

M2 Series 5 rematitan[®] CL

Parameters for GE Additive's Concept Laser M2 Series 5

Data in this material datasheet represents material built with 30 and 60 µm layer thicknesses in an argon atmosphere on a Concept Laser M2 Series 5 single-laser or dual-laser machine and requires build-plate heating. Values listed are typical.

rematitan® CL

Titanium alloy in ELI quality (Grade 23) according to DIN EN ISO 22674 type 4 / DIN EN ISO 9693/ DIN EN ISO 5832-3.

Due to its proven biocompatibility and its long history in the medical industry, it is an established material used for medical/ dental applications.

rematitan[®] CL is particularly suitable for the manufacture of fixed and removable prosthetic restorations, appliances and metal-ceramic frameworks.

M2 Series 5 rematitan® CL

The parameters for the Concept Laser M2 Series 5 are developed leveraging the performance of other Ti6Al4V Grade 23 parameters. The surface parameter is a 30 µm parameter that produces the best surface roughness, having less than 10 µm without bead blast or shot peening. The productivity parameter has a layer thickness of 60 µm and provides nearly double the productivity of the surface parameter, but still offers very good surface quality. Both parameters have outstanding tensile properties in stress relieved state and meet the DIN EN ISO 22674 type 4/ DIN EN ISO 9693/ DIN EN ISO 5832-3 requirements.

Source: LAC - Laser Add Center GmbH

M2 Series 5 rematitan[®] CL

With an appropriate approval* rematitan[®] CL can be used for dental restorations.

Data in this material datasheet represent material built with 30 µm and 60 µm layer thicknesses in an argon atmosphere on a Concept Laser M2 Series 5 single-laser or dual-laser machine and requires build-plate heating. Values listed are typical.

POWDER CHEMISTRY

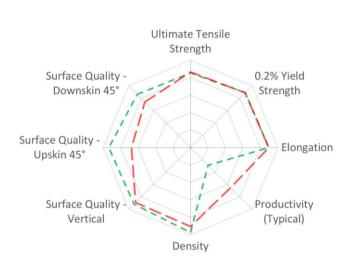
Ti6Al4V Grade 23 powder chemical composition according to DIN EN ISO 5832-3. Produced by Dentaurum distributed by GE Additive.

MACHINE CONFIGURATION

- Concept Laser M2 Series 5 (single-laser or dual-laser)
- Argon gas

AVAILABLE PARAMETERS

- Surface Parameter 235 / 305**
- Productivity Parameter 236 / 306**


**Productivity optimized version (productivity bundle required)

THERMAL STATES

As-Built
 Stress Relief (SR1)
 SR1: 900°C, 1 hour in argon, furnace cooling
 Stress Relief (SR2) - recommended for dental restoration, following the IFU
 SR2: 850°C, 1.5 hours in argon, furnace cooling
 Stress Relief (SR3)
 SR3: 730°C, 2 hours in argon, furnace cooling

Surface Parameter SR2

PARAMETER COMPARISON

Spider Plot is generated by normalizing typical material data (containing both horizontal and vertical data) against a range defined for each material family. For **Ti6Al4V**, the ranges are as follows: UTS: 600-1100 MPa, 0.2%YS: 500-1000 MPa, Elongation: 0-20 %, Density: 99-100 %, Productivity: 0-60 cm³/h, Surface Quality (all): 50-5 µm

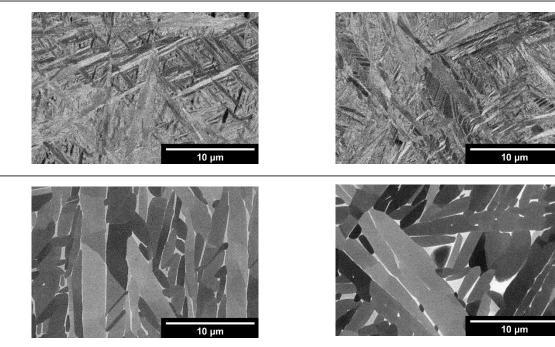
30 μm layer thickness, rubber recoater 60 μm layer thickness, rubber recoater

Productivity Parameter SR2

TYPICAL BUILD RATE

Surface Parameter

	Standard	Productivity optimized
	(cm³/h)	(cm³/h)
Typical build rate ¹ w/coating	13.1	17.1
Theoretical melting rate ² bulk per Laser	16.8	16.8


