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Introduction 
Maintaining critical equipment to ensure high levels of 
reliability, availability, and performance is a primary focus of 
process engineers in every plant today. 

This effort requires frequent, accurate assessment of 
equipment operating conditions to judge whether equipment 
meets current production demands and minimizes 
operational risks of unacceptable schedule interruptions or 
maintenance costs. In a typical plant, making this assessment 
involves the collection and effective analysis of large amounts 
of data about the health of complex production system 
elements like compressors, turbines, pumps and fans.

The amount of data an engineer needs to analyze effectively 
is growing steadily as industry incorporates digital technology. 
Challenging plant economics frequently dictate relentlessly 
increasing operational demands on ever-aging critical 
equipment. At the same time, staff budgets are shrinking, 
experienced people are retiring, and new staff need 
experience to maintain asset health efficiently. Maintaining 
efficient operation of aging assets is increasingly costly, while 
plant economics are challenged by budgets, experienced staff 
retirements, and training new staff. 

Equipment health and performance data come from 
periodic and real-time systems. Periodic methods for 
making measurements and analyzing equipment elements 
include handheld vibration spectral analysis, oil analysis and 
thermography, and boroscope inspection. 

Such solutions provide a great deal of information about 
important equipment elements prone to functional failure, 
but they are time-consuming to analyze and intermittent by 
nature.

To obtain a timely understanding of equipment health for 
all the key resources in a large plant or fleet, engineers are 
turning to real-time, model-based solutions. Real-time 
systems can create actionable intelligence from numerous 
and diverse sources of data on many key pieces of equipment.

Such solutions can process, analyze, and detect problems 
and provide the basis for effective diagnosis and prioritization 
for many problems. Additionally, they can make periodic 
inspection and maintenance much more efficient.

Technology exists to facilitate prediction of asset failure, 
allowing engineers to target maintenance costs more 
effectively. Real-time systems focused on this area of 
equipment-health monitoring are frequently referred to as 
equipment condition monitoring (ECM) or predictive asset 
management (PAM) systems.

Real-time condition-monitoring and analysis tools need to 
be matched to established engineering processes. Many of 
these tools are employed at the plant in lean, demanding 
environments; others are deployed from central monitoring 
centers charged with concentrating scarce resources to 
efficiently support plants. Applications also must be flexible 
and simple to implement and use.

It is critical to select the best system for your 
plant. How do you make the right choice?



New tools can be very important to the future successes 
of plant operations, so these choices require a solid 
understanding of the problems to be solved and the 
advantages and trade-offs of potential solutions.

Engineers must evaluate several key technology elements to 
choose the best predictive-analytic solution:

•	 Core algorithm accuracy and robustness

•	 Core algorithm execution speed

•	 Simplicity of model design

•	 Simplicity and speed of model training

•	 Simplicity of model results

•	 Visualization and communication of model results

In addition to these technology elements, engineers must 
also carefully consider engineering elements that determine 
whether a solution will fit normal business practices, and thus, 
provide practical results for the business:

•	 Ease of use and training requirements

•	 Opportunity for automation

•	 Ease of maintenance and skill set requirements

•	 Flexibility across the equipment scope

•	 Adaptability across the organizational scope

•	 Ability to grow with organizational vision

•	 Modular design and reusability

Any potential solution for improving plant performance that 
does not consider these technology and engineering elements 
together can result in poor return on investment (ROI) and 
a lost opportunity to reach the required higher levels of 
performance at a reason able cost.

GE Digital's SmartSignal has become a leading predictive 
analytic solution for improving pl an t equipm ent 
performance. GE Digital’s Asset Performance Management 
team made a series of carefully considered choices about 
the software's core algorithm technology, the product user 
interface that ensures its practicality in the user's engineering 
environment, and the product roadmap that ensures the 
investment made today will continue to look like a smart 
choice long into the future. This paper will describe why 
SmartSignal and its Similarity-based modeling provides a 
robust, complete solution for complex asset performance 
management needs. 

