These instructions do not purport to cover all details or variations in equipment, nor to provide for every possible contingency to be met during installation, operation, and maintenance. The information is supplied for informational purposes only, and GE makes no warranty as to the accuracy of the information included herein. Changes, modifications, and/or improvements to equipment and specifications are made periodically and these changes may or may not be reflected herein. It is understood that GE may make changes, modifications, or improvements to the equipment referenced herein or to the document itself at any time. This document is intended for trained personnel familiar with the GE products referenced herein.

GE may have patents or pending patent applications covering subject matter in this document. The furnishing of this document does not provide any license whatsoever to any of these patents.

Public Information – This document contains non-sensitive information approved for public disclosure.

GE provides the following document and the information included therein as is and without warranty of any kind, expressed or implied, including but not limited to any implied statutory warranty of merchantability or fitness for particular purpose.

For further assistance or technical information, contact the nearest GE Sales or Service Office, or an authorized GE Sales Representative.

Revised: July 2017
Issued: Sept 2009

* Indicates a trademark of General Electric Company and/or its subsidiaries. All other trademarks are the property of their respective owners.

We would appreciate your feedback about our documentation. Please send comments or suggestions to controls.doc@ge.com
Document Updates

<table>
<thead>
<tr>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation System Components</td>
<td>Added content providing alarm system requirements concerning the supported number of new alarms that can be processed but explained that the virtual controller is not limited to these requirements</td>
</tr>
<tr>
<td>Configure Microsoft Loopback Adapter</td>
<td>Added the procedure to configure the Loopback Adapter to add an additional virtual controller to the simulation</td>
</tr>
</tbody>
</table>

Acronyms and Abbreviations

- API Application Programming Interface
- EGD Ethernet Global Data, a control network and communication protocol
- HMI Human-Machine Interface, usually a computer with CIMPLICITY software
- PDH Plant Data Highway, links HMIs to servers and viewers
- TMR Triple modular redundant, uses three sets of controllers and I/O
- UDH Unit Data Highway, links the controllers to the HMI servers
Safety Symbol Legend

Warning

Indicates a procedure or condition that, if not strictly observed, could result in personal injury or death.

Caution

Indicates a procedure or condition that, if not strictly observed, could result in damage to or destruction of equipment.

Attention

Indicates a procedure or condition that should be strictly followed to improve these applications.
Contents

1 **Introduction** .. 7
1.1 Virtual Controller Features .. 8
1.2 Typical Simulator Components ... 9

2 **System Architecture** .. 11
2.1 Simulation System Components ... 11
2.2 System Layout .. 12
2.3 Product and System Limitations ... 12
2.4 Simulation Executive Requirements .. 13

3 **Installation and Configuration** .. 15
3.1 Configure ToolboxST System ... 16
3.1.1 Create Virtual Controller .. 20
3.1.2 Configure WorkstationST Device ... 23
3.2 Simulation Computer Configuration ... 24
3.2.1 Configure Microsoft Loopback Adapter .. 24
3.2.2 Configure IP Addresses ... 25
3.2.3 Download Product and Application Code ... 27

4 **Simulation Platforms Integration** .. 29
4.1 Project Configuration Files ... 29
4.2 Process/Plant Model Integration ... 30
4.2.1 I/O Registration .. 30
4.2.2 Simulator I/O .. 30
4.2.3 Identify I/O Variables ... 31
4.2.4 Run Simulation .. 32
4.2.5 Initial Conditions ... 32
4.3 Header and Library Files .. 35
4.3.1 Header Files ... 35
4.3.2 Library Files .. 37
4.4 Diagnostics and Log Files ... 38
4.5 Action Capture and Replay ... 39

Glossary of Terms ... 43

Index ... 45
1 Introduction

This document describes the virtual controller product and Application Programming Interface (API) installed in a larger simulation platform. *Virtual controller* is a generic term used to refer to Mark* VIe and Mark VIeS Virtual Controller products. The Mark VIe and Mark VIeS Virtual Controllers are part of the ControlST* DVD.

The virtual controller simulates Mark VIe and VIeS control system responses in a software environment. Virtual controller software and Human-Machine Interfaces (HMI) are designed to be integrated into a full-scope, high-fidelity simulator to provide training to both operators and maintenance personnel. The virtual controller connectivity with the ToolboxST* application allows live control code data to be viewed. For a complete simulation, one or several HMIs communicate with the virtual controller application. The HMIs include the CIMPLICITY* application and project-specific graphic files, which allow duplication of a plant HMI and eliminates translation errors.

Note Virtual controller and HMI software are enabled using a USB license key that is provided with the software package. To prevent disrupting the simulation, the virtual controller stops within thirty minutes after the licence key is not detected (or has been removed).

<table>
<thead>
<tr>
<th>Supported Hardware and Operating Systems (OS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS</td>
</tr>
<tr>
<td>64-bit Windows 7</td>
</tr>
<tr>
<td>64-bit Windows 10</td>
</tr>
<tr>
<td>64-bit Windows Server 2012R2, single-user configuration, Service Pack 1</td>
</tr>
<tr>
<td>32-bit Windows 7</td>
</tr>
<tr>
<td>32-bit Windows 10</td>
</tr>
<tr>
<td>32-bit Windows Server 2012R2, single-user configuration, Service Pack 1</td>
</tr>
<tr>
<td>CPU</td>
</tr>
<tr>
<td>Dual core or better</td>
</tr>
<tr>
<td>Memory</td>
</tr>
<tr>
<td>4 GB RAM (or more)</td>
</tr>
<tr>
<td>HD</td>
</tr>
<tr>
<td>40 GB (or more)</td>
</tr>
<tr>
<td>Monitor</td>
</tr>
<tr>
<td>1280 x 1024 x Truecolor (24 million or better)</td>
</tr>
<tr>
<td>Drive</td>
</tr>
<tr>
<td>DVD</td>
</tr>
<tr>
<td>Network</td>
</tr>
<tr>
<td>Ethernet 10/100 MB</td>
</tr>
<tr>
<td>USB</td>
</tr>
<tr>
<td>Two available USB Ports</td>
</tr>
</tbody>
</table>