¹Using standard Factory Acceptance Test layout and 2 lasers ²Calculated (layer thickness x scan velocity x hatch distance)

PHYSICAL DATA AT ROOM TEMPERATURE

	S	Surface Roug	ghness Ra ^s	** – Ovei	hang				Surface	Roughness	Ra**
			(μm)							(µm)	
	45°		60°		75°						
Upskin	8		8		7		Н			12	
Downskin	12		8		6		V			9	
	R	elative Dens (%)	sity	I	Hardness (HV10)	Melting r (°C)	0	Coeffic		hermal Exp 0 °C (10 ⁻⁶ /ł	
Thermal State	Н		V		Н						
As-Built	99.9		99.9		353	1605-16	650			11.1	
SR1	99.9		99.9 334		334						
SR2	99.9		99.9		343					10.1	
TENSILE DATA					Tensile to	esting done	in acco	ordanc	e with As	STM E8 and	ASTM E21
Test Temperature:											
RT			0.2%	5 Yield	Ultimat	te Tensile					
	Modulus c	of Elasticity	Stre	ength	Str	ength	I	Elongat	tion	Reductio	n of Area
	(G	Pa)	(⊵	1Pa)	()	1Pa)		(%)		(9	%)
Thermal State	Н	V	Н	V	Н	V	H	1	V	Н	V
As-Built	111	110	1145	1140	1295	1270	8.	0	8.5	27	30
SR1	116	118	920	915	1010	1005	15	.5	15.0	44	42
SR2	114	116	940	945	1030	1025	14	.5	14.5	45	44
SR3								-			
SEM IMAGES											

Horizontal

Vertical

As-Built

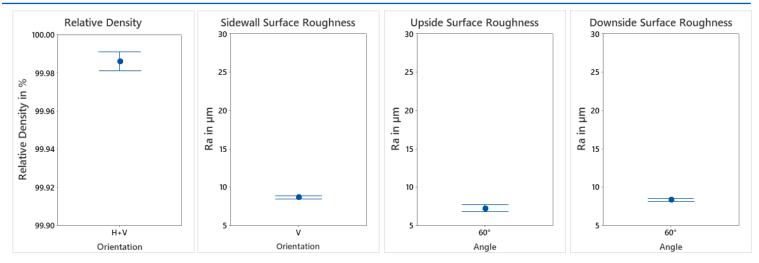
SR1

H: HORIZONTAL (XY) orientation V: VERTICAL (Z) orientation * All of the figures contained herein are approximate only. The figures provided are dependent on a number of factors, including but not limited to, process and machine parameters, and the approval is brand specific and/or application specific. The information provided on this material data sheet is illustrative only and cannot be relied on as binding.
** Roughness measurements have been performed according to DIN EN ISO 4287 and DIN EN ISO 4288. In general analysis of the surface

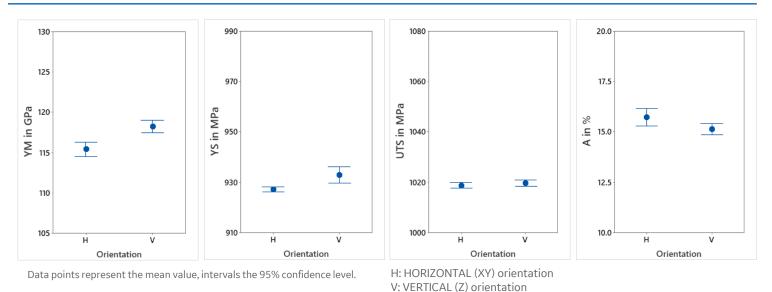
** Roughness measurements have been performed according to DIN EN ISO 4287 and DIN EN ISO 4288. In general analysis of the surface quality is strongly dependent on the methodology used and therefore deviations might be observed depending on methodology used. Vertical and horizontal sidewalls have been characterized using a tactile system, overhangs using an optical system.

PLATFORM STABILITY

Surface Parameter


The platform stability build evaluates porosity, roughness and tensile properties across different positions and orientations. To illustrate the position dependency of the M2 Series 5, the samples were homogenously distributed across the platform on 16 different positions. Regarding surface quality all sides of the specimen, so all orientations with respect to gas flow and optical system, are included in the analysis. Data shown below are dependent on part & print layout as well as batch chemistry variations and thus might deviate from "typical values" given on previous pages.

