historian to Common Proficy Authentication Service

	Implementing Historian Security
	Implementing Historian Security
	About Protecting Your Process
	Strict Authentication
	Disabling Strict Client and Collector Authentication
	Security Strategy Guidelines
	Setting Historian Login Security
	Historian Security Groups
	Configure Internet Protocol Security (IPSEC)
	Security Setup Example
	Setting Up Historian Security Groups
	Creating a Local Group on Windows
	Adding Users to Windows Security Group
	Adding a Local or a Domain User

	Active Directory Setup - an Overview
	Configuring the Domain Users for active directory setup
	Accessing Historian Server using Domain Users - Examples
	Adding Nested Domain Groups to Historian Security Groups

	Managing Proficy Authentication Users Using the Configuration Tool
	Create a Proficy Authentication Reader Client
	About Accessing Cross-Domain Historian
	About Domain Security Groups
	Establishing Your Security Rights
	Implementing Tag-level Security
	Implementing Data Store-level Security

	Uninstalling Historian
	Uninstalling Historian

	Troubleshooting
	Managing Historian Log Files
	Troubleshooting the Historian Server
	Troubleshooting Web-based Clients

	Chapter 3. Configuration Hub
	Overview
	About Configuration Hub
	Workflow

	Setting up Configuration Hub
	About Setting up Configuration Hub
	Install the Historian Server
	Install Web-based Clients
	Install Collectors
	Perform Post-Installation Tasks
	Upgrade
	Access Configuration Hub
	Historian Plugin Management in Configuration Hub
	About Historian Plugin Management in Configuration Hub
	View Historian Node Details
	Add a Historian Node (Optional)
	Modify a Historian Plugin Display Name
	Register a Historian Plugin
	Unregister a Historian Plugin

	Common Tasks

	Setting up a Stand-Alone System
	About Setting up
	Add a Collector
	Add Tags

	Setting up a Horizontally Scalable System
	About Setting up a Horizontally Scalable System
	Add a Server
	Add a Collector
	Add Tags
	Browse Tags using Distributed or Mirror Node Servers when Primary Server is Inactive

	Setting up High Availability
	About Data Mirroring
	Mirror Node Setup

	Create
	Create a Data Store

	Creating a Model
	About a Historian Model
	About Object Templates
	Workflow for Creating a Historian Model
	Create an Object Type
	Include a Contained Type
	Create an Object Instance
	Provide Data for a Static Variable
	Collect Data for a Direct Variable
	Collect Data for an Indirect Variable
	Export an Object Type/Instance
	Import an Object Type/Instance
	Copy an Object Type
	Delete a Template
	Delete an Object Instance
	Delete an Object Type

	Managing Historian Systems
	Access a System
	Access the Collectors in a System
	Access Offline Configuration Collectors
	Manage Offline Configuration Collectors

	Access the Tags in a System
	Add a System
	Add a Server
	Set Up a Mirror of Mirror
	Remove a Server
	Set a Default Location
	Modify a System
	Configure Advanced Settings
	Configure Labels of Spare Fields
	Set a Default System
	Delete a System

	Managing Mirror Locations
	Create
	Rename
	Add a Machine
	Remove a Machine
	Delete

	Managing Data Stores
	About Data Stores
	Create a Data Store
	Access a Data Store
	Rename a Data Store
	Set as Default
	Access Archives
	Apply Configuration Template
	Multiple Archive Paths
	About Multiple Archive Paths
	Configure Multiple Archive Paths

	Access Activity Logs
	Access Tags
	Add Tags
	Add a Tag Manually
	View Performance
	Delete

	Adding a Collector Instance
	The Calculation Collector
	The CygNET Collector
	The File Collector
	The HAB Collector
	Collection Definitions of a HAB Collector

	About Adding an iFIX Collector Instance
	The iFIX Collector
	The MQTT Collector
	The MQTT Sparkplug B Collector
	The ODBC Collector
	The OPC Classic Alarms and Events Collector
	The OPC Classic DA Collector
	The OPC Classic HDA Collector
	The OPC UA DA Collector
	The OSI PI Collector
	The OSI PI Distributor
	The Python Collector
	The Server-to-Server Collector
	The Server-to-Server Distributor
	The Simulation Collector
	The Windows Performance Collector
	The Wonderware Collector
	Collector Configuration - Common Fields

	Sending Data to Cloud
	Alibaba Cloud
	AWS Cloud
	Azure Cloud (Key-Value Format)
	Azure Cloud (KairosDB Format)
	Google Cloud
	Predix Cloud
	Protocols and Port Numbers

	Managing Collector Instances
	Managing Collectors Using Configuration Hub
	Access a Collector
	Access Tags
	Add a Collector
	Enable MTLS Security for Collectors
	Modify a Collector
	Add a Comment
	Access Comments
	Start a Collector
	Stop a Collector
	Restart a Collector
	Pause Data Collection
	Resume Data Collection
	Clear Buffer
	Move Buffer
	Change Destination
	Reset Performance Counters
	Reset Overruns
	Update Collector Credentials
	Apply Configuration Template to a Collector
	Configure Collector Redundancy
	Delete a Collector

	Managing Offline Configuration Collector Instances
	Access Offline Configuration Collectors
	Manage Offline Configuration Collectors
	Access Tags

	Managing Tags
	About Tags
	About Array Tags
	About Collector and Archive Compression
	Collector Compression
	Handling Value Step Changes with Collector Data Compression
	Value Spike with Collector Compression
	Evaluating and Controlling Data Compression
	Archive Compression

	About Scaling
	About Condition-Based Collection
	Add Tags
	Add a Tag Manually
	Access a Tag
	Configure Multiple Tags
	Access Trend Chart
	Access Last 10 Values
	Access a Tag Alias
	Export Tags as a CSV File
	Import Tags from a CSV File
	Rename a Tag
	Copy a Tag
	Stop Data Collection
	Resume Data Collection
	Remove a Tag
	Delete a Tag

	Managing Enumerated Sets
	About Enumerated Sets
	Create an Enumerated Set
	Assign an Enumerated Set to a Tag
	Export an Enumerated Set
	Import an Enumerated Set
	Rename Enumerated Set
	Delete Enumerated Set

	Managing Data Attribute Enumerated Set
	About Data Attribute Enumerated Set
	Create a Data Attribute Enumerated Set
	Assign a Data Attribute Enumerated Set to a Tag
	Export Data Attribute Enumerated Sets
	Import Data Attribute Enumerated Sets
	Rename a Data Attribute Enumerated Set
	Delete a Data Attribute Enumerated Set

	Managing User-Defined Data Types
	About UDTs
	Create UDT
	Assign to Tag
	Export User-defined Types
	Import User-defined Types
	Rename User-defined Types
	Delete User-defined Types

	Managing Archives
	About Archives
	Types of Archive Files:
	Creation of Archive Files Automatically
	Overriding Old Archive Files

	Guidelines for Archive Sizing
	Calculating Archive Size
	Archive Size Calculator

	Access an Archive
	Create Archives Automatically
	Create Archives Manually
	Back up an Archive
	Back up Archives with Volume Shadow Copy Service
	Restore an Archive
	Close an Archive
	Remove an Archive

	Reading/Writing Data
	Query Data
	Write Data
	About Saved Query
	About Saved Query
	Save a Query
	Run a Saved Query
	Update a Saved Query
	Update a Saved Query and Save it as a New Query
	Delete a Saved Query

	Managing Alarms and Events
	About Alarms and Events
	Requirements
	Create an Alarm
	Access/Filter Alarms
	Back up Alarms
	Restore Alarms
	About Purging Alarms
	Purge Alarms

	Managing Configuration Templates
	About Configuration Templates
	Create a Configuration Template for Collectors
	Apply Configuration Template to a Collector
	Create a Configuration Template for Data Stores
	Apply the Configuration Template to a Data Store

	Managing Reports
	About Reports
	Generate Reports
	Export the Generated Report as a CSV File
	Save the Generated Report as a PDF File

	Accessing Activity Logs
	Troubleshooting Configuration Hub
	Unable to Access Configuration Hub After Upgrading Web-based Clients
	Even after installing Web-based Clients, you cannot access Configuration Hub.
	Unable to Access External Configuration Hub if Public Https Port is Different
	Error Occurs When Historian Plugin is Registered with an External Configuration Hub
	Cannot Access the Collectors Section or Add a Collector Instance
	Cannot Access or Add a System in Configuration Hub
	Error Appears When Creating a Collector Instance
	Data Archiver is Shut Down
	Proficy Authentication and other Configuration Hub Plugins are not Visible in Configuration Hub, but Historian Plugin is Visible

	Chapter 4. Remote Collector Management
	Overview of Remote Collector Management
	Installing Remote Management Agents
	Install Using the Installer
	Install at a Command Prompt