Note Verify that all ControlST applications required to be installed on the same computer are supported on the selected OS, especially a 64-bit OS.
1.1 Virtual Controller Features

- Uses the same application code as an actual controller.
- Runs the same Control Sequence Program as an actual controller.
- As with an actual controller, uses Ethernet Global Data (EGD) and System Data Interface (SDI) for block scheduling and communication protocols.
- Any major changes to application code cannot invalidate previous collections of controller state information.
- Virtual controller process is repeatable and deterministic in nature (for example, consistent response) provided the furnished simulation model is repeatable and deterministic.
- All time stamps implemented by the simulator are driven by simulation time, not host target time.
- Provides an API to directly access the variable space, so that an external software model can drive I/O.
- All variables are identified symbolically. They are available for inspection and modification to external software.
- Supports Run, Stop, Pause, Step, Set/Clear Break, Watch, Save/Restore IC, Overrides, and Backtrack commands, as well as utility functions such as simulation time management and performance metrics.
- Can be run synchronously (the Simulation Executive sends a command to the virtual controller to step one or more frames) or asynchronously (virtual controller runs independently of the Simulation Executive at the frequency determined by the controller configuration using simulation time).
- EGD and SDI communication remains active when the virtual controller is paused. EGD production and reception continue when the application code is paused to prevent the HMI screens displaying blank. However, EGD commands (from either a CIMPLICITY project or other EGD command clients) are not performed when the virtual controller is paused.
- Supports process alarm detection and messaging.
- Unexpected disturbances in the control system do not occur due to any instructor actions.
- Supports two methods of implementing Fast Time and Slow Time in the virtual controller: variable step rate and variable step size. When it is running synchronously, the Simulation Executive can implement fast time and slow time by varying the frequency of the step commands to the virtual controller or by varying the number of frames to run for each step command.
- The process alarm summary, historical process data, or any other data dynamically generated is not suspended while the simulation system is paused.
- Suspends Trender operation when the application is paused, then continues without losing any data.
- Captures alarm queue status with the Save command; restores the alarm queue with the Restore command.
- Triggers Sequence of Events (SOE) using an API to simulate contact transitions at 1 ms intervals without affecting the application state.
- Supports dynamic binding of EGD, which allows updates to the consumed EGD configuration dynamically when a corresponding producer changes (Mark VIe Virtual Controller only).
- Supports the Action Capture and Replay (ACR) feature, which allows recording and replaying of commands from a CIMPLICITY project, the ToolboxST and WorkstationST® applications, LiveView, and Trender.
- The FOUNDATION Fieldbus (FF) macrocycle delay can be simulated for FF device-related I/O in a Mark VIe configuration.
- Provides controller-to-controller communication in the virtual controller.
1.2 Typical Simulator Components

A typical full scope power plant simulator consists of four major components:

- Simulation Executive
- Plant model (process dynamics)
- Plant virtual controller – Mark VIe and Mark VIeS Virtual Controllers (simulation of one or multiple controllers)
- Operator interface – HMI

Additionally, the ToolboxST application is used in the actual plant for programming and troubleshooting the virtual controller. The following illustrates the typical division of responsibility between GE and the simulator vendor for a project where the virtual controller is integrated into a larger plant simulator.

<table>
<thead>
<tr>
<th>Item</th>
<th>Simulator Vendor</th>
<th>GE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation Executive</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Plant Model</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>CIMPLICITY HMI</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Mark VIe and Mark VIeS Virtual Controllers</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>ToolboxST application</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>WorkstationST application</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>
2 System Architecture

This chapter defines the architecture of the simulation system, including GE-supplied components and typical system layout. It also discusses the limitations of the virtual controller and requirements of a Simulation Executive into which the virtual controller is integrated.

2.1 Simulation System Components

The virtual controller consists of four .exe files among multiple libraries. For each new controller project opened and started, these four processes simulate the new controller.

GESimApp.exe is the heart of the virtual controller that runs the application code.

GESimSdl.exe provides an interface with the ToolboxST application.

GESimEgd.exe provides EGD services to the virtual controller.

GESimAlm.exe provides alarm services to the virtual controller.

The simapi.dll (also called the Simulator API) is a dynamic link library (.dll) that provides setup and communication of all external programs of the simulation environment. This .dll uses all application programming interfaces (APIs) and sets up I/O by specifying an identification number that is known between the plant model and the virtual controller. The data is made known to the virtual controller through the API. The .dll exports the necessary functions, which third-party software or a graphical user interface (GUI) can use to run and control the virtual controller.

The ToolboxST is a Windows-based software application used for configuring and maintaining the Mark VIe and VIeS control systems. The Trender can be used for control software analysis and provides sequencing diagnostics. Refer to the ToolboxST for Mark Control Platforms User Guide (GEH-6700).

The WorkstationST application allows you to download the ToolboxST configuration to a workstation to ensure that configured WorkstationST features start and stop accordingly. It also provides access to control and diagnostic information for WorkstationST functions, as well as historical Alarm and Recorder data.

The supported number of new alarms that can be processed in the Mark VIe and virtual Mark VIe alarm systems is as follows:

- A burst load of 400 alarm transitions are supported in a single frame without missing a transition in the internal queue.
- A constant load of 100 alarm transitions per second are supported without missing a transition in the internal queue.

However, since the virtual controller runs in Windows, which is not a real-time operating system, the frame rate is not exact. Taking advantage of this fact, the virtual controller is designed to increase the frame length to process the actual number of alarm transitions in a frame.
2.2 System Layout

In the following configuration, the virtual controller is installed directly on the simulation computer. One or multiple HMI(s) are provided to simulate the control room HMIs.

The simulation computer requires an Ethernet network interface card dedicated to the GE simulation HMI; this network corresponds to the plant’s Unit Data Highway (UDH). The simulation vendor provides, installs, and configures the network interface card according to GE requirements.

2.3 Product and System Limitations

The virtual controller runs only simplex, non-redundant software. It does not restart automatically. To restart, you must stop and start the virtual controller. Historical process data, command and event logging, or any other data dynamically generated as a result of running a simulation is not cleared or reset if the simulation is started, restarted, or restored to another state, as would be the case with an initial condition.

