

M2 Series 5 Cobalt Chrome Balanced+

Premium+ Parameter for Concept Laser M2 Series 5

Data in this material datasheet represents material built with 50 µm layer thickness and in a nitrogen atmosphere on a Concept Laser M2 Series 5 single-laser or dual-laser machine, and requires build plate heating. Values listed are typical.

Cobalt Chrome

Parts are fabricated from cobalt chrome alloys like ASTM F75 CoCr when excellent resistance to high temperatures, corrosion and wear is critical. It is an appropriate selection where nickel-free components are required, such as in orthopedic and dental applications due to the hardness and bio-compatibility necessary for long-term performance. Cobalt chrome alloys are used in additive manufacturing to print parts that often benefit from hot isostatic pressing (HIP), which combines high temperatures and pressures to induce a complex diffusion process that strengthens grain structures, producing fully dense metal parts.

M2 Series 5 Cobalt Chrome

This is the machine and parameter developed for the fuel nozzle and other aerospace applications. We have worked closely together with our customers optimizing around speed and productivity, part to part and machine to machine consistency, reliability, uptime and quality control. Thousands of development hours and rigorous testing resulted in unprecedented productivity while offering excellent surface finish, feature resolution, mechanical strength, fatigue capability, and buildability. This is why the parameter is named Premium Balanced, delivering the best of productivity and performance.

M2 Series5 Cobalt Chrome Premium Balanced

With appropriate approval* Cobalt Chrome can be used for aerospace, orthopedic, and dental applications.

Data in this material datasheet represents material built with 50 µm layer thickness and in a nitrogen atmosphere on a Concept Laser M2 Series 5 single-laser or dual-laser machine, and requires build plate heating. Values listed are typical.

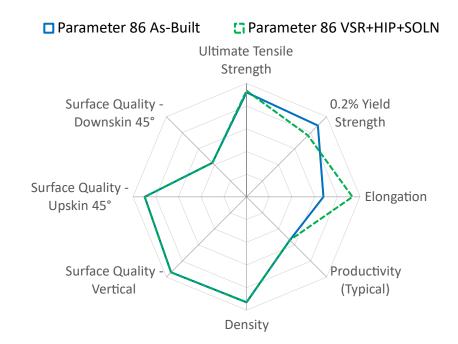
POWDER CHEMISTRY

Cobalt Chrome (CoCrMo) powder chemical composition according to ASTM F75.

MACHINE CONFIGURATION

- Concept Laser M2 Series 5 (single-laser or dual-laser)
- Nitrogen Gas
- Stainless steel recoater blade

AVAILABLE PARAMETERS


- Premium Balanced Parameter 86

50 µm layer thickness, steel recoater

THERMAL STATES

- 1. As-Built
- 2. Vacuum Stress Relief + Hot Isostatic Press + Solution (VSR+HIP+SOLN) VSR: 1052°C, 2 hours in vacuum; HIP: 1204°C, 3-5 hours, 100 MPa minimum; SOLN: 1190°C, 1 hour in vacuum

THERMAL STATE COMPARISON

Spider Plot is generated by normalizing typical material data (containing both horizontal and vertical data) against a range defined for each material family. For **Cobalt Alloys,** the ranges are as follows: UTS: 0-1400 MPa, 0.2%YS: 0-900 MPa, Elongation: 0-60 %, Density: 99-100 %, Productivity: 5-30 cm³/h, and Surface Quality (all): 40-5 µm.

	(cm³/h)
Typical build rate* w/coating ¹	16.2
Theoretical melting rate** bulk per Laser ²	18.0

¹Using standard Factory Acceptance Test layout and 2 lasers ²Calculated (layer thickness x scan velocity x hatch distance)