	About Managing Collector Instances Using the RemoteCollectorConfigurator Utility
	Create a Sample JSON File
	Add a Collector Instance
	Modify a Collector Instance
	Collector Instance Parameters
	Installation parameters for an iFIX collector to send data to Historian
	Installation parameters for an iFIX collector to send data to Predix TimeSeries
	Installation parameters for an iFIX collector to send data to Google Cloud
	Installation parameters for an iFIX collector to send data to Azure IoT Hub

	General Parameters of a Collector
	Delete a Collector Instance

	Add an Offline Collector Instance
	Delete an Offline Collector Instance
	Manage a Collector Remotely
	Troubleshooting Remote Collector Management Issues
	Remote Collector Management does not work
	The ServiceName Registry Key is not Updated
	The ServiceName Registry key is Updated Incorrectly

	Chapter 5. Using Historian Administrator
	Historian Administrator
	Overview
	Intended Audience
	About Historian Administrator
	Limitations

	Access Historian Administrator
	Historian in a Regulated Environment
	Disabling Guest Accounts for a 21 CFR Part 11-Compliant Environment
	Compliant Parameter Settings

	High Availability
	About High Availability
	How it Works
	Limitations
	High Availability of Archive and Configuration Files

	Enable High Availability
	Register Historian with a Cluster

	Historian Administrator - Pages
	The Main Page
	The System Statistics Section
	The Collectors Section
	The Alerts Section

	The Data Store Page
	The Archive Details Section
	The Status Subsection

	The Data Store Details Section
	The Statistics Subsection
	The User Settings Subsection

	The Data Store Options Section
	The Archive Creation or the SCADA BufferSubsection
	The Maintenance Subsection
	The Security Subsection

	The Global Options Section
	The Data Queries Subsection
	The Memory/Recovery Subsection
	The Data Store Subsection

	The Security Section
	The Global Security Subsection
	The Electronic Signatures / Records Subsection

	The Alarms Section
	The Backup / Purge Alarms Subsection
	The Restore Alarms Subsection

	Searching in Message Panel
	Searching for Tags

	Managing Data Stores
	About Data Stores
	Create
	Rename
	Move Tags
	Delete

	Managing Archives
	About Archives
	Types of Archive Files:
	Creation of Archive Files Automatically
	Overriding Old Archive Files

	About Remote Storage
	Example: Migrating Non-Current Archives to a Remote Location

	Guidelines for Archive Sizing
	Calculating Archive Size
	Archive Size Calculator

	Create Automatically
	Create Manually
	Back up Automatically
	Back up Manually
	Restore
	Configure System File Cache Memory
	Configure DA for Remote Storage
	Reuse a Config File
	Reusing a Configuration File

	Managing Tags
	About Tags
	About Array Tags
	About Collector and Archive Compression
	Collector Compression
	Handling Value Step Changes with Collector Data Compression
	Value Spike with Collector Compression
	Evaluating and Controlling Data Compression
	Archive Compression

	About Scaling
	About Condition-Based Collection
	Access/Modify
	Add Tags from Source
	Create Manually
	Copy
	Rename
	View Trend Chart
	View Last 10 Values
	Stop Data Collection
	Resume Data Collection
	Get Tag Fields
	Remove
	Delete
	About UDTs
	Manage UDTs
	Assign/Remove Tags from UDTs
	Manage Enumerated Sets
	Assign/Remove Tags from Enumerated Sets

	Managing Collectors
	About Collectors
	Access/Modify a Collector
	Delete a Collector
	Enable Spike Logic
	About Collector Redundancy
	Important information about the failover of redundant collectors:

	Configure Redundant Collectors

	Maintaining, Operating, and Monitoring Historian
	Maintain, Operate, and Monitor Historian
	Data Types
	Scaled Data Types
	Set the Size of a Fixed String Data Type

	Plan for Data Recovery
	Develop a Maintenance Plan
	Evaluate and Control Data Compression
	Handle Value Step Changes with Collector Data Compression
	Value Spike with Collector Compression

	Reviewing System Alerts and Messages
	Monitor Historian Health and Status
	Monitor Historian Subscriptions
	Subscribe to Historian Alerts and Messages
	Creating Subscriptions in iFIX
	Specify Topics

	Monitor Historian Performance
	Historian Server Performance Tags
	View Data Trends for Tags
	Add a Performance Tag
	Historian Collector Performance Counters
	Historian Server Performance Counters

	Troubleshooting
	Solve Minor Operating Problems
	FAQ: Run a Collector as a Service
	Changing the Base Name of Automatically Created Archives
	Configuring the Inactive Timeout Value
	Configuring Deep Data Tree Warnings
	Control Data Flow Speeds
	Configure Inactive Server Reset Timeout
	Historian Errors and Message Codes
	Determining the Version of the Historian Server
	Return a List of Valid Field Options
	Scheduled Software Performance Impact
	Intellution 7.x Drivers as OPC Servers
	Troubleshooting Failed Logins
	Troubleshoot Data Collector Configuration
	Troubleshoot Tags
	Troubleshoot Historian Performance
	Troubleshoot the Archive Service

	Chapter 6. Historian Advanced Topics
	Historian Advanced Topics Overview
	About Historian Advanced Topics

	Storage
	Archive Compression
	Example: Change of data quality
	Archive Compression of Straight Line
	Bad Data
	Disabling Archive Compression for a Tag
	Archive Compression of Good Data

	Determining Whether Held Values are Written During Archive Compression
	Exceeding Archive Compression

	Determining Expected Value
	Determining Expected Value
	Archive Compression of a Ramping Tag
	Archive Compression of a Drifting Tag
	Archive Compression of a Filling Tank

	How Archive Compression Timeout Works
	Archive De-fragmentation - An Overview
	De-fragmenting an existing archive

	About Storing Future Data
	Enable Using Configuration Hub
	Enable at a Command Prompt
	Enable Storage of Future Data
	Sample Program
	Using C++
	Using C#

	Enable Offline Archive Creation

	Retrieval
	Retrieval
	Sampling Modes
	Current Value Sampling Mode
	Retrieving the current value of out of order data
	Retrieving the current value of a tag
	Anticipated Usage

	Lab Sampling Mode
	Retrieving lab sample values of an interval with GOOD data

	Interpolated Sampling Mode
	Determining interval timestamps for evenly divisible duration
	Example: Determining interval timestamps for a non-divisible duration
	Value
	Determining interval interpolated value
	Retrieving interpolated values of an interval with GOOD data
	Data Quality
	Interpolated and Lab retrieval resulting in percent good of 100
	Example: Interpolated and Lab retrieval resulting in percent good of 0
	Example: Interpolated and Lab retrieval of an empty interval

	Raw Data Sampling Modes
	RawByTime retrieval of samples over a period of replaced data
	RawByNumber retrieval over a period of replaced data

	RawByFilterToggle Sampling Mode
	Retrieving Data Using RawByFilterToggle Sampling Mode
	Determining the Time Range After the Condition Became TRUE
	Example 2: Determining the Time Range Before the Condition Became TRUE

	Trend Sampling Mode
	Retrieving trend sample value
	Trend Data returned in the wrong interval

	Trend2 Sampling Mode

	About Retrieving Data from Historian
	Sampling Modes
	Calculation Modes
	Query Modifiers
	Filtered Data Queries
	Filter Parameters for Data Queries
	Filtered Queries in the Excel Add-in Example
	Filtering Data Queries in the Excel Add-in
	Hybrid Modes
	Case 1
	Case 2
	Case 3

	Calculation Modes
	Raw Calculation Modes
	Calculating the count of raw samples
	Calculating the Raw Total
	Calculating RawAverage
	Calculating the Raw Standard Deviation
	Retrieving the FirstRawValue/FirstRawTime Values
	Retrieving the LastRawValue/LastRawTime Values

	Interpolated Calculation Modes
	Finding minimum and maximum of Downward Sloping Data
	Finding Minimum and Maximum of Changing Data
	Finding the Minimum and Maximum with Bad Quality Data and Repeated Values
	Finding the amount of time the collector was running

	Time Weighted Calculation Modes
	Collecting a Rate from a Data Source

	Filtered Data Queries
	Counter Delta Queries
	DELTAPOS Calculation
	Calculating DELTAPOS When Delta Max Positive RPH is Not Provided and Data is in the Increasing Trend
	Calculating DELTAPOS When Data Quality is Bad
	Calculating DELTAPOS When Rate of Increase is Greater than Delta Max Positive RPH
	Calculating DELTAPOS When Delta Max is not Provided and Data does not Follow a Trend
	Calculating DELTAPOS When Delta Max is Provided and Data does not Follow a Trend

	DELTANEG Calculation
	Calculating DELTANEG When Delta Max Negative RPH is Not Provided and Data is in the Decreasing Trend
	Calculating DELTANEG When Data Quality is Bad
	Calculating DELTANEG When Delta Max Negative RPH is not Provided and Data is in the Increasing Trend