Mark VLe hardware diagnostic alarms are not functional because there is no real I/O hardware. There is no support for Distributed Control System (DCS) link testing, communication (for example, Modbus® and PROFIBUS), or verification. It does not support NVRAM storage. OPC UA is not supported in the Mark VLe virtual controller.

The Controller Backup Option in the Mark VLe Component Editor must be set to Automatic and the Download Backup File check box must be selected in the Download Mark VLe Controller Wizard or the backup files will not be downloaded to the virtual controller. The backup files are required for the virtual controller to run properly.
2.4 Simulation Executive Requirements

The Simulation Executive is responsible for concurrently stopping, starting, running, and pausing the basic processes, including:

- Plant model (process dynamics)
- Virtual controller

Note These requirements are essential to the Simulation Executive.

The virtual controller uses an API where process variables (analog and digital) can be specified for read/write operations through shared memory. The Simulation Executive configures and populates the I/O to the virtual controller. It also provides a Graphical User Interface (GUI) to map plant model I/O to virtual controller I/O.

The virtual controller uses an API where the state of the simulator is saved to disk, including specification of a file name(s). The Simulation Executive manages these files, and assures that they are synchronized with simultaneously saved states of all other simulation processes. The Simulation Executive also manages any file-naming conventions, name collisions, access violations, ID numbers, and such. It saves all models and virtual controller states, and any other simulation settings required to reproduce the desired simulation state when a restore operation is invoked.
3 Installation and Configuration

Virtual controllers are typically installed on a computer (referred to as the simulation computer) that is different from a GE-supplied HMI. This simulation computer typically holds the modeling environment and the third-party Simulation Executive software. The other system components and the ToolboxST and WorkstationST applications are installed on the HMI and configured.

This chapter defines installation requirements for the virtual controller and discusses a simulation configuration where all the different system components are required to run on a single computer.

Before installing:

- If BlackICE service is running on the simulation computer, it needs to be stopped and the startup type set as disabled.
- Uninstall any previous versions of the virtual controller

The virtual controller installation, which includes the various virtual controller binary files and the API, is available on the ControlST DVD. The ToolboxST and WorkstationST applications must be installed on one computer, with a virtual controller installed on a separate computer. For instructions to install software from the ControlST DVD, refer to the instructions provided in the ToolboxST for Mark Controls Platforms User Guide (GEH-6700).

Warning

The virtual controller should never be installed on a computer that has network connectivity to the UDH of an actual control system. This causes the virtual controller to interfere with the actual Mark VIe control resulting in unintended control actions.

The virtual controller can also be used in a system layout where various simulation components (virtual controller, the ToolboxST or WorkstationST applications, or a CIMPLICITY project) are installed on the same computer. Such a system layout requires a specific additional configuration (refer to the section Configure WorkstationST Service). Also, this system layout allows you to configure the controller IP addresses to a Microsoft Loopback Adapter.
3.1 Configure ToolboxST System

Prerequisites

- Successfully installed the ControlST Software Suite V07.00.00C or later
- Successfully set up the PROFICY* License Key

➢➢ To configure a ToolboxST system

1. From the Start menu, select All Programs, GE ControlST, ToolboxST, and ToolboxST.

2. From the New System dialog box, enter the system name, browse to the location, and click OK. The System Editor displays. If needed, the GatewayIPAddress or SubnetMask can be modified (this is the network address for the ToolboxST application, not the Virtual Controller).

3. From the Tree View, right-click the system item and select Insert New, Controller, and Mark VIe Controller.

4. From the toolbar, click the Save System icon.

5. From the Tree View or the Summary View, double-click the controller to display the Component Editor.

6. From the Component Editor, General tab, Property Editor, select the controller hardware Platform.

 Note The Platform type must be the same as what is used for HardwareType when you Create the Virtual Controller.

7. Configure the IP address.

Note The Mark VIeS Controller can also be selected if planning to use that version of Virtual Controller.
8. Create and configure application blocks as needed.

From the **Software** tab, right-click **Programs** and select **Add Program**.

Then, right-click **Prog1** and select **Add Task**.
From the **Library View**, select and drag a block to the **Summary View**, then right-click the block and select **Edit Block Pins**.
Select Global Variable, then select the Create Variable check box. Enter the variable name and click OK.

From the Summary View, double-click the OUTPUT pin to display the Connect Pin dialog box.

From the Tree View, select Variables.

From either the Data Grid or the Property Editor, configure the EGD Page, then perform another Build command.

Installation and Configuration GEH-6742J User Guide 19
9. Perform a **Build** and verify that the device was saved.
10. From Windows Explorer, create a folder for the Mark VIe virtual controller files.

Note For more information on configuring the controller, refer to the *ToolboxST for Mark Controls Platforms User Guide* (GEH-6700) and any of the block library user guides that are available with your ControlST Software Suite installation.

3.1.1 Create Virtual Controller

Prerequisites

- The simulation computer has been successfully setup with an IP address and loopback adapter.
- The system and component have been correctly configured in the ToolboxST application.
- A Build has been successfully performed in the ToolboxST application.

Create the following directories under a root directory of the simulator computer, `X:\Simulation\Controllers` (X refers to the drive on the computer):

- **X:\Simulation\Controllers**: holds all virtual controller folders. For example, if three virtual controllers with project names G1, G2 and G3 are being created, these virtual controller folders are created under `X:\Simulation\Controllers`.
- **X:\Master**: holds all application code files. For example, a `.tcw` file with three Mark VIe controllers G1, G2, and G3 could be stored in a project folder under `X:\Master`.

➢ **To create a virtual controller**

1. From the **Start** menu, select **All Programs, GE ControlST, Mark VIe Virtual Controller**, and **Mark VIe Virtual Controller**.

 Note To add a Mark VIeS virtual controller, select **Mark VIeS Virtual Controller**.