The engineer also must carefully consider 
engineering elements that determine whether 
a solution will fit normal business practices 
and provide practical results for the business.



Some modeling basics 
Engineers use mathematical models as representations of systems on which 
to base their understanding and make predictions. Yet these models often a 
simplified representation of reality. 

Consider a first principles model of a simple trajectory. While it is useful for 
understanding the basic physics of a system and fast to execute, as more 
complex effects such as air resistance are added, measurement becomes 
more complex, and the inability to account for all important variables leads to 
prediction error.

Among modern data modeling methodologies are two groups: parametric 
and non-parametric methods. In each case, historical measurement 
data can be used as the inputs and response variables of a mathematical 
model. Parametric methods make some assumptions about the probability 
distribution from which a data sample is taken, and use the historic data 
to find the coefficients of the hypothesized model that best “fit” the data. 
In contrast, nonparametric methods do not fit to a distribution, but rather 
determine a model solely from the data. This freedom from assumptions about 
data makes non-parametric methods versatile, and they have become popular 
in the ML/AI discipline. It should be noted that a tradeoff of this freedom from 
assumptions is that non-parametric methods are often complicated to fit and 
require large amounts of training data, so their use in industrial monitoring 
applications requires careful consideration and planning. Empirical methods 
on which commercial condition-monitoring software applications have been 
developed include non-parametric methods such as linear and nonlinear 
regression, kernel methods, Kalman Filtering, ARMA; nonparametric methods 
include Support Vector Machines, Gaussian Processes, Artificial Neural 
Networks, and Tree-based models.

Figure 1: This example of a 
simple first principles model 
of a projectile trajectory 
illustrates the effect of 
variables not accounted for  
by the model.

•	 Kalman filter

•	 ARMA

•	 Nonlinear regression

•	 Classical neural networks

•	 SBM

•	 Support vector machines

•	 Kernal regression

•	 Principle component analysis
Figure 2: Examples of 
empirical modeling methods
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Key technology elements of 
a good modeling solution 
It was noted above that the choices made in the selection 
of new tools for improving plant performance can be very 
important to the future success of plant operations. These 
choices require a solid understanding of the problems to 
be solved and the advantages and trade-offs of potential 
solutions.

A number of elements to be considered in making selection 
choices were identified and separated into “technology” 
elements—judged for suitability to the technical challenge of 
the application—and “engineering” elements that determine 
whether a potential solution is a good fit for a particular 
organization. Here is a brief review of the technology 
challenges:

Core algorithm accuracy and robustness is a fundamental 
requirement for analyzing complex plant systems. The goal 
is to provide the highly sensitive ability to detect impending 
problems at their earliest manifestations in the data. The wide 
variation in operating conditions of complex plant equipment 
such as compressors, turbines, pumps, and fans, present 
challenges for collection of high quality, real-time operating 
state, performance, and health data. Any modeling algorithm 
must, therefore, provide sufficient accuracy in early detection 
of equipment problems while being robust against diminished 
data quality. 

Core algorithm execution speed is required for analyzing 
complex systems at high sample rates in real-time, 
particularly when a large number of assets are monitored, 
such as in monitoring and diagnostics (M&D) centers or 
decision support centers (DSC). In these environments, 
instrument counts can be in the tens of thousands, with 
sample rates as fast as five minutes The chosen method must 
be fast enough for the current monitoring scale requirements, 
as well as those anticipated in the future. Slower methods 
may be useful for offline analysis and comparison.

Simplicity of model design is a critical requirement for 
engineers integrating real-time monitoring and analytics into 
their workflow. Models should be transparently designed 
to easily detect and diagnose specific failure modes. 
This requirement ensures that the implementation and 
maintenance of models does not require highly specialized 
knowledge that would limit their scaling and adoption. 

