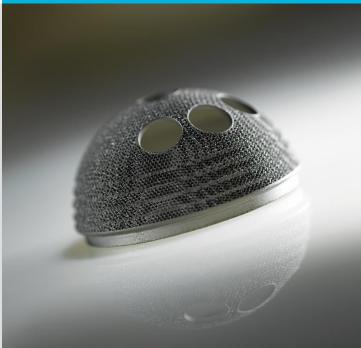


13 Al

M2 Series 5 1 kW Ti-64 Grade 23

Parameter for GE Additive's Concept Laser M2 Series 5 1 kW

Data in this material datasheet represents material built with 60 and 120 μ m layer thicknesses in an argon atmosphere on a Concept Laser M2 Series 5.1 kW single-laser or dual-laser machine and requires build-plate heating. Values listed are typical.



Titanium

In general, titanium (Ti) and its alloys have been used extensively in many industries due to their low density, high corrosion resistance and oxidation resistance. Titanium alloys are used in additive manufacturing to produce a wide range of industrial components, including blades, fasteners, rings, discs, hubs and vessels. Titanium alloys are also used to produce highperformance race engine parts like gearboxes and connecting rods. Due to its proven biocompatibility and its long history in the medical industry, it is an established material used for medical applications such as medical implants.

M2 Series 5 1 kW Ti-64 Grade 23

The parameters for the Concept Laser M2 Series 5 1 kW are developed leveraging the performance of the previous M2 generations of Ti-64. The productivity 1 kW parameter has a layer thickness of 60 μ m and provides nearly 30% higher productivity than the 60 μ m 400 W counterpart, but still offers similar surface quality. The maximum productivity of 93 cm³/h for a dual-laser system – can be reached by the premium 1 kW productivity parameter having a layer thickness of 120 μ m. All parameters have outstanding tensile properties in stress relieved state and meet the ASTM F136-02a (ELI Grade 23)/ ASTM F3001 standard.

M2 Series 5 Titanium Ti-64 Grade 23

With an appropriate approval* Ti-64 Grade 23 can be used for aerospace, orthopedic, and dental applications.

Data in this material datasheet represent material built with 60 and 120 µm layer thicknesses in an argon atmosphere on a Concept Laser M2 Series 5 1 kW single-laser or dual-laser machine and requires build-plate heating. Values listed are typical.

POWDER CHEMISTRY

Ti-64 Grade 23 powder chemical composition according to ASTM F136-02a (ELI Grade 23)/ ASTM F3001. For additional information on Ti-64 Grade 23 powder, visit <u>https://www.advancedpowders.com/powders/titanium/ti-6al-4v-23</u>.

MACHINE CONFIGURATION

- Concept Laser M2 Series 5 1 kW (single-laser or dual-laser)
- Argon gas
- Rubber recoater blade

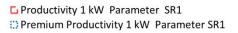
AVAILABLE PARAMETERS

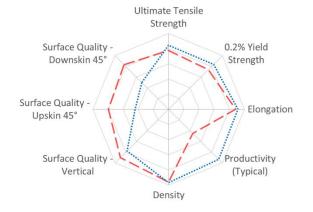
- Productivity 1 kW Parameter 364
- Premium Productivity 1 kW Parameter 318

60 μm layer thickness, rubber recoater 120 μm layer thickness, rubber recoater

THERMAL STATES

1. As-Built 2. Stress Relief (SR1) SR1: 900°C, 1 hour in argon, furnace cooling


PARAMETER COMPARISON


M2 Series 5 (2 x 400 W)

- Surface Parameter SR1
- Productivity Parameter SR1
- Premium Productivity Parameter SR1

Ultimate Tensile Strength O.2% Yield Strength Surface Quality -Upskin 45° Surface Quality -Upskin 45° Surface Quality -Vertical Density

M2 Series 5 (2 x 1 kW)

Spider Plot is generated by normalizing typical material data (containing both horizontal and vertical data) against a range defined for each material family. For **Ti-64**, the ranges are as follows: UTS: 600-1100 MPa, 0.2%YS: 500-1000 MPa, Elongation: 0-20 %, Density: 99-100 %, Productivity: 0-100 cm³/h, Surface Quality (all): 50-5 μm

