

M2 Series 5 Aluminum AlSi7Mg

Parameters for GE Additive's Concept Laser M2 Series 5

Data in this material datasheet represents material built with a 30, 60 and 90 μ m layer thicknesses and in an argon or nitrogen atmosphere on a Concept Laser M2 Series 5 single-laser or dual-laser machine. The 30 and 60 μ m layer thicknesses require build plate heating. The 90 μ m layer thickness requires a Concept Laser M2 Series 5 1 kW single-laser or dual-laser machine. Values listed are typical.

Aluminum

Lightweight aluminum alloys for additive manufacturing are traditionally used in many industrial. aerospace and automotive applications. They possess high strength-toweight ratios, and they also demonstrate good resistance to metal fatigue and corrosion. Due to the geometrically complex possible with additive structures manufacturing, further weight reduction is often possible with little or no compromise in strength and overall performance. One key advantage of aluminum alloy powders is that they typically offer better build rates than other metal powders.

M2 Series 5 AlSi7Mg

The parameters for the Concept Laser M2 Series 5 are developed leveraging the performance of the previous M2 generations of AlSi7Mg parameters. The surface parameter is a 30 µm parameter that produces the best surface roughness, having less than 10 µm without bead blast or shot peening. The productivity parameter has a layer thickness of 60 µm and provides double the productivity of the surface parameter, with the trade off of double the surface finish. Exceptional high productivity – reaching 71 cm³/h for a 1 kW dual-laser system - can be reached by the high productivity parameter having a layer thickness of 90 µm. All parameters can be used with either a rubber or steel recoater blade and succeed the minimum tensile properties specified in AMS 4289 in the heat treated state.

M2 Series 5 Aluminum AlSi7Mg

With appropriate approval* AlSi7Mg can be used for lightweight components in aerospace and industrial applications.

Data in this material datasheet represents material built with a 30, 60 and 90 µm layer thicknesses and in an argon or nitrogen atmosphere on a Concept Laser M2 Series 5 single-laser or dual-laser machine. The 30 and 60 µm layer thicknesses require build plate heating. The 90 µm layer thickness requires a Concept Laser M2 Series 5 1 kW single-laser or dual-laser machine Values listed are typical.

POWDER CHEMISTRY

Aluminum AlSi7Mg powder chemical composition according to AMS 4289. For additional information on AlSi7Mg powder, visit <u>AP&C</u>.

MACHINE CONFIGURATION

- Concept Laser M2 Series 5 (single-laser or dual-laser) or M2 Series 5 1 kW (single-laser or dual-laser)
- Argon and Nitrogen gas
- Stainless steel or rubber recoater blade

AVAILABLE PARAMETERS

	Layer thickness	Recoater	Gas		
M2 Series 5					
- Surface Parameter 139	70 um	steel	argon		
129 / 290**	50 μΠ	rubber	argon		
- Productivity Parameter 128 / 289**	60.um	steel	argon		
138 / 292**	ου μπ	rubber	argon		
- Hybrid Parameter 182	30/60 µm	rubber	argon		
M2 Series 5 1 kW					
- High Productivity Parameter 203	90 µm	steel	nitrogen		
	**Productivity opt	timized version (productivity	v bundle required)		

THERMAL STATES

- 1. As-Built
- 2. T6 Heat Treatment
- SOLN: 530 °C, 6 hours, water quench, AGE: 160°C, 5 hours

3. Vacuum Stress Relief + Hot Isostatic Press + Solution + Age (VSR+HIP+SOLN+AGE) VSR: 440°C, 1 hour in vacuum, HIP: 538°C, 8 hours at 100MPa, SOLN: 543°C, 8 hours, rapid quench, AGE: 160°C, 8 hours

PARAMETER COMPARISON (THERMAL STATE AS-BUILT)

Productivity Parameter As-Built
High Productivity Parameter As-Built
Surface Parameter As-Built

Spider Plot is generated by normalizing typical material data (containing both horizontal and vertical) against a range defined for each material family. For **Aluminum Alloys**, the ranges are as follows: UTS: 0-450 MPa, 0.2%YS: 0-300 MPa, Density: 99-100 %, Elongation: 0-30 %, Productivity: 5-80 cm³/h, Surface Quality (all): 40-5 µm