2. From the Mark VIe Virtual Controller **File** menu, select **Create** to display the **Create Project** dialog box.

3. Provide the information to create the virtual controller:
Enter a **Project Name**.

Navigate to the **Project Path** (the folder created on the simulation computer that will store the Virtual Controller files)

Select the **Hardware Type**. This must match the Platform configured in the ToolboxST application.

Enter the **IP Address**. This must be the same IP Address used for the Loopback Adapter.

4. Configure the **Ext symbol file** by navigating to the folder on your computer where you saved your system (.tcw) file. From the controller’s device subfolder, open the **Output** folder, select the .syl file, and click **Open**. Click **OK** to save the Create Project.

Click the **Start Application** icon.

When the Windows firewall message displays, click **Yes**.
If after clicking Start, a Failed to bind to (IP address) message displays, do not try to continue. There is something wrong with your network adapter configuration. Investigate the IP Address settings used for the Loopback Adapter, the ToolboxST Controller and WorkstationST Devices, and the virtual controller to verify that the addresses are the same.

5. From the ToolboxST Component Editor, perform a Build and Download the virtual controller.

6. From the virtual controller application toolbar, stop the application.

7. Click the Start Application icon, then the Run Application icon.

Note When the simulator is started for the first time, the log window displays a message that runtime is not loaded.

Note If the WorkstationST Alarm Server has stopped receiving alarms, this may cause the virtual controller to not start properly. If this occurs, open a Task Manager and try closing all Windows processes related to the WorkstationST application. Then restart the virtual controller and the WorkstationST application.

8. From the Mark VIe Component Editor, click the Go On/Offline icon. Live values displayed in green indicate that the Mark VIe controller is communicating with the virtual Mark VIe control.
3.1.2 Configure WorkstationST Device

This configuration is required in a system layout where all simulation components run on the same computer. Without this configuration, the virtual controller cannot communicate with other simulation components. Every IP address, for which a virtual controller is connected, needs to be added to a WorkstationST Component Editor.

➢ To configure WorkstationST service
1. From the ToolboxST System Editor, right-click the system item and select Insert New and WorkstationST.
2. Provide a name, select all default settings, and click Finish. The new component displays in the Tree View.
3. Double-click the WorkstationST component to display the Component Editor.
4. From the General tab, select Network Adapter 0, then from the Property Editor, set the IP Address. If the WorkstationST application is run on the same computer as the virtual controller, an exclude address must be set for the virtual controller.

![Component Editor Image]

From the General tab, select General, then from the Property Editor, select Exclude Addresses and enter an exclude IP address for the Mark Vle virtual controller.

Note The same IP Address is used for the Loopback Adapter.

5. From the Tree View, select Features.
6. From the Data Grid, set OPC DA Server to True.

Note If the Historian is installed, set Historian to True as well.
7. Perform a Build and Download.

3.2 Simulation Computer Configuration

3.2.1 Configure Microsoft Loopback Adapter

➢➢ To configure a Microsoft Loopback Adapter

Note In Windows 10, this may be called the Microsoft KM-TEST Loopback Adapter. Refer to the Microsoft Windows 10 procedure in the following location: https://technet.microsoft.com/en-us/library/cc708322(v=ws.10).aspx.

1. From the Windows 7 Start menu, launch the Device Manager.
2. From the Device Manager, select Action, then select Add Legacy Hardware.
3. When the Add Hardware wizard displays, click Next.
4. Select Install the hardware that I manually select from a list (Advanced) and click Next.
5. From the Common hardware types: list, select Network adapters and click Next.
6. From the Manufacturer drop-down list, select Microsoft and Microsoft [KM-TEST] Loopback Adapter. Then, click Next and Finish.
7. From the Device Manager, verify that the Microsoft [KM-TEST] Loopback Adapter is listed under the Network adapters.

➢➢ To configure the Microsoft Loopback Adapter to add an additional virtual controller to the simulation:

add the IP address for the additional virtual controller to the existing Loopback Adapter configuration.
3.2.2 Configure IP Addresses

The simulation computer must have a unique IP Address for the virtual controller.

Note This procedure assumes that you are using the Microsoft Loopback Adapter.

➢➢ To set up an IP Address on the simulation computer for use with the virtual controller

1. From system tray, right-click the network connections icon and select **Open Network and Sharing Center**.

2. Click **Change adapter settings**.

3. Right-click the **Microsoft [KM-TEST] Loopback Adapter**, and select **Properties**.

4. Select **Internet Protocol Version 4 (TCP/IPv4)** and click **Properties**.

5. Select **Use the following IP address**: enter a new IP address for your local computer to be used with the virtual controller (for example 192.168.x.x), and click **OK**.

6. Click **Advanced** and configure a second IP address in the same subnet, for example:
 - one for workstationST
 - one for the controller
Note When all simulation components are installed on the same computer, a Microsoft Loopback Adapter replaces an Ethernet connection. This allows the different simulation components to interact on the same computer without a physical connection.
3.2.3 Download Product and Application Code

As with a real controller, the virtual controller initially has no runtime or application code.

➢ To download runtime and application code

1. Open the controller project by locating the appropriate .sim file.
2. From the Application menu, select Start.

3. When the Download Mark VIe Controller wizard displays, click Next, then click Abort.

Note Because the virtual controller does not simulate all devices in the actual control software, error messages might display. Check that the error messages correspond to hardware not being simulated. Clear the Scan I/O check box to avoid scanning the I/O when downloading to the virtual controller.

4. From the wizard page, select the desired controller(s) and click Next.
5. Confirm the download by clicking Next until the Download Status dialog box displays.
6. When the Download is complete, close the dialog box.
7. From the Mark VIe Virtual Controller screen, stop the virtual controller then restart.

Note To perform a restart, stop the virtual controller, start it again, then run the application.
This chapter describes how to integrate the virtual controller into other third-party simulation platforms. The simulator API allows outside applications to run instances of the virtual controller with various programs without the SimulatorUI application. This allows larger environments with a Simulation Executive to run the virtual controller instances, establish I/O contracts, and control virtual controller functions. In this environment, one or more process models can provide the inputs to the virtual controller.

