

M2 Series 5 Steel 316L

Parameters for GE Additive's Concept Laser M2 Series 5

Data in this material datasheet represent material built with 25 and 50 µm layer thicknesses and in a nitrogen atmosphere on a Concept Laser M2 Series 5 single-laser or dual-laser machine. Values listed are typical.

316L Stainless Steel

316L is a chromium-nickel-molybdenum austenitic stainless steel having a higher corrosion resistance compared to the most common stainless steel 304 without any significant disadvantages in costs. By the addition of molybdenum this steel is particularly suitable for components within harsh chemical environments containing chlorides and other halides. Typical applications can be found across a wide range of industries like plant engineering, oil & gas industry, automotive, medical technology, and jewelry and components for molds. 316L is easily weldable and offers excellent ductility and high creep strength at elevated temperatures.

M2 Series 5 Steel 316L

The 316L parameters for the Concept Laser M2 Series 5 are developed leveraging the performance of the previous M2. The base parameter deliver good surface quality while maintaining a very good density, mechanical strength and productivity. For highest all-around surface quality, particularly within overhang downskin and upskin regions, the surface parameter has been developed.

All parameters succeed the minimum tensile properties specified in ASTM F3184 for additive manufactured parts in the stress relieved state.

M2 Series 5 Steel 316L

With corresponding approval* Steel 316L can be used for manufacturing components for acid- and corrosion-resistant applications in the following fields: plant engineering, automotive, medical technology, and jewelry and components for molds.

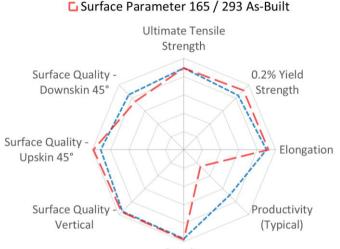
Data in this material datasheet represent material built with 25 and 50 µm layer thicknesses in a nitrogen atmosphere on a Concept Laser M2 Series 5 single-laser or dual-laser machine. Values listed are typical.

POWDER CHEMISTRY

316L powder chemical composition according to ASTM F3184 - UNS S31603 / ASTM A276.

MACHINE CONFIGURATION

- Concept Laser M2 Series 5 (single-laser or dual-laser)
- Nitrogen gas
- Rubber/Steel recoater blade


AVAILABLE PARAMETERS

- Base Parameter 360**
- Base Parameter 365**
- Surface Parameter 165 / 293**
- **productivity optimized version (productivity bundle required)

THERMAL STATES

- 1. As-Built
- Stress Relief according to AMS2759/11A (SR1) SR1: 1h at 899°C, with air cooling
- Solution Anneal according to AMS2659/4D (SOLN1) SOLN1: 1h at 1066°C, with air cooling
- 4. Solution Anneal (SOLN2) SOLN2: 4h at 1100°C, with water quench

PARAMETER COMPARISON

C Base Parameter 360 / 365 As-Built

Spider Plot is generated by normalizing typical material data (containing both horizontal and vertical data) against a range defined for each material family. For **Stainless Steels**, the ranges are as follows: UTS: 0-750 MPa, 0.2%YS: 0-650 MPa, Elongation: 0-70%, Density: 99-100%, Productivity: 5-30 cm³/h, Surface Quality (all): 5-50 μ m

50 μm layer thickness, steel recoater 50 μm layer thickness, rubber recoater 25 μm layer thickness, rubber recoater

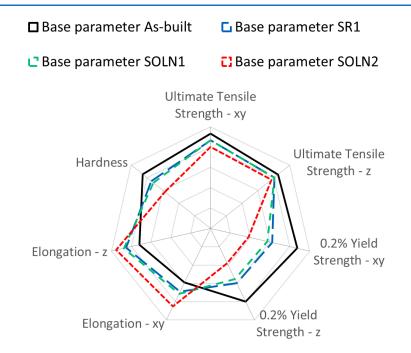
	(cm³/h)
Typical build rate ¹ w/coating	21.1
Theoretical melting rate ² bulk per Laser	17.8

¹Using standard Factory Acceptance Test layout and 2 lasers ²Calculated (layer thickness x scan velocity x hatch distance)

PHYSICAL DATA AT ROOM TEMPERATURE

	Surfa		Surface Roug (μm			
	45°	60°	75°			
Upskin	10	7	6	Н	9	
Downskin	12	10	7	V	8	
	Relativ	Relative Density Hardnes (%) (HV10)			Poisson's	s Ratio
Thermal State	Н	V	Н	V	Н	V
As-Built	99.9	99.9	213			
SR1			187			
SOLN1			180			
SOLN2			144			