TYPICAL BUILD RATE

M2 Series 5

	Standard	Productivity optimized
	(cm³/h)	(cm³/h)
Typical build rate ¹ w/coating	12.7	17.5
Theoretical melting rate ² bulk per Laser	19.4	19.4

¹Using standard Factory Acceptance Test layout and 2 lasers ²Calculated (layer thickness x scan velocity x hatch distance)

PHYSICAL DATA AT ROOM TEMPERATURE

		Surface	Roughnes (µ	ss Ra**- Ov m)	verhang				Surface	e Roughnes (µm)	ss Ra**
		45°	60°		75°					., .	
Upskin		7	6		5			н 🗌		16	
Downskin		17	8		6			V		6	
		Relative (۹	Density 6)		Ha	ardness (HV5)			Po	isson's Rat	io
Thermal State		Н	V		Н		V		Н		V
As-Built		99.8	99.8		105						
VSR+HIP+SOLN+AG	E										
HORIZONTAL Thermal State		Гhermal Cond (W/m•К	uctivity)	Coeff. ()f Thermal E (mm/mm/K	xpansio	n	Thermal (m	Diffusivity 1²/s)	Spec (J	cific Heat ∕K∙kg)
As-Built											
VSR+HIP+SOLN+AGE		154.0			13.7 x 10 ⁻⁶			6.3	x 10 ⁻⁵		917
VERTICAL Thermal Conc Thermal State (W/m•H		Fhermal Cond (W/m•K	uctivity)	Coeff. ()f Thermal E (mm/mm/K	xpansio)	n	Thermal (n	Diffusivity 1²/s) 	Spec (J	cific Heat /K•kg)
VSR+HIP+SOLN+AGE		154.0			13.7 x 10 ⁻⁶			6.3	x 10 ⁻⁵		917
TENSILE DATA					Tensile to	esting d	one in	accordan	ce with AS	TM E8 and	ASTM E21
Test Temperature: RT	Modulus	of Elasticity	0.2% Stre	Yield ength _{Pa)}	Ultimate Stre	e Tensile ngth _{Pa)}	5	Elonga (%	ation	Reductio	on of Area %)
Thermal State	Н	V	Н	V	H	V		Н	V	H	V
As-Built	72	68	225	200	385	390		17.5	14.0		
VSR+HIP+SOLN+AGE											

H: HORIZONTAL (XY) orientation V: VERTICAL (Z) orientation

* All of the figures contained herein are approximate only. The figures provided are dependent on a number of factors, including but not limited to, process and machine parameters, and the approval is brand specific and/or application specific. The information provided on this material data sheet is illustrative only and cannot be relied on as binding.

** Roughness measurements have been performed according to DIN EN ISO 4287 and DIN EN ISO 4288. In general analysis of the surface quality is strongly dependent on the methodology used and therefore deviations might be observed depending on methodology used. Vertical and horizontal sidewalls have been characterized using a tactile system, overhangs using an optical system.

TYPICAL BUILD RAT	Έ
--------------------------	---

M2 Series 5

	Standard	Productivity optimized
	(cm³/h)	(cm³/h)
Typical build rate ¹ w/coating	27.5	38.6
Theoretical melting rate ² bulk per Laser	39.3	39.3

¹Using standard Factory Acceptance Test layout and 2 lasers ²Calculated (layer thickness x scan velocity x hatch distance)