The simulator API is a C++ .dll in the form of simapi.dll, located in the virtual controller installed folder. This folder also contains a directory named Include. At the center of the Simulator API is the Simulator class found in a header file called SimulatorAPI.h. This class contains the API functions to the Simulator. For each controller being simulated, an instance of this class must be created. Create a client class with an instance of the Simulator class as a member. Supporting functions and information can then be kept with the controller instance. An array of these client classes can be created, with each element containing one Simulator instance.

Two supporting files through which additional features are exposed are diagserver.dll and cmdserver.dll. The ability to receive error and event messages generated by the virtual controller is provided by the diagserver.dll. The cmdserver.dll and the simapi.dll files allow for capture and replay of EGD commands.

4.1 Project Configuration Files

The virtual controller .sim file is the project configuration file. This file is used by the Simulator API to configure and start the simulation, and is typically created when using the SimulatorUI application. To create internal lookup tables for symbol management, three related files are potentially used: a .syl file used to build the syl table, and two .xml files used to build the sym table. The two .xml files contain information for named variables only, and the .syl file contains information about both named variables and all internal states. The distinction between the two becomes important when Save and Restore functions are performed.
4.2 Process/Plant Model Integration

When the StartSimulation() API function runs, the four GESim.exe files for that instance of the virtual controller are started. The simFileName parameter is the path for the appropriate .sim project file. The StartSimulation takes optional arguments of whether to set the simulation time internally to the current computer time or use the time passed to it by the Simulation Executive. If this option is used, the seconds and nanoseconds parameters are used to set the internal time.

Note: The Include folder contains the header file, which lists functions and defines the API.

The StartSimulation() function returns an integer, named result in this example. If a non-zero value is returned, it flags an error that occurred in performing the operation. These flags descriptors are defined in the header file SimulatorErrs.h. This header file is located in the Include folder within the installed folder of the virtual controller. If any API function returns zero (SIM_ERR_EOK), the operation was successful.

4.2.1 I/O Registration

After the simulation starts, you must create the read/write contracts for the I/O that takes place between the virtual controller and the process/plant model. When a contract is created, an integer contract ID is returned. This gives the virtual controller a list of variables names in the controller in a specific order. This contract ID is used for all future reading or writing of these variables.

The I/O contracts perform an I/O transaction between the virtual controller and the process/plant model. CreateReadContract() takes two parameters. The first is an array of C-strings (char arrays), and the second is the number of elements in this array. This array is a list of all variables to be placed in this contract. These C-strings contain the variable names. You must verify that these variables exist in the controller, and in the proper case (upper or lower). The API function ReadVariable() verifies the existence of the variable in the virtual controller. The variable name, and a reference to its value, is processed, and the function returns an integer. If the result is zero, the variable exists in the virtual controller. If the result is non-zero, the variable name is tried again in another case.

4.2.2 Simulator I/O

The ReadData and WriteData functions are members of the simulator class. The contractID of the sought write/read contract is selected and input as the contractID. The buffer processed is a pointer to a shared memory resource between the process/plant model and the virtual controller. The Simulation Executive must create a shared memory block that is properly allocated to hold all values within a contract. Writing to the virtual controller involves copying all variable values for the given contract into the shared memory, and performing the WriteData() function, and applying the proper contractID and a pointer to the shared memory resource. Reading from the virtual controller involves performing the ReadData() function, again passing in the proper contractID, as well as the pointer to the proper shared memory resource. This function causes the virtual controller to copy the appropriate variable values into the shared memory resource. It is required to read from the shared memory, saving the values into the data structure that the process/plant model uses.

Note: There can be numerous contracts between a simulator and model, and there can be numerous virtual controllers (controllers) for one model, or even multiple models for one instance of the simulator.

For systems that include FOUNDATION Fieldbus devices, the macrocycle delay for device-related signals can be included in the I/O data communication between the process/plant model and the virtual controller. This feature will be enabled when the parameter ffinmacrocycle is set to True in the sim file created by the V04.06 virtual controller (the default value is True). You can use the older sim file by either adding this parameter or using LoadPrjSettings() API. Set the parameter mincludeMacrocycle to True and perform the Save command using SavePrjSettings() API. When this feature is enabled, ChangeBaseFramePeriod() API will accept only standard frame periods (10, 20, 40, 80, 160, or 320). ChangeBaseFramePeriod() API will not work with any other value.
The use of this shared memory, along with the read/write contracts and API function functions, sends I/O back and forth between the virtual controller and the process/plant model. Since the host environment typically controls stepping a simulation, pausing suspends that stepping loop. If the simulation is stopping, the EndSimulation() function is sent to the simulator, telling it to stop and close its processes.

4.2.3 Identify I/O Variables

A report can be generated to identify which I/O variables are used to create this exchange of data. I/O is sent between the virtual controller and the process/plant model through shared memory (including read/write contracts and API functions).

➢ To identify I/O variables

1. From the ToolboxST **System Editor Tree View**, double-click a Mark VIe component.

![Example I/O Variable Report](image)
2. From the Report menu, select Change Columns....

![Image of I/O Variable Report for charfivetwo_G12]

From the Selectable Columns list, select a column and use the arrow key to move it to the Viewable list.

Save this report as a .csv file, then filter and sort it in an Excel spreadsheet. View the report in the ToolboxST application to determine the direction of any variable, either input or output.

4.2.4 Run Simulation

After the virtual controller starts, and the I/O contracts have been made, the simulator can be run. This is done by either performing the Run() function or the Step() function on a schedule under the control of the hosting simulation environment.

The virtual controller synchronizes the event loop to real time, then waits for real time to catch up to simulation time before advancing. The virtual controller is then stepped, data is read, the model object response is computed, and the response is written to the virtual controller.