	DELTA Calculation
	Other Calculation Modes
	Calculating the state count of good quality data
	Calculating the state count of bad quality data
	Calculating the state count of enumerated set data
	Calculating the state time of good quality data
	Calculating the state time of bad quality data
	Calculating the OPCQOR
	Calculating the OPCQAND
	Using TagStats Calculation Mode

	StepValue Tag Property
	Comment Retrieval Mode
	Query Modifiers

	Work with Data Stores from the Command Line
	Using the Command Line to Work with Data Stores
	Creating a Data Store
	Deleting a Data Store
	Examples

	Measuring Historian Performance
	About Measuring Performance of Proficy Historian
	About the Proficy Historian Overview Objects
	Comparing Read Raw Rate and Read Samp Rate
	Comparing the number of Raw Samples Read and Written
	Understanding the varying load on the Data Archiver
	Calculating the rate of out of order writes during a given time range
	Calculating samples examined per read

	About Proficy Historian Message Queue Object
	Basic Queue Counters
	Detailed Queue Counters

	About Proficy Historian Cache Object

	Chapter 7. Historian Alarms and Events
	Overview
	Requirements
	Installation
	Upgrade
	Changing the SQL Server
	Backing up Data
	Using Configuration Hub
	Using the Utility
	Using Historian Administrator
	At a Command Prompt

	Restoring Data
	Using Configuration Hub
	Using Historian Administrator

	Migrating Data
	Using the Utility
	At a Command Prompt

	Querying Data
	Importing Data
	Exporting Data
	Purging Data
	Using Configuration Hub
	Using the Utility
	At a Command Prompt

	Closing Alarms
	Using the OPC AE Collector with FIX32 SCADA Systems

	Chapter 8. Historian REST APIs
	Introduction to Historian REST APIs
	Historian APIs
	About Security and Authentication
	Authorization

	Standards
	API Methods
	API Status Messages

	Common API Parameters
	Overview of Commonly Used API Parameters
	TagNames Parameter
	Start and End Timestamps Parameter
	TagSamples Parameter
	DataSample Parameter
	SamplingModeType Parameter
	Direction Parameter
	CalculationModeType Parameter
	FilterModeType Parameter
	ReturnDataFields Parameter
	Payload Parameter
	Error Code Definitions

	Historian REST APIs
	Overview of the Historian REST APIs
	Managing Systems
	Managing Historian Model
	Managing Collector Instances
	Collector Type and Subtype
	Managing Collectors
	Managing Data Stores
	Managing Tags
	Calculation Modes for REST API

	Managing Alarms and Events

	Swagger Documentation

	Chapter 9. Historian System API
	Overview of the Historian System API
	Overview of the Historian System API
	Prerequisites

	ihapi.h File Overview
	ihapi.h File Overview
	System API Functions and Data Structures
	Callback Prototypes/typedefs

	ihConfiguration Functions
	ihServer Function
	ihTag Functions
	ihData Functions
	ihDataStore Functions
	ihComment Functions
	ihTime Functions
	ihUtil Functions

	System API Programming
	System API Programming
	Unicode
	Memory
	String Length
	Networking between the System API and the Data Archiver
	Multithread Programming
	Multitag Functions
	Timestamps
	Running as a Service
	Timeouts and Throttles in the System API and the Data Archiver

	System API Functions
	System API Connect Functions
	Connect Functions
	ihServerConnect
	ihServerDisconnect
	ihServerIsConnected
	ihServerSetTimeout
	ihServerGetTimeout
	ihServerGetVersion
	ihSecurityGetMembership
	ihServerOpenRecordset
	ihServerCloseRecordset

	System API Tag Functions
	ihTagProperties
	Tag Functions
	ihTagAdd
	ihTagMultiAdd
	ihTagDelete
	ihTagRename
	ihTagFreeproperties (Tag Properties)
	ihTagOpenRecordset
	ihTagCloseRecordset
	ihTagExists
	ihTagGetProperties
	ihTagFreeProperties
	ihTagSetProperties
	ihTagSubscribe
	ihTagRegisterCallBack
	ihTagClearAllFields

	Read and Write Functions
	ihDataAdd
	ihDataDelete
	ihDataOpenRecordset
	ihDataCloseRecordset
	ihDataClearAllFields
	ihDataSubscribe
	ihDataGetCurrentValue
	ihDataFreeCurrentValue
	ihDataSubscribe
	ihDataOpenMultiRecordset
	ihDataCloseMultiRecordset
	ihArchiver options
	ihArchiverSetOption
	ihArchiverGetStatistics

	Archiver Configuration Functions
	Menu ihOptions
	Archiver Configuration Functions
	ihArchiveOpenRecordset
	ihArchiveCloseRecordset
	ihArchiveGetOption
	ihArchiveSetOption
	ihArchiverFreeOption
	ihArchiveGetProperties
	ihArchiveSetProperties
	ihArchiveFreeProperties
	ihArchiveGetStatistics
	ihArchiveBackupResponse
	ihArchiveRemoveResponse
	ihConfigurationGetProperties
	ihConfigurationFreeProperties

	Archiver Backup/Restore Functions
	ihArchiveBackup
	ihArchiveBackupEx
	ihArchiveRegisterBackupCallBack
	ihArchiveRemove
	ihArchiveRemoveEx
	ihArchiveRegisterRemoveCallback
	ihArchiveAdd
	ihArchiveAddEx
	ihArchiveRegisterLoadCallback

	User Defined Type Functions
	ihUserDefineTypeDelete
	ihUserDefinedTypeRename
	ihUserDefinedTypeExists
	ihUserDefinedTypeSetProperties
	ihUserDefinedTypeGetProperties
	ihUserDefinedTypeFreeProperties
	ihUserDefinedTypeOpenRecordset
	ihUserDefinedTypeCloseRecordset
	ihUserDefinedTypeFreeErrorMessage

	Utility Functions
	ihTimeLCLPartsToUTCStructEx
	ihTimeUTCStructToLCLPartsEx
	ihTimeCurrentUTCStruct
	ihUtilAnsiToUnicode
	ihUtilUnicodeToAnsi
	ihUtilErrorDesc
	Time Functions
	ihTimeLCLPartsToUTCStruct
	ihTimeUTCStructToLCLParts
	ihTimeUTCStructToFileTime
	ihTimeLCLFileTimeToUTCStruct
	Query Modifiers Functions
	ihQueryModifiersClear
	ihQueryModifiersSet
	ihQueryModifiersIsSet
	ihQueryModifierOpenRecordset
	ihQueryModifierCloseRecordset
	ihDataCriteriaFromString
	DataStore Functions
	ihDataStoreAdd
	ihDataStoreDelete
	ihDataStoreRename
	ihDataStoreOpenRecordset
	ihDataStoreCloseRecordset
	ihDataStoreSetProperties
	Security Functions
	ihSecurityGroupOpenRecordset
	ihSecurityGroupCloseRecordset
	ihSecurityGetOption
	ihSecurityFreeOption
	ihSecurityGetmemberships

	Sample Programs
	Sample Programs

	Chapter 10. Historian User API
	Historian User API Overview
	About the Historian User API
	Prerequisites

	Connect Functions
	Connect Functions Overview
	ihuConnect
	Prototype
	Remarks
	Returns