PHYSICAL DATA AT ROOM TEMPERATURE

		Surface	e Roughnes	s Ra** - Ov	erhang			Surface	e Roughnes	s Ra**		
		15°	(μι 60°	11)	75°				(μπ)			
Upskin	Г	14	15		13		н Г		14			
Downskin		17	12		11		V		13			
		Relative	e Density		Har	dness		Pc	oisson's Rati	0		
Thormal State		ц (/0)		Ц	IV J) V	,	Ц		V		
As-Built	Г	99.5	99.5		10/	V						
VSR+HIP+SOI N+A	GF	99.9	99,9					0.352)			
								0.001	-			
HORIZONTAL		Thermal Cond	luctivity	Coeff. O	f Thermal Exp	ansion	Thermal	Diffusivity	Spec	ific Heat		
Thermal State		(W/m•ł	<)		(mm/mm/K)		(n	1 ² /s)	(J/	′K•kg)		
As-Built												
VSR+HIP+SOLN+AG	e 🗋	154.0			13.7 x 10 ⁻⁶		6.3	x 10 ⁻⁵		917		
VERTICAL		Thermal Cond	luctivitv	Coeff. O	f Thermal Exp	ansion	Thermal	Diffusivity	Spec	ific Heat		
Thermal State		(W/m•ł	<)	(mm/mm/K)			(n	1 ² /s)	(J/	′K•kg)		
As-Built												
VSR+HIP+SOLN+AG	e 🗋	154.0			13.7 x 10 ⁻⁶		6.3	x 10 ⁻⁵		917		
TENSILE DATA					Tensile tes	ting done	in accordar	nce with As	STM E8 and	ASTM E21		
			0.20/ 1	i a la	Lilting at a Tr	un eile						
rest remperature:	Moduli	is of Flasticity	U.2% Y Stron	ieia ath	Strengt	ensile b	Flongat	tion	Reduction	ofArea		
	Module	(GPa)	(MPa	a)	(MPa)	.11	(%)		(%)	UIAIEa		
Thermal State	Н	V	Н	V	H	V	H	V	H	V		
As-Built	70	67	225	210	385	385	12	8.5	14.0	10.5		
/SR+HIP+SOLN+AGE	67	68	270	255	340	325	11.5	11.5	28.0	27.0		
Test Temperature:												
150°C	Modu	lus of Elasticity	0.2	% YS	U	TS	Elo	ngation	Reductio	n of Area		
		(GPa)	1)	ЧРа)	(M	- 1Pa)	_101	(%)	(9	6)		
Thermal State	Н	V	Н	V	H	V	Н	V	H	V		
As-Built												
VSR+HIP+SOLN+AGE	55	5 56	215	210	250	245	15.5	14.5	39.5	38.0		

H: HORIZONTAL (XY) orientation V: VERTICAL (Z) orientation

* All of the figures contained herein are approximate only. The figures provided are dependent on a number of factors, including but not limited to, process and machine parameters, and the approval is brand specific and/or application specific. The information provided on this material data sheet is illustrative only and cannot be relied on as binding.

** Roughness measurements have been performed according to DIN EN ISO 4287 and DIN EN ISO 4288. In general analysis of the surface quality is strongly dependent on the methodology used and therefore deviations might be observed depending on methodology used. Vertical and horizontal sidewalls have been characterized using a tactile system, overhangs using an optical system.

PLATFORM STABILITY

Productivity Parameter

The platform stability build evaluates porosity, roughness and tensile properties across different positions and orientations. To illustrate the position dependency of the M2 Series 5, the samples were homogenously distributed across the platform on 16 different positions. Regarding surface quality all sides of the specimen, so all orientations with respect to gas flow and optical system, are included in the analysis. Data shown below are dependent on part & print layout as well as batch chemistry variations and thus might deviate from "typical values" given on previous pages.

BUILD JOB DESIGN AND SUMMARIZED DATA (AS-BUILT)

	Sample Size	Mean	St.Dev.		Sample Size	Mean	St.Dev.
Rel. Density in %	32	99.71	0.06	YM in GPa (H/V)	16/16	70/69	3/1
Sidewall Roughness Ra in µm	64	13	1	YS in MPa (H/V)	16/16	265/246	3/2
Upside Roughness Ra in µm (60°)	64	14	1	UTS in MPa (H/V)	16/16	403/405	2/2
Downside Roughness Ra in µm (60°)	64	11	1	Elongation in % (H/V)	16/16	10.9/6.9	1.1/0.9

RESULTS - RELATIVE DENSITY AND SURFACE QUALITY

Downskin Surface Roughness

RESULTS - MECHANICAL PROPERTIES IN AS-BUILT CONDITION

Data points represent the mean value, intervals the 95% confidence level.