Simplicity and speed of model training is important during 
initial model building/implementation, as well as subsequent 
model retraining, system maintenance, and equipment 
overhauls. Identifying the data for an empirical model that 
best represents full operating range variation must be an 
intuitive, streamlined process for the methodology to fit into 
an already complex, busy process of operating a plant or DSC. 
Choosing a model whose training process can be automated 
is highly valuable.

Simplicity of model results means that a plant engineer 
can use the model results directly to quickly diagnose 
and prioritize problems, without having to seek specialist 
resources to gain the proper level of understanding for rapid, 
certain convergence to the right diagnosis and action plan.

Visualization and communication of model results is a 
critical element of the successful application of predictive 
analytics to maintain complex industrial plant systems. A 
clear presentation of a large amount of data and diagnoses 
can be communicated through effective visualization. 

Simplicity of model design is a critical 
requirement for engineers integrating  
real-time monitoring and analytics into  
their work processes.



Key engineering elements of 
a good modeling solution 
Failure to make good choices about the technical suitability 
of a methodology for improving plant performance can 
mean that the capability to provide analytic and diagnostic 
results useful to plant engineers fails to meet expectations, 
so the solution fails. Just as important is that the potential 
solution be capable of dropping into the work process of 
an organization without unconstructive or undue amounts 
of adjustment by the organization. Failure to pay attention 
to such engineering details can result in failure of the new 
solution.

The following is a brief review of some key engineering 
elements of a good solution for plant analytics:

Ease of use is a factor that must be considered equally 
with any other if the solution is going to successfully insert 
into the successful work process the organization is already 
employing. Ease of use can include many important factors, 
including some of those mentioned above as “technology 
elements.” Ease of use certainly includes ease of training.

The point here is that a solution must not only automatically 
detect equipment and performance problems early, but must 
save engineers time deriving diagnostics and prognostics from 
the diverse and complex data streams that provide real-time 
evidence of equipment health.

In Figure 3, some of the key steps, from detection of a problem 
through return to service, are identified. The logic of analytical 
results from real- time monitoring should augment the roles 
that the plant engineer already knows and should not require 
specialized statistical or software knowledge or training. This 
means that the inevitable organizational adjustment doesn’t 
eliminate the ability of the organization to utilize the solution.

Figure 3: Progression of equipment failure
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Ease of maintenance is critical to the long-term success of 
any modeling solution. Maintenance will have to be done to 
every piece of plant equipment at some time; when it is done, 
the analytical model for that piece of equipment will likely 
need maintenance. Maintenance is normally required for one 
of the following reasons:

•	 To adapt models for new behavior (automatic and manual 
methods)

•	 To account for sensor availability

•	 To modify and create new alarms

•	 To make changes to the model design

A model that is quick and simple to adapt or retrain has an 
obvious advantage. The skill set requirements for maintaining 
models needs to be in the range possessed by the average 
engineer in the organization; maintenance should not require 
specialized statistical or software knowledge or training. 
Yet, powerful modeling capabilities will not be maintained 
by trivial software capabilities, so model maintenance 
typically would involve either a central monitoring center 
or a subscription service with the software vendor, which 
would provide expert support. In either case, interaction with 
plant engineers having the proper subject matter expertise is 
critical to proper maintenance.

Flexibility across the equipment scope ensures both 
ease of implementation and that the number of monitoring 
solutions is kept to a minimum. A key problem the ECM 
solution needs to solve is the simplification of many diverse 
operating data streams into an understanding of current 
equipment health. This means effective modeling is required 
for a mix of temperature, pressure, load, vibration, flow, 
valve position, and other sensors across the broad range 
of operating conditions that represent normal operation. 
Monitored equipment is liable to range from the very old 
to the very new, implying that reference to a standard 
operating curve may be variable for different instances of 
the same equipment type because of past duty cycle and 
maintenance history. And it is likely that one or more of the 
signals providing operating condition data may have failed or 
may be failing. The modeling solution chosen must be able to 
cope with all these conditions to be effective. It must be easily 
implementable across a single plant or a large enterprise. 
A single solution that can do so provides a better ROI than 
multiple solutions needed to cover the full scope of important 
assets.

