

Ti Cr Fe Co Ni Cu

X Line 2000R Nickel 625

Parameter for GE Additive's Concept Laser X Line 2000R

Data in this material datasheet represents material built with 60 µm layer thickness and in an argon atmosphere on a Concept Laser X Line 2000R. Values listed are typical.



Nickel 625

Austenitic nickel-chromium superalloy Nickel 625 possesses excellent resistance to oxidation and corrosion combined with high strength over a wide temperature range from cryogenic temperatures to 982°C. The high (creep) strength is derived by solid-solution hardening of the nickel-chromium matrix, thus no age-hardening has to be applied. The alloy can be readily welded, which makes this alloy suitable for additive manufacturing. Typically, Nickel 625 is widely used in aerospace, marine engineering, chemical processing, oil and gas industry as well as power industry applications.

X Line 2000R Nickel 625

The Nickel 625 parameter for the Concept Laser X Line 2000R is developed leveraging the experience with the alloy on the M2 Series 5 generation. The base parameter is a 60 μm parameter that delivers a good balance between surface quality and productivity. Furthermore, the parameter offers a very high density leading to good strength and elongation properties.

X Line 2000R Nickel 625

With corresponding approval* Nickel 625 can be used for manufacturing components for high-temperature applications.

Data in this material datasheet represents material built with $60 \, \mu m$ layer thickness and in an argon atmosphere on a Concept Laser X Line 2000R. Values listed are typical.

POWDER CHEMISTRY

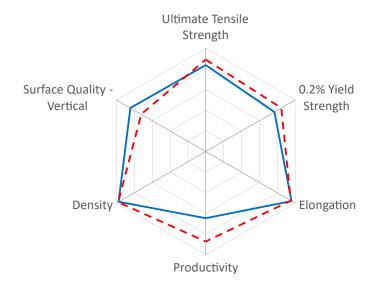
Nickel 625 powder chemical composition according to ASTM F3056 / AMS7000/ UNS N06625 For additional information on Nickel 625 powder, visit https://www.advancedpowders.com/powders/nickel/625.

MACHINE CONFIGURATION

- Concept Laser X Line 2000R
- Argon gas
- Rubber

AVAILABLE PARAMETER

- Base Parameter 310


60 µm layer thickness, argon gas, rubber recoater

THERMAL STATES

- 1. As-Built
- 2. Stress relief (SR) SR: 870°C, 1 hour in argon

PARAMETER COMPARISON

□ Parameter 140 As-Built (M2 Series5) □ Parameter 310 As-Built

Spider Plot is generated by normalizing typical material data (containing both horizontal and vertical data) against a range defined for each material family. For nickel-based superalloy **Nickel 625**, the ranges are as follows: UTS: 0-1050 MPa, 0.2%YS: 0-750 MPa, Elongation: 0-50 %, Density: 99-100 %, Productivity: 5-35 cm³/h, Surface Quality: 5-40 µm

X Line 2000R Nickel 625 ge.com/additive 2/3

TYPICAL BUILD RATE Base Parameter 310

	(cm ³ /h)
Typical build rate¹ w/coating	30.5
Theoretical melting rate ² bulk per Laser	22.5

¹Using standard Factory Acceptance Test layout and 2 lasers ²Calculated (layer thickness x scan velocity x hatch distance)

PHYSICAL DATA AT ROOM TEMPERATURE

	Surfac	e Roughness Ra** (µm)		Surface Roughness Ra** (µm)		
	45°	60°	75°			
Upskin	11 9 8		Н			
Downskin	32	18	13	V	15	
	Relative Density (%)		Hardness (HV10)		Poisson's Ratio	
Thermal State	Н	V	Н	V	Н	V
As-Built	99.9	99.9	271			
SR	99.9	99.9	276			

TENSILE DATA

Tensile testing done in accordance with ASTM E8 and ASTM E21

Test Temperature: RT	Modulus of Elasticity (GPa)		Stre	0.2% Yield Strength (MPa)		Ultimate Tensile Strength (MPa)		Elongation (%)		Reduction of Area	
Thermal State	Н	V	Н	V	Н	V	Н	V	Н	V	
As-Built	180	140	685	580	980	890	37.0	43.0			
SR	175	150	620	575	980	900	39.0	45.5			

H: HORIZONTAL (XY) orientation V: VERTICAL (Z) orientation

X Line 2000R Nickel 625 ge.com/additive 3/3

^{*} All of the figures contained herein are approximate only. The figures provided are dependent on a number of factors, including but not limited to, process and machine parameters, and the approval is brand specific and/or application specific. The information provided on this material data sheet is illustrative only and cannot be relied on as hinding

^{**} Roughness measurements have been performed according to DIN EN ISO 4287 and DIN EN ISO 4288. In general analysis of the surface quality is strongly dependent on the methodology used and therefore deviations might be observed depending on methodology used. Vertical and horizontal sidewalls have been characterized using a tactile system, overhangs using an optical system.