BUILD JOB DESIGN AND SUMMARIZED DATA (STRESS RELIEF SR1)


al. a. l. l. a l.a	
	R
	Sid
	Up
y	Dov

	Sample Size	Mean	St.Dev.		Sample Size	Mean	St.Dev.
Rel. Density in %	32	99.99	0.01	YM in GPa (H/V)	16/16	115/118	2/1
Sidewall Roughness Ra in µm	64	8.7	0.9	YS in MPa (H/V)	16/16	927/933	2/6
Upside Roughness Ra in µm (60°)	64	7.3	1.8	UTS in MPa (H/V)	16/16	1019/1020	2/2
Downside Roughness Ra in µm (60°)	64	8.4	0.8	Elongation in % (H/V)	16/16	15.7/15.1	0.8/0.5

RESULTS - RELATIVE DENSITY AND SURFACE QUALITY

RESULTS - MECHANICAL PROPERTIES

M2 Series 5 rematitan[®] CL

ge.com/additive 4/11

All data and figures contained herein are approximate only. All information provided is dependent on a number of factors, including but not limited to, process and machine parameters, and the approval is brand specific and/or application specific. The information provided on this material data sheet is illustrative only and cannot be relied on as binding.

TYPICAL BUILD RATE

Balanced Parameter

rd optimized
) (cm³/h)
39.0
40.4

¹Using standard Factory Acceptance Test layout and 2 lasers ²Calculated (layer thickness x scan velocity x hatch distance)

PHYSICAL DATA AT ROOM TEMPERATURE

	S	urface Roug		** – Overha	ang			Surface	Roughness	Ra**
	100		(µm)		760				(µm)	
Upskin	45° 20		60° 17		75° 13		нГ		18	
Downskin	17		13		9	-	V		10	
		elative Dens (%)			rdness HV10)	— Melting ra (°C)			hermal Expa 0 °C (10 ⁻⁶ /k	
Thermal State	Н	(70)	V	(1	H	()		25-50	0 C (10 %)r	()
As-Built	99.9		99.9		357	1605-16	50		10.9	
SR1	99.9		99.9		342					
SR2	99.9		99.9		347				10.1	
TENSILE DATA						esting done i	n accorda	nce with AS		ASTM E21
Test Temperature:										
RT			0.2%	Yield	Ultimat	te Tensile				
	Modulus o	f Elasticity		ength		ength	Elon	gation	Reductio	n of Area
	(GI	-		Pa)		/IPa)		%)	(%	6)
Thermal State	<u> </u>	V	Н	V	Н	V	Н	V	Н	V
As-Built	113	112	1115	1125	1255	1275	7.0	8.0		
SR1	121	118	940	940	1015	1015	16.0	14.5		
SR2	118	115	945	940	1030	1030	15.0	14.0	42	40
SR3	119	120	1080	1075	1135	1130	12.0	11.5		
SEM IMAGES										
			Horizon	tal				Vertical		
As-Built				<u>10 µп</u>		Alt Contraction of the second			<u>10 µт</u>	
SR1			The second	10 µп	n				<mark>ісі</mark> 10 µт	. 2.

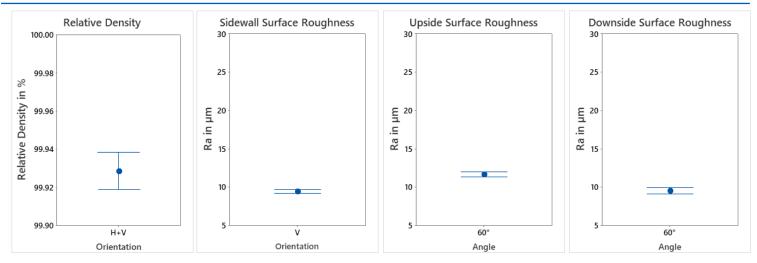
H: HORIZONTAL (XY) orientation V: VERTICAL (Z) orientation

* All of the figures contained herein are approximate only. The figures provided are dependent on a number of factors, including but not limited to, process and machine parameters, and the approval is brand specific and/or application specific. The information provided on this material data sheet is illustrative only and cannot be relied on as binding.