Adaptability across the organizational scope is an issue 
for large organizations. For example, in the power industry, a 
generating company may have coal-fired, gas-fired, nuclear, 
hydro, and wind generation capabilities. In the oil and gas 
industry, the equipment base may include production, refining, 
and distribution assets. In these cases, some centralization 
of ECM is likely to be used as a method to drive business 
transformation, business integration and standardization, 
and collaboration. Business transformation frequently looks 
to digital technology to enable the more efficient use of skilled 
personnel and to facilitate best practices, given that some 
monitored sites may be very remote and leanly staffed. So, 
it is critical that any solution for monitoring has the ability to 
integrate any equipment—despite vendor or lifecycle stage— 
any operating condition, and any operational culture. It should 
also help the organization leverage its existing tools used for 
periodic monitoring.

Ability to grow with organizational vision is one of the last 
and often ignored criteria for selecting the right ECM solution. 
It is tempting to limit immediate costs when selecting a 
solution. But, given the complexity of the performance and 
engineering requirements discussed here, and given that 
the lifetime of the asset base is in the tens of years, the real 
opportunity to drive success—from the asset level across 
the broad scope of the organization—is to select a solution 
that facilitates the continuous need to produce higher 
performance and efficiency over many years. Considered from  
this perspective, the chosen solution needs to be selected 
on the basis of not only the cost and level of technology, 
but also on the basis of the people and processes that can 
be brought to bear by the vendor to solve your problems.A 
strong product-development vision and a history of past 
execution are good indicators of an ability to facilitate your 
organizational vision. 

The logic of analytical results from real-time monitoring should augment the roles 
that the plant engineer already knows and should not require specialized statistical 
or software knowledge or training.



Putting all the key elements together
Engineers are faced with a demanding responsibility of maintaining critical equipment to 
ensure high levels of reliability, availability, and performance under tight budget constraints. To 
avoid operating surprises, accurate assessment of equipment operating conditions is needed 
to judge whether production demands can be satisfied while maintenance costs are controlled. 
The amount of data about the health of complex production system elements is growing 
steadily. Pulling together large amounts of current data from diverse sources across a plant or 
an enterprise to create actionable intelligence is a challenge to the organization, from the plant 
engineer to the CIO. The performance challenges and engineering challenges boil down to a 
need to improve understanding of immediate and future health of assets under a complex set 
of demands. Here, the focus is the choice of an ECM solution that can automatically detect and 
diagnose problems early enough to shift unplanned maintenance to planned maintenance and 
can be easily implemented and maintained across all equipment across the fleet. The choice 
needs to apply now and as a foundation for future innovation.

Benefits to users include improved 
understanding of asset readiness, improved 
maintenance costs, and improved resource 
utilization—all leading to improved business 
performance in highly competitive industries.



The best modeling 
solution: SBM for 
predictive analytics 
We carefully considered the foregoing requirements for a good 
modeling solution and chose similarity-based modeling (SBM) 
as the technology foundation for development of a predictive 
analytics solution to a broad spectrum of real-time modeling 
needs. Other analytical methods failed to satisfy the key 
technology and engineering requirements outlined above— 
therefore, they were rejected. Validation of this conclusion 
may be inherent in the fact that no other analytic method 
today has been applied effectively to ECM on such a broad 
scale as SBM.

Product development has focused on providing and improving 
the solution requirements for application in the power, oil 
and gas, and other process industries. Application in these 
industries requires demonstration of cost-effective value 
from the single-asset level to fleets of complex assets across 
several divisions of global companies. In these industries, 
user benefits include improved understanding of asset 
readiness, reduced maintenance costs and improved resource 
utilization—all leading to improved business performance in 
highly competitive industries.

