

M2 Series 5 Nickel 718

Parameters for GE Additive's Concept Laser M2 Series 5

Data in this material datasheet represents material built with 25 and 50 µm layer thicknesses and in a nitrogen atmosphere on a Concept Laser M2 Series 5 single-laser or dual-laser machine. Values listed are typical.

Nickel 718

Nickel chromium superalloys like 718 are often used in high-stress, high-temperature aeronautical, petrochemical and auto racing environments. The excellent high temperature strength and creep resistance derive from precipitation hardening of finely dispersed precipitates. Next to that Alloy 718 is a metal that is also highly resistant to the corrosive effects of hydrochloric acid and sulfuric acid. The favorable weldability of Alloy 718 makes this alloy suitable for additive manufacturing as well. Typical applications are high-quality components designed for thermally challenging environments such as rocket engines, gas-turbine hot sections, and heat exchangers.

M2 Series 5 Nickel 718

The Alloy 718 parameters for the Concept Laser M2 Series 5 are developed leveraging the performance of the previous M2 generations. The base parameters deliver good surface quality while maintaining a very good density and productivity. For highest all-around surface quality the surface parameter has been developed. The hybrid parameter can significantly increase the productivity of parts having a high volume/surface ratio and still meeting highest surface quality requirements. Parameter 316 is optimized for steel recoater and highest productivity. All parameters succeed the minimum tensile properties specified in ASTM F3055 for additive manufactured parts in the heat treated state.

M2 Series 5 Nickel 718

With corresponding approval* Nickel 718 can be used for manufacturing components for high-temperature applications.

Data in this material datasheet represents material built with 25 and 50 µm layer thicknesses and in a nitrogen atmosphere on a Concept Laser M2 Series 5 single-laser or dual-laser machine. Values listed are typical.

POWDER CHEMISTRY

Nickel 718 powder chemical composition according to ASTM B 637 UNS N07718 For additional information on Nickel 718 powder, visit <u>www.advancedpowders.com/powders/nickel/718</u>.

MACHINE CONFIGURATION

- Concept Laser M2 Series 5 (single-laser or dual-laser)
- Nitrogen gas
- Rubber/ Steel recoater blade

AVAILABLE PARAMETERS

- Base Parameter 131 / 285**
- Base Parameter 296 / 287**
- Surface Parameter 158 / 286**
- Hybrid Parameter 159
- Premium Productivity Parameter 316 **

50 μm layer thickness, rubber recoater 50 μm layer thickness, steel recoater 25 μm layer thickness, rubber recoater 25 / 50 μm layer thickness, rubber recoater 100 μm layer thickness, steel recoater **Productivity optimized version (productivity bundle required)

- **THERMAL STATES**
- 1. As-Built
- 2. Solution Anneal + Age (SOLN+AGE)
- SOLN: 980°C, 1 hour in argon; AGE: 720°C, 8 hours, furnace cooling down to 620°C; 620°C, 8 hours, cooling in air 3. Vacuum Stress Relieve + HIP + Solution + Age (VSR+HIP+SOLN+AGE)
- VSR: 950 °C, 2 hours in argon; HIP: 1160 °C, 4 hours, 100 MPa; SOLN: 980 °C, 1 hour in argon; AGE: 720 °C, 8 hours, furnace cooling down to 620 °C; 620 °C, 8 hours, cooling in air

PARAMETER COMPARISON

Spider Plot is generated by normalizing typical material data (containing both horizontal and vertical data) against a range defined for each material family. For nickel-based superalloys, the ranges are as follows: UTS: 0-1600 MPa, 0.2%YS: 0-1400 MPa, Elongation: 0-40 %, Density: 0-100 %, Productivity: 5-50 cm³/h, Surface Quality (all): 70-5 μm

TYPICAL BUILD RATE

Base Parameter 131 / 285

		Productivity
	Standard	optimized
	(cm³/h)	(cm³/h)
Typical build rate ¹ w/coating	18.6	24.5
Theoretical melting rate ² bulk per Laser	21.6	21.6

¹Using standard Factory Acceptance Test layout and 2 lasers ²Calculated (layer thickness x scan velocity x hatch distance)

PHYSICAL DATA AT ROOM TEMPERATURE

	Surfac	e Roughness Ra** (μm)	- Overhang		Surface Roug (µn	hness Ra** າ)
	45°	60°	75°			
Upskin	8	6	5	Н	18	3
Downskin	15	9	6	V	8	
	Relative Density (%)		Hard (HV	ness 10)	Poisson	s Ratio
Thermal State	H	V	Н	V	Н	V
As-Built	99.9	99.9	282			
SOLN+AGE	99.9	99.9	480			

TENSILE DATA Tensile testing done in accordance with ASTM E8 and ASTM E21 **Test Temperature:** 0.2% Yield Ultimate Tensile Modulus of Elasticity Strength Strength Elongation **Reduction of Area** RT (GPa) (MPa) (MPa) (%) (%) **Thermal State** Н V Н V Н V Н V Н V 620 33.0 As-Built 190 150 740 1060 970 29.0 SOLN+AGE 195 175 1305 15.0 17.5 1220 1495 1400

H: HORIZONTAL (XY) orientation V: VERTICAL (Z) orientation

* All of the figures contained herein are approximate only. The figures provided are dependent on a number of factors, including but not limited to, process and machine parameters, and the approval is brand specific and/or application specific. The information provided on this material data sheet is illustrative only and cannot be relied on as binding.