	ihuConnectEx
	Prototype
	Remarks
	Returns

	ihuDisconnect
	Prototype
	Returns

	ihuSetConnectionParameters
	Prototype
	Remarks
	Sample Code
	Returns

	ihuRestoreDefaultConnectionParameters
	Prototype
	Remarks
	Returns

	ihuServerRegisterCallbacks
	Prototype
	Remarks
	Returns

	ihuBrowseCollectors
	Prototype
	Remarks
	Returns

	Archiver Functions
	Archiver Functions Overview
	Archiver Functions

	ihuSetArchiverProperty
	Prototype
	Returns

	ihuGetArchiverProperty
	Prototype
	Remarks
	Returns

	Tag Functions
	Tag Functions Overview
	Tag Functions

	Tag Property Value Types
	ihuCreateTagCacheContext
	Prototype

	ihuFetchTagCache
	Prototype
	Remarks
	Returns

	ihuFetchTagCacheEx
	Prototype
	Remarks
	Returns

	ihuFetchTagCacheEx2
	Prototype
	Remarks
	Returns

	ihuFetchTagCacheEx3
	Prototype
	Remarks
	Returns

	ihuGetTagNameCacheIndex
	Prototype
	Remarks
	Returns

	ihuGetTagNameCacheIndexEx2
	Prototype
	Remarks
	Returns

	ihuGetNumericTagPropertyByTagname
	Prototype
	Remarks
	Returns

	ihuGetNumericTagPropertyByIndex
	Prototype
	Remarks
	Returns

	ihuGetNumericTagPropertyByIndexEx2
	Prototype
	Remarks
	Returns

	ihuGetStringTagPropertyByTagName
	Prototype
	Remarks
	Returns

	ihuGetStringTagPropertyByTagNameEx2
	Prototype
	Remarks
	Returns

	ihuGetStringTagPropertyByIndex
	Prototype
	Remarks
	Returns

	ihuGetStringTagPropertyByIndexEx2
	Prototype
	Remarks
	Returns

	ihuTagAdd
	Prototype
	Remarks
	Returns

	ihuTagDelete
	Prototype
	Remarks
	Returns

	ihuTagDeleteEx
	Prototype
	Remarks
	Returns

	ihuTagRename
	Prototype
	Remarks
	Returns

	ihuTagRenameEx
	Prototype
	Remarks
	Returns

	ihuTagCacheCriteriaClear
	Prototype

	ihuTagCacheCriteriaClearEx2
	Prototype

	ihuTagCacheCriteriaSetStringProperty
	Prototype
	Remarks
	Returns

	ihuTagCacheCriteriaSetStringPropertyEx2
	Prototype
	Remarks
	Returns

	ihuTagCacheCriteriaSetNumericProperty
	Prototype
	Returns

	ihuTagCacheCriteriaSetNumericPropertyEx2
	Prototype
	Returns

	ihuTagClearProperties
	Prototype

	ihuTagSetStringProperty
	Prototype
	Returns

	ihuTagSetNumericProperty
	Prototype
	Returns

	ihuCloseTagCache
	Prototype
	Returns

	ihuCloseTagCacheEx2
	Prototype
	Returns

	Write Functions
	Write Functions Overview
	Write Functions

	ihuWriteData
	Prototype
	Remarks
	Time Stamps
	Values
	Qualities
	Error Handling
	Security
	Returns

	ihuWriteComment
	Prototype
	Remarks
	Returns

	Query Modifiers Functions
	Query Modifiers Functions Overview
	Query Modifier Functions

	ihuBrowseQueryModifiers
	Prototype
	Remarks
	Returns

	ihuClearQueryModifiers
	Prototype
	Remarks
	Returns

	ihuRetrieveCalculatedDataEx2
	Prototype
	Returns

	ihuSetQueryModifiers
	Prototype
	Returns

	Read Functions
	Read Functions Overview
	ihuReadCurrentValue
	Prototype
	Remarks
	Returns

	ihuReadInterpolatedValue
	Prototype
	Remarks
	Returns

	ihuReadInterpolatedValueEx
	Prototype
	Remarks
	Returns

	ihuReadRawDataByTime
	Prototype
	Remarks
	Returns

	ihuReadRawDataByTimeEx
	Prototype
	Remarks
	Returns

	ihuReadRawDataByCount
	Prototype
	Remarks
	Returns

	ihuReadRawDataByCountEx
	Prototype
	Remarks
	Returns

	ihuReadMultiTagRawDataByCount
	Prototype
	Remarks
	Returns

	ihuReadMultiTagRawDataByCountEx
	Prototype
	Remarks
	Returns

	ihuRetrieveSampledData
	Prototype
	Remarks
	Returns

	ihuRetrieveSampledDataEx
	Prototype
	Remarks
	Returns

	ihuRetrieveSampledDataEx2
	Prototype
	Remarks
	Returns

	ihuRetrieveCalculatedData
	Prototype
	Remarks
	Returns

	ihuRetrieveCalculatedDataEx
	Prototype
	Remarks
	Returns

	ihuRetrieveCalculatedDataEx3
	Prototype
	Remarks
	Returns

	Utility Functions
	Utility Functions Overview
	Utility Functions

	IHU_timestamp_FromParts
	Prototype
	Remarks
	Returns

	IHU_timestamp_ToParts
	Prototype
	Remarks
	Returns

	ihuServerGetTime
	Prototype
	Remarks
	Returns

	Enumerated Sets Functions
	Enumerated Sets Functions Overview
	Enumerated Sets Functions

	ihuGetEnumeratedSets
	Prototype
	Remarks
	Returns

	ihuEnumeratedSetAdd
	Prototype
	Remarks
	Returns

	ihuEnumeratedSetRawValue
	Prototype
	Remarks
	Returns

	ihuEnumeratedSetsFree
	Prototype
	Remarks
	Returns

	ihuEnumeratedSetRename
	Prototype
	Remarks
	Returns

	ihuEnumeratedSetDelete
	Prototype
	Remarks
	Returns

	ihuEnumeratedStateAdd
	Prototype
	Remarks
	Returns

	ihuEnumeratedStateModify
	Prototype
	Remarks
	Returns

	ihuEnumeratedStateDelete
	Prototype
	Remarks
	Returns

	User-Defined Type Functions
	User-Defined Type Functions Overview
	User-Defined Type Functions

	ihuUserDefinedTypeAdd
	Prototype
	Remarks
	Returns

	ihuUserDefinedTypeDelete
	Prototype
	Remarks
	Returns

	ihuUserDefinedTypeRename
	Prototype
	Remarks
	Returns

	ihuUserDefinedTypeExists
	Prototype
	Returns

	ihuGetUserDefinedTypes
	Prototype
	Remarks
	Returns

	ihuUserDefinedTypeSetProperties
	Prototype
	Remarks
	Returns

	ihuUserDefinedTypeFreeProperties
	Prototype
	Remarks
	Returns

	Publish Functions
	Publish Functions Overview
	Publish Functions
	ihuPublishAddTag
	Prototype
	Remarks
	Returns

	ihuPublishRemoveTag
	Prototype
	Remarks
	Returns

	ihuPublishTagCloseCache
	Prototype
	Remarks
	Returns

	ihuPublishGetTagPropertiesToCache
	Prototype
	Remarks
	Returns

	ihuPublishTagGetNumericPropertyByTagname
	Prototype
	Remarks
	Returns

	ihuPublishTagGetNumericPropertyByIndex
	Prototype
	Remarks
	Returns

	ihuPublishTagGetStringPropertyByTagname
	Prototype
	Remarks
	Returns

	ihuPublishTagGetStringPropertyByIndex
	Prototype
	Remarks
	Returns

	ihuPublishSetTagProperties
	Prototype
	Remarks
	Returns

	ihuPublishTagSetNumericProperty
	Prototype
	Remarks
	Returns

	ihuPublishTagSetStringProperty
	Prototype
	Remarks
	Returns

	ihuPublishTagClearProperties
	Prototype
	Remarks
	Returns

	ihuPublishGetDestinationServer
	Prototype
	Remarks
	Returns

	ihuPublishSetDestinationServer
	Prototype
	Remarks
	Returns

	Historian User API Error Codes
	Error Codes

	Historian User API Sample Programs
	Sample Programs Overview
	Compiling the Samples
	CollectorLike
	PlotLike
	ReportLike
	MigrationLike

	Chapter 11. Historian SDK
	Object Model Overview
	Historian SDK Overview
	Working with Comments
	Adding Data
	Sample SDK Program

	Connect the SDK to the Server
	Working with Blob Data
	Working with Archives

	SDK Reference
	Object Summary
	Alarms Object
	Archive Object
	Archives Object
	Alarms.PurgeAlarmsById
	Collector Object
	Collectors Object
	Data Objects
	Message Objects
	OPC Objects
	Server Objects
	Tag Objects
	UserCalcFunction Object
	Property Reference A-B
	Property Reference C-D
	Property Reference E-F
	Property Reference G-H
	Property Reference I-J
	Property Reference K-L
	Property Reference M-N
	Property Reference O-P
	Property Reference Q-R
	Property Reference S-T
	Property Reference U-V
	Property Reference W-Z

	Method Reference A-B
	Method Reference C-D
	Method Reference E-H
	Method Reference I-L
	Method Reference M-P
	Method Reference Q-T
	Method Reference U-Z

	Event Reference A-Z

	Chapter 12. Historian Utility Suite
	Alerting System
	Version Validator
	DiagnostiX Tool

	Chapter 13. Collector Tool Kit
	Collector Toolkit Overview
	Overview

	Prerequisites
	Prerequisites
	Enabling Python Expression Tags with the Collector Toolkit

	Installing the Collector Toolkit with Historian
	About Installation
	Creating the Custom Collector Using the Wizard

	Installing and Configuring the Collector Toolkit for Linux
	Installing and Configuring the Collector Toolkit for Linux

	Configuring Custom Collector Wizard
	Configuring a Custom Collector using the Wizard
	Creating a Custom Collector

	Changing Historian Server Name
	Changing the Historian Server Name Using Registry

	Working with collector Interfaces
	About Interfaces
	Interfaces Enabling Basic Functionality
	Interfaces Enabling Advanced Functionality
	Collector Development

	Custom Collector Design
	Design topics for Creating Custom Collectors

	Backward Compatibility of the Collector Toolkit
	Backward Compatibility of the Collector Toolkit

	Custom Collector Toolkit Interface Technical Reference
	Custom Collector Toolkit Interface Technical Reference