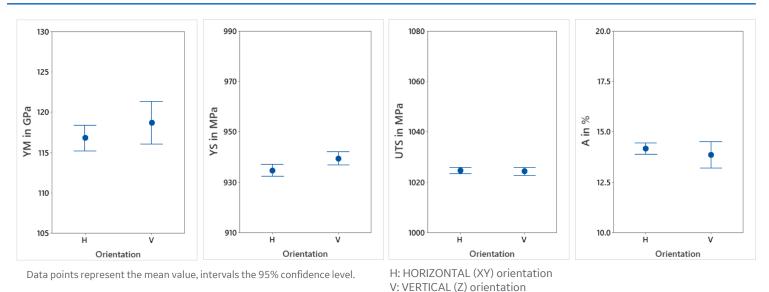
** Roughness measurements have been performed according to DIN EN ISO 4287 and DIN EN ISO 4288. In general analysis of the surface quality is strongly dependent on the methodology used and therefore deviations might be observed depending on methodology used. Vertical and horizontal sidewalls have been characterized using a tactile system, overhangs using an optical system.

PLATFORM STABILITY

Productivity Parameter


The platform stability build evaluates porosity, roughness and tensile properties across different positions and orientations. To illustrate the position dependency of the M2 Series 5, the samples were homogenously distributed across the platform on 16 different positions. Regarding surface quality all sides of the specimen, so all orientations with respect to gas flow and optical system, are included in the analysis. Data shown below are dependent on part & print layout as well as batch chemistry variations and thus might deviate from "typical values" given on previous pages.

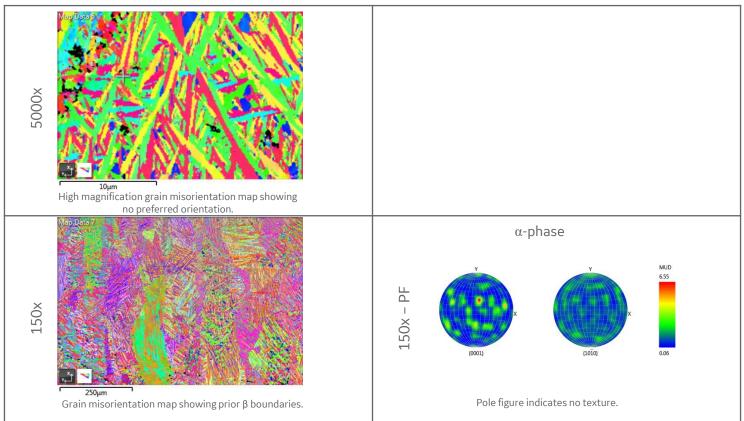
BUILD JOB DESIGN AND SUMMARIZED DATA (STRESS RELIEF SR1)


abash Lea La	
	Re
	Side
	Up
	Dow F

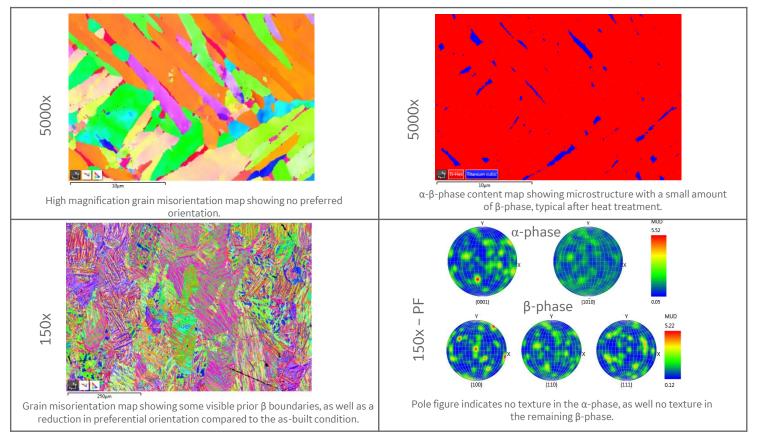
	Sample Size	Mean	St.Dev.		Sample Size	Mean	St.Dev.
Rel. Density in %	32	99.93	0.03	YM in GPa (H/V)	16/16	117/119	3/5
Sidewall Roughness Ra in µm	64	9.5	1.0	YS in MPa (H/V)	16/16	935/940	4/5
Upside Roughness Ra in µm (60°)	64	11.7	2.0	UTS in MPa (H/V)	16/16	1025/1024	2/3
Downside Roughness Ra in µm (60°)	64	9.6	1.5	Elongation in % (H/V)	16/16	14.2/13.9	0.5/1.3

RESULTS - RELATIVE DENSITY AND SURFACE QUALITY

RESULTS - MECHANICAL PROPERTIES



M2 Series 5 rematitan[®] CL


ge.com/additive 6/11

All data and figures contained herein are approximate only. All information provided is dependent on a number of factors, including but not limited to, process and machine parameters, and the approval is brand specific and/or application specific. The information provided on this material data sheet is illustrative only and cannot be relied on as binding.