H: HORIZONTAL (XY) orientation V: VERTICAL (Z) orientation

M2 Series 5 Aluminum AlSi7Mg

ge.com/additive 5/9

All data and figures contained herein are approximate only. All information provided is dependent on a number of factors, including but not limited to, process and machine parameters, and the approval is brand specific and/or application specific. The information provided on this material data sheet is illustrative only and cannot be relied on as binding.

M2 Series 5

As built SVSR+HIP+SOLN+AGE

Spider Plot is generated by normalizing typical material data (containing both horizontal and vertical data) against a range defined for each material family. For **Aluminum Alloys**, the ranges are as follows: UTS: 0-450 MPa, 0.2%YS: 0-300 MPa, Elongation: 0-30%, Density: 99-100%, Productivity: 5-30 cm³/h, Surface Quality (all): 40-5 μm

TYPICAL MICROSTRUCTURE

200X, VSR+HIP+SOLN+AGE, HORIZONTAL

200X, VSR+HIP+SOLN+AGE, VERTICAL

H: HORIZONTAL (XY) orientation V: VERTICAL (Z) orientation

* All of the figures contained herein are approximate only. The figures provided are dependent on a number of factors, including but not limited to, process and machine parameters, and the approval is brand specific and/or application specific. The information provided on this material data sheet is illustrative only and cannot be relied on as binding.

** Roughness measurements have been performed according to DIN EN ISO 4287 and DIN EN ISO 4288. In general analysis of the surface quality is strongly dependent on the methodology used and therefore deviations might be observed depending on methodology used. Vertical and horizontal sidewalls have been characterized using a tactile system, overhangs using an optical system.

TYPICAL BUILD RATE

M2 Series 5

	(cm³/h)
Typical build rate ¹ w/coating	13.9 (13-35) ³
Theoretical melting rate ² bulk per Laser	36.5

¹Using standard Factory Acceptance Test layout and 2 lasers

²Calculated (layer thickness x scan velocity x hatch distance) ³The hybrid parameter build rate is strongly dependent on application design, in particular wall thickness. For this parameter, a larger increase in productivity (faster build rate)

can be expected for parts having high volume/surface ratios.

PHYSICAL DATA AT ROOM TEMPERATURE

		Surface	e Roughnes (µ	ss Ra** - O m)	verhang			Surfac	e Roughne: (µm)	ss Ra**		
		45°	60°		75°							
Upskin		6 5			5		Н		20			
Downskin		17	7		5		V		6			
		Relative (9	Density %)		Н	ardness (HV5)		Po	oisson's Ra	tio		
Thermal State		Н	V		Н		V	Н		V		
As-Built		99.6	99.6		103							
VSR+HIP+SOLN+A	GE											
HORIZONTAL Thermal State		Thermal Conc (W/m•ł	luctivity ()	Coeff. ()f Thermal E (mm/mm/ł	xpansion	Ther	mal Diffusivity (m²/s)	y Spe (.	cific Heat J/K•kg)		
As-Built												
VSR+HIP+SOLN+AG	e 🗌	154.0		13.7 x 10 ⁻⁶	5		6.3 x 10 ⁻⁵		917			
VERTICAL Thermal State		Thermal Conductivity (W/m•K)		Coeff. ()f Thermal E (mm/mm/ł	xpansion	Ther	mal Diffusivity (m²/s)	/ Spe (.	917 Specific Heat (J/K•kg)		
As-Built												
VSR+HIP+SOLN+AG	e 🗋	154.0			13.7 x 10-6	5		6.3 x 10 ⁻⁵		917		
TENSILE DATA					Tensile	testing do	one in accoi	rdance with A	STM E8 and	d ASTM E21		
Test Temperature: RT	Modulu	s of Elasticity	0.2% Stre	Yield ngth	Ultimate Stre	e Tensile ngth	Elo	ngation	Reductio	on of Area		
Thermal State	Н	V	Н	V	H	V	Н	V	Н	V		
As-Built	70	69	220	200	380	380	14.0	10.0				
Т6												

H: HORIZONTAL (XY) orientation V: VERTICAL (Z) orientation

* All of the figures contained herein are approximate only. The figures provided are dependent on a number of factors, including but not limited to, process and machine parameters, and the approval is brand specific and/or application specific. The information provided on this material data sheet is illustrative only and cannot be relied on as binding.