TYPICAL BUILD RATE

Productivity 1 kW Parameter

			Produc	tivitv								
(cm ³ /h)												
Typical build rate ¹ w/coating Theoretical melting rate ² bulk per Laser				44.7 ¹ Using standard Factory Acceptance Test layout an 69.1 ² Calculated (layer thickness x scan velocity x hatch								
			69.	1		² Calculated	d (layer thick	ness x scan ve	elocity x hato	h distance)		
PHYSICAL DATA AT		MPERATURI	E									
	oughness Ra*	** – Overha	ing	Surface Roughness Ra**								
			(μm)						(µm)			
Upskin		45° 15	60° 13		75° 10	1	. –	18				
Downskin		13	8		7	. H		18 10				
Downskin							v	10				
		Relative D (%)	ensity					Poisson's Ratio				
Thermal State	ŀ	4	V		(HV10) H V			Н		V		
As-Built).9	99.9		47							
SR1).9	99.9 328									
TENSILE DATA						ing done in a	accordanc	e with AST	M E8 and	ASTM E2		
est Temperature:												
RT			0.2%	Yield	Ultimate	Tensile						
	us of Elasticit		ength	Strength		Elongation F		Reductio	Reduction of Area			
	(GPa)		(MPa)		(MPa)		(%)		(%)			
hermal State	H	V	Н	V	Н	V	Н	V	Н	V		
s-Built	110	112	975	1070	1125	1190	8	8	23	21		
R1	117	111	905	830	1005	965	15	13	39	34		
SEM IMAGES												
		Vertical					Horizontal					
									1227			
				CALL.	11		S profe	Charles !!	A. ath	1 Starte		
		A. Shi	10 m	Light (60	N/ A	AL al		
		AN AS		AF	13th	11	16.5	1 Kaz	Constant.	11		
As-Built		Sec. 1	19		153		SIL	1 Star	INC	101		
		1 all the	William Ball	and A	Dere				13000	- jug		
		1.00 1 2	133 A 10	ST NUS			2 22/2			10 AN		
		2164	ST YY	10 µm		1			10 µm			
		1 1 1	SI / M	~ 1				ALL		1 K 100		
					1	13	11.		$J \downarrow \downarrow$			
		1	S/~			8	11.	1,41	the second	5		
		12/	F. X		11		1 6	111				
CD1		11%		V.A	. 3		111	127				
SR1			114	-//	7.1	1	111			1 m		
		1			-	Sec.		1				

10 µm

H: HORIZONTAL (XY) orientation V: VERTICAL (Z) orientation * All of the figures contained herein are approximate only. The figures provided are dependent on a number of factors, including but not limited to, process and machine parameters, and the approval is brand specific and/or application specific. The information provided on this material data sheet is illustrative only and cannot be relied on as binding.

** Roughness measurements have been performed according to DIN EN ISO 4287 and DIN EN ISO 4288. In general analysis of the surface quality is strongly dependent on the methodology used and therefore deviations might be observed depending on methodology used. Vertical and horizontal sidewalls have been characterized using a tactile system, overhangs using an optical system.

10 µm

TYPICAL BUILD RATE

Tensile testing done in accordance with ASTM E8 and ASTM E21

· · ·	d rate ¹ w/coating ng rate ² bulk per Laser	/ity) 	0	¹ Using standard Factory Acceptance Test layout and 2 laser ² Calculated (layer thickness x scan velocity x hatch distance					
PHYSICAL DATA AT R	Surface Roughness Ra**								
	45°	(μm) 60°	75°		(μn	1)			
Upskin	31	23	17	П н Г	45				
Downskin	28	15	12	V	16				
	Relative (%	,	Hard (HV		Poisson's Ratio				
Thermal State	Н	V	Н	V	Н	V			

SR1 TENSILE DATA

As-Built

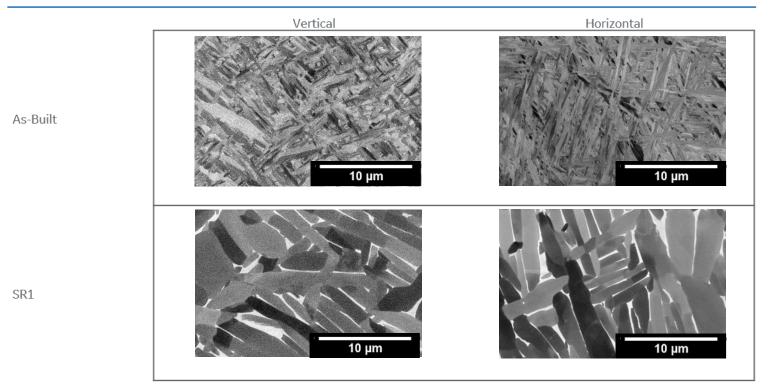
99.9

99.9

99.9

99.9

Test Temperature: RT	Modulus of Elasticity		0.2% Yield Strength		Ultimate Tensile Strength		Elongation		Reduction of Area	
		(GPa)	(MPa)		(MPa)		(%)		(%)	
Thermal State	Н	V	Н	V	Н	V	Н	V	Н	V
As-Built	114	113	1065	1115	1175	1230	10.5	5.5	35	19
SR1	118	117	920	910	1025	1015	16.5	14.0	40	27


353

331

SEM IMAGES

H: HORIZONTAL (XY) orientation V: VERTICAL (Z) orientation * All of the figures contained herein are approximate only. The figures provided are dependent on a number of factors, including but not limited to, process and machine parameters, and the approval is brand specific and/or application specific. The information provided on this material data sheet is illustrative only and cannot be relied on as binding.

** Roughness measurements have been performed according to DIN EN ISO 4287 and DIN EN ISO 4288. In general analysis of the surface quality is strongly dependent on the methodology used and therefore deviations might be observed depending on methodology used. Vertical and horizontal sidewalls have been characterized using a tactile system, overhangs using an optical system.