4.2.5 Initial Conditions

The simulation allows you to take a snapshot of the entire system being simulated and save the state of each element, then restore that state on demand.
4.2.5.1 Named Save and Restore Functions

When the SaveSimulation() function is performed, the Simulator API saves the initial conditions in a .var file and a .vsm file. These two files are saved in the project folder with the same name as the .sim file. The Simulation Executive copies, renames, and deletes these files. Using the RestoreSimulation () function, SaveSimulation enables a full simulation restore, even if the application code has had major differences applied since the save, but only if the virtual controller successfully loads its .syl file. The SaveSimulation and RestoreSimulation may take several seconds, depending on CPU, simulation size, and other factors. The RestoreSimulation () function expects to find a .vsm and .var file in the project directory with the same name as the .sim file. To manage multiple saved states, the Simulation Executive must copy the appropriate .var and .vsm files to the project folders for each virtual controller to be restored, and rename them to match the name of the device (.sim file name). The SaveSimulation/RestoreSimulation functions can be called with the file name as an argument to avoid the file management that must be performed by the Simulation Executive.

The RestoreSimulation takes optional arguments of whether to set the simulation time internally to the current computer time or use the time passed to it by the Simulation Executive. If this option is used, the seconds and nanoseconds parameters are used to set the internal time. The RestoreSimulation function provides the option to not restore the control constants.

4.2.5.2 Binary Save and Restore Functions

The SaveVarDef() function can be performed in situations where major differences in the .tcw file between the save and the restore are not anticipated. In this case, unlike SaveSimulation, only the .var file is saved. This function enables the BacktrackSimulation () function, which periodically saves the simulation. To manage multiple saved states, the Simulation Executive must copy the appropriate .var file to the project folders for each virtual controller to be restored, and rename it to the name that matches the device name (.sim file name). The SaveVarDef/BacktrackSimulation can be called with the file name as an argument to avoid the file management that must be performed by the Simulation Executive.

Regardless of how a simulation is saved (SaveSimulation or SaveVarDef), the virtual controller can generate two additional files, used by the virtual controller to re-create the alarm queue when the simulation is restored. If there are alarms in the alarm queue, a .alm file is created.

Note The virtual controller does not generate a .alm file if the alarm queue is empty. As with the .var and .vsm files, the Simulation Executive must manage copying, renaming, and deleting these files.

The BacktrackSimulation takes optional arguments of whether to set the simulation time internally to the current computer time or take the time passed to it. If this option is used, the seconds and nanoseconds parameters are used to set the internal time.

4.2.5.3 Override

Overriding a variable forces a variable to a desired state. When a variable in the Mark VIe Simulator is overridden, the virtual controller ignores any other inputs to that value.

A variable must be in a simulated state to be overridden and a value must be inserted. These two steps are performed using the SimulateVariable and SimulateVarValue functions. Performing the UnSimulateVariable function returns the variable to a state for accepting normal values. The ForceVariable API function also allows variables to be overwritten. The Unforcevariable API function returns it to its prior state. The health of a variable can be forced or unforced to a defective or good condition using the ForceVarHealth and UnforceVarhealth API functions.
4.2.5.4 Sequence of Events

The Sequence of Events (SOEs) records state transitions of the discrete inputs at a 1 ms resolution. They can be generated in the virtual controller through an API exposed in the SimulatorApi.h. The API takes two arguments: an array of pointers to cSOEStructure objects, and the number of such objects in the array. These numbers must match for proper operation. The cSOEStructure class has members as follows:

- Signal Name
- State
- Offset in ms
- Invert

The signal name is used internally to generate the SOE on that particular signal if it is enabled as an SOE. If the variable is not present in the application or not enabled as an SOE, an error is logged, and the API continues to generate SOE for the subsequent variables in the list.

The state indicates whether the SOE is due to a transition from 0 to 1 or 1 to 0. Passing a value of 1 in the state parameter means that the transition is from 0 to 1. Conversely, passing a 0 means that the state transition is from 1 to 0.

The offset in ms takes the offset from the frame boundary at which the SOE is to be time stamped. The given offset is added to the simulation time and the SOE is time stamped at this time. If the offset is greater than the frame rate, it is clamped to the frame rate.

The invert parameter allows the Simulation Executive to model the SOE in the same lines as in the actual Mark VI. If the state is 1 and the invert is 1, the SOE is raised as a transition from 1 to 0 instead of 0 to 1.

Results for different combinations are as follows:

<table>
<thead>
<tr>
<th>Start</th>
<th>Invert</th>
<th>Transition from</th>
<th>Transition To</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

The SOE generated using the above API do not affect the application state, and only simulate the SOE. If the SOE are generated at the frame boundaries, there could be a discrepancy in the state of the variable shown in the generated SOE when viewed through a CIMPLICITY project or the WorkstationST Alarm Viewer, as well as the state of the variable when trended. To avoid this mismatch, the same value must be passed during the I/O transfers and when generating SOE.
4.3 Header and Library Files

The following are the relevant header files and library files that are part of the virtual controller. These files are located at the following path:

X:\Program Files\GE Energy\<product>\Vxx.xx.xx. Here on, for Mark VIe Virtual Controller, <product> stands for Mark VIe Virtual Controller and for Mark VIeS Virtual Controller, <product> stands for Mark VIeS Virtual Controller. where X refers to the drive on which the ControlST products are installed. Vxx.xx.xx refers to the version of the virtual controller.

4.3.1 Header Files

Classes and structures present in the header files for external integrators are as follows.

File :- SimulatorApi.h
Location :- X:\Program Files\GE Energy\<product>\Vxx.xx.xx\Include\SimulatorApi.h

This header file consists of a class declaration for the cProjectInfo class. The data members of this class hold information relating to the simulation configuration that the user wishes to create. Detailed comments are provided next to each data member inside the header file.

File :- SimulatorErrs.h
Location :- X:\Program Files\GE Energy\<product>\Vxx.xx.xx\Include\SimulatorErrs.h

This header file contains common error codes returned by virtual controller APIs. Most of the virtual controller APIs that run successfully return a zero value, unless they return a negative error code. An error code returned from an API can be passed as an argument to GetErrorString() API function to get a corresponding error string.