SBM is a particular form of nonparametric regression. SBM 
was built as a predictive- modeling solution to the need 
for actionable intelligence from large amounts and diverse 
sources of current data on equipment like compressors, 
turbines, pumps, and fans brought together in today’s 
complex production systems. SBM is quickly built from an 
asset’s historical data, with a structure that mimics a natural 
engineering design. This produces a result that is quickly and 
efficiently implemented, from a single asset to the largest 
corporate scope. Using a sample of the data collected from a 
complex plant system such as a compressor, a set of “normal” 
operating conditions can be defined that can be used to 
reconstruct normal operational behavior in real-time and 
exclude or flag abnormal behavior.

SBM provides the essential fidelity of the natural system, 
and it has the advantage of (a) utilizing simple selection 
guidelines for reference data and (b) requiring no model 
parameterization. Analytic computation can be done very 
rapidly, so predictive analytics can be applied as effectively 
to an entire enterprise as to a single asset in a plant. Model 
design can follow familiar engineering principles, which 
facilitates interpretation of results and post-processing 
operations, like application of diagnostic logic.

Some of the practical technology benefits of SBM that are 
not likely to be found in other methods used for equipment 
monitoring include:

Fast and easy setup and execution

•	 Few model design decisions required

•	 Models based on engineering logic, not arcane  
statistical concepts

•	 Simple guidelines for reference data selection

•	 Computationally expensive modeling processes done  
off-line and stored

A clear estimate of normal behavior

•	 Works for all equipment, all operating modes

•	 Easy-to-interpret results

•	 Supports automated diagnostics

Very robust to typical data problems

•	 Bad data does not disrupt model

•	 Very tolerant of multiple sensor losses



Brief review of SBM for 
predictive analytics
SBM is a kernel-based, pattern-reconstruction technique 
using multidimensional interpolation that is designed to 
exactly fit training data. SBM produces very stable estimates 
by using a non-linear and nonparametric kernel (similarity 
operator) to compare new measurements to a set of 
reference states (state matrix D)— without making stringent 
requirements on the smoothness and statistical distribution 
of the data.

The SBM approach measures the input vector’s closeness 
(similarity) to the observation vectors (states) in the D matrix 
to generate the estimate for that input vector. This has the 
effect of deriving a current value estimate from the contents 
of the training space, normalized to the conditions of the 
current observation. Weight coefficients are computed by 
solving a system of equations formed using selected reference 
data points.

Several studies have shown that SBM technology outperforms 
other candidate technologies in detecting faults. While other 
nonparametric techniques can produce estimates with similar 
accuracy metric (a measure of how closely the estimates 
follow the actual), SBM outperforms them in robustness 
(the likelihood that the estimates will over-fit a fault) and 
“spillover” (the influence a fault in one variable has in the 
estimates for the other variables).

SBM was designed specifically for the problems of data 
analysis and diagnostics encountered in real-life equipment. 
It has been proven through modeling of tens of thousands 
of assets in power generation, oil and gas, mining, aviation, 
transportation, and other applications. It can provide accurate 
estimates for any number of sensors, of any type, over any 
load range. Even if a quarter of these sensors fails over 
the course of operations, SBM still can generate accurate 
estimates for the remaining sensors without following 
the faulted signals, making it a very robust methodology7. 
Analytical methods such as PCA and clustering do not have 
the same level of accuracy and robustness as modeled signals 
fail.

Model training is an area in which SBM is strong. Training 
data can be assembled based on subject- matter expertise 
from empirical data collected in the plant historian. Because 
the training data can easily be collected over the range of 
any independent variables of the system, the effect of these 
variables can easily be normalized. Automated algorithms can 
be applied for quickly selecting a set of model conditions that 
represents the full operating range of the data very well.