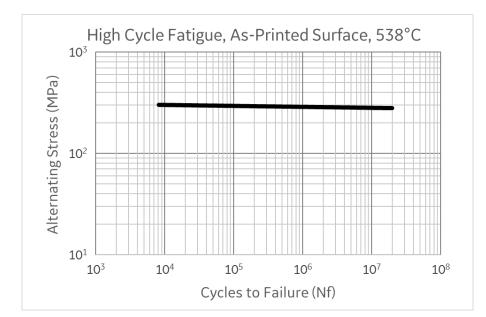
PHYSICAL DATA AT ROOM TEMPERATURE

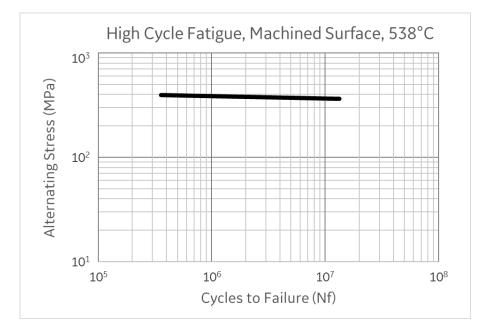
		Surface Roughn	ess Ra** (µm)	- Overhang	5			Surface R	Roughness F (µm)	Ra**
	45°		60°	-	75°					
Upskin	9		7		7		н			
Downskin	26		15		7		V		8	
	Relative Density (%)			Hardne (HV10		S		Poiss	on's Ratio	
Thermal State	Н		J	Н		V		Н		V
As-Built	99.9).9	40		408				
VSR+HIP+SOLN			-					0.352	0	.352
IORIZONTAL Thermal State	The	Thermal Conductivity (W/m•K) 12.2		Coeff. Of Thermal Expansion (m/m/°C) 11.5 x 10 ⁻⁶			Thermal Diffusivity (m ² /s) 3.2 x 10 ⁻⁶		Specific Heat (J/K•kg) 452	
s-Built										
/SR+HIP+SOLN										
/ERTICAL Thermal State	The	Thermal Conductivity (W/m•K)		Coeff. Of Thermal Expansion (m/m/°C)			Thermal Diffusivity (m²/s)		Specific Heat (J/K•kg)	
s-Built								-	-	
15-Duilt				11.5 x 10 ⁻⁶			3.2 x 10 ⁻⁶		452	
/SR+HIP+SOLN		12.2		11.	5 x 10 ⁻⁶		3.2 x	10-6	45	52
SR+HIP+SOLN		12.2			<u>5 x 10⁻⁶</u> Tensile testi	ng done i				
		12.2	0.2%			_				
'SR+HIP+SOLN TENSILE DATA	Modulu	12.2 us of Elasticity			Tensile testi	Tensile	n accordan			ASTM E2
SR+HIP+SOLN TENSILE DATA Test Temperature: RT	Modulu		Stre	ó Yield ength ^{IPa)}	Tensile testi Ultimate Stren (MPa	Tensile gth	n accordan Elon	ce with AS	STM E8 and	ASTM E2
'SR+HIP+SOLN TENSILE DATA Test Temperature: RT Thermal State	Н	us of Elasticity (GPa) V	Stre (M H	6 Yield ength ^{IPa)} V	Tensile testi Ultimate Stren (MPa H	Tensile gth ^{a)} V	n accordan Elong (H	ce with AS gation ^{%)} V	STM E8 and Reduction (% H	ASTM E2 n of Area 5) V
SR+HIP+SOLN TENSILE DATA Test Temperature: RT Thermal State As-Built	H 	us of Elasticity (GPa) V 185	Stre (M H	5 Yield ength ^{IPa)} V 795	Tensile testi Ultimate Stren (MPa H 	Tensile gth) V 1290	n accordan Elong (H 	ce with AS gation %) V 16.0	GTM E8 and Reduction (% H 	ASTM E2 n of Area 6) V
SR+HIP+SOLN TENSILE DATA Test Temperature: RT Thermal State As-Built	Н	us of Elasticity (GPa) V	Stre (M H	6 Yield ength ^{IPa)} V	Tensile testi Ultimate Stren (MPa H	Tensile gth ^{a)} V	n accordan Elong (H	ce with AS gation ^{%)} V	STM E8 and Reduction (% H	ASTM Each of Area b) V
'SR+HIP+SOLN TENSILE DATA Test Temperature:	H 230	us of Elasticity (GPa) V 185	Stre (M 695 0.2% Stre	5 Yield ength ^{IPa)} V 795	Tensile testi Ultimate Stren (MPa H 	Tensile gth 1290 1300 Tensile gth	Elong H 45.0	ce with AS gation %) V 16.0	GTM E8 and Reduction (% H 	ASTM E2 h of Area V 35.0 h of Area
SR+HIP+SOLN TENSILE DATA Test Temperature: RT Thermal State As-Built VSR+HIP+SOLN Test Temperature: 538°C	H 230	us of Elasticity (GPa) V 185 225 us of Elasticity	Stre (M 695 0.2% Stre	6 Yield ength ^{IPa)} <u>V</u> 795 685 6 Yield ength	Tensile testi Ultimate Stren (MPa H 1320 Ultimate Stren	Tensile gth 1290 1300 Tensile gth	Elong H 45.0	ce with AS gation %) V 16.0 46.0 gation	STM E8 and Reduction (% H 34.0 Reduction	ASTM E2 h of Area V 35.0 h of Area
'SR+HIP+SOLN TENSILE DATA Test Temperature: RT Thermal State As-Built VSR+HIP+SOLN Test Temperature:	H 230 Modulu	us of Elasticity (GPa) V 185 225 Us of Elasticity (GPa)	Stre (M <u>H</u> 695 0.2% Stre (M	6 Yield ength ^{IPa)} <u>V</u> 795 685 6 Yield ength IPa)	Tensile testi Ultimate Stren; (MPa H 1320 Ultimate Stren; (MPa	Tensile gth) <u>1290</u> 1300 Tensile gth	Elong (H 45.0	ce with AS gation %) <u>V</u> 16.0 46.0 gation	STM E8 and Reduction (% H 34.0 Reduction (%	ASTM E2 h of Area b V 35.0 h of Area

as binding. ** Roughness measurements have been performed according to DIN EN ISO 4287 and DIN EN ISO 4288. In general analysis of the surface quality is strongly dependent on the methodology used and therefore deviations might be observed depending on methodology used. Vertical and horizontal sidewalls have been characterized using a tactile system, overhangs using an optical system.

HIGH CYCLE FATIGUE DATA (LOAD-CONTROLLED)

Premium Balanced Parameter


Test Frequency: 60 Hz


HCF testing done in accordance with ASTM E466

R-Ratio:0 Test Temperature: 538°C

AS-PRINTED SURFACE

MACHINED SURFACE Alt Stress at 10⁷ cycles Alt Stress at 10⁷ cycles (MPa) (MPa) **Thermal State** V V Н Н As-Built ___ ___ ___ ___ VSR+HIP+SOLN 280 280 365 365

H: HORIZONTAL (XY) orientation V: VERTICAL (Z) orientation

* All of the figures contained herein are approximate only. The figures provided are dependent on a number of factors, including but not limited to, process and machine parameters, and the approval is brand specific and/or application specific. The information provided on this material data sheet is illustrative only and cannot be relied on as binding.