As-Built condition, vertical direction

SR1 condition, vertical direction

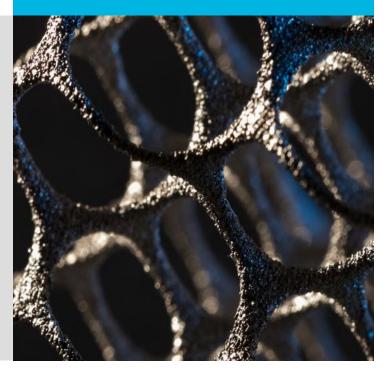
13 Al

M2 Series 5 rematitan[®] CL Mesh+ Parameters

Premium+ Parameters for GE Additive's Concept Laser M2 Series 5

Data in this material datasheet represent material built with 30 and 60 µm layer thicknesses and in an argon atmosphere on a Concept Laser M2 Series 5 single-laser or dual-laser machine and requires build-plate heating. Values listed are typical.

M2 Series 5 rematitan® CL Mesh+ Parameters


The mesh+ parameters enable the user to design porosity and pore size, as well as interconnectivity of trabecular structures to allow for enhanced initial fixation and bone ingrowth. The parameters further provide the user with an exceptional balance of high grade of detail and high productivity.

The Mesh+ parameters can be used in conjunction with the Concept Laser M2 Series 5 rematitan[®] CL parameters to create parts with both solid and mesh volumes to create hybrid components.

rematitan[®] CL

Titanium shows a high corrosion resistance and proven biocompatibility and has been employed successfully in human implant applications in contact with soft tissue and bone for decades.

Porous (trabecular) structures are very common for AM-manufactured medical implants. The open titanium architecture results in open structures that lead to enhanced osseointegration and allows adjusting the final device characteristics (density, stiffness). It also requires a wellbalanced parameter set to optimize the build process fulfilling the productivity and quality requirements.

Data in this material datasheet represent material built with 30 and 60 µm layer thicknesses in an argon atmosphere on a Concept Laser M2 Series 5 single-laser or dual-laser machine and requires build-plate heating. Values listed are typical.

30 µm layer thickness, rubber recoater

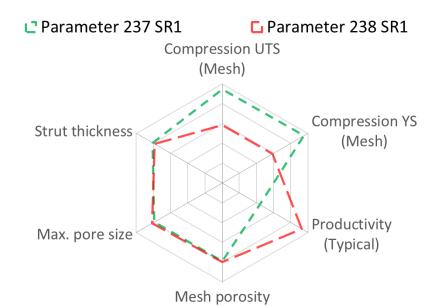
60 µm layer thickness, rubber recoater

POWDER CHEMISTRY

Ti6Al4V Grade 23 powder chemical composition according to DIN EN ISO 5832-3. Produced by Dentaurum distributed by GE Additive.

MACHINE CONFIGURATION

- Concept Laser M2 Series 5 (single-laser or dual-laser)
- Argon gas


AVAILABLE PARAMETERS

- Mesh+ Parameter 237 / 307**
- Mesh+ Parameter 238 / 308**
- **productivity optimized version (productivity bundle required)

THERMAL STATES

1. As-Built 2. Stress Relief (SR1) SR1: 900°C, 1 hour in argon, furnace cooling 3. HIP HIP: 900°C, 2 hours, pressure 100 MPa

PARAMETER COMPARISON

Spider Plot is generated by normalizing typical material data (containing both horizontal and vertical data) against a range defined for each material family. For **Ti6Al4V (mesh parameter)**, the ranges are as follows: Compression UTS (Mesh): 0-110 MPa, Compression YS (Mesh): 0-85 MPa, Density: 0-80%, Productivity: 5-40 cm³/h, Max. Pore Size: 0-600 µm, Strut Thickness: 0-300 µm