SBM training is a non-iterative, single-pass operation that 
involves a single matrix multiplication and inversion. A 
model matrix, D, represents the entire dynamic range of 
the reference behavior—selected from historical data, 
personalized to every piece of equipment. An automated 
SmartSignal proprietary vector selection method is used to 
build D. The selection algorithm can rapidly sort through tens 
of thousands of observation vectors to construct it. SBM, with 
the SmartSignal training vector selection algorithm, exhibits a 
very consistent modeling behavior. 



SBM allows computationally expensive processes involved in 
building the model to be done off-line and stored. This allows 
SBM to operate easily, in real time, for large-scale fleets of 
assets. The computationally expensive, automated process 
of building the model matrix D, self-similarity matrix G and 
its inverse, is done off-line and stored. Because of its unique 
pattern-recognition approach, interpolation technique, and 
use of non-linear similarity operator, it can readily model any 
non-linear function to any desired degree of accuracy.

As with the initial model-training process, model retraining 
is a quick and simple process, taking several minutes to 
complete. The retraining for a new operating condition 
involves a simple inclusion of new training vectors into the 
D matrix from the new operating range via the same vector-
selection algorithm used to create the initial model.

In real time, a multi-step calculation computes the similarity 
vector A, the weight vector w0, the normalized weights w 
and, lastly, the estimates for every signal in the model. there 
is no limit on the number of model variables or the number of 
models. SBM implementations of 70,000 tags sampled at ten-
minute intervals have been made using a single server.

Figure 5: shows the SBM reconstruction of a complex 3-D surface produced by a parametric function, using a 
sample of data across the surface.

Figure 5: A multi-step calculation of SBM identifies off-line and on-line parts of the process.

Off-line (training)

1.	� Select patterns from 
reference data (Y) to form  
a state matrix (D)

2.	� Calculate and invert the 
interpolation matrix (G)

On-line (estimate generation)

3.	� Calculate similarity of input to patterns in the 
state matrix (D)

4.	� Transform similarities (a) into weights (w0) – then 
normalize (w)

5.	� Generate an estimate by linearly combining 
patterns and weights

1) Y=>D 2) G-1=(Dt D)-1 3) a=Dt Xin 4) wo=G-1•a, w=wo/ wo 5) Xin=D•w^



A distinct advantage of SBM is that model designs normally 
reflect the most sensible structural elements of the asset 
being modeled. a design for an SBM model is typically as 
straightforward as designing a physical model for first 
principles methods. The available instruments for an asset 
can be partitioned into sub-systems that have physical 
meaning to the engineer.  In the example of a steam turbine, 
shown in Figure 7, the available sensors are grouped such 
that oil temperatures (OT), metal temperatures (MT), and 
vibrations (V) are collected to form a mechanical model. 
temperatures (T), pressures (P), flows (F), and valve positions 
(VP) are collected to form individual models of the high- 
pressure turbine, intermediate-pressure turbine, and low- 
pressure turbine.

Because SBM was built from the ground up with the detection 
and analysis of complex plant systems and in mind—like 
compressors, turbines, pumps, fans, and heat exchangers,

it produces results that can be easily interpreted using the 
subject-matter expertise of the equipment expert, rather than 
requiring the subject expertise of a statistician or vibration 
expert. The simplicity of SBM results derives from the simple 
model structure—this simple structure is not characteristic 
of statistical methods that have been adapted to real-world 
modeling problems. Statistical methods such as clustering- 
based, neural-network-based, or principle components 
analysis-based, model systems all can suffer from the problem 
of design complexity unless this is well handled by the 
application.

Model-design simplicity, the accurate and robust production 
of estimated normal conditions for each modeled signal and 
the way this leads to straightforward interpretation of model 
results, creates another advantage for SBM. The product of 
the modeling is a set of estimates that mimics the actual 
data under normal conditions, and it easily shows the trend 

and magnitude of any differences from normal conditions 
using a chart format familiar to any plant engineer. This leads 
to a visualization that complements normal engineering 
structure, based on familiar failure-mode and failure-analysis 
representation.  In the example of a tube leak in a heat 
exchanger, Figure 8, the pattern of the failure easily stands out 
from the normal condition of the equipment.