		Productivity
	Standard	optimized
	(cm³/h)	(cm³/h)
Typical build rate ¹ w/coating	14.7	19.0
Theoretical melting rate ² bulk per Laser	15.1	15.1

¹Using standard Factory Acceptance Test layout and 2 lasers ²Calculated (layer thickness x scan velocity x hatch distance)

PHYSICAL DATA AT ROOM TEMPERATURE

	Surface Ro	oughness Ra** - C (µm)	Verhang		Surface	Roughness Ra** (µm)
	45°	60°	75°	_		
Upskin	9	7	5] н		7
Downskin	43	12	7	V		7
	Relative De (%)	Relative Density Hardness (%) (HV10)		ess D)	Poi	sson's Ratio
Thermal State	Н	V	Н	V	Н	V
As-Built	99.9	99.9	289			
SOLN+AGE	99.9	99.9	475			
TENSILE DATA			Tensile testin	g done in accorda	ance with AST	M E8 and ASTM E21
Test Temperature: RT	Modulus of Elasticity	0.2% Yield Strength	Ultimate Te Strengtl	nsile h Elo	ngation	Reduction of Area

Test Temperature:			0.2%	YIEId	Ultimate	e l'ensile					
RT	Modulus o	of Elasticity	Stre	ength	Stre	ngth	Elong	ation	Reductio	n of Area	
	(GPa)		(M	Pa)	(MPa)		(%	(%)		(%)	
Thermal State	Н	V	Н	V	Н	V	Н	V	Н	V	
As-Built	185	180	755	705	1065	1040	29.5	30.5			
SOLN+AGE	195	195	1315	1285	1480	1450	16.5	16.5			
VSR+HIP+SOLN+AGE	205	200	1100	1105	1355	1350	24.5	24	36.5	35.5	
Test Temperature: 650°C	est Temperature: 50°C Modulus of Elasticity		0.2% Yield odulus of Elasticity Strength		Ultimate Tensile Strength (MPa)		Elong	ation	Reductio	n of Area	
Thermal State	H	V	Н	V	(™ H	Pd) V	H (7	o) \/	H (7	V	
As-Built											
SOLN+AGE											
VSR+HIP+SOLN+AGE	170	175	905	905	1085	1085	17	17	20.5	21.2	

H: HORIZONTAL (XY) orientation V: VERTICAL (Z) orientation

* All of the figures contained herein are approximate only. The figures provided are dependent on a number of factors, including but not limited to, process and machine parameters, and the approval is brand specific and/or application specific. The information provided on this material data sheet is illustrative only and cannot be relied on as binding. ** Roughness measurements have been performed according to DIN EN ISO 4287 and DIN EN ISO 4288. In general

LOW CYCLE FATIGUE DATA (STRAIN-CONTROLLED)

Base Parameter 296 / 287

LCF testing done in accordance with ASTM E606

R-Ratio: 0 Temperature: 315°C Test Frequency: 0.5 Hz for 24 hrs; 9 Hz in load-control >24 hrs per ASTM E606

		AS-PRINT	ED SURFACE		MACHINED SURFACE			
	Alt Stress at 1E5 cycles (MPa)		Alt Stress at 1E6 cycles (MPa)		Alt Stress at 1E5 cycles (MPa)		Alt Stress at 1E6 cycles (MPa)	
Thermal State	Н	V	Н	V	Н	V	Н	V
As-Built								
SOLN+AGE								
VSR+HIP+SOLN+AGE	295	295	250	250				

H: HORIZONTAL (XY) orientation V: VERTICAL (Z) orientation

* All of the figures contained herein are approximate only. The figures provided are dependent on a number of factors, including but not limited to, process and machine parameters, and the approval is brand specific and/or application specific. The information provided on this material data sheet is illustrative only and cannot be relied on as binding.

Base Parameter 296 / 287

EBSD Images - Crystallographic grain orientation

H: HORIZONTAL (XY) orientation V: VERTICAL (Z) orientation

* All of the figures contained herein are approximate only. The figures provided are dependent on a number of factors, including but not limited to, process and machine parameters, and the approval is brand specific and/or application specific. The information provided on this material data sheet is illustrative only and cannot be relied on as binding.