File :- SymbolTable.h
Location :- X:\Program Files\GE Energy\<product>\Vxx.xx.xx\Include\SymbolTable.h

This header file provides a symbol table entry structure as it is stored in the virtual controller. All the variables created by the user in the application code are downloaded into the simulation folder as .xml files. During initialization, the virtual controller parses these .xml files, and fills the data members of a new object, belonging to the cExtraSymInfo class, for each variable. All variables currently loaded into the virtual controller can be retrieved by passing a buffer as input argument to the GetSymbolInfo() API or GetExtraSymbolInfo() API. The size of the buffer passed should be equal to (Total Number of Symbols) * sizeof(cSymInfo) for the former and (Total Number of Symbols) * sizeof(cExtraSymInfo) for the latter. The total number of symbols is retrieved by using GetSymbolCount() API. The cSymInfo provides information about the variable name, the token, and the array size. The cExtraSymInfo provides information about the units and the high and low limits of the variable in addition to the information provided by the cSymInfo. Whether the variable is an intrinsic or not, and whether high and low limits hold default or user-entered values is retrieved by bit-masking the mStateOfVar variable. Details of usage are provided in the SimulatorApi.h file.
This header file provides the seven data types supported by the virtual controller. This file consists of an enum structure that supports the data types. The following table provides an equivalent data type for each of the virtual controller data types.

<table>
<thead>
<tr>
<th>Virtual controller data type</th>
<th>Equivalent data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOOL_TYPE</td>
<td>bool</td>
</tr>
<tr>
<td>INT_TYPE</td>
<td>short</td>
</tr>
<tr>
<td>DINT_TYPE</td>
<td>long</td>
</tr>
<tr>
<td>REAL_TYPE</td>
<td>float</td>
</tr>
<tr>
<td>LREAL_TYPE</td>
<td>double</td>
</tr>
<tr>
<td>UINT_TYPE</td>
<td>unsigned short</td>
</tr>
<tr>
<td>UDINT_TYPE</td>
<td>unsigned long</td>
</tr>
</tbody>
</table>

This header file provides the class that uses the Action Capture and Replay (ACR) feature. The user needs to create a command server object of the class cCmdServer defined in this header file for recording and replaying CIMPLICITY and SDI commands.

This header file provides the class that reads the diagnostic messages from the virtual controller. The user needs to create a Diagserver object of the class cDiagServer defined in this header file for capturing these diagnostic messages. The user needs to pass a callback function pointer to the constructor while creating the object.

This header file contains character strings that provide information about the version.

This header file contains a POSIX compliant-time specification structure.
4.3.2 Library Files

The library files are located at the following path: X:\GE Energy\<product>\Vxx.xx.xx\Lib

where X refers to the drive on which the ControlST products are installed. Vxx.xx.xx refers to the version.

Three lib files are part of the virtual controller installation. These library files are to be linked by external integrators to use the virtual controller features. These files are as follows.

File :- simapi.lib
Location :- X:\Program Files\GE Energy\<product>\Vxx.xx.xx\Lib\simapi.lib

This library file must be linked with the application being developed to use the APIs exported by the virtual controller.

File :- cmdserver.lib
Location :- X:\Program Files\GE Energy\<product>\Vxx.xx.xx\Lib\cmdserver.lib

This library file must be linked with the application being developed to use the Action Capture and Replay feature.

File :- DiagServer.lib
Location :- X:\Program Files\GE Energy\<product>\Vxx.xx.xx\Lib\DiagServer.lib

This library file must be linked with the application being developed to read diagnostic messages sent by the virtual controller.
4.4 Diagnostics and Log Files

The virtual controller publishes all diagnostic messages over a server that third-party simulation applications can access.

Two types of published messages include:

- Diagnostic event messages
- Diagnostic error messages

Capture diagnostics messages that the virtual controller publishes on the diagnostics server as follows.

Include file...

```
X:\Program Files\GE Energy\<product>\Vxx.xx.xx\Include DiagServer.h
```
in the user code

Create an object of class cDiagServer in the application, which takes a function pointer as an argument. Since displaying captured diagnostic messages is in the scope of external simulation applications, the function pointer must point to a user-written function that displays all captured data. The messages are published as a character buffer, which includes the following information:

- Tag event or error
- Time ASCII form of tm time structure
- Process name one of four processes
- Event description message description

Sample code is as follows:

```
DisplayMessage (char *Buf)
{
    // User written display method
    const char End[] = "\r\n";
    CString strBuffer = Buf;
    strBuffer.Remove(\'n\');
    CString CLogView::m_strLog = "";
    m_strLog += strBuffer + End;
    // Display in external software GUI
}
```
pDiagServer = new cDiagServer(DisplayMessage);

The Command Server Init(InstanceCount) function is now performed. Since external simulation applications might interact with multiple virtual controllers, the Init function takes the instance count of the current virtual controller as an input parameter. This captures the messages from the correct controller.

Example code is as follows:

```
pDiagServer->Init(gSimulatorCount); //Initialize the Command Server
```

This completes the diagnostics server initialization. From this point on, the user-written display method is accessed every time the virtual controller publishes a diagnostic message.

The virtual controller also writes formatted diagnostic messages to one of two 1-MB log files (GESim1.log and GESim2.log). When the first log file is full, messages are written to the second log file. When the second log file is full, messages in the first log file are overwritten. These log files are present inside the simulation folder (co-existing with the .sim and pcode files).
4.5 Action Capture and Replay

The virtual controller can capture specific commands that alter the state of the running application, and replay them at a later time. Capture of certain EGD commands from the CIMPLICITY screen and SDI commands from the ToolboxST application is currently supported.

Before the start of capture, the simulation is saved and the StartCapture() command is issued. From this point, commands from the CIMPLICITY project and the ToolboxST application are captured and sent back to the SimulationExecutive through a function pointer registered by the executive. The StopCapture() command is issued whenever the capture is to be stopped. The SimulationExecutive is responsible for storing commands and time stamps. When the simulation is to be replayed, the Backtrack() command is issued to go back to the saved state. The Replay() is then called at the appropriate instant in simulation whenever a command is to be replayed until all are complete.

The cmdserver.dll must be loaded for this feature, and the CmdServer.h file must be referenced.

Include file ...

X:\Program Files\GE Energy\<product>\Vxx.xx.xx\Include\CmdServer.h in the user code.