	Custom Structure Technical Reference
	What is a Structure?
	Custom Collector Toolkit Structure Reference

	Hierarchical Custom Controller Browsing
	Browsing Custom Controller in a Hierarchy
	Developing Hierarchical Browsing using Collector Toolkit
	Collector Initialization Callbacks
	Example

	Polled Tag Callbacks
	Example

	Unsolicited Tags Callbacks
	Example

	Chapter 14. Data Collectors - General
	Data Collectors Overview
	About Historian Data Collectors
	Bi-Modal Cloud Data Collectors
	Data Collector Software Components
	Supported Windows versions for Data Collectors
	Data Collector Functions
	Common Collector Functions
	File collector Functions

	Supported Acquisition Interfaces
	Best Practices for Working with Data Collectors

	About Installing Historian Data Collectors
	Install Collectors
	Installing a Collector at a Command Prompt

	Upgrade Collectors
	Sending Data to Cloud
	Alibaba Cloud
	AWS Cloud
	Azure Cloud (Key-Value Format)
	Google Cloud
	Predix Cloud
	Protocols and Port Numbers

	Offline Collector Configuration
	Offline Configuration for Collectors
	Creating Offline Configuration XML file
	Collector Interface Properties
	Tag List and Tag Properties
	About Updating Tag Properties Dynamically
	Troubleshooting

	Cloud Collector Specific Registry Configuration

	Working with Tags
	Understanding Tag names
	iFIXCollector Tagnames
	OPC or Simulation Collector Tagnames
	Calculation collector Tagnames
	Server-to-Server Collector Tagnames

	Adding Tags from a Collector
	Add Multiple Tags from a Collector Using Historian Administrator
	Adding Uncollected Tags from a Collector

	Add Tags from a Collector Using the Web Admin Console
	Adding Tags for Collectors with Hierarchical Browsing

	Manually Adding Tags
	Add a Tag Using Historian Administrator
	Add a Tag Using the Web Admin Console
	Add a Source Address Using the Web Admin Console

	Copy a Tag
	Search for Tags
	Remove Tags
	Browse a Data Source for New Tags
	About Configuring Collector Options
	About Collector Redundancy
	Collect Vendor Attributes
	Collector Spare Configuration

	Data Collector Operation and Troubleshooting
	Data Collector File Locations
	Pause or Resume Data Collection for All Tags
	Pause Data Collection for a Subset of Tags
	Modify User Privileges for Starting a Collector
	About Monitoring Data Collector Performance Statistics
	Disabling Rebroadcasting for Historian Data Archiver
	Troubleshooting Tag Configuration
	Reviewing the Active Collector Configuration
	Collector and Archive Compression
	Collector Compression
	Archive Compression

	Data Buffering
	Editing the Registry to Change the Buffer Size
	Setting Up Services Recovery Actions in Windows

	Working with Python Expression Tags
	Python Expression Tags in Historian
	Supported Python Modules

	Constructing and Adding Python Expression Tags
	Constructing a Python Expression
	Constructing the JSON Configuration
	Adding a Python Expression Tag to Historian
	Example of Adding a Tag Using the File collector
	Viewing the Python Expression Tag

	Python Expression Tag Examples
	Using No Python Modules or Functions
	Using a Bulit-In Python Function
	Using A Python Standard Library Module
	Using A Python Standard Library Module
	Using A Historian Python Module
	Using Array/Table Lookup

	Uninstall Collectors
	Troubleshooting

	Chapter 15. The Calculation Collector
	Overview
	Features of the Calculation Collector
	Data Flow
	Advantages of Using the Calculation Collector
	Limitations
	About the Tags Used by the Calculation Collector
	Workflow for Using the Calculation Collector

	Configuration
	Recalculate Tag Values
	Using Configuration Hub
	Using Historian Administrator

	Using the Calculation Collector
	Write Data to an Arbitrary Tag
	Examples of Using the AddData Function
	Writing a Single Tag Value
	Writing an Array of Tags
	Writing Timestamps and Qualities

	Status Codes of the AddData Function

	Creating Triggers
	Types of Triggers
	Create a Polled Trigger
	Examples of Scheduling Polled Triggers
	Scheduling a Trigger every Monday
	Scheduling a Trigger on the First Day of Every Month
	Scheduling a Trigger on the Last Day of Every Month
	Example 5: Creating a Controlled Sequence of Polled Tags Using a Collection Offset

	Create an Unsolicited Trigger
	Examples of Scheduling Unsolicited Triggers
	Example1: Using One Trigger Tag in a Formula
	Example 2: Using Multiple Trigger Tags in a Formula
	Example 3: Creating a Controlled Sequence of Unsolicited Tags Using Trigger Tags

	Calculation Formulas
	About Calculation Formulas
	General Guidelines for Defining a Calculation Formula
	Create a Calculation Formula Using a VBScript Code
	Create a Calculation Formula Using the Pre-built Functions
	Create a User-Defined Function
	Built-in Functions
	Counting the Number of Bad Quality Samples
	Counting the Number of Collected Digital 1s For a Tag
	Determining the Trigger When Using Multiple Trigger Tags
	Using Array or Multifield Data in Calculation
	Storing Array or Multifield data in Calculation tags
	Using Array or Multifield data to trigger calculation
	Sending Array or Multifield data to a Remote Historian
	Reading and writing a Multifield tag using MultiField functions

	Types of Functions Supported
	User-defined Functions
	A Function to Assign an Alarm to a Tag Based on a Condition

	Date/Time Shortcuts
	Converting a Collected Value
	Calculations Inside Formulas
	Conditional Calculation
	Combining Tag Values and Assigning a Trigger
	Using CreateObject in a Formula
	Using a File
	Converting a Number to a String
	Detecting Recovery Mode Inside a Formula
	Looping Through Data Using the SDK
	Using an ADO Query
	Windows Performance Statistics Physical Memory Usage
	Windows Performance Statistics Virtual Memory Usage
	Determining Collector Downtime
	Analyzing the Collected Data
	Simulating Demand Polling

	Native Alarms and Events Functions
	About Native Alarms and Events Functions
	Retrieving and Setting Alarm Properties Manually
	Insert Calculation Functions Manually

	Data Input
	Calculation and Server-to-Server Collectors
	Recovery
	Manual Recalculation

	Troubleshoot Calculation Collector
	Troubleshooting Calculation collector
	Unsupported Data Types for Calculation Tags
	Unsupported Calculations in Calculation collector
	Writing Messages to the Collector Log File for Debugging Purposes
	Importing Calculations with Line Breaks into Historian
	Recovery Mode

	Chapter 16. The CygNet Collector
	Overview
	Configuration
	The CygNET Collector
	Using Historian Administrator

	Specifying Tags for Data Collection
	Add Tags
	Using Historian Administrator

	Disabling Bad Offline Values
	Disabling Deleting Values
	Troubleshooting
	Troubleshooting Tips
	Turn on the Debug Mode
	CygNet APIs Not Installed

	Chapter 17. The File Collector
	Overivew
	Configuration
	The File Collector
	Using Historian Administrator

	Importing Files
	CSV File Format
	Valid Values for Command
	Valid Values for Header Keywords
	A CSV File that Imports Tags
	A CSV File that Imports Data and Data Quality
	A CSV File that Imports Messages
	A CSV File that Imports Tags with Step Values
	A CSV File that Imports Alarms
	A CSV File that Imports Enumerated Set
	A CSV File that Imports Array Tags
	A CSV File that Imports Array Tag Data
	A CSV File that Imports MultiField Tag Data
	Importing s User-Defined Type
	A CSV File that Imports Python Expression Tags

	XML File Format
	Format to import a List of Tags
	Format to Import Data
	Format to Import Messages
	An XML File that Imports Tags
	Example of an XML file that Imports Data and Data Quality
	An XML file that Imports Messages
	An XML file that Imports a Tag with a Step Value
	An XML file that Imports Alarms
	An XML file that Imports Enumerated Set
	An XML File that Imports Array Tags
	An XML File that Imports Array Tag data
	An XML File that Imports Python Expression Tags

	Troubleshooting
	Accessing the Log File
	Typical Error Messages and Suggested Solutions
	Identifying Lines in which an Error Occurs
	CSV File Import Issues
	Unable to Access Historian Administrator After Installing the File Collector
	File Collector is not available in Admin clients

	Chapter 18. The HAB Collector
	Overview
	High Availability

	Configuration
	The HAB Collector
	Configure the Tags
	Configure the Alarms
	Start the Collector
	Approve Tag Changes
	Delete the Collector
	FAQs
	How to change the name or ID of a collection definition after data collection begins?
	How to split a collection definition into two?
	Can I add an alarm filter in a collection definition after data collection begins?
	If a tag is renamed and deleted in Habitat, and then if the tag is recreated with the original name in Habitat, will it be created in Historian?