The simplicity of the SBM model facilitates development and 
usage of automated expert rules logic to distinguish between 
normal operating condition and a faulted condition. It can 
be used to identify a new operating condition, facilitating 
automated adaptation of models. Expert rules logic also 
can be extended to provide fault diagnostics in important 
cases, like the complex plant systems listed above, where 
“fingerprints” of failure modes are known from development 
of subject-matter expertise and knowledge capture. 

Figure 6: Instruments, like this steam engine, are partitioned into models based on natural engineering components. Use of empirical data to 
build models results in “personalized” models normalized to natural process variation.

Starts with 
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Conclusion 
Engineers are faced with the demanding responsibility 
of maintaining critical equipment to have high levels 
of reliability, availability, and performance under tight 
budget constraints. To avoid operating surprises, accurate 
assessment of equipment operating conditions is needed to 
judge whether production demands can be satisfied while 
maintenance costs are controlled. Large volumes of data 
about the health of complex production system elements 
are generally available, and the amount of data is growing 
steadily. Pulling together large amounts of current data from 
diverse sources across a plant or an enterprise to create 
actionable intelligence is a challenge to the organization, from 
the plant engineer to the CIO.

The ECM software product described in this article is focused 
on providing predictive analytics solutions for control 
application in power, oil and gas, and other process industries. 
Application in these industries requires demonstration of 
cost-effective value from the single asset level to a level of 
inclusive fleets of complex assets across several divisions 
of global companies. Benefits to users include improved 
understanding of asset readiness, decreased maintenance 
costs, and improved resource utilization, all of which lead to 
improved business performance in these highly competitive 
industries. Both technology and engineering challenges 
must be addressed to provide a comprehensive solution. 
The technology challenges involve selecting a solution that 
has the accuracy and robustness to provide early warning of 
failure under all operating conditions. It must have the speed 
for real-time application across hundreds or thousands of 
assets across an entire 

enterprise. However, technology challenges include more than 
success at automated detection. The technology must also 
facilitate diagnostics and prognostics of problems by nature 
of providing simple connection of equipment design, model 
design, and interpretation of results. Visual presentation of 
results that fosters communication and understanding is a 
critical requirement in order for such software to add value.

In addition to these technology elements, application choice 
must carefully consider engineering challenges to determine 
whether a solution will fit normal business practices, and 
thus provide practical results for the business. To satisfy 
engineering requirements, the solution must be easy to use 
and have reasonable training demands. The solution must be 
capable of managing a wide variety of equipment types, ages, 
and operating conditions in any plant of an enterprise. It must 
be flexible in its equipments, adaptable to many different 
workflows, and low in implementation and maintenance cost 
in order to demonstrate positive ROI. 

Finally, it is critical that any solution chosen must possess the 
ability to grow with organizational vision—even to help lead 
it in the case of advanced technology solutions. This requires 
attention to not only the technology, but also to the people 
and processes supporting its implementation and integration 
into your organization.

The foregoing requirements for a good modeling solution were 
carefully considered, and SBM was chosen as the real-time 
modeling technology foundation for development the Smart 
Signal predictive analytic solution. This software solution was 
developed to meet the engineering needs of the power, oil 
and gas, and other process industries. Successful application 
in these industries requires demonstration of cost-effective 
value from the single-asset level to global enterprise level. 

In these industries, benefits to users include improved 
understanding of asset readiness, decreased maintenance 
costs and improved resource utilization. In these industries, 
a predictive analytics solution must improve understanding 
of immediate and future health of assets under complex sets 
of operational and organizational demands and provide the 
analytics support that helps grow a company’s vision. 

Figure 7: In this example of a tube leak in a heat exchanger, 
the pattern of the failure easily stands out from the normal 
condition  of the equipment. Blue indicates actual instrument 
data and green indicates the SBM estimate of normal 
operation.
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