Create an object of class cCmdServer in the application. The Init(FunctionPointer) or Init(FunctionPointerWithDeviceName, DeviceName) is now called. Both of them take function pointers with different arguments. One takes only a character buffer whereas the other takes both the character buffer and the device name as arguments. The latter lets the user know which device published the message. Since storing captured command messages is in the scope of external simulation applications, the function pointer must point to a user-written function that stores all captured data.

The character buffer sent out is a structure as follows:

```c
struct ACRCaptureBuffer
{
    int mLength;
    int mType;
    unsigned char mRecvBuffer[MAX_MSG_SIZE];
};
```

The mLength contains the total length of the message including the size of mLength field, the size of type mType field, and the actual length of the mRecvBuffer. The mType is a field used by the virtual controller internally to distinguish between EGD and SDI capture data. The mRecvBuffer, which contains the actual data, can be a maximum of 1500 bytes.
Sample code for capture is as follows:

```c
pCmdServer = new cCmdServer;
pSimulator = new Simulator;

int CaptureFunction(char *Log)
{
    FILE *fp=NULL;
    int ReturnValue =0;
    unsigned long FrameNumber;
    int ret;
    unsigned long wrt;
    HANDLE fd;

    fd = CreateFile("Cmdlog",FILE_APPEND_DATA,FILE_SHARE_WRITE,NULL,OPEN_ALWAYS,
    FILE_ATTRIBUTE_NORMAL,NUL);
    if(fd == INVALID_HANDLE_VALUE)
    {
        printf("File creation failed\n");
        return -1;
    }
    pSimulator->GetFrameNumber(FrameNumber);
    ret = WriteFile(fd,&FrameNumber, 4,&wrt,NULL);
    if( (ret == 0) || (wrt != 4) )
    {
        printf("Write Failed");
        return -1;
    }
    int Length = *(int*)(Log);
    ret = WriteFile(fd,Log,Length,&wrt,NULL);
    if( (ret == 0) || (wrt != Length) )
    {
        printf("Write Failed");
        return -1;
    }
    CloseHandle(fd);
    return 0;
}
```
pCmdServer->Init(CaptureFunction);
pSimulator->StartSimulation("Path.sim", NULL, NULL);
pSimulator->SaveVardef();
pCmdServer->StartCapture();
pSimulator->Step();
pSimulator->Step();
pCmdServer->StopCapture();
pSimulator->EndSimulation();
pCmdServer->Close();
...

If the Init() method has the device name, the function pointer also should contain the device name as one of the arguments. If the same function pointer is used for multiple virtual controllers, it can be used in the function to differentiate between all capture messages.

Sample code for replay is as follows:

pCmdServer = new cCmdServer;
pSimulator = new Simulator;
struct ACRCaptureBuffer CMDBuffer;
pSimulator->PauseSimulation();
pSimulator->BackTrackSimulation();
fd = CreateFile("Cmdlog",FILE_READ_DATA,FILE_SHARE_READ,NULL,OPEN_ALWAYS,
FILE_ATTRIBUTE_NORMAL,NULL);
if(fd)
{

while(ReadFile(fd,&FrameNumber,4,&rd,NULL) && rd != 0)
{
 while(CurrentFrameNumber != FrameNumber)
 {
 pSimulator->Step(true);
 pSimulator->GetFrameNumber(CurrentFrameNumber);
 Sleep(pSimulator->GetConfiguredBaseFrameRate());
 }
 ret = ReadFile(fd1,&CMDBuffer,2*sizeof(int),&rd,NULL);
 int LengthToRead = *(int*)&CMDBuffer - (2*sizeof(int));
 int CaptureMsgType = *((int*)&CMDBuffer+1);
 ret =
 ReadFile(fd1,(char*)&CMDBuffer+(2*sizeof(int)),LengthToRead,
 &rd,NULL);
 Status = pSimulator->Replay((char
 *)&CMDBuffer,CMDBuffer.mLength);
}
CloseHandle(fd1);
Glossary of Terms

API Application Programming Interface. A set of functions that provide application functions to other components

.dll Dynamic Link Library (file extension)

EGD Ethernet Global Data. Control network and protocol for the controller. Devices share data through EGD exchanges (pages)

Fidelity The ability of the simulation and the controls to match the operation of the running power plant

GUI graphical user interface

HMI Human-Machine Interface

IC Initial Condition (simulation state)

Online Mode that provides full CPU communications, allowing data to be both read and written. It is the state of the application when it is communicating with the system for which it holds the configuration. Online is also a download mode where the device is not stopped and then restarted.

pcode A binary set of records created by the application, which contain the controller application configuration code for a device. Pcode is stored in RAM and Flash memory.

pin Block, macro, or module parameter that creates a variable used to make interconnections.

Plant Data Highway (PDH) Ethernet communication network between the HMI Servers and the HMI Viewers and workstations

product code (runtime) Software stored in the controller’s Flash memory that converts application code (pcode) to executable code.

runtime Refer to product code

SDI System Data Interface

Sequence of Events (SOE) High-speed record of contact transitions taken during a plant event for data analysis.

server A computer that gathers data over the Ethernet from plant devices, and makes the data available to computer-based operator interfaces known as viewers.

simplex Operation mode that requires only one set of control and I/O, and generally uses only one channel. The entire Mark VIe control system can operate in simplex mode.

simulation Running a system without all configured I/O devices by modeling the behavior of the machine and the devices in software.

TCP/IP Communication protocols developed to inter-network dissimilar systems. It is a de facto UNIX standard, but is supported on almost all systems. TCP controls data transfer and IP provides the routing for functions, such as file transfer and email.

trend A time-based plot to show the history of values, similar to a recorder, available in the Turbine Historian.

Unit Data Highway (UDH) Connects the Mark VI controller, static starter control system, excitation control system, PLCs, and other GE-provided equipment to the HMI Servers.

WorkstationST A ControlST application that provides a user interface for configuring various features such as alarm management, control system health, Historians, and data interfaces.
V

variable
 override 33
Virtual controller
 create 20
Virtual Controller
 features 8

W

WorkstationST configuration 23