	Chapter 19. iFIX Collector
	Overview
	About Adding an iFIX Collector Instance
	Specify the Tags for Data Collection
	Editing FixTag.dat File
	Overview

	Example: Restarting the iFIX Collector Using a Heartbeat
	Using an STK with the iFIX collector
	Setting Up
	Upgrading the iFIX Collectors
	The Configuration Section for iFIX collectors
	Collector-Specific Configuration (iFIX)
	Configuration of iFIX Data Collector-Specific Fields
	Starting an iFIX Collector Instance

	Troubleshooting

	Chapter 20. Migrating iFix Data
	Migrating iFix Data to Historian
	About Migrating iFix to Historian
	Before You Begin

	Historian Migration Utilities
	Plan Your Migration Strategy
	Adding Tags to the Archive
	Planning Compression
	Recommended Migration Order

	Planning Migrations with Online Systems
	Limit Processing Load on Server During Migration

	Implementing Security During Migration
	Applying Daylight Savings Time
	Estimating Migration Time
	Register Your Advanced Historian Archives
	After Migrating Your Data

	Adding the Historian Toolbar
	Configure Historian Server Buttons

	Migration Checklist

	Migrating Classic Historical Data
	About Migrating Classic Historical Data
	Migrating Classic Historian Data to Your Historian Database
	Migrating Classic Historian 10 Character L24 Files
	Comparing Classic Historian Data Plots and Historian Plots

	Configuring Classic Migration Options
	Historian Server Options
	THISNODE Option
	Tag Add Options
	Logfile Options
	Readback Options

	Migrating Advanced Historian Data
	Migrating Advance Historian Data
	Advanced Historian to Historian Migration Utility
	Advance Historian Connection Information
	Historian Information
	Migration Option
	Migration Status
	Migration History

	Migrating Your Groups
	Migrating Existing Advance Historian Data
	Migrating Remote Advanced Historian Data
	Recommended Software Installation Order
	Removing Advanced Historian (From Local Machine)

	Migrating iFIX Alarms and Events Collector
	Migrating iFIX Alarms and Events collector
	iFIX Alarms and Events collector Migration Options Configuration
	Alarm Source Options
	ODBC Login Information
	Attribute Names
	Severity Mapping
	Database Configuration

	Alarm Destination Options
	Historian Server Options
	Logfile Options
	Time Options

	Troubleshoot iFIX Alarms and Events collector
	Wrong Data Source Name on Migrated alarms
	Datetime Column Not Found
	No Columns Returned

	Chapter 21. The MQTT Collector
	Overview
	Configuration
	The MQTT Collector
	Using Historian Administrator

	Chapter 22. The MQTT Sparkplug B Collector
	Overview
	Adding an MQTT Sparkplug B Collector Instance
	Add an MQTT Sparkplug B Collector Instance using Configuration Hub
	Add an MQTT Sparkplug B Collector Instance using RemoteCollector Configurator

	Configuring an MQTT Sparkplug B Collector Instance
	Configure an MQTT Sparkplug B Collector Instance using Configuration Hub
	Configure an MQTT Sparkplug B Collector Instance using Historian Administrator

	Chapter 23. The ODBC Collector
	Overview
	Configuration
	The ODBC Collector
	Using Historian Administrator

	Mapping the Data Format
	Data Recovery
	Automatic Data Recovery
	Manual Data Recovery
	Manual Data Recovery

	Reconnecting Automatically
	Troubleshooting
	Troubleshooting Tips
	The ODBC Collector Cannot Connect to the ODBC Server

	Chapter 24. The OPC Classic DA Collector
	Overview
	Configuration
	The OPC Classic DA Collector
	Using Historian Administrator

	Configuring Drivers and Deadbands
	Using Deadbands with the SI7 Driver

	Specifying Tags for Data Collection
	Add Tags
	Using Historian Administrator

	Creating OPC Groups
	Troubleshooting
	Troubleshooting Tips
	Issue: The Collector Fails to Start
	Issue: Not Enough Space for Buffer Files
	Issue: The Collector does not Connect to the Historian Server
	Issue: The Collector Tries to Start Before the OPC Server Starts
	Issue: The Collector Becomes Unresponsive After the First Polled Read
	Issues with Browsing for Tags

	Chapter 25. The OPC Classic HDA Collector
	Overview
	Configuration
	The OPC Classic HDA Collector
	Using Historian Administrator

	Specifying Tags for Data Collection
	Add Tags
	Using Historian Administrator

	Data Recovery
	Automatic Data Recovery
	Manual Data Recovery
	Manual Data Recovery

	Reconnecting Automatically
	Troubleshooting

	Chapter 26. The OPC Classic Alarms and Events Collector
	About the OPC Classic Alarms and Events Collector
	About Event Types, Categories, and Conditions
	Event Types
	Event Categories
	Event Conditions

	About Event Attributes
	Workflow for Using the OPC Alarms and Events Collector
	Configure the OPC Alarms and Events Collector
	Filter Alarms and Events Data

	Chapter 27. OPC Classic HDA Server
	Overview
	About the Historian OPC Classic HDA Server

	Setting Up
	Set Up the Historian OPC Classic HDA Server
	Enable Tag-Level Security
	Turn On Debug Mode for Trace Log Files
	Browse Large Number of Collectors and Tags

	Reference
	Supported Attributes
	Supported Data Types
	Supported Quality Values
	Supported Filter Attributes
	Example Trace Log File
	OPC Classic HDA Aggregates
	Average Aggregate
	Maximum Aggregate
	Minimum Aggregate
	Before Aggregate
	After Aggregate
	Nearest Aggregate
	Proficy Historian Interpolative Aggregate

	Chapter 28. OPC UA HDA Server
	Overview
	About the Historian OPC UA HDA Server

	Configuration
	Install the OPC UA HDA Server
	The OPC UA HDA Server Workflow
	Configure the OPC UA HDA Server Settings
	Connect the OPC UA HDA Server and the OPC UA HDA Client
	Authenticate a User to Connect to the OPC UA HDA Server
	Supported Attributes
	Supported Data Types
	Supported Quality Values

	Troubleshooting
	Unable to Connect to the Server
	Unable to See the Latest Historian Model Changes in the OPC UA HDA Client

	Chapter 29. The OPC UA DA Collector
	Overview
	Configuration
	The OPC UA DA Collector
	Using Historian Administrator

	Trusting a Client Certificate
	Connecting with Server
	Sample ClientConfig.ini File

	Working with the Collector
	Add Tags
	Using Historian Administrator

	About OPC UA DA Collector Groups
	Troubleshooting
	Troubleshooting Tips

	Chapter 30. OSI PI Collector
	Overview
	Before You Begin
	OSI PI Collector Configuration
	Configuring the OSI PI Collector
	OSI PI Collector-specific Field Descriptions
	Tag Attributes Available in Browse
	Configuring Recovery Mode
	OSI PI Collector and Distributor Supported Data Types
	OSI PI Collector - Notes
	Starting and Stopping the OSI PI Collector
	Configuring Auto-synchronization of Digital States
	Renaming Digital States
	Deleting Digital States

	OSI PI Collector Troubleshooting

	Chapter 31. OSI PI Distributor
	OSI PI Distributor
	Overview
	OSI PI Distributor Features

	Getting Started
	System Requirements
	About Configuring OSI PI Data Archiver for OSI PI Distributor

	Configuring Multiple OSI PI Distributors to use Registry Keys

	OSI PI Distributor Configuration
	Configuring an OSI PI Distributor
	Tag Attributes Available in Browse
	OSI PI Collector and Distributor Supported Data Types
	Starting and Stopping the OSI PI Distributor Service

	Chapter 32. The Python Collector
	Overview
	Supported Data Types

	Install the Python Collector
	Adding a Python Collector Instance
	Add a Python Collector Instance using Configuration Hub
	Add a Python Collector Instance using RemoteCollectorConfigurator

	Configuring the Python Collector
	Configure the Python Collector using Configuration Hub
	Configure the Python Collector using Historian Administrator
	Configure Python Library Path using Configuration Hub

	Using the Python Collector
	Write Data to an Arbitrary Tag

	Create Triggers
	About Calculation Triggers
	Create a Polled Trigger
	Create an Unsolicited Trigger

	About Calculations
	About Calculations using Python Collector
	Create Python Script using Built-in Functions
	Create Python Script by Importing Third-party or Custom Python Modules or Functions
	Available Functions

	Examples of using Calculation Functions
	Examples: Using the Built-in Functions
	Retrieving the Current value
	Return the Greater Value of Two Tags
	Add the Values of Two Tags

	Examples: Custom or Third-party Python Modules
	Retrieve the Age of the First Person from a List Using a REST API
	Calculate the Sum of all Values in a Column in an SQL Database
	Calculate a Score Using Linear Regression in NumPy
	Reading Data from a File Using Pandas
	Mathematical Optimization
	Calculating the Determinant of a Matrix using SciPy
	Creating a Data Frame from an Array and Calculating the Sum of all Elements
	Generating a Random Value