TYPICAL BUILD RATE

Surface Parameter 158 / 286

		Productivity
	Standard	optimized
	(cm³/h)	(cm³/h)
Typical build rate ¹ w/coating	8.2	10.2
Theoretical melting rate ² bulk per Laser	8.1	8.1

¹Using standard Factory Acceptance Test layout and 2 lasers ²Calculated (layer thickness x scan velocity x hatch distance)

PHYSICAL DATA AT ROOM TEMPERATURE

	Surfac	e Roughness Ra** (μm)	- Overhang		Surface Roug (µm	hness Ra** ı)
	45°	60°	75°			
Upskin	5	4	4	Н	8	
Downskin	15	7	5	V	7	
	Relative Density (%)		Hard (HV	ness 10)	Poisson's	s Ratio
Thermal State	Н	V	Н	V	Н	V
As-Built	99.9	99.9	302			
SOLN+AGE	99.9	99.9				

TENSILE DATA

Tensile testing done in accordance with ASTM E8 and ASTM E21

Test Temperature: RT	Modulus o (G	f Elasticity Pa)	0.2% Stre (Mi	Yield ngth Pa)	Ultimate Strei MI	e Tensile ngth Pa)	Elong (%	ation	Reductio (9	n of Area
Thermal State	Н	V	Н	V	Н	V	Н	V	Н	V
As-Built	170	135	810	675	1080	980	25.5	30.0		
SOLN+AGE	183	173	1245	1165	1475	1365	15.0	18.0		

H: HORIZONTAL (XY) orientation V: VERTICAL (Z) orientation

* All of the figures contained herein are approximate only. The figures provided are dependent on a number of factors, including but not limited to, process and machine parameters, and the approval is brand specific and/or application specific. The information provided on this material data sheet is illustrative only and cannot be relied on as binding.

PHYSICAL DATA AT ROOM TEMPERATURE

Hybrid Parameter 159

	(cm³/h)
Typical build rate ¹ w/coating	8.4 (8-20) ³
Theoretical melting rate ² bulk per Laser	20.7

¹Using standard Factory Acceptance Test layout and 2 lasers ²Calculated (layer thickness x scan velocity x hatch distance)

³The hybrid parameter build rate is strongly dependent on application design, in particular wall thickness. For this parameter, a larger increase in productivity (faster build rate) can be expected for parts having high volume/surface ratios.

	Surfa	ce Roughness Ra*' (μm)	Surface Roug (µn	Surface Roughness Ra** (µm)		
	45°	60°	75°			
Upskin	5	4	4	Н	8	
Downskin	15	6	5	V	6	
	Relative Density (%)		Haro (H)	dness V10)	Poisson's	s Ratio
Thermal State	Н	V	Н	V	Н	V
As-Built	99.9	99.9	282			
SOLN+AGE			465			

TENSILE DATA

Tensile testing done in accordance with ASTM E8 and ASTM E21

Test Temperature: RT	Modulus o (Gi	f Elasticity _{Pa)}	0.2% Stre (MF	Yield ngth Pa)	Ultimate Strei (Mi	e Tensile ngth Pa)	Elong (%	ation	Reduction (%	n of Area
Thermal State	Н	V	Н	V	Н	V	Н	V	Н	V
As-Built	176	163	750	645	1065	965	27.0	32.5		
SOLN+AGE	205	195	1230	1170	1450	1355	15.5	17.0		

H: HORIZONTAL (XY) orientation V: VERTICAL (Z) orientation

* All of the figures contained herein are approximate only. The figures provided are dependent on a number of factors, including but not limited to, process and machine parameters, and the approval is brand specific and/or application specific. The information provided on this material data sheet is illustrative only and cannot be relied on as binding.

_		Productivity optimized		
_		(cm³/h)		
	Typical build rate ¹ w/coating	40.6		
Г	Theoretical melting rate ² bulk per Laser	32.4		

 1 Using standard Factory Acceptance Test layout and 2 lasers 2 Calculated (layer thickness x scan velocity x hatch distance)

PHYSICAL DATA AT ROOM TEMPERATURE

	Surface Roughness Ra** - Overhang (µm)					hness Ra** ı)	
	45°	60°	75°				
Upskin	18	15	10	Н	Н 9		
Downskin	40	18	12	V	10	10	
	Relative Density (%)		Hard (HV	lness /10)	Poisson's Ratio		
Thermal State	Н	V	Н	V	Н	V	
As-Built	99.9	99.9	268				
SOLN+AGE	99.9	99.9	465				

TENSILE DATA

Tensile testing done in accordance with ASTM E8 and ASTM E21

Test Temperature: RT	Modulus of Elasticity (GPa)		0.2% Stre (MI	0.2% Yield Strength (MPa)		Ultimate Tensile Strength (MPa)		Elongation (%)		Reduction of Area	
Thermal State	Н	V	Н	V	Н	V	Н	V	Н	V	
As-Built	200	165	690	645	1035	1020	33.5	32.5	52.5	51.5	
SOLN+AGE	201	195	1270	1265	1475	1455	18.5	18.5	31.5	34.5	

H: HORIZONTAL (XY) orientation V: VERTICAL (Z) orientation

* All of the figures contained herein are approximate only. The figures provided are dependent on a number of factors, including but not limited to, process and machine parameters, and the approval is brand specific and/or application specific. The information provided on this material data sheet is illustrative only and cannot be relied on as binding.