Mesh+ Parameter 237 / 307

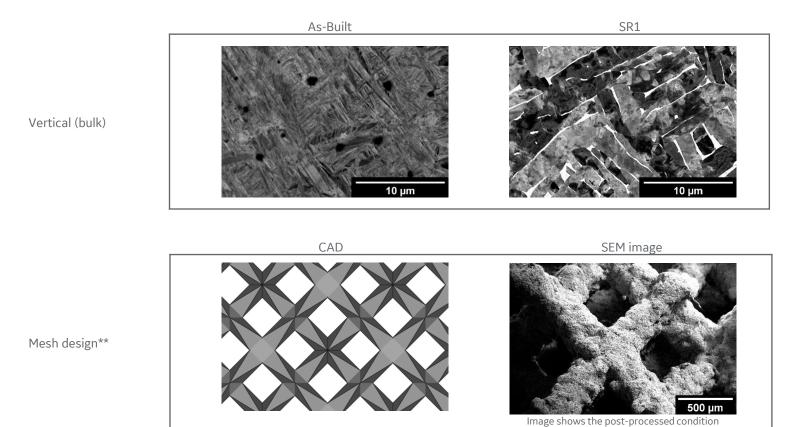
Theoretical melting rate² bulk per Laser

(cm³/h)

17.5

²Calculated (layer thickness x scan velocity x hatch distance)

COMPRESSION STRENGTH OF MESH STRUCTURE**


Compression testing done in accordance with ISO 13314

	Modulus of Elasticity	YS	
	(Compression)	(Compression)	Compressive Strength
	(GPa)	(MPa)	(MPa)
As-Built	2.2	80	104
SR1	2.5	81	104
HIP	2.3	76	100

MESH DIMENSIONS**

	Mesh porosity	Strut thickness	Max. pore size
	(%)	(μm)	(µm)
As-Built	63	250	480

SEM & CAD IMAGES

V: VERTICAL (Z) orientation

*All of the figures contained herein are approximate only. The figures provided are dependent on a number of factors, including but not limited to, process and machine parameters, and the approval is brand specific and/or application specific. The information provided on this material data sheet is illustrative only and cannot be relied on as binding.

** Data demonstrating results of special mesh design. Different designs could lead to changes in properties.

Mesh+ Parameter 238 / 308

Theoretical melting rate² bulk per Laser

(cm³/h)

36.9

²Calculated (layer thickness x scan velocity x hatch distance)

COMPRESSION STRENGTH OF MESH STRUCTURE**

Compression testing done in accordance with ISO 13314

	Modulus of Elasticity	YS	
	(Compression)	(Compression)	Compressive Strength
	(GPa)	(MPa)	(MPa)
As-Built	1.2	51	60
SR1	1.3	50	60
HIP	1.3	47	64

MESH DIMENSIONS**

	Mesh porosity	Strut thickness	Max. pore size
	(%)	(μm)	(µm)
As-Built	64	240	490

SEM & CAD IMAGES

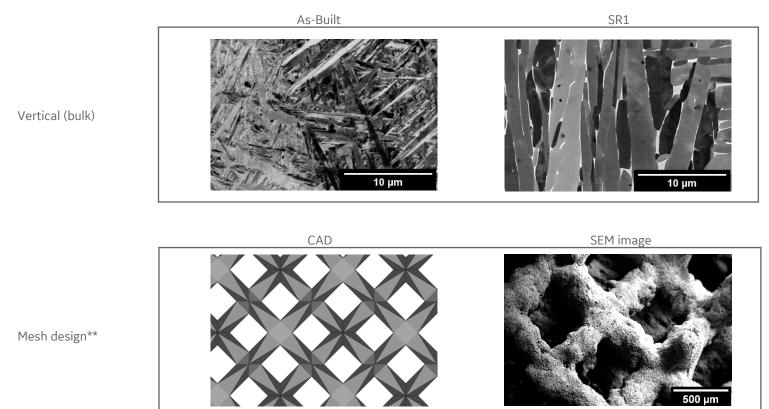


Image shows the post-processed condition

V: VERTICAL (Z) orientation

*All of the figures contained herein are approximate only. The figures provided are dependent on a number of factors, including but not limited to, process and machine parameters, and the approval is brand specific and/or application specific. The information provided on this material data sheet is illustrative only and cannot be relied on as binding.

** Data demonstrating results of special mesh design. Different designs could lead to changes in properties.