	Example: Storing Current Values of Arrays
	Example: Storing Dictionary Data as Multifield Data
	Example: Storing Python Integer List in Historian
	Example: Storing Python String List in Historian
	Example: Use Historian Data as Input to a Python Script

	Chapter 33. Server-to-Server Collector
	Overview
	Overview
	About Recovery Mode
	About Collection of Raw Samples

	Using the Collector
	Workflow for Using the Server-to-Server Collector
	Configure the Server-to-Server Collector Instance

	Tag Properties that are Copied
	Tag Properties that are Copied

	Examples of Data Collection
	Raw Samples Collection Example
	Advanced Collection Example

	Creating Calculation Formulas
	About Calculation Formulas
	General Guidelines for Defining a Calculation Formula
	Create a Calculation Formula Using a VBScript Code
	Built-in Functions
	Counting the Number of Bad Quality Samples
	Counting the Number of Collected Digital 1s For a Tag
	Determining the Trigger When Using Multiple Trigger Tags
	Using Array or Multifield Data in Calculation
	Storing Array or Multifield data in Calculation tags
	Using Array or Multifield data to trigger calculation
	Sending Array or Multifield data to a Remote Historian
	Reading and writing a Multifield tag using MultiField functions

	User-defined Functions
	A Function to Assign an Alarm to a Tag Based on a Condition

	Create a User-Defined Function
	Date/Time Shortcuts
	Create a Calculation Formula Using the Pre-built Functions
	Types of Functions Supported

	Data Input
	Calculation and Server-to-Server Collectors
	Recovery
	Manual Recalculation

	Examples of Calculation Formulas
	Converting a Collected Value
	Calculations Inside Formulas
	Conditional Calculation
	Combining Tag Values and Assigning a Trigger
	Using CreateObject in a Formula
	Using a File
	Converting a Number to a String
	Detecting Recovery Mode Inside a Formula
	Looping Through Data Using the SDK
	Using an ADO Query
	Windows Performance Statistics Physical Memory Usage
	Windows Performance Statistics Virtual Memory Usage
	Determining Collector Downtime
	Analyzing the Collected Data
	Simulating Demand Polling

	Chapter 34. The Server-to-Server Distributor
	Overview
	Workflow for Using the Server-to-Server Distributor
	Configure the Server-to-Server Distributor

	Chapter 35. The Simulation Collector
	Overview
	Configuration
	Using Configuration Hub
	Using Historian Administrator

	Tags with Sequential Values

	Chapter 36. Windows Performance Collector
	Windows Performance Collector
	Overview
	Windows Performance Collector Feature Summary

	Windows Performance Collector Configuration
	Understanding Windows Performance Collector Tag Hierarchy
	The Configuration Section for Windows Performance Collector

	Chapter 37. The Wonderware Collector
	Overview
	Installation Prerequisites
	Wonderware Collector Features
	Hierarchical Tags Available in Browse
	Supported Data Types for Wonderware Collector
	Configuring Wonderware Collector
	Data Recovery
	Automatic Data Recovery
	Manual Data Recovery
	Manual Data Recovery

	Initiating Manual Recovery

	Reconnecting to the Wonderware Server
	Troubleshooting the Wonderware Collector
	Troubleshooting Tips

	Chapter 38. OLE DB Provider
	Overview
	Setting Up
	Install the OLE DB Provider
	Connect to a Historian Server

	Working with Clients
	Power BI Desktop
	Import Historian Data into Power BI Desktop

	VisiconX
	Access the iFIX Sample Picture
	Create a Background Schedule

	Oracle
	Crystal Reports
	Connect to the Historian Server
	Create a Crystal Report
	Format Decimal Point Precision
	Change the Date and Time Format

	Microsoft Excel
	Import Data Manually
	Import Data Using a UDL File
	Import Data Using the Sample UDL File
	Edit SQL Queries in Excel
	Format Date and Time
	Refresh Data

	Visual Basic and ADO
	Retrieve Milliseconds
	Set a Maximum Limit to Records
	Use Parameterized Queries

	Proficy Real-Time Information Portal
	Linked Servers
	Configure Manually
	Configure Automatically
	Access a Linked Server

	Working with Queries
	Access the Historian Interactive SQL Application
	Run a Query
	Connect to a Server
	Save a Query
	Export Results
	Optimize the Query Performance

	Supported SQL Syntax
	SELECT Statements
	SET Statements
	Correct SET Without Comma to Separate Thousands Place
	SET Variables
	Examples
	Perform a Simple SET
	Perform Multiple SETs
	Prepare for a RawByTime Query
	Prepare for a RawByNumber Query
	Prepare for One Hour Minimums
	Prepare for a Filtered Data Query
	Throttle Results with a SET Statement

	Combined SET and SELECT Statements
	Use SET and SELECT Statements on the Same Line
	Use SET and SELECT Statements on Different Lines

	Parameterized SQL Queries
	Multiple Parameters

	Optimize the Query Performance

	Troubleshooting and Frequently Asked Questions
	Troubleshooting
	Cannot Connect With the Historian Interactive SQL Application
	Cannot Log Into the Historian Interactive SQL Application
	Cannot Get Historian OLE DB provider Data
	Samples Do Not Run
	Time Zones Do Not Work
	Cannot Get String Data From the ihRawData Table
	Timestamps Include Only the Previous Two Hours
	Row Count Less Than Expected
	Linked Server Not Working
	SET Not Applied to SELECT When Using a Linked Server
	Client Crashes When Using Historian OLE DB provider

	Frequently Asked Questions

	Historian Database Tables
	The Historian Database Tables
	Historian Security Groups and the Database Tables
	Input Data and Historian Archive Data in Table Columns
	About the Table Descriptions

	ihTags Table
	ihTags Examples
	Example 1: Find All Tags That Belong to a Specific Collector
	Example 2: Find All Tags With a Specific Poll Rate, a Range of Poll Rates, or Polling Disabled
	Example 3: Retrieve All Tags Collected by Each Collector
	Example 4: Retrieve All Tags With a Specific Poll Rate
	Example 5: Retrieve All Tags With Subsecond Collection
	Example 6: Retrieve All Tags with Polling Disabled
	Example 7: Count the Number of Tags and Group by Collector Name
	Example 8: Count the Number of Tags and Group by Collector Type
	Example 9: Retrieve Tags Associated With a Specific Enumerated Set

	ihArchives Table
	ihArchives Examples
	Example 1: Retrieve the Archive List Sorted by StartTime
	Example 2: Retrieve All Properties of the Current Archive

	ihCollectors Table
	ihCollectors Examples
	Example 1: Retrieve All Collectors With Status Information
	Example 2: Retrieve All Collectors Not Running

	ihMessages Table
	ihMessages Examples
	Example 1: Retrieve All Messages and Alerts for Today
	Example 2: Retrieve All Alert Messages for a Specific User and Time
	Example 3: Retrieve All Messages in Your Archive
	Example 4: Retrieve All Messages for a Specific User
	Example 5: Count All Messages by a Specific User

	ihRawData Table
	ihRawData Examples
	Example 1: Retrieve All Samples With a Value Outside the Query Supplied Values
	Example 2: Retrieve All Bad Samples (Raw Data)
	Example 3: Count Bad Samples (Raw Data)
	Example 4: Retrieve All Bad Samples Over the Last Day (Interpolated Data)
	Example 5: Use an Explicit Time Zone
	Example 6: Perform a Simple Sequence of Events
	Example 7: Report the Busiest Tags
	Example 8: Retrieve All Bad Samples Over the Last Day
	Example 9: Retrieve All Bad Samples, Ignore End of Collection Markers
	Example 10: Count Bad Samples, Ignore End of Collection Markers
	Example 11: Obtain All Raw Samples With Comments From Yesterday
	Example 12: Determine the Number of Milliseconds Per Interval With Good Data
	Example 13: Retrieve Raw Minimum and Maximum Values Per Interval
	Example 14: Retrieve Data with Native Values and Tags Associated With Enumerated Sets
	Example 15: Retrieve Average Values for Enumerated Sets

	ihHabAlarms Table
	ihComments Table
	ihComments Examples
	Example 1: Retrieve All Comments for a Specific Tag for This Month
	Example 2: Retrieve Comments That Contain a Substring
	Example 3: Retrieve All Comments in an Archive

	ihTrend Table
	ihTrend Examples
	Example 1: Retrieve Value and Quality of the First 50 Tags
	Example 2: Retrieve Value of the First 100 Tags
	Example 3: Retrieve Values of All Tags That Match a Specific Pattern
	Example 4: Retrieve Hourly Interpolated Values of TagNames That Match *0001
	Example 5: Retrieve Maximum Values of All TagNames That Match *0001
	Example 6: Select Interpolated Values for All Single Float Tags
	Example 7: Select Interpolated Data for TagNames That Match sim*