TENSILE DATA


Tensile testing done in accordance with ASTM E8 and ASTM E21

Test Temperature: RT	Moduli	us of Elasticity (GPa)	0.2% Strei (MF	ngth	Ultimate ⁻ Streng (MPa	gth	Elonga (%		Reduction (%	
Thermal State	Н	V	Н	V	Н	V	Н	V	Н	V
As-Built	188	161	565	520	695	635	41.0	50.0	68.5	72.5
SR1	197	197	405	385	650	600	48.0	59.5	67.0	71.5
SOLN1	200	198	370	360	650	600	49.5	61.0	64.5	71.5
SOLN2	190	182	250	245	600	575	59.5	66.5	63.5	68.5

H: HORIZONTAL (XY) orientation V: VERTICAL (Z) orientation

* All of the figures contained herein are approximate only. The figures provided are dependent on a number of factors, including but not limited to, process and machine parameters, and the approval is brand specific and/or application specific. The information provided on this material data sheet is illustrative only and cannot be relied on as binding. ** Roughness measurements have been performed according to DIN EN ISO 4287 and DIN EN ISO 4288. In general analysis of the surface quality is strongly dependent on the methodology used and deviations might be caused by different measurement set up. Vertical and horizontal sidewalls have been characterized using a tactile system, overhangs using an optical system.

Base Parameter

Spider Plot is generated by normalizing typical material data (containing both horizontal and vertical data) against a range defined for each material family. For **Stainless Steels**, the ranges are as follows: UTS: 0-750 MPa, 0.2%YS: 0-650 MPa, Elongation: 0-70 %, Hardness: 0-250 HV10

SEM IMAGES (low magnification)

Horizontal
Vertical

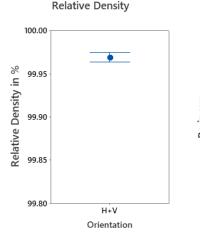
As-Built
Image: Comparison of the comparison of

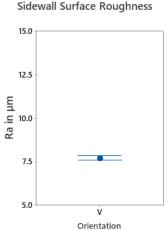
H: HORIZONTAL (XY) orientation V: VERTICAL (Z) orientation * All of the figures contained herein are approximate only. The figures provided are dependent on a number of factors, including but not limited to, process and machine parameters, and the approval is brand specific and/or application specific. The information provided on this material data sheet is illustrative only and cannot be relied on as binding.

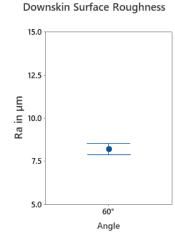
M2 Series 5 Steel 316L

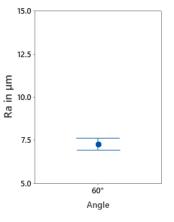
PLATFORM STABILITY

Base Parameter

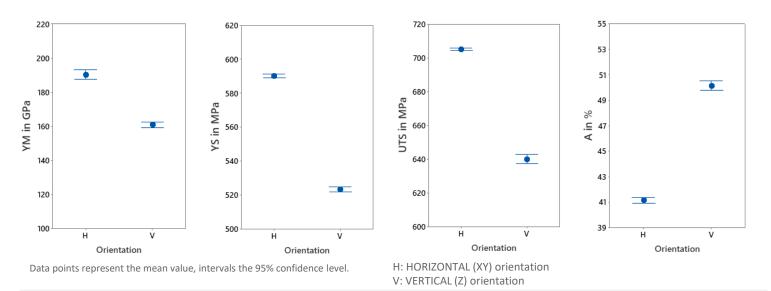

The platform stability build evaluates porosity, roughness and tensile properties across different positions and orientations. To illustrate the position dependency of the M2 Series 5, the samples were homogenously distributed across the platform on 16 different positions. Regarding surface quality all sides of the specimen, so all orientations with respect to gas flow and optical system, are included in the analysis. Data shown below is dependent on part & print layout as well as batch chemistry and thus might deviate from "typical values" given on previous pages.


BUILD JOB DESIGN AND SUMMARIZED DATA (AS-BUILT)




	Sample Size	Mean	St.Dev.		Sample Size	Mean	St.Dev.
Rel. Density in %	32	99.97	0.02	YM in GPa (H/V)	16/16	190/161	6/4
Sidewall Roughness Ra in μm	64	8	1	YS in MPa (H/V)	16/16	590/523	3/3
Upskin Roughness Ra in μm (60°)	64	8	1	UTS in MPa (H/V)	16/16	705/640	2/6
Downskin Roughness Ra in µm (60°)	64	8	1	Elongation in % (H/V)	16/16	41.1/50.1	0.5/0.7

RESULTS – RELATIVE DENSITY AND SURFACE QUALITY



ge.com/additive

5/7

Upskin Surface Roughness

RESULTS - MECHANICAL PROPERTIES IN AS-BUILT CONDITION

M2 Series 5 Steel 316L

All data and figures contained herein are approximate only. All information provided is dependent on a number of factors, including but not limited to, process and machine parameters, and the approval is brand specific and/or application specific. The information provided on this material data sheet is illustrative only and cannot be relied on as binding.