** Roughness measurements have been performed according to DIN EN ISO 4287 and DIN EN ISO 4288. In general analysis of the surface quality is strongly dependent on the methodology used and therefore deviations might be observed depending on methodology used. Vertical and horizontal sidewalls have been characterized using a tactile system, overhangs using an optical system.

M2 Series 51 kW

	(cm³/h)
Typical build rate ¹ w/coating	71.0
Theoretical melting rate ² bulk per Laser	106.3

¹Using standard Factory Acceptance Test layout and 2 lasers ²Calculated (layer thickness x scan velocity x hatch distance)

PHYSICAL DATA AT ROOM TEMPERATURE

	Surfa	ce Roughness Ra** (µm)	Surface Roughness Ra** (µm)			
_	45°	60°	75°			
Upskin	26	21	17	Н	23	
Downskin	23	15	14	V	15	
	Relativ	ve Density (%)	Hard (H)	ness /5)	Poisson's	s Ratio
Thermal State	Н	V	Н	V	Н	V
As-Built	99.4	99.4	97			
Т6			93			

TENSILE DATA

Tensile testing done in accordance with ASTM E8 and ASTM E21

Test Temperature: RT	Modulus o (G	f Elasticity Pa)	0.2% Stre (MI	Yield ngth Pa)	Ultimate Stre (Mi	e Tensile ngth _{Pa)}	Elong (%	ation	Reductio	n of Area
Thermal State	Н	V	Н	V	Н	V	Н	V	Н	V
As-Built	71	70	190	185	350	345	10	6		
Т6	69	69	235	225	295	285	5	6.5		

H: HORIZONTAL (XY) orientation V: VERTICAL (Z) orientation

* All of the figures contained herein are approximate only. The figures provided are dependent on a number of factors, including but not limited to, process and machine parameters, and the approval is brand specific and/or application specific. The information provided on this material data sheet is illustrative only and cannot be relied on as binding.

** Roughness measurements have been performed according to DIN EN ISO 4287 and DIN EN ISO 4288. In general analysis of the surface quality is strongly dependent on the methodology used and therefore deviations might be observed depending on methodology used. Vertical and horizontal sidewalls have been characterized using a tactile system, overhangs using an optical system.

PLATFORM STABILITY

M2 Series 5 1 kW

High Productivity Parameter

The platform stability build evaluates porosity, roughness and tensile properties across different positions and orientations. To illustrate the position dependency of the M2 Series 5, the samples were homogenously distributed across the platform on 16 different positions. Regarding surface quality all sides of the specimen, so all orientations with respect to gas flow and optical system, are included in the analysis. Data shown below are dependent on part & print layout as well as batch chemistry variations and thus might deviate from "typical values" given on previous pages.

BUILD JOB DESIGN AND SUMMARIZED DATA (AS-BUILT)

Y al	••••	85
a		

	Sample Size	Mean	St.Dev.			Sample Size	Mean	St.Dev.
Rel. Density in %	32	99.49	0.08		YM in GPa (H/V)	16/16	69/69	2/2
Sidewall Roughness Ra in µm	64	16	2		YS in MPa (H/V)	16/16	254/221	2/3
Upside Roughness Ra in µm (60°)	64	19	4		UTS in MPa (H/V)	16/16	385/353	3/6
Downside Roughness Ra in µm (60°)	64	17	4	Elo	ongation in % (H/V)	16/16	7.1/4.0	0.9/0.4

RESULTS - RELATIVE DENSITY AND SURFACE QUALITY

RESULTS - MECHANICAL PROPERTIES IN AS-BUILT CONDITION

Data points represent the mean value, intervals the 95% confidence level.

H: HORIZONTAL (XY) orientation V: VERTICAL (Z) orientation

M2 Series 5 1 kW Aluminum AlSi7Mg

ge.com/additive 9/9

All data and figures contained herein are approximate only. All information provided is dependent on a number of factors, including but not limited to, process and machine parameters, and the approval is brand specific and/or application specific. The information provided on this material data sheet is illustrative only and cannot be relied on as binding.