	ihQuerySettings Table
	ihQuerySettings Examples
	Example 1: Show All Settings for the Current Session
	Example 2: Show the Selected Session Settings

	ihCalculationDependencies Table
	ihCalculationDependencies Examples
	Example 1: Show the Dependencies for a Specific Tag
	Example 2: Show the Dependencies for a Specific Dependent Tag

	ihAlarms Table
	ihAlarms Examples
	Example 1: Show All Alarms for the Last Two Hours, Including Vendor Attributes
	Example 2: Show Alarm History
	Example 3: Show Tracking and System Events
	Example 4: Return All Closed Events and Associated Tag Data
	Example 5: Return All Open Alarms and Associated Tag Data

	ihEnumeratedSets Table
	ihEnumeratedSets Examples
	Example 1: Retrieve All Sets By Using Integer States
	Example 2: Retrieve a Set By Name From Sets

	ihEnumeratedStates Table
	ihEnumeratedStates Examples
	Example 1: Retrieve All States That Belong to a Specific Set
	Example 2: Retrieve All States From a Specific Set

	ihUserDefinedTypes Table
	ihUserDefinedTypes Examples
	Example 1: Retrieve All User-Defined Types
	Example 2: Retrieve a User-Defined Type By Name

	ihFields Table
	ihFields Examples
	Example: Retrieve All Fields for a Specific Type

	Chapter 39. The Excel Add-In for Historian
	Overview
	Excel Add-In window Conventions

	Setting Up
	Install Using the Installer
	Install at a Command Prompt
	Activate Excel Add-In

	Querying Data
	Query Current Values
	Query Filtered Data
	Querying Calculated Data
	Querying Alarms and Events Data
	Modify a Query
	Query Modifiers
	Access Archive Statistics
	Access Collector Statistics

	Managing Tags
	Search for a Tag (Basic)
	Search for a Tag (Advanced)
	Export Tags
	Add/Modify Tags
	Import Tags
	Rename Tags
	Working with Array Tags

	Importing and Exporting Data
	Import Tag Data
	Importing Alarms and Events Data
	Export Tag Data
	Exporting Alarns and Events Data

	Working with Messages
	Search for Messages
	Import Messages
	Export Messages

	Managing Enumerated Sets
	Before You Begin
	To add sets:
	To delete sets:
	To modify the description of a set:
	To add states:
	To modify states:
	To delete states:
	What to do Next
	Export Enumerated Sets
	Import Enumerated Sets
	Rename Enumerated Sets

	Managing User-Defined Types
	To add User Defined Types:
	To modify the description of a User Defined Type:
	To add fields:
	To modify fields:
	To delete fields:
	Export User-Defined Types
	Import User-Defined Types

	Reference
	Excel Add-In Options
	Reports
	Relative Time Entries
	Base Values
	Offset Values

	Filter Parameters for Data Queries
	Batch IDs
	Sampling Types
	Calculation Algorithm Types
	Tag Criteria List

	Troubleshooting

	Chapter 40. The Excel Addin for Operations Hub
	Overview
	About Operations Hub
	Advantages of using Operations Hub

	Setting Up
	Software Requirements
	Install Excel Add-In for Operations Hub
	Copy or Export the Issuer Certificate on Server
	Install/Import the Issuer Certificate
	Connect to Operations Hub

	Querying Data
	Query Operations Hub Model

	Troubleshooting
	Query Error
	Error Occurs if you Query an Object Type with many properties and containment objects
	Blank Login Page Appears
	Data Variable Selections are not Retained
	Error Occurs Even Before Performing an Action

	Chapter 41. Trend Client
	Overview
	Access Trend Client
	Access Help

	Managing Tags
	Add Tags for Analysis

	Creating a Display
	Add a Trend Chart
	Add a Current Value Table
	Add a Value Card
	Add a Text Box
	Access a Display
	Provide a Title to a Display
	Filter Data
	Change the Sampling Mode
	Change the Time Zone
	Export Data
	Set the Refresh Interval

	Working with a Trend Chart
	Add a Trend Chart
	Switch the Y-Axis
	Change the Format
	Change the Duration
	Access the Statistics
	Change the Sampling Mode
	Change the Scale of a Trend Chart

	Managing Favorites
	Access a Favorite
	Export a Favorite
	Import a Favorite
	Delete a Favorite

	Chapter 42. Historian Web Admin Console
	Overview
	Overview
	Difference Between the Web Admin Console and Historian Administrator
	Actions You Can Perform Using the Web Admin Console
	Access the Web Admin Console

	Understanding the Interface
	Understand the Historian Interface
	Client Panel
	Collector Panel
	Data Node Panel
	Configuration Panel
	Data Stores Page
	Jobs Page
	Services Page
	Editing a Service
	Tags Page
	The Advanced Section
	The Collection Section
	Condition-Based Collection
	Compression Tab
	Understand Collector and Archive Compression
	General Tab
	The Scaling Section

	Configure General Collector Options
	Configure General Collector Options

	Maintain, Operate, and Monitor Historian
	Plan For Data Recovery
	Develop a Maintenance Plan
	Monitor Historian Performance
	Historian Performance Tags
	Historian Server Performance Counters
	Adding a Performance Tag
	Viewing Tag or Counter Trend Data

	Evaluate Data Compression Performance
	Handling Value Step Changes with Collector Data Compression
	Example: Value Spike with Collector Compression

	Historian Data Types
	Additional Notes on Data Types
	Setting a Value For the Fixed String Data Type

	Managing Tags
	Access a Tag
	Add a Tag to a Data Source
	Add a Tag Manually
	Add a Source Address to a Tag
	Adding OPC Tags from a Collector
	Adding Simulation Tags from a Collector
	Filter and Search Tags
	Filtering Tags
	Searching for Tags: Simple Search
	Searching for Tags: Advanced Search

	Access the Trend Chart of Tag Values
	Displaying Raw Data Samples
	Dynamic Collector Updates
	Starting or Stopping Data Collection For a Tag

	Reload Tag Parameters
	Tag Properties that Cause the Tag Collection to Stop and Restart
	Tag Properties that Do Not Cause the Tag Collection to Stop and Restart

	Rename Tags
	Permanently Rename a Tag
	Copying a Tag
	Renaming a Tag
	Renaming a Tag Permanently

	Stale Tag Management
	Delete Tags
	Deleting a Tag
	Deleting a Tag Permanently

	Managing Data Stores
	About Data Stores
	Moving Tags Between Data Stores
	Adding a Data Store
	Deleting a Data Store
	Editing a Data Store

	Managing Data Archives
	Configure Data Archives
	About Data Archives
	Archive Creation
	The Archive Configuration Screen
	Points To Remember
	Action Buttons
	Statistics Section
	Archives Section
	Archive Details Section

	Calculate Required Archive Size
	Archive Size Calculator

	Prepare for Multiple Archive Creation
	Adding One or More Archives
	Back up Historian Archive Files
	Backing up Archives using Historian
	Including Alarm Data in Archive Backups
	Backing up Archives Using Volume Shadow Copy Service

	Restore Historian Archive Files
	Restoring Archives from Historian Backup Files

	Chapter 43. Extract, Transform, and Load (ETL)
	Overview
	Workflow for Transferring Data from eDNA
	Workflow for an ODBC Data Source
	Workflow for Proficy Historian
	Workflow for PI Historian

	Installation
	Upgrade

	Extracting Data from an eDNA Server
	Specify Tags Using the Utility
	Specify Tags Manually
	Specify Tags Using a Template
	Specify Tags Using a Blank Spreadsheet
	Tag Properties
	Configure
	Extract Historical Data
	Start Data Extraction

	Extracting Data from an ODBC Data Source
	Specify Tags and Tables Manually
	Specify Tags and Tables Using a Template
	Specify Tags and Tables Using a Blank Spreadsheet
	Tag Properties
	Table Properties
	Configure
	Start Data Extraction

	Extracting Data from Proficy Historian
	Specify Tags Manually
	Specify Tags Using a Template
	Specify Tags Using a Blank Spreadsheet
	Tag Properties
	Configure
	Extract Historical Data
	Start Data Extraction

	Extracting Data from PI Historian
	Specify Tags Manually
	Specify Tags Using a Template
	Specify Tags Using a Blank Spreadsheet
	Tag Properties
	Configure
	Extract Historical Data
	Start Data Extraction

	Transferring Data Using BITS
	Configure BITS
	Verify Settings
	Transfer Data

	Transferring Data Using FTP
	Configure FTP
	Transfer Data

	Loading Data
	Configure
	Load Data

	Reference
	Example of a Regeneration File
	Example of a State File

	Troubleshooting
	Recommendations
	Unable to Start the ETL Tools
	An Error Occurs When Importing Tag Data into an Excel Spreadsheet