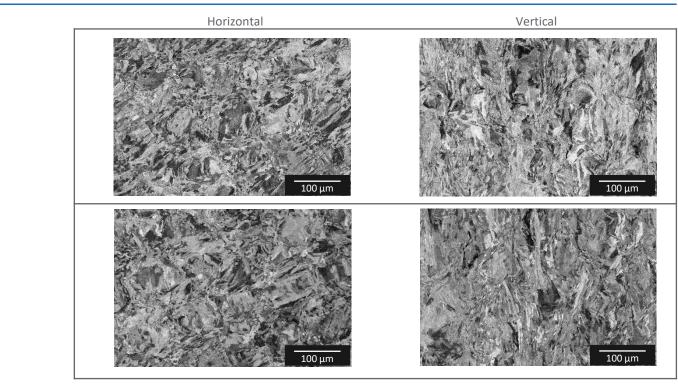
		Productivity
	Standard	optimized
	(cm³/h)	(cm³/h)
Typical build rate ¹ w/coating	7.7	9.3
Theoretical melting rate ² bulk per Laser	7.2	7.2

¹Using standard Factory Acceptance Test layout and 2 lasers ²Calculated (layer thickness x scan velocity x hatch distance)

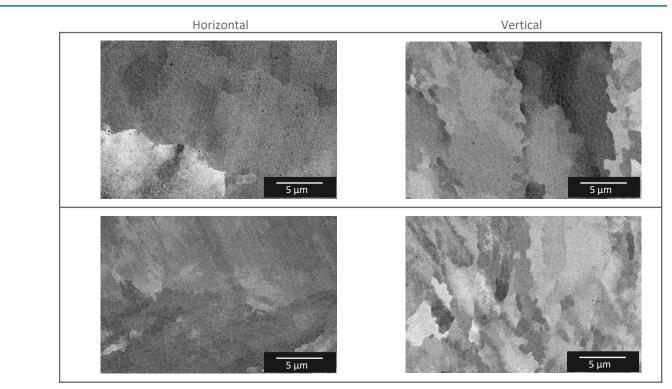
PHYSICAL DATA AT ROOM TEMPERATURE

	Surfa		Surface Rougl (µm			
	45°	60°	75°			
Upskin	6	5	5	Н	9	
Downskin	17	7	6	V	7	
		e Density (%)	Hard (HV		Poisson's	Ratio
Thermal State	H	V	Н	V	Н	V
As-Built	99.9	99.9	220			
SR1			220			

TENSILE DATA


Tensile testing done in accordance with ASTM E8 and ASTM E21

Test Temperature: RT	emperature: Modulus of Elasticity		0.2% Stre	Yield ngth	Ultimate Stren		Elonga	ation	Reductior	of Area
		(GPa)	(MPa)		(MPa)		(%)		(%)	
Thermal State	Н	V	Н	V	Н	V	Н	V	Н	V
As-Built	208	172	645	550	740	600	34.5	65.0		
SR1	205	189	610	520	765	600	31.5	52.1		


H: HORIZONTAL (XY) orientation V: VERTICAL (Z) orientation

* All of the figures contained herein are approximate only. The figures provided are dependent on a number of factors, including but not limited to, process and machine parameters, and the approval is brand specific and/or application specific. The information provided on this material data sheet is illustrative only and cannot be relied on as binding. ** Roughness measurements have been performed according to DIN EN ISO 4287 and DIN EN ISO 4288. In general analysis of the surface quality is strongly dependent on the methodology used and deviations might be caused by different measurement set up. Vertical and horizontal sidewalls have been characterized using a tactile system, overhangs using an optical system. As-Built

SR1

SEM IMAGES (high magnification)

SR1

As-Built

H: HORIZONTAL (XY) orientation V: VERTICAL (Z) orientation * All of the figures contained herein are approximate only. The figures provided are dependent on a number of factors, including but not limited to, process and machine parameters, and the approval is brand specific and/or application specific. The information provided on this material data sheet is illustrative only and cannot be relied on as binding.