The Northern Italian town of Cameri could be easily mistaken for a quiet farming commune. But take a short ride through the rolling fields of the fertile Po Valley that surround it and you’ll discover a startling contrast.


Cameri is the home of the only final assembly plant outside the United States for Lockheed Martin’s F-35B Joint Strike Fighter, a stealthy jet that can take off and land vertically. And just across from the plant’s runway stands another futuristic manufacturing gem: Avio Aero’s 3D-printing factory making sleek turbine blades for the GE9X, the world’s largest jet engine, which took its maiden flight last week.

Learn here how GE Additive is using additive manufacturing technologies to help advance aviation factory capabilities in the Northern Italian town of Cameri.

GE Aviation acquired Avio Aero in 2013 and developed the GE9X engine for Boeing’s next-generation 777X jets. The 3D-printed blades spin inside the engine at 2,500 times per minute and face searing heat and titanic forces. “These are big blades,” says Giorgio Abrate, general manager for engineering at Avio Aero. “We ran a lot of experiments to get the job right.”

The 3D printing factory, which looks like a blue and gray jewel box of steel and glass from the outside, holds 20 black, wardrobe-sized 3D printers, made by Arcam. A single machine can simultaneously print six turbine blades directly from a computer file by using a powerful 3-kilowatt electron beam. The beam “grows” the blades, which are 40 centimeters long, by welding together thin layers of titanium aluminide powder, one after another.

Jet engine designers love this strong, heat-resistant wonder material, also known as TiAl. It weighs 50 percent less than the metal alloys typically used in aviation. But  TiAl is also very brittle. Until 3D printing came along, the only way to shape it involved molding, a somewhat dirty process that requires expensive tools. “This factory has helped us understand what the art of the possible is with additive manufacturing,” said David Joyce, president and CEO of GE Aviation.

This article was originally published on GE Reports.